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ABSTRACT

Common anomaly detection methods require fully observed data for model train-
ing and inference and cannot handle data containing missing values. The miss-
ing data problem is pervasive in various real-world scenarios but the study of
anomaly detection with missing data is quite limited. In this work, we first con-
struct and evaluate a straightforward strategy, “impute-then-detect”, which com-
bines state-of-the-art data imputation methods with unsupervised anomaly detec-
tion methods, where the training data are only composed of normal samples. We
observe that such two-stage methods often yield imputation bias for normal data,
namely, the imputation methods are inclined to make incomplete samples “nor-
mal”. The fundamental reason is that the imputation models are learned from
normal data and cannot be generalized to abnormal data. To solve the challeng-
ing problem, we propose an end-to-end method called ImAD for unsupervised
anomaly detection in the presence of missing values. ImAD integrates data impu-
tation with anomaly detection into a unified optimization problem and introduces
well-designed pseudo-abnormal samples to ensure the discrimination ability of the
imputation process. Experiments in the settings of three different missing mech-
anisms show that the proposed ImAD alleviates the imputation bias and achieves
much better detection performance in comparison to the baselines.

1 INTRODUCTION

Anomaly detection (AD) (Breunig et al., 2000; Schölkopf et al., 2001; Liu et al., 2008; Pevnỳ, 2016;
Zong et al., 2018; Ruff et al., 2018; Cai & Fan, 2022), aiming at identifying anomalous samples in
data, is a crucial machine learning problem and is widely applied in many high-stakes fields such
as healthcare, finance, and cybersecurity. Existing anomaly detection methods commonly require
that both the training and test sets are composed of complete data and they cannot handle data
containing missing values. Data missing is a long-standing and unavoidable problem in many real-
world scenarios such as healthcare and finance. Commonly, the collection, transmission, and storage
process of data may cause missing values and yield incomplete data. It is necessary and inevitable
to solve the anomaly detection problem in the presence of missing values. A naive strategy is to fill
in the missing values by statistical characteristics such as mean, median, or mode and then perform
anomaly detection. Taking two real-world tabular datasets “Adult” and “KDD” datasets as examples,
we use variable means to fill the missing entries and then conduct two classical AD methods (OC-
SVM (Schölkopf et al., 2001) and Isolation Forest (Liu et al., 2008)) and two deep learning based
AD methods (Deep SVDD (Ruff et al., 2018) and NeutraL AD (Qiu et al., 2021)). The results are
shown in Figure 1. The detection performances of the four anomaly detection methods degrade
significantly when the missing rate increases. This result verified the failure of the naive strategy
and the difficulty of unsupervised anomaly detection in the presence of missing values.

Besides the aforementioned naive approach, one may consider using more powerful miss-
ing imputation algorithms to recover the missing values. Indeed, in the past decades,
a substantial amount of research has been dedicated to developing missing data imputa-
tion algorithms (Wilks, 1932; Ghahramani & Jordan, 1993; Dempster et al., 1977; Pig-
ott, 2001; Candes & Recht, 2012; Stekhoven & Bühlmann, 2012; Fan & Chow, 2017;
Gondara & Wang, 2018; Yoon et al., 2018; Fan et al., 2020; Muzellec et al., 2020).
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Figure 1: Performance degradation of anomaly
detection methods with the increasing missing
rate. Plots (a) and (b) correspond to the “Adult”
and “KDD” datasets, respectively. The missing
rate denotes the missing probability of each en-
try under MCAR (missing completely at random),
and AUROC is the Area Under the Receiver Op-
erating Characteristic curve.

However, in the framework of unsupervised
anomaly detection, where the training data are
composed of normal samples, such “impute-
then-detect” pipeline method would yield im-
putation bias for normal data, i.e., the impu-
tation methods are inclined to recover an ab-
normal sample with missing values as “nor-
mal” as possible. The reason is that the train-
ing set and testing set do not satisfy the condi-
tion of identical distribution and the learned im-
putation model does not generalize well. The
imputation bias significantly lowers the accu-
racy of anomaly detection. In Section 4.3,
we quantitatively evaluate the “impute-then-
detect” pipeline using state-of-the-art imputa-
tion algorithms and AD algorithms.

In this work, we propose a novel method, called
ImAD, for unsupervised anomaly detection on
data with missing values. The main idea of
ImAD is to integrate data imputation and anomaly detection into a unified optimization objective
and alleviate imputation bias by automatically generating some pseudo-abnormal samples. Note
that the pseudo-abnormal samples are from the training process and we do not use any extra data
in our experiments. ImAD consists of three modules including an imputation module, a projection
module, and a reconstruction module. The imputation module is used to recover missing values,
the projection module maps imputed data into compact and bounded target distributions, and the
reconstruction module aims to preserve key information from the original data distribution. Our
contributions are summarized as follows.

• We study the imputation bias problem of the “impute-then-detect” pipeline and quantita-
tively evaluate their detection performance.

• We propose a novel method ImAD for anomaly detection on incomplete data. To the best
of our knowledge, ImAD is the first end-to-end unsupervised anomaly detection method
for incomplete data. We also provide theoretical analysis for the effectiveness of ImAD.

• We evaluate the detection performance of all baselines on seven real-world datasets, consid-
ering three different missing mechanisms (missing completely at random (MCAR), missing
at random (MAR) and missing not at random (MNAR)).

2 RELATED WORK

2.1 MISSING DATA IMPUTATION

The goal of data imputation is to fill missing entries of data with plausible values and provide the
imputed data for downstream tasks such as classification, clustering, and visualization. As the miss-
ing data problem is prevalent in many fields, the study on missing data imputation is extensive and
many algorithms have been proposed in the past decades. Mayer et al. (2019) pointed out that
there are approximately 150 implementations available to handle missing data. These methods can
be roughly organized into three categories. The first category is based on the iterative regression
model, in which one of the most well-known methods is the Multiple Imputation by Chained Equa-
tions (MICE) (Royston & White, 2011). Stekhoven & Bühlmann (2012) presented MissForest by
training random forests on observed data through an iterative imputation scheme. MissForest is
very effective in categorical data imputation. The second category is the matrix completion methods
(Candes & Recht, 2012; Mazumder et al., 2010; Fan et al., 2019; 2020). The third category is based
on deep learning especially deep generative models (Fan & Chow, 2017; Yoon et al., 2018; Li et al.,
2019; Muzellec et al., 2020). For instance, Yoon et al. (2018) proposed generative adversarial impu-
tation network (GAIN) based on vanilla generative adversarial network (GAN) (Goodfellow et al.,
2014) and Tashiro et al. (2021) proposed conditional score-based diffusion models for probabilistic
time-series imputation (CSDI) based diffusion model (Sohl-Dickstein et al., 2015). Indeed, these
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deep learning based imputation methods often achieve state-of-the-art performance in the tasks of
missing data imputation, when the performance is often evaluated by the RMSE of imputation or
the accuracy of a classifier when the data consists of multiple classes. However, their performance
in recovering the missing values for anomaly detection is rarely studied.

