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ABSTRACT

Spectral Embedding (SE) is a popular method for dimensionality reduction, ap-
plicable across diverse domains. Nevertheless, its current implementations face
three prominent drawbacks which curtail its broader applicability: generalizabil-
ity (i.e., out-of-sample extension), scalability, and eigenvectors separation. In this
paper, we introduce GrEASE: Generalizable and Efficient Approximate Spectral
Embedding, a novel deep-learning approach designed to address these limitations.
GrEASE incorporates an efficient post-processing step to achieve eigenvectors
separation, while ensuring both generalizability and scalability, allowing for the
computation of the Laplacian’s eigenvectors on unseen data. This method expands
the applicability of SE to a wider range of tasks and can enhance its performance
in existing applications. We empirically demonstrate GrEASE’s ability to consis-
tently approximate and generalize SE, while ensuring scalability. Additionally, we
show how GrEASE can be leveraged to enhance existing methods. Specifically,
we focus on UMAP, a leading visualization technique, and introduce NUMAP, a
generalizable version of UMAP powered by GrEASE. Our code will be publicly
available upon acceptance.

1 INTRODUCTION

Spectral Embedding (SE) is a popular non-linear dimensionality reduction method (Belkin &
Niyogi, 2003; Coifman & Lafon, 2006b), finding extensive utilization across diverse domains in
recent literature. Notable applications include UMAP (McInnes et al., 2018) (the current state-of-
the-art visualization method), Graph Neural Networks (GNNs) (Zhang et al., 2021; Beaini et al.,
2021) and Graph Convolutional Neural Networks (GCNs) (Defferrard et al., 2016), positional en-
coding for Graph Transformers (Dwivedi & Bresson, 2020; Kreuzer et al., 2021) and analysis of
proteins (Campbell et al., 2015; Kundu et al., 2004; Shepherd et al., 2007; Zhu & Schlick, 2021).
The core of SE involves a projection of the samples into the space spanned by the leading eigenvec-
tors of the Laplacian matrix (i.e., those corresponding to the smallest eigenvalues), derived from the
pairwise similarities between the samples. SE is an expressive method which is able to preserve the
global structure of high-dimensional input data, underpinned by robust mathematical foundations
(Belkin & Niyogi, 2003; Katz et al., 2019; Lederman & Talmon, 2018; Ortega et al., 2018).

Despite the popularity and significance of SE, current implementations suffer from three main draw-
backs: (1) Generalizability - the ability to directly embed a new set of test points after completing the
computation on a training set (i.e., out-of-sample extension); (2) Scalability - the ability to handle
a large number of samples within a reasonable timeframe; (3) Eigenvectors separation - the ability
to output the basis of the leading eigenvectors (v2, . . . , vk+1), rather than only the space spanned
by them. These three properties are crucial for modern applications of SE in machine learning. No-
tably, the last property has attracted considerable attention in recent years (Pfau et al., 2018; Gemp
et al., 2020; Deng et al., 2022; Lim et al., 2022). While most SE implementations address two of
these three limitations, they often fall short in addressing the remaining one (see Sec. 2).

This paper extends the work by Shaham et al. (2018), known as SpectralNet. SpectralNet tack-
les the scalability and generalizability limitations of Spectral Clustering (SC), a key application of
SE. However, due to a rotation and reflection ambiguity in its loss function, SpectralNet cannot di-
rectly be adapted for SE (i.e., it cannot separate the eigenvectors). In this paper, we first present a
post-processing procedure to resolve the eigenvectors separation issue in SpectralNet, thereby, cre-
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Figure 1: A comparison between non-parametric UMAP (with SE or PCA initialization), P. UMAP
and NUMAP on three non-linear yet simple 3-dimensional toy datasets. NUMAP global structure
abilities over P. UMAP are evident.

ating a scalable and generalizable implementation of SE, which we call GrEASE: Generalizable and
Efficient Approximate Spectral Embedding.

GrEASE’s ability to separate the eigenvectors, while maintaining generalizability and scalability
offers a pathway to enhance numerous existing applications of SE and provides a foundation for de-
veloping new applications. A notable example is UMAP (McInnes et al., 2018), the current state-of-
the-art visualization method. Recent work proposed Parametric UMAP (P. UMAP) (Sainburg et al.,
2021) to address the UMAP lack of generalizability. However, UMAP’s global structure preserva-
tion and consistency largely stem from the use of SE for initialization (Kobak & Linderman, 2021),
a step absent in P. UMAP. Consequently, P. UMAP lacks a crucial component to fully replicate the
performance of UMAP, especially in terms of global structure preservation. Nonetheless, a series of
studies have incorporated P. UMAP, underscoring the significant impact of a generalizable version
of UMAP (Xu & Zhang, 2023; Eckelt et al., 2023; Leon-Medina et al., 2021; Xie et al., 2023; Yoo
et al., 2022).

