© © N o g A W N o=

Machine Learning Interatomic Potentials: library for
efficient training, model development and simulation
of molecular systems

Anonymous Author(s)
Affiliation
Address

email

Abstract

Machine Learning Interatomic Potentials (MLIP) are a novel in silico approach
for molecular property prediction, creating an alternative to disrupt the accura-
cy/speed trade-off of empirical force fields and density functional theory (DFT).
In this white paper, we present our MLIP library which was created with two
core aims: (1) provide to industry experts without machine learning background a
user-friendly and computationally efficient set of tools to experiment with MLIP
models, (2) provide machine learning developers a framework to develop novel
approaches fully integrated with molecular dynamics tools. The library includes
in this release three model architectures (MACE, NequlP, and ViSNet), and two
molecular dynamics (MD) wrappers (ASE, and JAX-MD), along with a set of
pre-trained organics models. The seamless integration with JAX-MD, in particular,
facilitates highly efficient MD simulations, bringing MLIP models significantly
closer to industrial application. The library is available on GitHub and on PyPI
under the Apache license 2.0.

1 Introduction

Evaluation of molecular interactions and properties is critical across multiple sectors, including the
pharmaceutical, chemical, and materials industries. Because experimental evaluations are often
costly and time-consuming, in silico methods have become essential for screening and prioritizing
candidate systems. The two main approaches used in research and industry are empirical force fields
and quantum chemistry methods. Empirical force fields offer high efficiency, but can fall short in
accuracy and fail to capture chemical reactivity. Quantum chemistry methods, while considered the
gold standard for accuracy, often remain too computationally intensive for large-scale or routine use.

Machine Learning Interatomic Potential (MLIP) models aim to approach the accuracy of quantum
chemistry methods at a fraction of the computational cost. Because they balance speed and accuracy,
MLIP models, like traditional force fields and quantum methods, operate within an inherent trade-off
between efficiency and precision. This creates space for a wide variety of model architectures,
inductive biases, and scales, tailored to different simulation needs. Contributing to this diversity,
some models can be fine-tuned for specific systems, while others prioritize broad generalizability
across a wide range of chemical space.

In this white paper, we present a unified framework for MLIP training and deployment in molecular
dynamics (MD) simulations. Our objective is to provide a versatile toolkit that serves users across a

Submitted to the Al for Science workshop (NeurIPS 2025).

https://github.com/instadeepai/mlip
https://pypi.org/project/mlip/

32
33
34
35
36
37

38
39
40
41
42
43
44

45

46

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68

69
70
71
72

73
74
75
76
77

wide range of backgrounds, from computational chemistry researchers to machine learning developers.
The library enables those with minimal machine learning experience to run simulations with just
a few lines of code, while offering advanced users the flexibility to develop custom methods with
seamless integration into existing training and simulation workflows. We also include a set of models,
pre-trained for organic chemistry, that can be readily deployed for simulations or further fine-tuned
for specific use cases.

Although many studies have demonstrated that MLIP can achieve near-DFT accuracy while being
orders of magnitude faster, the field faces stiff competition from traditional force fields due to their
efficiency and scalability [1 [2]. We therefore see inference speed as a critical area of focus for any
MLIP library oriented on usability and a key component for the future success and applicability of
these methods. As such, the library is entirely JAX-based [3]], benefiting from full just-in-time XLA
(Accelerated Linear Algebra) compilation. In particular, the efficient integration of the MLIP models
with the JAX-MD simulation backend allows for state-of-the-art MD simulation speeds.

2 Brief overview of MLIP methods

2.1 Related work

The idea of using neural networks as force fields stems from the observation that traditional empirically
fitted potentials are limited in their functional form and expressivity. As such, many functional forms
and inductive biases have been tried over the years, with the field evolving from system specific force
fields to more generalized methods covering large portions of the periodic tables in recent years [4} 5]

In this work, we primarily focus on Graph Neural Networks (GNNs), though it is worth briefly
outlining other approaches. A first example include Kernel methods, such as Gaussian Approximation
Potentials (GAP) [6H11] and the symmetry-adapted Gradient Domain Machine Learning (sGDML)
[12H15]]. While GAP tends to suffer from poor generalizability, sGDML has been shown to perform
well on large datasets. A second is to handcraft specific descriptors of a molecular system and use
a linear combination of generalized basis functions to predict the potential energy surfaces. Ralf
Drautz [16]] showed that many of the atomic centered descriptors (incl. SOAP [9] or Moment Tensor
Potentials [[17]) are specific instances of a general polynomial expansion of the atomic neighbor
density labeled as Atomic Cluster Expansion (ACE). Finally, the ANI (Accurate NeurAl networK
engINe for Molecular Energies) family of models (e.g., ANI-1 [18], ANI-1x [[19], ANI-1ccx [20],
ANI-2x [21]]) proposes a different approach, where feed forward neural networks are trained on
handcrafted Atomic Environment Vectors (AEVs, adapted from the basis functions proposed by
Behler and Parrinello [[10]).

GNNs for MLIP are constructed to preserve specific system symmetries - at the very least invariance
to rotation and translations in energy predictions, but oftentimes also equivariance of spatial output
and latent information throughout the network. While equivariance usually comes at a computational
cost, it has also been showed to improve data efficiency [22} 23]]. The main categories of graph-based
MLIPs include:

Distance-based (invariant) GNNs: Rely on interatomic distances to learn rotationally invariant
energy predictions, such as in SchNet [24-26]] or AIMNet2 [27]]. Similar ideas were developed with
a direct focus on periodic crystal structures, such as the Crystal Graph Convolutional Neural Network
(CGCNN) [28].

Directional / angular equivariant GNN: A first example approach to achieve equivariance in
GNN was proposed by Satorras et al. [29]], and involves equivariantly updating edge features between
each message passing layers. Other approaches have alternatively proposed to guarantee inter-
layer equivariance through computation of angular features, such as presented in DimeNet [30} 31]],
GemNet [32,133]], and ViSNet (34} 35].

78
79
80
81
82
83
84
85
86

87
88
89

90

91
92
93

94
95
%
97

98
99
100
101
102

104

105
106

107
108
109
110

111
112
113
114

115

116
117
118
119
120
121

122
123

E(3)-Equivariant GNN / steerable 3D convolutions: An alternative approach is to build upon the
formalism of Clebsch-Gordan-based steerable 3D convolutions [36H38]] to achieve arbitrary orders of
representation of geometric features. Examples of models in this category include NequlP [22], largely
based on the Tensor Field Network architecture [39], Allegro [40], a fully-local (non-message passing)
version of NequlP designed for efficient parallelization [41]], and MACE [4,42-44], which formalizes
the connection between the steerable convolution and the ACE basis by constructing a learnable
multi-body atomic cluster expansion. PaiNN (Polarizable Atom Interaction Neural Network)[43]]
offers a more efficient alternative relying solely on vector features rather than full tensor algebra.
Finally, some approaches use projections onto 2D domain to perform faster convolutions [46-48]].

It is worth noting that this latter category of equivariant GNN largely relies on specialized libraries
managing the steerable convolution features [49] 50]. Other backends also include accelerated CUDA
kernels, such as NVIDIA’s cuEquivariance package.

2.2 Models included in the mlip library

In the current version of the library, we have incorporated three graph-based MLIP models: MACE
[42], NequlP [22], and ViSNet [34]. All three were chosen based on their strong performance and
extensive validation by the community across diverse settings.