2.2 ANOMALY DETECTION ON INCOMPLETE DATA

The research on anomaly detection in the presence of missing values is very limited. To the best of
the authors’ knowledge, Zemicheal & Dietterich (2019) is the first work that evaluates the detection
performance of anomaly detection methods combined with different data imputation techniques.
Their experiments of anomaly detection with missing values on a few UCI datasets showed that im-
plementations of unsupervised anomaly detection methods such as Isolation Forest (Liu et al., 2008)
on incomplete data should always include algorithms for handling missing values. The imputation
can significantly improve the performance of anomaly detection methods. Fan et al. (2022) studied
the problem of statistical process monitoring with missing values and proposed a fast incremental
nonlinear matrix completion method for online and sequential imputation. The imputation method
is able to adapt to changes of data patterns. Sarda et al. (2023) provided a comparative study of
seven unsupervised anomaly detection methods on GAN-imputed data.

It should be pointed out that the strategies used in (Zemicheal & Dietterich, 2019; Fan et al., 2022;
Sarda et al., 2023) are two-stage methods, where the imputation models are trained on the training
dataset that does not contain any abnormal data or only contains very few unlabeled outliers. As a
result, the imputation model will not generalize well on abnormal data in the test stage and will use
the learned pattern or structure of normal data to impuate the missing values of abnormal data, which
makes the abnormal data similar to normal data and hence lowers the detection accuracy. In contrast,
in this work, we propose a novel end-to-end anomaly detection method in the presence of missing
values. The imputation process of our method is able to preserve the normality or abnormality of
the test data and hence ensures high detection accuracy.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION AND OUR MOTIVATION

Given n samples x1,x2, · · · ,xn drawn from an unknown distribution Dx ⊆ Rm, the goal of unsu-
pervised anomaly detection is to learn a decision function f : Rm → {0, 1} by utilizing only these
n samples, such that f(x) = 0 if x ∈ Dx and f(x) = 1 if x /∈ Dx. We consider the scenario that
X := [x⊤

1 ,x
⊤
2 , · · · ,x⊤

n ]
⊤ ∈ Rn×m contains missing values, which is often caused by the failure of

data acquisition. For convenience, we let M ∈ {0, 1}n×m be a mask matrix determined by some
missing mechanism M such as MCAR, MAR or MNAR, where Mi,j = 1 means Xi,j is observed
and Mi,j = 0 means Xi,j is missing. Then, we observe the incomplete data matrix

X̆ = [x̆⊤
1 , x̆

⊤
2 , · · · , x̆⊤

n ]
⊤ = X⊙M (1)

where ⊙ is the Hadamard product. Equation (1) implies that the missing values of X are temporarily
filled with zeros. As mentioned before, conventional anomaly detection methods are vulnerable to
missing values and a good imputation algorithm can raise the detection accuracy of an anomaly
detection method to some extent. However, the strategy “impute-then-detect” is inclined to make
incomplete abnormal samples normal and hence cannot provide satisfactory detection performance.

In this work, we aim to provide an end-to-end anomaly detection method in the presence of missing
values. The most challenging problem is that the imputation model (denoted as I) trained only on
normal data cannot generalize well to abnormal data. To solve this challenging problem, we propose
to generate some pseudo-abnormal samples, and then learn an imputation model from both the orig-
inal normal data and the generated pseudo-abnormal samples. Thus, the learned imputation model is
able to generalize well to incomplete abnormal data in the test stage and recover the missing values
with high accuracy, which further improves the accuracy of anomaly detection. Nevertheless, it is
non-trivial to generate pseudo-abnormal samples because the distribution (i.e., Dx) of the training
data is unknown and the dimension of the data d is often high. We need to ensure that the generated
pseudo-abnormal samples are similar enough to real abnormal data. On the other hand, the gener-
ated pseudo-abnormal samples should not be too far from the normal data, where a large gap will
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make the learned imputation model fail to impute the abnormal samples close to normal data and
cause the abnormal samples to be hard to detect.

3.2 GENERATING PSEUDO-ABNORMAL SAMPLES IN LATENT SPACE

∈ 𝒟𝒟𝐳𝐳
∈ 𝒟𝒟𝐳𝐳�

Figure 2: Visualization of
Dz, and Dz̃ in a 2-D la-
tent space Z . Dz and Dz̃

are truncated Gaussian from
N (0, 0.52 · I2) and N (0, I2)
respectively. The radii of the
inner and outer hyperspheres
are r1 and r2 respectively.

Since Dx is unknown and m is often not small, it is very difficult
to generate some meaningful pseudo-abnormal samples. Moreover,
the incompleteness of X further increases the difficulty. Thus, we
propose to find an d-dimensional latent space Z where the normal
data are lying and then generate pseudo-abnormal samples around
the normal samples in Z . The samples in Z will be mapped back
to the original data space. To be more precise, we define Dz as the
latent distribution of the normal data in Z and define Dz̃ as the latent
distribution of pseudo-abnormal data in Z . Since the patterns of
normality are limited and the patterns of abnormality are unlimited,
we let Dz be a truncated Gaussian distribution in Z and assume that
the remaining region of Z excluding the hyperball (denoted by B,
with radius r1) defined by Dz is the abnormal region, denoted as
Z \ B. It should be pointed out that there is no need to define Dz̃

in the entire space Z \ B, which will be explained in the discussion
for Theorem 3.1(b) in Section 3.6. Instead, we only need to define
Dz̃ in a small region of Z \ B that encloses B, which will reduce
the uncertainty of random sampling (or samples size equivalently)
and make it easier for mapping the samples back to the original data
space. Thus, we define Dz̃ as a hypershell surrounding B and let Dz̃

be a truncated Gaussian. The radii of two hyperspheres forming the
hypershell are r1 and r2 respectively, where r2 > r1. An intuitive example is shown in Figure 2.