In this paper, we also introduce a novel application of GrEASE for generalizable UMAP, which we
term NUMAP. NUMAP integrates the UMAP loss with SE initialization, similar to the original non-
parametric UMAP. As a result, NUMAP achieves comparable results to UMAP, while also offering
generalization capabilities. Fig. 1 depicts this idea. P. UMAP fails to preserve the global structure
(e.g., separation of the clusters), while UMAP and NUMAP does so successfully.

Our contributions can be summarized as follows: (1) We introduce GrEASE, a novel approach for
generalizable approximate SE; (2) We establish a foundation for a range of new SE applications
and enhancements to existing methods; (3) We present NUMAP: a novel application of GrEASE
for generalizable UMAP; (4) We propose a new evaluation method for dimensionality reduction
methods, which enables quantification of global structure preservation.

2 RELATED WORK

Current SE implementations typically address two out of its three primary limitations: generalizabil-
ity, scalability, and eigenvector separation. Below, we outline key implementations that tackle each
pair of these challenges. Following this, we discuss recent works related to eigenvectors separation
and generalizable visualizations techniques.

Scalable with eigenvectors separation. Popular implementations of SE are mostly based on
sparse matrix decomposition techniques (e.g., ARPACK (Lehoucq et al., 1998), AMG (Brandt et al.,
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1984), LOBPCG (Benner & Mach, 2011)). These methods are relatively scalable, as they are al-
most linear in the number of samples. Nevertheless, their out-of-sample extension is far from trivial.
Usually, it is done by out-of-sample extension (OOSE) methods such as Nyström extension method
(Nyström, 1930) or Geometric Harmonics (Coifman & Lafon, 2006a; Lafon et al., 2006). However,
these methods provide only local extension (i.e., near existing training points), and are both compu-
tationally and memory restrictive, as they rely on computing the distances between every new test
point and all training points.

Scalable and generalizable. Several approaches to SC approximate the space spanned by the first
eigenvectors of the Laplacian matrix, which is sufficient for clustering purposes, and can also benefit
other specific applications. For example, SpectralNet (Shaham et al., 2018) leverages deep neural
networks to approximate the first eigenfunctions of the Laplace-Beltrami operator in a scalable man-
ner, thus also enabling fast inference of new unseen samples. BASiS (Streicher et al., 2023) achieves
these goals using affine registration techniques to align batches. However, these methods’ inability
to separate the eigenvectors prevents their use in many modern applications.

Generalizable with eigenvectors separation. Another proposed approach to SE is Diffusion-
Net (Mishne et al., 2019), a deep-learning framework for generalizable Diffusion Maps embedding
(Coifman & Lafon, 2006b), which is similar to SE. However, the training procedure of the network
is computationally expensive, therefore restricting its usage for large datasets.

In contrast, we introduce GrEASE, which generalizes the separated eigenvectors to unseen points
with a single feed-forward operation, while maintaining scalability.

Eigenvectors separation. Extensive research has been conducted on the eigenvectors separation
problem, both within and beyond the spectral domain (Lim et al., 2022; Ma et al., 2024). How-
ever, recent suggestions are constrained computationally, both by extensive run-time and memory
consumption. For example, Pfau et al. (2018) proposed a solution to this issue by masking the gra-
dient information from the loss function. However, this approach necessitates the computation of
full Jacobians at each time step, which is highly computationally intensive. Gemp et al. (2020) em-
ploys an iterative method to learn each eigenvector sequentially. Namely, they learn an eigenvector
while keeping the others frozen. This process has to be repeated k times (where k is the embed-
ding dimension), which makes this approach also computationally expensive. Deng et al. (2022)
proposed an improvement of the latter, by parallel training of k NNs. However, as discussed in their
paper, this approach becomes costly for large values of k. Furthermore, it necessitates retaining k
trained networks in memory, which leads to significant memory consumption. Chen et al. (2022)
proposed a post-processing solution to this problem using the Rayleigh-Ritz method. However, this
approach involves the storage and multiplication of very large dense matrices, rendering it imprac-
tical for large datasets. In contrast, GrEASE offers an efficient one-shot post-processing solution to
the eigenvectors separation problem.