In the first version of the library, we have maintained model architectures as closely as possible to
their original implementation. We aim for later versions to include modified layers and backends
(see our roadmap below). However, we will endeavor to maintain backwards compatibility. The code
sources and modifications are outlined below:

* MACE: The code for MACE is in large parts based on the initial JAX implementation| by
Mario Geiger and Ilyes Batatia. We implemented a number of minor changes to match
the inference output of the original Torch version| as closely as possible, with identical
weights. It is worth noting that perfect matching is challenging due to a different activation
normalization between e3nn/and e3nn-jax. Additionally, models will differ when used in
float32 precision due to different rounding conventions between JAX and Torch. Other
changes include additional Flax versions of some modules and minor refactoring.

* ViSNet: The code for ViSNet was entirely converted to JAX from the |original Torch
implementation and was likewise set to match the inference output for a given set of weights.

* NequlP: The code for NequlP is almost entirely based on the version implemented in the
GNoME repository [S1]. Only minor modifications where made to fit within the library
workflow. We did not attempt to match NequlP to the original Torch code, a slightly modified
version of which we used for benchmarking (see the relevant section below).

The library is designed to support the seamless addition of new models. To facilitate this, as part of
the documentation, we provide a tutorial on how to write new models to be interfaced easily with the
other parts of the library (e.g. training or simulation). Looking ahead, as outlined in our roadmap, we
plan to incorporate additional JAX implementations of MLIP models in new releases.

3 Pre-trained models and benchmarks

In this section, we illustrate the use of our library for large-scale training of MLIP models. To that
end, we present a set of three pre-trained models, one for each of the architectures included in the
library, which were selected from many training runs. Our aim is to illustrate the usage of the library
rather than provide usable models. However, these are nonetheless available under a separate license
on InstaDeep’s HuggingFace collection. We describe below the training processes, validation results,
and runtime benchmarks.

The models are all trained on a curated second version of the SPICE2 dataset [52,53]]. The details of
this dataset’s construction and composition can be found in Appendix

https://github.com/ACEsuit/mace-jax
https://github.com/ACEsuit/mace
https://e3nn.org/
https://github.com/e3nn/e3nn-jax/
https://github.com/microsoft/AI2BMD/tree/ViSNet
https://github.com/microsoft/AI2BMD/tree/ViSNet
https://github.com/microsoft/AI2BMD/tree/ViSNet
https://github.com/google-deepmind/materials_discovery/blob/main/model/nequip.py
https://github.com/google-deepmind/materials_discovery/blob/main/model/nequip.py
https://github.com/google-deepmind/materials_discovery/blob/main/model/nequip.py
https://github.com/mir-group/nequip
https://instadeepai.github.io/mlip/user_guide/index.html#jupyter-notebook-tutorials
https://huggingface.co/collections/InstaDeepAI/ml-interatomic-potentials-68134208c01a954ede6dae42

124

125
126
127
128
129
130
131
132
133

134
135
136
137

138
139
140
141

142
143

144
145

146
147
148
149
150
151
152
153
154

155
156

157

158
159

161
162
163
164

165
166
167
168

170
171

3.1 Model training methodology

For the model training, this dataset was then split into training and validation sets using a 95:5 ratio.
The split was performed at the molecular SMILES level, ensuring that different conformers of the
same molecule were not included in both sets. As a result, some elements which are rare in this
curated version of SPICE2 appear only in the training set but not in the validation set (specifically
K, Li and Na). Although this limitation will be addressed in future updates to these MLIP models,
users are currently advised to use caution when applying the models to systems containing these
elements. The final training set contains 1,737,896 structures covering 15 chemical elements (B, Br,
C,CLF,H IK,LiN, Na, O, P, S, Si), while the validation set contains 87,922 structures across
12 elements.

Each pre-trained model was trained for 220 epochs using NVIDIA H100 GPUs. The Visnet and
NequlP models were trained using the Huber loss [54]], while the MACE model used the MSE loss.
We have detailed below the key parameters, though full details of the model architectures and training
hyperparameters can be found in Appendix [A.T]

* MACE [4}14244]: The MACE pre-trained model hyperparameters were chosen to prioritize
stability of MD simulations. The model has 2 layers and 128 channels. The many-body
correlation order correlation = 2 and the degree of node features node symmetry = 3
(called max L in [43]).

* ViSNet [34] 35]]: The ViSNet pre-trained model has 4 hidden layers and 128 embedding
channels. 8 attention heads were used, as well as 32 RBF features and L, = 2.

* NequlP [22]: The NequlP pre-trained model uses 5 interaction blocks and L,,x = 2. The
feature configuration is 64x0e + 64x00 + 32x1e + 32x10 + 4x2e + 4x2o0.

These selected settings on MACE notably differ from those used for MACE-OFF medium [43]].
This is because we found that, when training on SPICE2, our updated hyperparameters resulted in
significantly better MD stability. To provide comparable models trained on the same dataset, we
decided to include this version instead of the one aligned to MACE-OFF, despite the additional
computational cost and higher energy prediction errors. We present below validation metrics for
both MACE (large - our hyperparameters) and MACE (medium - following the MACE-OFF [43]
hyperparameters) on SPICE2. We also conducted a training of MACE aligned to the hyperparameters
of MACE-OFF on a curated version of SPICE1 [55]]. We found excellent MD stability and validation
metrics (more details are presented in Appendix [A.2)).

Finally, we also trained a model with a modified MACE architecture optimized for inference speed,
which we present in detail in Appendix[A.3]

3.2 Model benchmarking

Validation results: We evaluate the performance of the three pre-trained models, MACE-large,
NequlP and VisNet, as well as the MACE-medium model (with hyperparameters aligned to MACE-
OFF medium in [43]]) and the modified MACE model (see Appendix[A.3), on the SPICE2 validation
set used during training. Each model was assessed with two standard error metrics: the mean absolute
error (MAE) in predicted energies per atom (meV/atom) and the MAE in atomic forces (meV/A).
Validation was conducted across seven subsets of SPICE2, including isolated and solvated small
molecules, as described in Table [6]

Figure|l| presents a comparative summary of model performance across all subsets. NequlIP achieves
the lowest energy MAE for most subsets, while Visnet outperforms in force MAE. Across most
models, lower force errors are observed in the DES370K, dipeptides, monomers and solvated amino
acids subsets than in the PubChem and solvated PubChem subsets. MACE-medium achieves lower
energy and forces MAE than MACE-large in every subset. Users should be warned that while
validation errors are relevant metrics to measure training performance, they are not sufficient to attest
to a model’s ability to simulate correct physics.

172
173
174
175
176

177
178
179

180
181
182
183
184

185

186

187
188
189
190

I Nequip

mm VisNet

. MACE-medium
N MACE-large
mmm Modified MACE

Energy MAE (meV/atom)
o = = I ~
w o w o w

o
o

Force MAE (meV/A)
e o oN N W
o w o w o

w

o

Figure 1: Validation set mean absolute errors (MAE) for energy per atom (meV/atom) and atomic
forces (meV/A) across seven molecular subsets in the SPICE2 dataset. The three pretrained models—
MACE-large, VisNet, and NequIP— as well as MACE-medium (following the MACE-OFF [43]]
hyperparameters) and our modified MACE model (see Appendix [A.3) are evaluated. The subsets
include: PubChem, DES370K, amino acid ligands, dipeptides, monomers, solvated PubChem, and
solvated amino acids. MAE values reflect the deviation from DFT reference calculations. The number
of structures per subset is detailed in Table@

Runtime benchmark: Conducting a reliable runtime benchmark can be quite challenging. A first
obvious reason is the notable difference in implementation across JAX and Torch versions. As a
result, we want to point out that the model implementations on which the Torch + ASE benchmarks
are run are our own, and they should not be considered representative of the performance of the
code developed by the original authors.