3.3 LEARNING FRAMEWORK

Given Dz, we learn a model R : Rd → Rm to transform the samples drawn from Dz to the original
data distribution Dx, i.e.,

Dx ≈ R(Dz). (2)
R is actually a reconstruction model that recovers the original data from the latent space Z . With
Dz̃ and R, we can obtain a distribution of pseudo-abnormal data in the original data space as

Dx̃ := R(Dz̃). (3)

The samples (denoted by x̃) drawn from Dx̃ are reasonable pseudo-abnormal samples, which will be
explained by the discussion for Theorem 3.1(a) in Section 3.6. Now we use a model P : Rm → Rd
to transform Dx and Dx̃ into Dz and Dz̃ respectively, i.e.,

Dz ≈ P(Dx), Dz̃ ≈ P(Dx̃). (4)

However, X is incomplete, and we need to learn an imputation model I to recover the missing
values, i.e., X̂ = I(X̆). More generally, we denote

Dx̂ = I(Dx̆). (5)

We hope that the imputation model is also able to recover the missing values of the generated pseudo-
abnormal samples if they have, though they are complete. We thus remove some values of the
generated pseudo-abnormal samples x̃ ∼ Dx̃ using some missing mechanism M̃ and let D˘̃x =

M̃(Dx̃). The missing values are then recovered by

Dˆ̃x = I(D˘̃x). (6)

This addresses the problem of imputation bias encountered by the “impute-then-detect” methods.

Let EI , EP , and ER denote some distance or discrepancy measure between distributions. We here
show how to achieve the goals of (2), (3), (4), (5), and (6). First, for normal data, we solve

minimize
I,P,R

EI(I(Dx̆),Dx̆ | M) + EP (P(Dx̂),Dz) + ER(R(P(Dx̂)),Dx̆ | M
)

(7)
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For the generated pseudo-abnormal data, we solve

minimize
I,P,R

EI
(
I(M̃(R(Dz̃))),M̃(R(Dz̃)) | M̃

)
+ EP

(
P(I(M̃(R(Dz̃)))),Dz̃) (8)

Let Ê· be a finite-sample estimation of E·. Putting (7) and (8) together, we obtain the final formulation
of our method ImAD as follows:

minimize
I,P,R

ÊI(I([X̆; ˘̃X]), [X̆; ˘̃X] | [M, M̃])︸ ︷︷ ︸
L(DI)

+ ÊP (P([X̂; ˆ̃X]), [Z; Z̃])︸ ︷︷ ︸
L(AD)

+ ÊR(R(P(X̂)), X̆ | M)︸ ︷︷ ︸
L(RE)

(9)
where ˘̃X = R(Z̃)⊙ M̃, ˆ̃X = I( ˘̃X), and [·; ·] denotes the row-wise concatenation of two matrices.
In (9), the samples in Z are drawn from Dz and the samples in Z̃ are drawn from Dz̃. The roles of
the three parts of the objective function in (9) are analyzed as follows.

• L(DI) denotes the data imputation loss. With this loss, the imputation model will be able to
recover the missing values of normal data and abnormal data.

• L(AD) denotes the anomaly detection loss. With this loss, the anomaly detection model
will be discriminative and be able to project normal data and abnormal data into different
regions in Z .

• L(RE) denotes the reconstruction loss. This loss is to ensure that Dz and Dz̃ are meaningful.

We see that our method ImAD couples data imputation with anomaly detection to a unified opti-
mization objective. Figure 3 depicts the overall architecture of ImAD.
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Figure 3: The architecture of ImAD, which has three modules including Imputer, Projector, and
Reconstructor. Note that the two Reconstructors in the flow path share parameters. The green arrows
and red arrows show the flow path of normal samples and pseudo-abnormal samples, respectively.

3.4 SPECIFIC IMPLEMENTATION

We use three neural networks hψ, fθ and gϕ with parameters ψ, θ, ϕ to model I,P and R respec-
tively. For E , we consider two different cases. If the samples are pair-wise, we directly use the square
loss, which is simple and efficient. Thus, in LDI and LRE, we use the square loss, and the square loss
for LRE is masked by M. When the samples are not pair-wise, we take advantage of the Sinkhorn
divergence (Cuturi, 2013) derived from the optimal transport theory. The Sinkhorn divergence be-
tween two distributions DU and DV supported by their finite samples U = {u1,u2, · · · ,unu} ∼ Du
and V = {v1,v2, · · · ,vnv} ∼ Dv is defined as

Sinkhorn(U ,V) := min
P

⟨P,C⟩F + η
∑
i,j

log(Pij), s.t. P1 = a,PT1 = b,P ≥ 0 (10)
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where P ∈ Rnu×nv is the transport plan and C ∈ Rnu×nv is the metric cost matrix. The two
probability vectors a and b satisfy aT1 = 1,bT1 = 1, and η is a trade-off between Wasserstein
distance and entropy regularization. When η = 0, Sinkhorn distance is the Wasserstein distance.

By applying hψ, fθ, gϕ, square loss, ad Sinkhorn divergence to (9), we obtain the following problem:

minimize
ψ,θ,ϕ

Sinkhorn(fθ(hψ(X̆)),Z) + α∥Z̃− fθ(hψ(gϕ(Z̃)⊙ M̃))∥2F︸ ︷︷ ︸
L(AD)

+ β∥([X̆; ˘̃X]− hψ([X̆; ˘̃X]))⊙ [M; M̃]∥2F︸ ︷︷ ︸
L(DI)

+λ∥(X̆− gϕ(fθ(hψ(X̆))))⊙M∥2F︸ ︷︷ ︸
L(RE)

(11)

Solving the problem (11), we get well trained imputer hψ∗ and projector fθ∗ . For a new sample x̆new
containing missing values, we define anomaly score s(·) by

s(x̆new) = ∥fθ∗(hψ∗(x̆new))∥, (12)
which is the distance to the origin in the latent space. If s(x̆new) > r1, x̆new is detected as abnormal.
Otherwise, x̆new treated as a normal sample.

3.5 THEORETICAL ANALYSIS FOR LATENT SPACE SAMPLING

The theoretical analysis for the sampling strategy from the truncated Gaussians in the latent space is
presented in Appendix A.

3.6 THEORETICAL ANALYSIS FOR GENERATION AND DETECTION ABILITY

Without loss of generality, we suppose fθ, gϕ, and hψ have L layers, where θ =

{Wf
1 ,W

f
2 , . . . ,W

f
L}, g = {Wg

1,W
g
2, . . . ,W

g
L}, and ψ = {Wh

1 ,W
h
2 , . . . ,W

h
L}. Denote the

spectral norm of a matrix as ∥ · ∥2. We have the following theorem (proved in Appendix B).