Generalizable visualization. Several works have attempted to develop parametric approximations
for non-parametric visualization methods, in addition to Parametric UMAP (P. UMAP) (Sainburg
et al., 2021). Notable examples include (Van Der Maaten, 2009) and (Kawase et al., 2022), which
use NNs to make t-SNE generalizable, and (Schofield & Lensen, 2021), which aims to make UMAP
more interpretable. However, P. UMAP has demonstrated superior performance. NUMAP presents
a method to surpass P. UMAP in terms of global structure preservation.

3 PRELIMINARIES

In this section, we begin by providing the fundamental definitions that will be used throughout this
work. Additionally, we briefly outline the key components of UMAP and P. UMAP.

3.1 SPECTRAL EMBEDDING

Let X = {x1, . . . , xn} ⊆ Rd denote a collection of unlabeled data points drawn from some un-
known distribution D. Let W ∈ Rn×n be a positive symmetric graph affinity matrix, with nodes
corresponding to X , and let D be the corresponding diagonal degree matrix (i.e. Dii =

∑n
j=1 Wij).
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The Unnormalized Graph Laplacian is defined as L = D −W . Other normalized Laplacian ver-
sions are the Symmetric Laplacian Lsym = D− 1

2LD− 1
2 and the Random-Walk (RW) Laplacian

Lrw = D−1L. GrEASE is applicable to all of these Laplacian versions. The eigenvalues of L
can be sorted to satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with corresponding eigenvectors v1, . . . , vn
(Von Luxburg, 2007). It is important to note that the first pair (i.e., λ1, v1) is trivial - for every
Laplacian matrix λ1 = 0, and for the unnormalized and RW Laplacians v1 = 1√

n
1⃗, namely the

constant vector.

For a given target dimension k, the first non-trivial k eigenvectors provide a natural non-linear low-
dimensional embedding of the graph which is known as Spectral Embedding (SE). In practice, we
denote by V ∈ Rn×k the matrix containing the first non-trivial k eigenvectors of the Laplacian
matrix as its columns (i.e., v2, . . . , vk+1). The SE representation of each sample xi ∈ Rd is the ith
row of V , i.e., yi = (v2(i), . . . , vk+1(i)).

3.2 SPECTRALNET

A prominent method for addressing scalability and generalizability in Spectral Clustering (SC) is
using deep neural networks, for example SpectralNet (Shaham et al., 2018). SpectralNet follows a
common methodology for transferring the problem of matrix decomposition to its smallest eigen-
vectors to an optimization problem, through minimization of the Rayleigh Quotient (RQ).

Definition 1. The Rayleigh quotient (RQ) of a Laplacian matrix L ∈ Rn×n is a function RL :
Rn×k → R defined by

RL(A) = Tr(ATLA)

SpectralNet first minimizes the RQ on small batches, while enforcing orthogonality. Namely, it
approximates θ∗ = argminθ

1
m2RL

(
fθ(X)

)
s.t. 1

mfθ(X)T fθ(X) = Ik×k. Thereby, it learns
a map f : Rd → Rk (where d is the input dimension) which approximates the space spanned by
the first k eigenfunctions of the Laplace-Beltrami operator on the underlying manifold D (Belkin
& Niyogi, 2006; Shi, 2015). Following this, it clusters the representations via KMeans. These
eigenfunctions are a natural generalization of the SE to unseen points, enabling both scalable and
generalizable spectral clustering.

3.3 UMAP AND PARAMETRIC UMAP

UMAP (McInnes et al., 2018) is the current state-of-the-art visualization method. UMAP presents a
significant advancement over previous methods, primarily due to its enhanced scalability and supe-
rior ability to preserve global structure. This approach involves the construction of a graph from the
input high-dimensional data and the learning of a low-dimensional representation. The objective is
to minimize the KL-divergence between the input data graph and the representation graph.

However, as discussed in (Kobak & Linderman, 2021), UMAP primarily derives its global preserva-
tion abilities, as well as its consistency, from initializing the representations using SE. Therefore, the
SE initialization serves as a critical step for UMAP to uphold the global structure (see demonstration
in Fig. 1). Global preservation, in this context, refers to the separation of different classes, and avoid-
ing the separation of existing classes. We refer the reader to (Kobak & Linderman, 2021) for a more
comprehensive discussion about the effects of informative initialization on UMAP’s performance.