With this in mind, we present in Tablem simulation benchmarks on two different systems (1UAO and
1ABT, see Figure[3]in Appendix [A.3)) with results averaged over a 1 nanosecond simulation. Also see
Appendix [A.5]for more details on the benchmark systems.

Another important point to note with regard to simulation benchmarks is the significant difference
regarding how the JAX + JAX-MD workflow manages GPU utilization and memory compared to the
Torch + ASE combination. Simulations on smaller systems will likely exhibit a larger advantage on
the JAX versions as it maximizes GPU utilization, unlike the Torch + ASE versions. The relative
difference should shrink with increasing system size as GPU capacity gets saturated.

4 Library overview

4.1 Purpose and design philosophy

The purpose of the mlip library is to provide users with a toolbox to deal with MLIP models in a true
end-to-end fashion. This includes data preprocessing, implementation of multiple model architectures,
model training, model fine-tuning, deployment through MD simulation, energy minimization, and
batched inference. The mlip library was built in accordance with the following key design principles:

191
192
193
194
195
196

197
198
199
200
201

202
203
204

206
207

208

209
210
211
212
213
214
215
216
217
218
219
220
221

222
223

Table 1: Speed performance on MD simulation of the different pre-trained models and backends.
All tests were run on a single NVIDIA H100 GPU, and speed metrics are given in milliseconds per
step, averaged over 1 ns of simulation. 1UAO is a chignolin molecule with 138 atoms, while IABT
is a system with 1205 atoms. All models included in the table achieved stable simulations on these
benchmarks.

Models Parameters | Systems Jax + JAX-MD Jax + ASE Torch + ASE
MACE (arge) 2139052 | 3BT g6Rmusiep 995 mosiep 1572 moltep
Moteasace 220504 | (U0 Jomeer sameer e
ViSNet LIZT922 | AT o5amusien dodmosep 1016 mustep
NequlP 1321792 | UABT 70 masien 1057 musiep 117.0 mtep

» Ease-of-use: The library should be simple to install and use, especially for non-expert users,
who primarily aim to apply pre-trained MLIP models to relevant scientific applications and
may have limited prior experience with the JAX ecosystem. Furthermore, we are aware that
ML models and workflows typically rely on a large number of configurable values. Hence,
we provide sensible default parameters wherever possible without unnecessarily reducing
flexibility for users who can take advantage of it.

» Extensibility: For more experienced users, we want mlip to be a toolbox that can be
extended easily. For example, users can seamlessly complement the library by adding a
new model architecture, alternative data preprocessing methods, or additional simulation
backends. Hence, we embrace the modularity of these components in the library design
wherever possible.

* Inference efficiency: We believe that to successfully push MLIP models towards relevant
industrial applications, high inference speeds are essential. Most relevant applications,
especially in biology, rely on running long MD simulations on large systems. Therefore,
we aim to deliver the most efficient model implementations and simulation pipelines. We
prioritize inference over training speed when necessary. However, we strive to be state-of-
the-art in both areas.

4.2 Structure and modules

The mlip library is constructed in a modular way, separating model implementation from training,
fine-tuning, and simulation code. It consists of multiple sub-modules targeted towards different parts
of a full MLIP pipeline. First, the data module contains code related to dataset preprocessing. Its
main purpose is to go from datasets stored on a file system to instances of GraphDataset classes
that can be directly used for training or batched inference tasks. Second, the models module contains
code related to the MLIP models, i.e., their core implementations, loss classes, and other related
utilities, such as loading of trained models. Third, the training module contains code related to
training or fine-tuning MLIP models. Fourth, the simulation module contains code for running
MD simulations or energy minimization with MLIP models. We support both JAX-MD [57] and
ASE [58]] backends. Fifth, the inference module contains a function to run batched inference on
a list of structures with MLIP models, and finally, the utils and typing modules contain utility
functions, data classes, and type aliases used in other modules that may also be useful for various
downstream tasks.

Each of these modules is designed to allow the user to set up their own experiment scripts or notebooks
with minimal effort, while also supporting customization, especially for topics such as logging (e.g.

224
225

226
227

228

229
230
231
232
233
234

236
237
238
239

240
241
242
243
244
245
246

Data Model Simulation

ChemicalSystemsReader

| Mace / Visnet / Nequip |

| JaxMDSimulationEngine |

é l is input for E é l ibsywrapped E é
! | ASESimulationEngine |
| GraphDatasetBuilder | | ForceFieldPredictor | :
b - - o
loutputs é E l\g;trgmeters E ‘é E ?;E;?Spé‘?men i
o L e
—_>

| GraphDataset | | ForceField | | SimulationEngine |

finds opt.
parameters

is input for

| TrainingLoop |

Figure 2: Schematic overview of the essential classes of the mlip library and their interactions. To
run simulations with one of the two implementations of SimulationEngine, we need to input an
instance of ForceField, which contains a ForceFieldPredictor (implemented as a Flax 56|
module) and its parameters. A ForceField instance can be called directly on an input graph. To
train the force field model, i.e., find its optimal parameters, we provide a TrainingLoop class that
requires training and validation data in GraphDataset objects. These objects can be created easily
with tools in the data module. See the tutorials in the code documentation for more details.

to a remote storage location like Amazon S3 or Google Cloud Storage) or adding new losses, MLIP
model architectures, or dataset readers.

In Figure 2] we provide a schematic overview of the most essential classes of the library and how
they interact with each other.

4.3 Practical examples

The mlip package can be installed via pip. We provide full code documentation with many tutorials
on how to use the library. In the following, we present two common use cases: (1) launching an MD
simulation with one of the pre-trained models, and (2) training a model from scratch. Example (1)
can be viewed directly below, while example (2) is located in the Appendix[A.4] These two examples
aim to provide a general overview of the library API. For a complete step-by-step walkthrough, please
refer to the tutorials.

In the first example, we load a pre-trained MACE model from a zip archive. It is directly loaded into
a ForceField object containing all the relevant information about the model. In a subsequent step,
we load a chemical system with ASE, initialize the MD config and engine objects, and then launch
the run. For more details on logging and results collection, see the |deep-dive simulation tutorial
provided in the code documentation.

Although we also provide ASE as a simulation backend, we recommend to rely on the integration
with JAX-MD for simulations wherever possible (as in the example above), as it enables running
MLIP-based MD with state-of-the-art speed (see benchmarking results of pre-trained models below).
With JAX-MD, we can run a collection of multiple MD steps in a fully JIT-compiled manner on
the GPU without any data transfer required between CPU and GPU. During this time, any form of
logging or saving of intermediate results is not possible. As a consequence, we separate the JAX-MD
based simulations into multiple episodes, where logging happens only between two of them.

https://instadeepai.github.io/mlip/user_guide/index.html
https://instadeepai.github.io/mlip
https://instadeepai.github.io/mlip/user_guide/index.html#deep-dive-tutorials
https://instadeepai.github.io/mlip/user_guide/simulations.html

247
248
249

251
252
253
254

256

257

258

260
261
262
263
264
265
266
267
268

270

Furthermore, note that JAX has to recompile the force field prediction function each time its input
shapes change, for example, caused by a change in the number of edges resulting from a change in
atomic positions. To limit the number of times that JAX must recompile, we apply padding to the
neighbor lists and check whether the amount of padding is still sufficient after each episode. If the
edge buffer overflowed, we reallocate the neighbor lists and rerun the previous episode. Note that the
alternative ASESimulationEngine has an analogous interface to the JaxMDSimulationEngine.
With ASE, we also use the same padding strategy to avoid recompiling often. However, reallocation
is not limited to happening after episodes but can happen after each MD step if necessary. Therefore,
in contrast to the JaxMDSimulationEngine, the ASESimulationEngine will not require a number

of episodes to be set in its configuration.

import ase.io

from mlip.models import Mace, ForceField

from mlip.models.model_io import (
load_model_from_zip

)

from mlip.simulation.jax_md import (
JaxMDSimulationEngine

)

Load pre-trained model
force_field = load_model_from_zip(

Mace, "/path/to/pretrained_model.zip"
)

Set up MD prerequisites

atoms =
ase.io.read("/path/to/xyz/or/pdb/file")

md_config = JaxMDSimulationEngine.Config(
num_steps=1_000_000,

* imports: Load the necessary mod-
ules.