Theorem 3.1. Suppose the activation functions in fψ , gϕ, and hψ are ρ-Lipschitz and ∥Wf
l ∥2 ≤ αf ,

∥Wg
l ∥2 ≤ αg , ∥Wh

l ∥2 ≤ αh, l = 1, 2, . . . , L. Then:
(a) ∥gψ(z)− gψ(z̃)∥ ≤ ρLαLg ∥z− z̃∥ holds for any z and z̃;
(b) ∥fθ(hψ(x̆))− fθ(hψ(˘̃x))∥ ≤ ρ2LαLf α

L
h∥x̆− ˘̃x∥ holds for any x̆ and ˘̃x.

Theorem 3.1(a) indicates that in the latent space Z , if an abnormal sample z̃ ∼ Dz̃ is close to a
normal sample z ∼ Dz, in the original data space, the corresponding abnormal sample x̃ is still close
to the normal sample x provided that αg is not too large. This means the generated pseudo-abnormal
samples are practical and useful. For Theorem 3.1(b), let’s consider an incomplete abnormal sample
˘̃x and assume that its closest incomplete pseudo-abnormal sample generated by the z̃ on the outer
hypersphere (shown in Figure 2) is ˘̃x∗, where ∥˘̃x − ˘̃x∗∥ = β. Then in the latent space, we have
∥z̃− z̃∗∥ ≤ ρ2LαLf α

L
hβ. Let the radii of the inner and outer hyperspheres be r1 and r2 respectively.

Now we can conclude that if r2 − r1 > ρ2LαLf α
L
hβ, z̃ is outside the decision region given by the

inner hypersphere and hence ˘̃x is successfully detected as an abnormal sample.

4 EXPERIMENTS

We compare our method with “impute-then-detect” methods on seven publicly available tabular
datasets. In all experiments, only incomplete normal data are used in the training stage, but there are
both incomplete normal and abnormal data in the testing stage. Due to space limitation, we report the
main experimental results in this section. In Appendix C, we explore the gain of introduced pseudo-
abnormal samples for detection performance. Furthermore, we also analyze the influences of the
constrained radii r1, r2 for detection performance and related results are provided in Appendix D.
We reported the remaining results under different experimental settings in Appendix G.

4.1 DATASETS AND BASELINES

The statistic information of all datasets used in our experiments is provided in Table 1 and detailed
description of all datasets is put in the Appendix F.
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Table 1: Statistics of the seven datasets (Samp. means Samples).
Name Field Dimension Instances Normal Samp. Abnormal Samp.
Adult income census 14 30,162 22,658 7,508
Botnet cybersecurity 115 40,607 13,113 27,494
KDD cybersecurity 121 494,021 396,743 97,278

Arrhythmia medical diagnosis 274 452 320 132
Speech speech recognition 400 3,686 3,625 61

Segerstolpe cell analysis 1,000 702 329 372
Usoskin cell analysis 25,334 610 232 378

In terms of “impute-then-detect”, we consider both conventional machine learning based methods
and deep learning based methods. For imputation, we use MissForest (Stekhoven & Bühlmann,
2012) and GAIN (Yoon et al., 2018). For anomaly detection, we use Isolation Forest (Liu et al.,
2008), Deep SVDD (Ruff et al., 2018), and NeutraL AD (Qiu et al., 2021). Concatenating imputation
methods and anomaly detection methods pairwise, we get six two-stage baselines.

4.2 IMPLEMENTATION DETAILS

On all experimental datasets, we use MLPs for all three modules of ImAD, including the imputation
module, projection module, and reconstruction module. We use Adam (Kingma & Ba, 2015) as
the optimizer and set coefficient η of entropy regularization term in Sinkhorn distance to 0.1 in all
experiments. Other experimental hyper-parameters are provided in Appendix F. Sensitivity analysis
of hyper-parameters is provided in Appendix E. The detailed description of missing mechanisms,
including MCAR, MAR, and MNAR, is provided in Appendix F. In all experiments, we set missing
rate r = {0.2, 0.5}. For Adult and KDD dataset, we both consider two different test set splitting
strategies and results under skewed splitting are reported in Appendix G.

We use the AUROC (Area Under the Receiver Operating Characteristic curve) and AUPRC (Area
Under the Precision-Recall curve) to evaluate the detection performance. ALL experiments were
conducted on 20 Cores Intel(R) Xeon(R) Gold 6248 CPU with one NVIDIA Tesla V100 GPU,
CUDA 12.0. We repeat the experiment of each setting five times and report the average performance.

4.3 EXPERIMENTAL RESULTS UNDER MCAR

The results of anomaly detection with missing data under the setting of MCAR are shown in Table 2,
Table 3, Table 4 and Table 5. We have the following observations:

• On all datasets, the detection performance in terms of APROC and AUPRC of two-stage
methods do not decrease correspondingly with the increasing of missing rate r in some
cases, which reflects the negative influences of imputation bias for two-stage pipeline meth-
ods. In other words, a smaller missing rate means a simpler imputation task and more se-
rious imputation bias, which makes the detection performance of the two-stage methods
suffer from significant degradation when the missing rate r is small.

• For the two-stage methods, “MissForest” outperformed “GAIN” in most cases, which indi-
cates that a state-of-the-art imputation method may not bring positive gain for unsupervised
anomaly detection problem in the presence of missing values instead the outstanding re-
covery ability because the identical distribution assumption does not hold.

• On all datasets, ImAD has the best detection performance in almost all cases. It is worth
noting that the detection performance of ImAD decreases corresponding with the increas-
ing missing rate in all cases, which indicates that ImAD does not suffer the significant
impacts from imputation bias and the generated pseudo-abnormal samples are effective for
alleviating the learning bias.

In Figure 4, we visualize the projection results of Botnet dataset in 2-D space. It can be observed
that the majority of normal training and testing samples are mapped into the target distribution while
most abnormal samples fall outside of the decision boundary. This demonstrates that our method is
practical and Theorem 3.1 is effective for real-world scenarios.
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Table 2: AUROC and AUPRC (%, mean and std) on KDD and Adult datasets with MCAR under
balanced data splitting. The best result in each case is marked in bold.

DI Methods AD Methods
KDD Adult

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest
(Liu et al., 2008)

94.90 93.37 93.24 93.21 60.06 60.73 57.12 56.80
(1.95) (2.15) (2.38) (1.92) (1.69) (0.69) (2.16) (1.27)

Deep SVDD
(Ruff et al., 2018)

93.58 91.84 85.77 88.79 62.33 61.21 55.31 55.45
(2.46) (5.91) (2.95) (1.29) (4.86) (2.24) (2.91) (1.72)

NeutraL AD
(Qiu et al., 2021)

94.00 92.68 93.87 94.88 58.79 55.12 50.07 52.27
(1.72) (2.44) (1.57) (2.86) (1.88) (3.41) (6.50) (3.61)

GAIN

I-Forest
(Liu et al., 2008)

82.78 79.94 90.33 89.52 59.53 61.18 57.05 56.87
(3.80) (0.39) (1.58) (1.07) (0.91) (1.61) (1.02) (1.09)

Deep SVDD
(Ruff et al., 2018)

88.68 88.44 88.36 85.45 58.65 65.44 57.61 59.55
(4.87) (5.54) (3.42) (5.67) (3.44) (2.40) (4.24) (2.34))

NeutraL AD
(Qiu et al., 2021)

90.48 84.10 84.61 84.08 55.04 56.44 53.00 59.06
(3.24) (0.91) (1.30) (1.71) (1.81) (2.13) (6.80) (3.97)

ImAD (Ours) 97.01
(0.33)

90.78
(1.35)

95.96
(0.18)

91.58
(0.32)

76.51
(2.12)

71.19
(1.63)

73.42
(2.08)

71.50
(2.02)

Table 3: AUROC and AUPRC (%, mean and std) on Arrhythmia and Speech datasets with MCAR
under balanced data splitting.

DI Methods AD Methods
Arrhythmia Speech

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest
(Liu et al., 2008)

80.72 81.54 77.91 77.95 28.58 29.09 36.83 37.29
(0.62) (0.95) (1.85) (0.97) (2.95) (1.14) (1.06) (0.76)

Deep SVDD
(Ruff et al., 2018)

72.63 75.80 70.94 77.39 60.37 40.14 58.93 42.08
(0.99) (4.07) (0.75) (4.55) (0.87) (4.30) (1.35) (2.16)

NeutraL AD
(Qiu et al., 2021)

47.38 44.30 50.87 50.12 56.51 54.11 55.44 52.26
(4.81) (2.11) (3.53) (2.52) (4.87) (3.77) (4.36) (3.97)

GAIN

I-Forest
(Liu et al., 2008)

77.19 76.29 76.40 76.29 29.33 29.23 39.92 40.04
(0.81) (1.35) (1.86) (1.35) (0.59) (2.13) (0.21) (0.63)

Deep SVDD
(Ruff et al., 2018)

57.14 48.86 59.35 54.03 54.95 46.54 54.38 47.54
(5.41) (2.35) (2.58) (2.45) (1.79) (2.10) (0.96) (1.75)

NeutraL AD
(Qiu et al., 2021)

37.96 33.98 42.57 42.35 56.80 57.24 54.76 55.05
(5.09) (4.12) (2.56) (1.96) (4.89) (5.51) (4.58) (5.58)

ImAD (Ours) 82.24
(1.76)

81.76
(1.19)

83.74
(1.85)

83.37
(1.36)

61.94
(2.77)

58.66
(1.40)

60.43
(3.33)

58.13
(1.48)

Table 4: AUROC and AUPRC (%, mean and std) on Segerstolpe and Usoskin datasets with MCAR
under balanced data splitting.

DI Methods AD Methods
Arrhythmia Speech

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest
(Liu et al., 2008)

94.91 96.68 95.94 97.56 45.19 49.64 46.97 49.74
(1.35) (0.79) (1.23) (0.59) (4.56) (7.43) (3.04) (5.64)

Deep SVDD
(Ruff et al., 2018)

96.20 89.24 97.53 90.65 37.47 43.61 50.55 55.05
(2.66) (1.44) (1.40) (0.57) (3.83) (7.49) (2.02) (4.81)

NeutraL AD
(Qiu et al., 2021)

97.89 89.38 97.71 84.61 57.43 53.74 63.65 61.05
(1.45) (2.80) (1.76) (3.78) (4.59) (2.27) (2.40) (4.16)

GAIN

I-Forest
(Liu et al., 2008)

94.25 92.07 96.14 93.94 40.96 37.11 46.29 42.86
(0.90) (1.82) (0.75) (1.62) (2.02) (2.12) (1.76) (1.22)

Deep SVDD
(Ruff et al., 2018)

92.46 94.32 92.25 92.88 49.99 65.48 54.85 64.54
(4.25) (1.93) (2.40) (1.26) (5.69) (2.94) (1.61) (0.74)

NeutraL AD
(Qiu et al., 2021)

97.52 90.10 97.52 90.10 56.18 64.80 64.85 73.33
(0.37) (0.90) (1.02) (0.82) (2.62) (1.85) (2.68) (1.31)

ImAD (Ours) 99.14
(0.88)

96.86
(0.67)

98.98
(1.18)

96.85
(0.54)

84.95
(1.29)

79.23
(2.49)

85.48
(2.34)

80.06
(3.40)

4.4 EXPERIMENTAL RESULTS UNDER MAR AND MNAR
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Table 5: AUROC, AUPRC (%, mean and std) on Botnet dataset with MCAR.

DI Methods AD Methods AUROC AUPRC
r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest (Liu et al., 2008) 95.72 93.86 97.25 95.68
(0.96) (0.70) (0.69) (0.52)

Deep SVDD (Ruff et al., 2018) 96.72 97.51 96.60 97.62
(0.87) (0.94) (0.80) (0.89)

NeutraL AD (Qiu et al., 2021) 99.04 97.27 98.92 97.68
(0.26) (0.59) (0.24) (0.53)

GAIN

I-Forest (Liu et al., 2008) 96.16 94.01 97.61 96.18
(0.24) (0.73) (0.21) (0.44)

Deep SVDD (Ruff et al., 2018) 98.68 98.02 98.35 97.59
(0.11) (0.41) (0.14) (0.46)

NeutraL AD (Qiu et al., 2021) 97.42 99.56 96.89 99.41
(0.33) (0.27) (0.36) (0.35)

ImAD (Ours) 99.71
(0.22)

99.53
(0.25)

99.68
(0.24)

99.58
(0.20)

Figure 4: Visualization of projection results in 2-
dimensional space on Botnet dataset.

Table 6 displays the results on Adult
dataset with missing mechanisms
MAR and MNAR. We did not use
GAIN (Yoon et al., 2018) in theses
two cases because GAIN (Yoon et al.,
2018) is proposed under the MCAR
assumption. Instead, we use Mis-
sOT (Muzellec et al., 2020) in the
two-stage methods. Due to space lim-
itation, we only report the average
AUROC(%) without standard devia-
tion for all baselines in Table 6 and
the results with standard deviation are
provided in Appendix H. As shown
by Table 6, ImAD outperforms all
two-stage methods significantly in both MAR and MNAR settings. Consistent with MCAR, on
both MAR and MNAR, the detection performance of the two-stage methods do not decrease corre-
spondingly with the increasing of missing rate r in some cases.