* load_model_from_zip: Loads a
pre-trained MACE model from a
zip archive into a ForceField ob-
ject containing all relevant infor-
mation about the model. Note
that the ForceField class can also
be viewed as a generic interface
for any JAX function that maps
jraph.GraphsTuple graphs to our
Prediction objects.

* ase.io.read: Reads the structure
file (as XYZ, PDB, etc.) using ASE.

* JaxMDSimulationEngine.Config:
Configures the simulation (e.g.,

... other settings number of steps).
)
* JaxMDSimulationEngine: Sets
Run MD up the molecular dynamics engine.

md_engine = JaxMDSimulationEngine(

atoms, force_field, md_config * md_eggine:run:
) MD simulation.

md_engine.run()

Launches the

The second example is located in Appendix

S Roadmap for library development

We aim to release several updates to the current version (v0.1.2) in the coming months. For example,
we plan to include features such as: (i) ability to incorporate total charge as input and models designed
to predict charge-related labels (e.g. partial charges, dipole), (ii) additional MLIP models with a
priority to models that have received validation through additional research (examples may include
eSEN [48] or GemNet [59]), (iii) accelerated backends for faster inference on steerable convolutions
models (e.g. cuEquivariance, sparse kernel generators [60]), (iv) additional functionalities (e.g. new
loss functions, optimizers, layers for MACE, NequlP, or ViSNet), (v) complementary libraries in
which mlip will be integrated for additional functionalities (e.g. coarse-grained methods for MLIP
[61], or BoostMD [62]), or (vi) trained MLIP models on improved and more extensive datasets, for
example, the Open Molecules 2025 (OMol25) dataset [3]].

Our objective is for any addition to the library to remain open source.

271

272
273
274
275
276
277

278
279
280
281
282
283

284
285
286
287
288

289
290
291
292

294
295
296
297

299
300
301
302
303
304

305
306
307
308
309
310
311

312
313
314
315

316
317

318
319

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Jan A. Stevens, Fabian Griinewald, P. A. Marco van Tilburg, Melanie Konig, Benjamin R.
Gilbert, Troy A. Brier, Zane R. Thornburg, Zaida Luthey-Schulten, and Siewert J. Marrink.
Molecular dynamics simulation of an entire cell. Frontiers in Chemistry, 11, January 2023. doi:
10.3389/fchem.2023.1106495. URL https://doi.org/10.3389/fchem.2023.1106495.
Section: Theoretical and Computational Chemistry; Research Topic: Recent Advances in
Computational Modelling of Biomolecular Complexes.

David E. Shaw, Peter J. Adams, Asaph Azaria, Joseph A. Bank, Brannon Batson, Alistair
Bell, Michael Bergdorf, Jhanvi Bhatt, J. Adam Butts, Timothy Correia, and et al. Anton
3: Twenty microseconds of molecular dynamics simulation before lunch. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC °21), New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3458817.3487397. URL https://doi.org/10.1145/3458817.3487397.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al.
Jax: composable transformations of python+numpy programs. In Proceedings of the 31st
Conference on Neural Information Processing Systems (NeurIPS 2018), 2018. URL https:
//github.com/google/jax.

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dédvid P. Kovics, Janosh Riebesell,
Xavier R. Advincula, Mark Asta, Matthew Avaylon, William J. Baldwin, Fabian Berger, Noam
Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cirare, James P. Darby, Sandip De,
Flaviano Della Pia, Volker L. Deringer, Rokas ElijoSius, Zakariya El-Machachi, Fabio Falcioni,
Edvin Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A.
Goodall, Clare P. Grey, Petr Grigorev, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti
Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook
Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, James R. Kermode, Namu Kroupa,
Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf,
Ioan-Bogdan Magdau, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P.
Niblett, Sam Walton Norwood, Niamh O’Neill, Christoph Ortner, Kristin A. Persson, Karsten
Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Benjamin X. Shi, Eric Sivonxay,
Tamads K. Stenczel, Viktor Svahn, Christopher Sutton, Thomas D. Swinburne, Jules Tilly, Cas
van der Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrdk, Yangshuai Wang, William C.
Witt, Fabian Zills, and Gabor Csanyi. A foundation model for atomistic materials chemistry,
2024. URL https://arxiv.org/abs/2401.00096.

Daniel S. Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G. Taylor,
Muhammad R. Hasyim, Kyle Michel, Ilyes Batatia, Gdbor Csdnyi, Misko Dzamba, Peter
Eastman, Nathan C. Frey, Xiang Fu, Vahe Gharakhanyan, Aditi S. Krishnapriyan, Joshua A.
Rackers, Sanjeev Raja, Ammar Rizvi, Andrew S. Rosen, Zachary Ulissi, Santiago Vargas,
C. Lawrence Zitnick, Samuel M. Blau, and Brandon M. Wood. The open molecules 2025
(omol25) dataset, evaluations, and models, 2025. URL https://arxiv.org/abs/2505!
08762.

Albert P. Barték, Mike C. Payne, Risi Kondor, and Gdbor Csdnyi. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Physical Review
Letters, 104(13), April 2010. ISSN 1079-7114. doi: 10.1103/physrevlett.104.136403. URL
http://dx.doi.org/10.1103/PhysRevLett.104.136403.

Albert P. Barték and Gabor Csanyi. Gaussian approximation potentials: a brief tutorial intro-
duction, 2020. URL https://arxiv.org/abs/1502.01366,

Albert P. Bartok, James Kermode, Noam Bernstein, and Gdbor Csinyi. Machine learning a
general-purpose interatomic potential for silicon. Physical Review X, 8(4), December 2018.

https://doi.org/10.3389/fchem.2023.1106495
https://doi.org/10.1145/3458817.3487397
https://github.com/google/jax
https://github.com/google/jax
https://github.com/google/jax
https://arxiv.org/abs/2401.00096
https://arxiv.org/abs/2505.08762
https://arxiv.org/abs/2505.08762
https://arxiv.org/abs/2505.08762
http://dx.doi.org/10.1103/PhysRevLett.104.136403
https://arxiv.org/abs/1502.01366

320
321

322
323
324

325
326
327
328

329
330
331
332

333
334
335

336
337
338

339

341

342
343
344

346
347
348

349
350
351

352
353
354

355
356
357
358
359

360
361
362
363
364

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ISSN 2160-3308. doi: 10.1103/physrevx.8.041048. URL http://dx.doi.org/10.1103/
PhysRevX.8.041048.