Table 6: Average AUROC(%) on Adult dataset with MAR and MNAR.

DI Methods AD Methods
MAR MNAR

Balanced Split Skewed Split Balanced Split Skewed Split
r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest
I-Forest (Liu et al., 2008) 60.54 61.94 63.07 63.17 60.53 60.24 61.35 61.35

Deep SVDD (Ruff et al., 2018) 61.53 56.22 57.55 57.00 54.90 57.54 56.27 58.50
NeutraL AD (Qiu et al., 2021) 52.29 51.96 54.37 53.32 53.07 50.82 52.97 52.63

MissOT(MLP)

I-Forest (Liu et al., 2008) 45.63 41.94 45.32 42.44 44.78 38.62 44.53 38.78
Deep SVDD (Ruff et al., 2018) 51.68 39.59 44.49 50.04 45.77 50.29 51.47 49.12
NeutraL AD (Qiu et al., 2021) 52.54 47.24 52.32 44.75 49.87 49.38 49.85 49.62

ImAD (Ours) 77.43
(3.42)

74.61
(2.18)

80.61
(2.13)

73.68
(2.10)

73.73
(3.57)

72.35
(1.53)

76.10
(2.04)

75.58
(2.44)

5 CONCLUSION

This paper proposed ImAD, the first end-to-end unsupervised anomaly detection method in the
presence of missing values. ImAD integrates data imputation and anomaly detection into a unified
optimization objective and introduces pseudo-abnormal samples to alleviate the imputation bias. We
conducted experiments on seven real-world datasets and considered three different missing mecha-
nisms, including MCAR, MAR and MNAR. The results indicated that ImAD effectively alleviates
the imputation bias and achieves better detection performance than the two-stage “impute-then-
detect” methods in almost all cases.
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A SAMPLING ANALYSIS

In this section, for target distribution Dz,Dz̃ ∼ N (0, σ2Id), we give the lower bound of the con-
strained sampling radius r when given a sampling probability p.

For target distribution Dz, we expect that it is compact and can be easily sampled, in which the
compactness is to ensure a clear and reliable decision boundary between normal and abnormal data.
Therefore, we select truncated Gaussian from N (0, σ2Id) as target distribution Dz and bound Dz in
a d-dimensional radius-r hyperball centering at origin. For radius r, we have the following proposi-
tion.

Proposition A.1. Let Fd denote the cumulative distribution function (CDF) of the chi-square distri-

bution χ2(d). For a given probability 0 < p < 1 , when r ≥ σ
√
F−1
d (p), the sampling probability

in Dz satisfies P (∥x∥2 < r2) ≥ p where x = [x1, x2, · · · , xd] and x1, . . . , xd
i.i.d.∼ N (0, σ2).

Proof.

We have x1, . . . , xd
i.i.d.∼ N (0, σ2) =⇒ x1

σ
, . . . ,

xd
σ

i.i.d.∼ N (0, 1) =⇒
∑d
i=1 x

2
i

σ2
∼ χ2(d).

Let Y =

∑d
i=1 x

2
i

σ2
, we get P

(
Y < F−1

d (p)
)
= p

=⇒ P

(∑d
i=1 x

2
i

σ2
< F−1

d (p)

)
= p

=⇒ P

(
d∑
i=1

x2i < σ2 · F−1
d (p)

)
= p

=⇒ P

(
∥x∥2 <

(
σ
√
F−1
d (p)

)2
)

= p.

Therefore, r ≥ σ
√
F−1
d (p) =⇒ P

(
∥x∥2 < r2

)
≥ p.

(13)

In keeping with target distribution Dz, we select truncated Gaussian from N (0, σ2Id) as target dis-
tribution Dz̃ and bound Dz̃ between two d-dimensional hyperspheres with radii r1, r2 respectively,
cetering at origin, where r2 > r1. For radius r1, r2, we have the following proposition.

Proposition A.2. Let Fd denote the cumulative distribution function (CDF) of the chi-square dis-

tribution χ2(d). For a given probability 0 < p < 1 , when r1 ≤ σ
√
F−1
d (p1), r2 ≥ σ

√
F−1
d (p2)

and satisfies p = p2 − p1, the sampling probability in Dz̃ satisfies P (r21 < ∥x∥2 < r22) ≥ p where

x = [x1, x2, · · · , xd] and x1, . . . , xd
i.i.d.∼ N (0, σ2).
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Proof. According the proof for Proposition A.1, we have

r ≥ σ
√
F−1
d (p) =⇒ P (∥x∥2 < r2) ≥ p.

Therefore, r1 ≤ σ
√
F−1
d (p1) =⇒ P (∥x∥2 < r21) ≤ p1,

and r2 ≥ σ
√
F−1
d (p2) =⇒ P (∥x∥2 < r22) ≥ p2.

Therefore, P
(
∥x∥2 < r22)− P (∥x∥2 < r21

)
= P

(
r21 < ∥x∥2 < r22

)
≥ p2 − p1 = p

(14)

As shown in Figure 2, we set radius r1 of Dz̃ equals to radius r of Dz. Also, we maintains such
settings r1 = r in our experiments to make the introduced pseudo-abnormal samples are not far
from the normal data.

B PROOF FOR THEOREM 3.1

Proof. Recall that gψ was defined as

gψ(z) = σL(W
g
L(· · ·σ2(W

g
2(σ1(W

g
1z))) · · · )). (15)

Then for any z, z̃ ∈ Rd, we have

∥gψ(z)− gψ(z̃)∥
=∥σL(Wg

L(· · ·σ2(W
g
2(σ1(W

g
1z))) · · · ))− σL(W

g
L(· · ·σ2(W

g
2(σ1(W

g
1 z̃))) · · · ))∥

≤ρ∥Wg
L(· · ·σ2(W

g
2(σ1(W

g
1z))) · · · )−Wg

L(· · ·σ2(W
g
2(σ1(W

g
1 z̃))) · · · )∥

≤ρ∥Wg
L∥2∥σL−1(· · ·σ2(Wg

2(σ1(W
g
1z))) · · · )− σL−1(· · ·σ2(Wg

2(σ1(W
g
1 z̃))) · · · )∥

≤ρL
(

L∏
l=1

∥Wg
l ∥2

)
∥z− z̃∥

≤ρLαLg ∥z− z̃∥.