Albert P. Bartok, Risi Kondor, and Gdbor Csdnyi. On representing chemical environments.
Physical Review B, 87(18), May 2013. ISSN 1550-235X. doi: 10.1103/physrevb.87.184115.
URLhttp://dx.doi.org/10.1103/PhysRevB.87.184115|

Jorg Behler and Michele Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Physical Review Letters, 98(14), April 2007. ISSN
1079-7114. doi: 10.1103/physrevlett.98.146401. URL http://dx.doi.org/10.1103/
PhysRevLett.98.146401.

A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker. Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic potentials. Journal
of Computational Physics, 285:316-330, March 2015. ISSN 0021-9991. doi: 10.1016/j.jcp.
2014.12.018. URL http://dx.doi.org/10.1016/3.jcp.2014.12.018.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schiitt,
and Klaus-Robert Miiller. Machine learning of accurate energy-conserving molecular force
fields. Science Advances, 3(5):¢1603015, 2017. doi: 10.1126/sciadv.1603015.

Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Miiller, and Alexandre Tkatchenko. Towards
exact molecular dynamics simulations with machine-learned force fields. Nature Communica-
tions, 9(1):3887, 2018. doi: 10.1038/s41467-018-06169-2.

Stefan Chmiela, Huziel E. Sauceda, Alexandre Tkatchenko, and Klaus-Robert Miiller. Accurate

molecular dynamics enabled by efficient physically-constrained machine learning approaches,
pages 129-154. Springer International Publishing, 2020. doi: 10.1007/978-3-030-40245-7_7.

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T. Unke, Adil Kabylda, Huziel E. Sauceda,
Alexandre Tkatchenko, and Klaus-Robert Miiller. Accurate global machine learning force
fields for molecules with hundreds of atoms. Science Advances, 9(2):eadf0873, 2023. doi:
10.1126/sciadv.adf0873.

Ralf Drautz. Atomic cluster expansion for accurate and transferable interatomic potentials.
Physical Review B, 99(1), January 2019. ISSN 2469-9969. doi: 10.1103/physrevb.99.014104.
URL http://dx.doi.org/10.1103/PhysRevB.99.014104|

Alexander V. Shapeev. Moment tensor potentials: A class of systematically improvable inter-
atomic potentials. Multiscale Modeling & Simulation, 14(3):1153-1173, January 2016. ISSN
1540-3467. doi: 10.1137/15m1054183. URL http://dx.doi.org/10.1137/156M1054183,

J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural network potential with
dft accuracy at force field computational cost. Chemical Science, 8(4):3192-3203, 2017. ISSN
2041-6539. doi: 10.1039/c6sc05720a. URL http://dx.doi.org/10.1039/C6SCO57204A!

Justin S. Smith, Roman Zubatyuk, Benjamin Nebgen, Nicholas Lubbers, Kipton Barros,
Adrian E. Roitberg, Olexandr Isayev, and Sergei Tretiak. The ani-lccx and ani-1x data
sets, coupled-cluster and density functional theory properties for molecules. Scientific
Data, 7(1), May 2020. ISSN 2052-4463. doi: 10.1038/s41597-020-0473-z. URL http:
//dx.doi.org/10.1038/s41597-020-0473-z.

Justin S. Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers, Christian Devereux,
Kipton Barros, Sergei Tretiak, Olexandr Isayev, and Adrian E. Roitberg. Approaching coupled
cluster accuracy with a general-purpose neural network potential through transfer learning.
Nature Communications, 10(1), July 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-10827-4.
URL http://dx.doi.org/10.1038/s41467-019-10827-4/

10

http://dx.doi.org/10.1103/PhysRevX.8.041048
http://dx.doi.org/10.1103/PhysRevX.8.041048
http://dx.doi.org/10.1103/PhysRevX.8.041048
http://dx.doi.org/10.1103/PhysRevB.87.184115
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1103/PhysRevB.99.014104
http://dx.doi.org/10.1137/15M1054183
http://dx.doi.org/10.1039/C6SC05720A
http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41467-019-10827-4

365
366
367
368
369

370
371
372
373
374

375
376

377
378
379
380

381
382
383
384

385
386
387
388

389
390

392

393
394
395
396

397
398

399

401
402

404
405

407
408
409

410
411

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Christian Devereux, Justin S. Smith, Kate K. Huddleston, Kipton Barros, Roman Zubatyuk,
Olexandr Isayev, and Adrian E. Roitberg. Extending the applicability of the ani deep learning
molecular potential to sulfur and halogens. Journal of Chemical Theory and Computation,
16(7):4192-4202, June 2020. ISSN 1549-9626. doi: 10.1021/acs.jctc.0c00121. URL http:
//dx.doi.org/10.1021/acs. jctc.0c00121.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1),
May 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29939-5. URL http://dx.doi.org/
10.1038/s41467-022-29939-5.

Johann Brehmer, Sonke Behrends, Pim de Haan, and Taco Cohen. Does equivariance matter at
scale?, 2024. URL https://arxiv.org/abs/2410.23179,

K. T. Schiitt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Miiller. Schnet —a
deep learning architecture for molecules and materials. The Journal of Chemical Physics, 148
(24), March 2018. ISSN 1089-7690. doi: 10.1063/1.5019779. URL http://dx.doi.org/10,
1063/1.5019779.

Kristof T. Schiitt, Pan Kessel, Michael Gastegger, Kim A. Nicoli, Alexandre Tkatchenko, and
Klaus-Robert Miiller. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. Journal
of Chemical Theory and Computation, 15(1):448-455, 2019. doi: 10.1021/acs.jctc.8b00908.
URL https://doi.org/10.1021/acs. jctc.8b00908.

Kristof T. Schiitt, Stefaan S. P. Hessmann, Niklas W. A. Gebauer, Jonas Lederer, and Michael
Gastegger. SchNetPack 2.0: A neural network toolbox for atomistic machine learning. The
Journal of Chemical Physics, 158(14):144801, 04 2023. ISSN 0021-9606. doi: 10.1063/5.
0138367. URL https://doi.org/10.1063/5.0138367.

Dylan M. Anstine, Roman Zubatyuk, and Olexandr Isayev. Aimnet2: a neural network potential
to meet your neutral, charged, organic, and elemental-organic needs. Chemical Science,
2025. ISSN 2041-6539. doi: 10.1039/d4sc08572h. URL http://dx.doi.org/10.1039/
D4SC08572H.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Physical Review Letters, 120(14), April
2018. ISSN 1079-7114. doi: 10.1103/physrevlett.120.145301. URL http://dx.doi.org/
10.1103/PhysRevLett.120.145301,

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks, 2022. URL https://arxiv.org/abs/2102.09844,

Johannes Gasteiger, Janek Grof3, and Stephan Giinnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations (ICLR), 2020.

Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Giinnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules. In Machine
Learning for Molecules Workshop, NeurIPS, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. Gemnet: Univer-
sal directional graph neural networks for molecules. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 6790-6802. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
35cf8659¢cfcb13224cbd47863a34fc58-Paper. pdf.

Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. Gemnet: Universal directional
graph neural networks for molecules, 2024. URL https://arxiv.org/abs/2106.08903.