(16)

This finished the proof for part (a) of the theorem. The proof for part (b) is similar and omitted here
for simplicity.

C GAIN OF DETECTION PERFORMANCE FROM PSEUDO-ABNORMAL SAMPLES

In this section, we explore the influences of introduced pseudo-abnormal samples for detection per-
formance. Both on Adult and KDD datasets, we remove the pseudo-abnormal samples in training
process and only use incomplete normal data to training ImAD. The experimental results are showed
in Table 7. Observing the results in Table 7, the detection performance of ImAD is improved on all
the cases when introducing pseudo-abnormal samples into training process, which indicates that the
pseudo-abnormal samples bring positive gains for ImAD.

Table 7: Gain of detection performance of ImAD from pseudo-abnormal samples under MCAR.

Datasets Settings Balanced Split Skewed Split
r=0.2 r=0.5 r=0.2 r=0.5

Adult ImAD w/o pseudo-abnormal samples 72.04 69.07 70.03 69.73
ImAD 76.51 71.19 74.65 71.02

KDD ImAD w/o pseudo-abnormal samples 95.89 88.63 94.90 92.77
ImAD 97.01 90.78 98.41 93.62
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D THE INFLUENCE OF CONSTRAINED RADII r1, r2 FOR DETECTION
PERFORMANCE

In this section, we explore the influences of constrained radii r1, r2 for detection performance. We
change the latent dimension d = {16, 32, 64, 128, 256} and conduct related experiments on Ar-
rhythmia dataset. More experimental details and results are provided in Table 8 and Figure 5.

As showed in Table 8, we change the dimension d of latent space and then get r = σ
√
F−1
d (p) (See

Proposition A.1) and set target distribution Dz ∼ N (0, 0.52 · Id),Dz̃ ∼ N (0, Id) and set p = 0.9.

Table 8: The constrained radii r1, r2 under with different latent dimensions.

Radius Latent Dimension (d)
16 32 64 128 256

r1 = 0.5
√
F−1
d (0.9) 2.42 3.26 4.44 6.10 8.45

r2 =
√
F−1
d (0.9) 4.85 6.52 8.88 12.20 16.90

Figure 5 shows the average AUROC(%) and AUPRC(%) on Arrhythmia dataset under balanced data
splitting when changing latent dimension d. It can be observed that our method is not quite sensitive
to the changes of radii r1, r2 and the performance declines with the decrease of the latent dimension,
which is reasonable since there will be more information loss when the latent dimension becomes
smaller.
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Figure 5: The performance fluctuation on Arrhythmia with different latent dimension.

E ABLATION STUDY AND HYPERPARAMETER ANALYSIS

For hyper-parameters α, β, λ used in our experiments, we vary them in a large range to analyze the
sensitivity of ImAD and set missing rate r = 0.2 (MCAR) in all experiments. For hyper-parameter
β, it cannot be set to 0 because the imputation module is an indispensable part in the presence of
missing values. The average results are shown in Figure 6, where (a), (b), (c) illustrate the fluctuation
of detection performance on balanced splitting, and (d), (e), (f) illustrate the fluctuation of detection
performance on skewed splitting.

F DETAILED EXPERIMENTAL IMPLEMENTATIONS

Dataset Description.

• Adult1 (Becker & Kohavi, 1996) is from the 1994 Census Income database with 14 vari-
ables including both categorical and continuous variables. The samples of income ≤ 50K
are regarded as normal data, and the samples of income > 50K are regarded as abnormal
data. Data preparation follows the previous work (Han et al., 2023).

1https://archive.ics.uci.edu/dataset/2/adult
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(c) Balanced Data
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(d) Skewed Data
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Figure 6: Sensitivity analysis of hyperparameters α, β, λ on Adult dataset.

• KDD2(Lichman, 2013) is the KDDCUP99 10 percent dataset from the UCI repository and
contains 121 variables including both categorical and continuous variables. The attack
samples are regarded as normal data, and the non-attack samples are regarded as abnormal
data.

• Arrhythmia3 (Rayana, 2016) is an ECG dataset. It was used to identify arrhythmic sam-
ples in five classes and contains 452 instances with 274 attributes.

• Speech4 (Rayana, 2016) consists of 3686 segments of English speech spoken with different
accents and is represented by 400-dimensional so called i-vectors which are widely used
state-of-the-art features for speaker and language recognition.

• Segerstolpe (Segerstolpe et al., 2016) is an scRNA-seq dataset of human pancreas islets
which includes six cell types: “alpha”, “beta”, “delta”, “ductal”, “endothelial” and
“gamma”. In our experiments, “alpha” is regarded as normal data and “beta” is regarded
as abnormal data.

• Usoskin (Usoskin et al., 2015) is a dataset employed for the analysis of sensory neuron
cells, specifically originating from the mouse lumbar dorsal root ganglion. The dataset
encompasses four distinct cell types: non-peptidergic nociceptor cells (NP), peptidergic
nociceptor cells (PEP), neurofilament-containing cells (NF), and tyrosine hydroxylase con-
taining cells (TH). In our experimental, TH is regarded as normal data and PEP is abnormal
data.

• Botnet5 (Meidan & Shabtai, 2018) is a public botnet datasets for the IoT. it was gath-
ered from 9 commercial IoT devices authentically infected by Mirai and BASHLITE.
There are 7,062,606 instances in the original datasets. In our experiments, we use
“Ecobee Thermostat”subset of the original data, in which “’benign traffic” is regarded as
normal data and “gafgyt attacks” is regarded as abnormal data. “gafgyt attacks” has five
attack types and we randomly select 1,000 samples from each type as abnormal data of test
set.

Missing Mechanism. In this work, we evaluate detection performance of all the baselines under the
three different missing mechanisms and we follow the previous work (Muzellec et al., 2020) to set
missing value generation mechanism.

Detailed explanation in our implementation is provided as follows.

2https://kdd.ics.uci.edu/databases/kddcup99/
3http://odds.cs.stonybrook.edu/arrhythmia-dataset/
4https://odds.cs.stonybrook.edu/speech-dataset/
5https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot
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• MCAR: missing completely at random if the missingness is independent of the data. In our
implementation, each entry is masked according to the realization of a Bernoulli random
variable with parameter p = {0.2, 0.5}.

• MAR: missing at random if the missingness depends only on the observed values. In MAR
setting, for all experiments, a fixed subset of variables that cannot have missing values is
sampled. Then, the entries from remaining variables are masked according a logistic model
with random weights, which takes the non-missing variables as inputs. A bias term is fitted
using line search to attain the desired proportion of missing values.