11

http://dx.doi.org/10.1021/acs.jctc.0c00121
http://dx.doi.org/10.1021/acs.jctc.0c00121
http://dx.doi.org/10.1021/acs.jctc.0c00121
http://dx.doi.org/10.1038/s41467-022-29939-5
http://dx.doi.org/10.1038/s41467-022-29939-5
http://dx.doi.org/10.1038/s41467-022-29939-5
https://arxiv.org/abs/2410.23179
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1063/5.0138367
http://dx.doi.org/10.1039/D4SC08572H
http://dx.doi.org/10.1039/D4SC08572H
http://dx.doi.org/10.1039/D4SC08572H
http://dx.doi.org/10.1103/PhysRevLett.120.145301
http://dx.doi.org/10.1103/PhysRevLett.120.145301
http://dx.doi.org/10.1103/PhysRevLett.120.145301
https://arxiv.org/abs/2102.09844
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://arxiv.org/abs/2106.08903

412
413
414
415
416

417
418
419
420
421

422
423
424

425
426

427
428
429
430

431
432
433

434
435
436
437

438
439
440

441
442
443

444
445
446
447
448

449

451
452

454
455

457
458

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
vector-scalar interactive message passing. Nature Communications, 15(1), January 2024.
ISSN 2041-1723. doi: 10.1038/s41467-023-43720-2. URL http://dx.doi.org/10.1038/
s41467-023-43720-2.

Tong Wang, Xinheng He, Mingyu Li, Yatao Li, Ran Bi, Yusong Wang, Chaoran Cheng,
Xiangzhen Shen, Jiawei Meng, He Zhang, Haiguang Liu, Zun Wang, Shaoning Li, Bin Shao,
and Tie-Yan Liu. Ab initio characterization of protein molecular dynamics with ai2bmd. Nature,
635(8040):1019-1027, November 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08127-z.
URL http://dx.doi.org/10.1038/s41586-024-08127-z|

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable
cnns: Learning rotationally equivariant features in volumetric data, 2018. URL https://
arxiv.org/abs/1807.02547.

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch-gordan nets: a fully fourier space
spherical convolutional neural network, 2018. URL https://arxiv.org/abs/1806.09231.

Ilyes Batatia, Simon Batzner, Ddvid Péter Kovacs, Albert Musaelian, Gregor N. C. Simm,
Ralf Drautz, Christoph Ortner, Boris Kozinsky, and Gabor Csanyi. The design space of e(3)-
equivariant atom-centered interatomic potentials, 2022. URL https://arxiv.org/abs/
2205.06643.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds, 2018. URL https://arxiv.org/abs/1802.08219.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale
atomistic dynamics. Nature Communications, 14(1), February 2023. ISSN 2041-1723. doi: 10.
1038/s41467-023-36329-y. URL http://dx.doi.org/10.1038/s41467-023-36329-y.

Albert Musaelian, Anders Johansson, Simon Batzner, and Boris Kozinsky. Scaling the leading
accuracy of deep equivariant models to biomolecular simulations of realistic size, 2023. URL
https://arxiv.org/abs/2304.10061,

Ilyes Batatia, David Péter Kovacs, Gregor N. C. Simm, Christoph Ortner, and Gabor Csényi.
Mace: Higher order equivariant message passing neural networks for fast and accurate force
fields, 2023. URL https://arxiv.org/abs/2206.07697.

David Péter Kovics, J. Harry Moore, Nicholas J. Browning, Ilyes Batatia, Joshua T. Horton,
Yixuan Pu, Venkat Kapil, William C. Witt, loan-Bogdan Magdau, Daniel J. Cole, and Gébor
Csényi. Mace-off: Short-range transferable machine learning force fields for organic molecules.
Journal of the American Chemical Society, May 2025. ISSN 1520-5126. doi: 10.1021/jacs.
4¢07099. URL http://dx.doi.org/10.1021/jacs.4c07099.

David Péter Kovacs, Ilyes Batatia, Eszter Sdra Arany, and Gabor Csanyi. Evaluation of the
mace force field architecture: From medicinal chemistry to materials science. The Journal
of Chemical Physics, 159(4), July 2023. ISSN 1089-7690. doi: 10.1063/5.0155322. URL
http://dx.doi.org/10.1063/5.0155322!

Kristof T. Schiitt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra, 2021. URL https://arxiv.org/
abs/2102.03150!

Saro Passaro and C. Lawrence Zitnick. Reducing so(3) convolutions to so(2) for efficient
equivariant gnns. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

12

http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41586-024-08127-z
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/1802.08219
http://dx.doi.org/10.1038/s41467-023-36329-y
https://arxiv.org/abs/2304.10061
https://arxiv.org/abs/2206.07697
http://dx.doi.org/10.1021/jacs.4c07099
http://dx.doi.org/10.1063/5.0155322
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150

459
460
461

462
463
464

466
467
468
469

470
471

472
473
474

475
476
477
478
479

480
481
482

483
484
485

486
487
488

489
490
491

492
493

494
495

497
498
499
500
501
502
503

[47] Shengjie Luo, Tianlang Chen, and Aditi S. Krishnapriyan. Enabling efficient equivariant
operations in the fourier basis via gaunt tensor products, 2024. URL https://arxiv.org/
abs/2401.10216!

[48] Xiang Fu, Brandon M. Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko
Dzamba, and C. Lawrence Zitnick. Learning smooth and expressive interatomic potentials for
physical property prediction, 2025. URL https://arxiv.org/abs/2502.12147,

[49] Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice,
Kostiantyn Lapchevskyi, Maurice Weiler, Michat Tyszkiewicz, Simon Batzner, Dylan Madisetti,
Martin Uhrin, Jes Frellsen, Nuri Jung, Sophia Sanborn, Mingjian Wen, Josh Rackers, Marcel
Rg@d, and Michael Bailey. Euclidean neural networks: e3nn, April 2022. URL https://doil
org/10.5281/zenodo.6459381,

[50] Oliver T. Unke and Hartmut Maennel. E3x: E(3)-equivariant deep learning made easy. arXiv
preprint arXiv:2401.07595, 2024.

[51] Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon,
and Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 2023. doi:
10.1038/s41586-023-06735-9.

[52] Peter Eastman, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E. Herr,
Josh T. Horton, Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuanqing Wang, Gianni
De Fabritiis, and Thomas E. Markland. Spice, a dataset of drug-like molecules and peptides
for training machine learning potentials. Scientific Data, 10, January 2023. doi: 10.1038/
$41597-022-01882-6. URL https://doi.org/10.1038/s41597-022-01882-6,

[53] Peter Eastman, Benjamin P, Pritchard, John D. Chodera, and Thomas E. Markland. Nutmeg
and spice: Models and data for biomolecular machine learning, 2024. URL https://arxiv,
org/abs/2406.13112,

[54] Peter J. Huber. Robust Estimation of a Location Parameter, pages 492-518. Springer New
York, New York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_35.
URL https://doi.org/10.1007/978-1-4612-4380-9_35,

[55] Harry Moore, David Peter Kovacs, Nicholas J Browning, Ilyes Batatia, Joshua T Horton, Venkat
Kapil, William Witt, [oan Magdau, Daniel Cole, and Gabor Csanyi. Research data supporting
"mace-off23", 2024. URL https://wuw.repository.cam.ac.uk/handle/1810/366661.

[56] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
http://github.com/google/flax.

[57] Samuel S. Schoenholz and Ekin D. Cubuk. Jax, m.d.: A framework for differentiable physics,
2020. URL https://arxiv.org/abs/1912.04232.