• MNAR: missing not at random if the missingness depends on both the observed values
and the unobserved values. In MNAR setting, first, we sample a subset of variables whose
values in the lower and upper p-th percentiles are masked according to a Bernoulli random
variable, and the values in-between are left not missing.

Sampling in Target Distribution. In our experiments, we select two truncated Gaussian distribution
N (0, σ2Id) with different σ as target distribution Dz,Dz̃ and set σ = 0.5, σ = 1.0 respectively. For
target distribution Dz ∼ N (0, 0.52 · Id), according to the Proposition A.1, we set constrained radius

r = 0.5
√
F−1
d (p) where d denotes the latent dimension and set p = 0.9. Similarity, for target

distribution Dz̃ ∼ N (0, Id), we set r1 = r and r2 =
√
F−1
d (p) and set p = 0.9.

All Baselines. For data imputation method used in our experiments, GAIN 6, MissOT 7, we use offi-
cial code and the hyperparameters are fine-tuned as suggested in the original paper. For MissForest,
we use missingpy 8 that is a library for missing data imputation in Python to implement MissForest
algorithm. For anomaly detection method, Deep SVDD 9, NeutraL AD 10, we use official code and
the hyperparameters are fine-tuned as suggested in the original paper. For Isolation Forest, we use
scikit-learn 11 to implement Isolation Forest algorithm.

Hyper-parameters. The hyperparameters used in our experiments are provided in Table 9.

Table 9: Hyperparameters settings of the proposed method on all datasets.
Datasets Missing rate Latent dimension Learning rate α β λ

Adult r=0.2 4 0.0002 5 20 1
r=0.5 4 0.0002 1 10 2

Botnet r=0.2 32 0.0001 1 1 1
r=0.5 32 0.0001 1 1 1

KDD r=0.2 32 0.0001 1 5 1
r=0.5 32 0.0001 1 5 1

Arrhythmia r=0.2 128 0.0001 1 1 1
r=0.5 128 0.0001 1 1 1

Speech r=0.2 128 0.0005 0.2 0.1 1
r=0.5 128 0.0005 0.2 0.2 1

Segerstolpe r=0.2 128 0.0001 1 1 1
r=0.5 128 0.0001 1 1 1

Usoskin r=0.2 128 0.0001 0.2 0.2 0.2
r=0.5 128 0.0001 0.2 0.2 0.2

G THE EXPERIMENTAL RESULTS UNDER SKEWED DATA SPLITTING.

For dataset Adult and KDD, we consider two different test set splitting strategies including balanced
splitting and skewed splitting. Balanced splitting means that there are an equal number of normal

6https://github.com/jsyoon0823/GAIN
7https://github.com/BorisMuzellec/MissingDataOT
8https://pypi.org/project/missingpy/
9https://github.com/lukasruff/Deep-SVDD-PyTorch

10https://github.com/boschresearch/NeuTraL-AD
11https://scikit-learn.org/stable/
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and abnormal samples in the test set. Skewed split means that there are more normal samples than
abnormal samples in the test set which often occurs in the real-world scenarios. In our experiments,
we set that there are ten times as many normal samples as abnormal samples. Table 10 reports the
results on KDD and Adult datasets under skewed data splitting.

Table 10: AUROC (%, mean and std) on KDD and Adult dataset with MCAR under skewed data
splitting.

DI Methods AD Methods KDD Adult
r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest (Liu et al., 2008) 90.44 86.62 62.19 59.92
(4.62) (5.30) (0.86) (0.62)

Deep SVDD (Ruff et al., 2018) 82.70 88.06 59.68 58.56
(7.61) (6.29) (4.06) (4.94)

NeutraL AD (Qiu et al., 2021) 91.42 93.46 52.97 54.12
(1.54) (4.98) (1.40) (1.90)

GAIN

I-Forest (Liu et al., 2008) 79.50 80.15 61.60 59.38
(1.06) (1.57) (1.89) (1.90)

Deep SVDD (Ruff et al., 2018) 81.61 85.84 62.93 65.07
(3.42) (5.67) (2.67) (6.74)

NeutraL AD (Qiu et al., 2021) 83.33 78.86 56.14 57.97
(2.12) (3.60) (1.97) (2.43)

ImAD (Ours) 98.41
(0.15)

93.62
(0.45)

74.65
(2.37)

71.02
(0.39)

H AVERAGE AUROC WITH STANDARD DEVIATION OF BASELINES UNDER
MAR AND MCAR

For all baselines, the experimental results with standard deviation under MAR and MNAR are
showed in Table 11, respectively.

Table 11: Average AUROC(%) with standard deviation on Adult dataset with MAR and MNAR.

DI Methods AD Methods
MAR MNAR

Balanced Split Skewed Split Balanced Split Skewed Split
r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5 r = 0.2 r = 0.5

MissForest

I-Forest (Liu et al., 2008) 60.54 61.94 63.07 63.17 60.53 60.24 61.35 61.35
(0.92) (1.07) (0.72) (1.25) (1.40) (1.05) (1.19) (1.20)

Deep SVDD (Ruff et al., 2018) 61.53 56.22 57.55 57.00 54.90 57.54 56.27 58.50
(6.24) (7.75) (10.03) (7.14) (7.71) (4.33) (6.25) (3.49)

NeutraL AD (Qiu et al., 2021) 52.29 51.96 54.37 53.32 53.07 50.82 52.97 52.63
(1.51) (1.01) (1.42) (0.67) (1.26) (2.35) (1.23) (2.17)

MissOT(MLP)

I-Forest (Liu et al., 2008) 45.63 41.94 45.32 42.44 44.78 38.62 44.53 38.78
(2.93) (2.27) (2.31) (0.71) (2.68) (1.52) (1.92) (1.11)

Deep SVDD (Ruff et al., 2018) 51.68 39.59 44.49 50.04 45.77 50.29 51.47 49.12
(4.17) (6.95) (6.54) (5.87) (8.47) (6.28) (3.31) (8.13)

NeutraL AD (Qiu et al., 2021) 52.54 47.24 52.32 44.75 49.87 49.38 49.85 49.62
(0.78) (1.96) (0.69) (2.11) (1.07) (1.07) (1.00) (1.36)

ImAD (Ours) 77.43
(3.42)

74.61
(2.18)

80.61
(2.13)

73.68
(2.10)

73.73
(3.57)

72.35
(1.53)

76.10
(2.04)

75.58
(2.44)
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