[58] Ask Hjorth Larsen, Jens Jgrgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Chris-
tensen, Marcin Dutak, Jesper Friis, Michael N Groves, Bjgrk Hammer, Cory Hargus, Eric D
Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leon-
hard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jon Bergmann Marons-
son, Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard,
Jakob Schigtz, Ole Schiitt, Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelm-
sen, Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen. The atomic simulation en-
vironment—a python library for working with atoms. Journal of Physics: Condensed Mat-
ter, 29(27):273002, June 2017. ISSN 1361-648X. doi: 10.1088/1361-648x/aa680e. URL
http://dx.doi.org/10.1088/1361-648X/aa680e,

13

https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2502.12147
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.1038/s41597-022-01882-6
https://arxiv.org/abs/2406.13112
https://arxiv.org/abs/2406.13112
https://arxiv.org/abs/2406.13112
https://doi.org/10.1007/978-1-4612-4380-9_35
https://www.repository.cam.ac.uk/handle/1810/366661
http://github.com/google/flax
https://arxiv.org/abs/1912.04232
http://dx.doi.org/10.1088/1361-648X/aa680e

504
505
506

508
509
510

511
512
513
514

515
516
517

518

519

520
521
522
523
524
525
526
527
528
529
530

[59] Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Giinnemann, Zachary
Ulissi, C. Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks
for large and diverse molecular simulation datasets, 2022. URL https://arxiv.org/abs/
2204.02782

[60] Vivek Bharadwaj, Austin Glover, Aydin Buluc, and James Demmel. An efficient sparse kernel
generator for o(3)-equivariant deep networks, 2025. URL https://arxiv.org/abs/2501!|
13986.

[61] Christoph Brunken, Sebastien Boyer, Mustafa Omar, Martin Maarand, Olivier Peltre, Solal
Attias, Bakary N’tji Diallo, Anastasia Markina, Olaf Othersen, and Oliver Bent. Universally
applicable and tunable graph-based coarse-graining for machine learning force fields, 2025.
URL https://arxiv.org/abs/2504.01973.

[62] Lars L. Schaaf, Ilyes Batatia, Christoph Brunken, Thomas D. Barrett, and Jules Tilly. Boostmd:
Accelerating molecular sampling by leveraging ml force field features from previous time-steps,
2024. URL https://arxiv.org/abs/2412.18633.

A Technical Appendices and Supplementary Material

A.1 Complete set of model and training hyperparameters

A complete description of each parameter can be found in the m/ip model documentation. The models
were trained using very similar training strategies. Training was performed over 220 epochs with
scheduled weights: energy (40) and forces (1000), flipped at epoch 115. An exponential moving
average (EMA) with decay rate 0.99 was applied. The AMSGrad variant of Adam optimizer was
used. The exponential moving average of the weights is taken at every training step. We use 4000
warmup steps followed by 360000 transition steps. Gradient clipping was performed with a norm
of 500, and no gradient accumulation was applied. The ViSNet and NequlIP model training was
performed using a Huber loss, while the MACE model training was performed using the MSE loss.
See Table 2] for the hyperparameters used for the NequIP model, Table 3] for ViSNet, and Table [4] for
MACE. All training was done on NVIDIA H100 GPUs. Training took approximately 245 hours for
NequlP, 158 hours for ViSNet and 266 hours for MACE.

Table 2: NequlP model hyperparameters.

Parameter Value

num_layers 5

node_irreps 64x0e + 64x0o0 + 32xle +
32xlo + 4x2e + 4x20

1_max 2

num_bessel 8

radial_net_nonlinearity swish

radial_net_n_hidden 64

radial_net_n_layers 2

radial_envelope polynomial_envelope

scalar_mlp_std 4

graph_cutoff_angstrom 5

max_n_node 32

max_n_edge 288

batch_size 16

learning_rate 0.002

14

https://arxiv.org/abs/2204.02782
https://arxiv.org/abs/2204.02782
https://arxiv.org/abs/2204.02782
https://arxiv.org/abs/2501.13986
https://arxiv.org/abs/2501.13986
https://arxiv.org/abs/2501.13986
https://arxiv.org/abs/2504.01973
https://arxiv.org/abs/2412.18633
https://instadeepai.github.io/mlip/api_reference/models/index.html

531

532
533
534
535
536
537

538

539
540
541
542
543
544

Table 3: ViSNet model hyperparameters.

Parameter Value
num_layers 4
num_channels 128
1_max 2
num_heads 8
num_rbf 32
trainable_rbf False
activation silu
attn_activation silu
vecnorm_type None
graph_cutoff_angstrom 5
max_n_node 32
max_n_edge 288
batch_size 16
learning_rate 0.0001

Table 4: MACE model hyperparameters.

Parameter Value
num_layers 2
num_channels 128
1_max 3
node_symmetry 3
correlation 2

readout_irreps
num_readout_heads
num_bessel

activation
radial_envelope
graph_cutoff_angstrom

[u 16X09" s uoeu]
1

8

silu
polynomial_envelope
5

max_n_node 32
max_n_edge 288
batch_size 64
learning_rate 0.01

A.2 SPICEI1 training of MACE medium

As discussed in the main body of the paper, we also trained a version of the MACE architecture of
the library on a curated version of SPICE1 [55] with the same parameters as the original MACE-
OFF medium model [43]. Overall, we achieved validation performance equivalent to MACE-OFF
on SPICE1. We also present in Table E] the runtime metrics on 1UAO and 1ABT. Likewise, the
implementation of the ASE wrapper around the original torch version of MACE-OFF is our own, and
it should not be considered representative of the performance of the original authors’ code.

A.3 Modified MACE model

In this section, we introduce a modified version of MACE that exhibits similar performances to the
original MACE model while significantly reducing the associated inference time. A key component of
MACE is the so-called Symmetric Contraction (SC), a costly node-wise operation that computes the
tensor product of node features with themselves v times, where v is referred to as the correlation order.
The choice of v depends on a speed-accuracy trade-off, with a correlation order v = 3 leading to a
slower but more accurate model than v = 2. Here we propose two simple yet effective modifications

15

545
546

547
548
549
550

551
552

553
554

555
556
557

558
559
560
561

562

563
564

565

566

567
568

Table 5: Speed performance on MD simulation of the MACE medium pre-trained models and
backends. All tests were run on a single NVIDIA H100 GPU and speed metrics are given as
milliseconds per step averaged over 1 ns of simulation. 1UAO is a chignolin molecule with 138
atoms, while 1ABT is a system with 1205 atoms. Both models achieved stable simulation, and are
both trained on a curated version of SPICE1 [55]].

Models Parameters | Systems Jax + JAX-MD Jax + ASE Torch + ASE

1UAO 3.6 ms/step 7.9 ms/step 30.7 ms/step
1ABT 31.0 ms/step 64.6 ms/step 104.9 ms/step

MACE (medium) 1,911,568

of the original MACE model that overcome this tradeoff, allowing to reach an accuracy close the one
of our vanilla MACE model with v = 3 at an inference speed similar to the one obtained for v = 2.

In the following we describe our modifications by referring to the equations of the original MACE
paper and adopt the same notations. Our first modification consists in applying a gating to the
node features of node ¢ using the scalar produced during the SC. More precisely, we first define the
following gating weights

(t) iy (t)
AZikLn, = Z W ziviem, Bl koo T 0Zikm @)
e
where B(2 Koo are the scalar features at the output of the SC and W;“k . ,bz,k.n, are specie-wise

learnable mlxmg weights and biases that depends on node ¢ through its atomic specie Z;. Then, we

gate the node features with the weights a(Zti)k Lo which amount to replace Eq. (11) defining the node

messages with the following one:

t t
my kLM Z Z O‘Z kL,m, Wy,)kL M Bz('n)]l,kLJw : (@)

v

We found that this modification accounted for most of the improvement in our model. Importantly,
this modification increases the body-order of the node-features while avoiding an increase in the
correlation order, at a computational cost negligible compared to that of SC.

The second modification relates to the interaction of a node with its neighbors as encapsulated in Eq.
(8) of the original MACE paper. We generalize this interaction term as to let it depend explicitly on
the species of both the sender and receiver nodes. To do so, we first embed the specie of each node ¢
into a vector of learnable scalar features

8; = (alzi,...,a%i)T e R?, 3)
with d = 8. Then, we build scalar feature vectors on each edge (i, 7) as
fij = [SZ‘ H Sj || S; © Sj] S R?’d , (4)

where || and o respectively denote concatenation and Hadamard product. The features f;; are then
processed through a MLP to produce weights

51'(;7)“1[213 = MLP(fij)kl11213 .)

At last, Eq. (8) of the original MACE paper is to be replaced by the following equation:

(t) _ lsm (t) (t) m] (t) (t)
Ai»klsms - Z 01137”137127”2 Z 61]7k111213Rk111213 (T'ﬂ)Y 1() Z Wkklg jklamg ©)
limy,lama FEN(3) i

A.4 Library API — model training use case example

In this section, we present our second example of our library API in addition to the one presented in
the main text.

16

se9 This example is a code snippet to train a model. We first set up all the prerequisites, which include
s70 (1) the dataset (see dedicated data processing tutorial in the documentation for more details), (2) the
s71 force field model, (3) the loss, (4) the optimizer, and (5) the training loop config. Once these objects
572 have been set up, one can easily instantiate the training loop class and start the training run. Note that
573 we support multi-GPU training via data parallelism. For more details, see the model training tutorial
574 in the code documentation.

* imports: Load the necessary mod-

£ lip.traini i t
rom mlip.training import (ules.

Trainingloop, get_default_mlip_optimizer
) * _get_dataset: Placeholder func-

from mlip.models.loss import MSELoss tion to be replaced by code to load
from mlip.models import Mace, ForceField
a dataset from the filesystem. See

the tutorial on data reading process-

Get data . . .
train_set, validation_set, dataset_info = (ng for more information. Model hy—
_get_dataset () perparameters directly related to the
) dataset are stored in a DatasetInfo
object.
Initialize model
mace = Mace(Mace.Config(), dataset_info) e Mace: Initialize a MACE model
force_field = (from a configuration and a
ForceField.from_mlip_network(mace) DatasetInfo object. In this exam-
) ple, the default hyperparameters are
used.
Other prerequisites
loss = MSELoss() * ForceField.from_mlip_network:
optimizer = get_default_mlip_optimizer() Creates the ForceField wrapper
config = TrainingLoop.Config(class (main interface with training
575 num_epochs=100, and simulation pipelines) from the
, # other settings MACE network class.
* MSELoss: Sets up a loss, in this ex-
Create Trainingloop class ample, a weighted mean-squared er-
trainins-lmp = Train'ingLOOP(ror loss for energy, forces, and stress.
train_dataset=train_set, In this example, the default weights
validation_dataset=validation_set, are used.
force_field=force_field,
loss=loss, * get_default_mlip_optimizer:
optimizer=optimizer, Sets up the default optimizer
; config=config, for MLIP models (see the lcode

documentationl for more details on

Start the model training how it is implemented).

training_loop.run()

* TrainingLoop.Config: Config-
ures the training loop.

* TrainingLoop: Sets up the model
training.

* training_loop.run: Launches
the model training.

576 A.5 Systems for MD runtime benchmark

577 We perform our MD runtime benchmarks on the following systems (also depicted in Figure[3).

578 ¢ 1UAO: Chignolin (PDBid: 1UAO) is a synthetic mini-protein, designed to mimic the (-
579 hairpin secondary structure motif found in natural proteins. Due to its size, Chignolin is
580 widely used in classical molecular dynamics simulations to study folding.

17

https://instadeepai.github.io/mlip/user_guide/data_processing.html
https://instadeepai.github.io/mlip/user_guide/training.html
https://instadeepai.github.io/mlip/user_guide/data_processing.html
https://instadeepai.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer.get_default_mlip_optimizer
https://instadeepai.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer.get_default_mlip_optimizer
https://www.rcsb.org/structure/1UAO

581
582
583

585
586
587
588

589

590
591

593
594

595
596
597
598
599
600
601
602
603

* 1ABT: Alpha-bungarotoxin complex (PDB: |1ABT, Solution NMR structure) is a potent
neurotoxin found in the venom of the Taiwanese many-banded krait snake, Bungarus multi-
cinctus. This small polypeptide (78 amino acids) acts as a highly specific and irreversible
antagonist of the nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction,
blocking acetylcholine binding and leading to muscle paralysis. The solved structure dis-
played in Figure [3] contains alpha-bungarotoxin (BGTX), and a synthetic dodecapeptide
(alpha 185-196) corresponding to a functionally important region on the alpha-subunit of
the nicotinic acetylcholine receptor (nAChR).

(a) IUAO (b) 1ABT

Figure 3: Cartoon representations of benchmark systems: (a) chignolin (PDBid: 1UAO) and the
alpha-bungarotoxin in complex with a functionally important region of the nicotin acetylcholine
receptor (highlighted in grey)

A.6 Curated SPICE2 Dataset

We currently provide access to three pre-trained models, all trained on a curated second version of
the SPICE2 dataset [152} 153]]. The SPICE2 dataset was chosen for its diversity, both in chemical and
conformational space, comprising approximately two million structures computed with DFT at the
wB97M-D3(BJ)/def2-TZVPPD level of approximation. The dataset is labeled and subdivided into a
collection of subsets; details of the training and validation sets per subset are provided in Table[6]

Table 6: Summary of training and validation sets. Data categories in columns correspond to those in
SPICE2 [53]].

PubChem DES370K Amino acid ligand Dipeptides

Training set 1,284,419 262,820 140,128 19,699
Validation set 58,336 10,917 7,250 1,250
Average size 36.9 16.6 55.4 44 .4
Monomers Solvated PubChem Water Solvated amino acid

Training set 16,750 12,130 1,000 950
Validation set 1,000 705 0 50
Average size 13.5 92.8 95 55.4

To improve data quality, several pre-processing steps were applied. First, any structure where a
hydrogen atom did not have exactly one chemical bond (according to a detection mechanism based
on covalent radii with appropriate tolerance: 0.4 A on top of the sum of covalent radii) was removed,
eliminating 42,689 structures, as these are likely to be unphysical. Next, since these pre-trained
models are not designed to handle charged systems, an additional 142,647 non-neutral structures
(total charge) were excluded, stabilizing training. Finally, inspired by the filtering strategy used in
MACE-OFF [43]], we applied a force filter to remove structures with either a non-zero total force
or unusually high per-atom forces. Specifically, we excluded structures with a total force norm
exceeding 0.1 eV/A or any individual force greater than 15 eV/A. Although this filtering represents

18

https://www.rcsb.org/structure/1ABT

604 a tradeoff, improving force prediction accuracy while slightly reducing energy prediction accuracy
605 on the validation set, it led to improved performance on key benchmarks and was therefore adopted.
606 This step removed an additional 1,024 structures.

19

	Introduction
	Brief overview of MLIP methods
	Related work
	Models included in the mlip library

	Pre-trained models and benchmarks
	Model training methodology
	Model benchmarking

	Library overview
	Purpose and design philosophy
	Structure and modules
	Practical examples

	Roadmap for library development
	Technical Appendices and Supplementary Material
	Complete set of model and training hyperparameters
	SPICE1 training of MACE medium
	Modified MACE model
	Library API – model training use case example
	Systems for MD runtime benchmark
	Curated SPICE2 Dataset