UMAP method can be divided into three components (summarized in Fig. 3): (1) constructing a
graph which best captures the global structure of the input data; (2) initializing the representations
via SE; (3) Learning the representations, via SGD, which best capture the original graph. This setup
does not facilitate generalization, as both steps (2) and (3) lack generalizability.

Recently, a generalizable version of UMAP, known as Parametric UMAP (P. UMAP), was intro-
duced (Sainburg et al., 2021). P. UMAP replaces step (3) with the training of a neural network.
Importantly, it overlooks step (2), the SE initialization. Consequently, P. UMAP struggles to pre-
serve global structure, particularly when dealing with non-linear structures. Fig. 1 illustrates this
phenomenon with several non-linear yet simple structures. Noticeably, P. UMAP fails to preserve
global structure (e.g., it does not separate different clusters).
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4 METHOD

4.1 MOTIVATION

It is well known that the matrix V , containing the first k eigenvectors of L (i.e., those corresponding
to the k smallest eigenvalues) as its columns, minimizes RL(A) under orthogonality constraint (i.e.
ATA = I) (Li, 2015).

However, a rotation and reflection ambiguity of the RQ prohibits a trivial adaptation of this concept
to SE. Basic properties of trace imply that for any orthogonal matrix Q ∈ Rk×k the matrix U := V Q
satisfies

RL(U) = Tr(UTLU) = Tr(QTV TLV Q) = Tr(QQTV TLV ) = Tr(V TLV ) = RL(V )

Thus, every such U also minimizes RL under the orthogonality constraint, and therefore this kind
of minimization solely is missing eigenvectors separation, which is crucial for many applications.

4.2 GREASE

In fact, we prove that the aforementioned form V Q is the only form of a minimizer of RL under the
orthogonality constraint.
Lemma 1. Every minimizer of RL under the orthogonality constraint, is of the form V Q, where V
is the first k eigenvectors matrix of L and Q is an arbitrary squared orthogonal matrix.

The proof of Lemma 1 appears in Appendix A.

Lemma 1 implies that SpectralNet’s method, using a deep neural network for RQ minimization
(while enforcing orthogonality), does not lead to the SE. However, it only leads to the space spanned
by the constant vector and the leading k−1 eigenvectors of L, with different rotations and reflections
for each run. Therefore, each time the RQ is minimized, it results in a different linear combination
of the smallest eigenvectors. Although this is sufficient for clustering purposes, as we search for
reproducibility, consistency, and separation of the eigenvectors, the RQ cannot solely provide the
SE, necessitating the development of new techniques in GrEASE.

Setup. Here we present the two key components of GrEASE, a scalable and generalizable SE
method. We consider the following setup: Given a training set X ⊆ Rd and a target dimension k,
we construct an affinity matrix W , and compute an approximation of the leading eigenvectors of its
corresponding Laplacian. In practice, we first utilize SpectralNet (Shaham et al., 2018) to approx-
imate the space spanned by the first k + 1 eigenfunctions of the corresponding Laplace-Beltrami
operator, and then find each of the k leading eigenfunctions within this space (i.e. the SE). Namely,
GrEASE computes a map Fθ : Rd → Rk, which approximates the map f̄ = (f2, . . . , fk+1), where
fi is the ith eigenfunction of the Laplace-Beltrami operator on the underlying manifold D.

Eigenspace approximation. As empirically showed in (Shaham et al., 2018), and motivated from
Lemma 1, SpectralNet loss is minimized when Fθ = T ◦ (f1, . . . , fk+1), where T : Rk+1 → Rk+1

is an arbitrary isometry. Namely, Fθ approximates the space spanned by the first k + 1 eigenfunc-
tions. However, the SE (i.e. each of the leading eigenfunctions) is poorly approximated. Each time
the RQ is minimized, the eigenfunctions are approximated up to a different isometry T . Fig. 2a
demonstrates this phenomenon on the toy moon dataset - a noisy half circle linearly embedded into
10-dimension input space (see Sec. 5.1). Employing SpectralNet approach indeed enables us to
consistently achieve a perfect approximation of the space (i.e., the errors are accumulated around 0).
However, when comparing vector to vector, it becomes apparent that the SE was seldom attained.

SE approximation. To get the SE consistently (i.e., to separate the eigenvectors), we suggest a
simple use of Lemma 1. Notice that based on Lemma 1 we can compute a rotated version of the
diagonal eigenvalues matrix. Namely,

(V Q)TL(V Q) = QTV TLV Q = QTΛQ =: Λ̃

Where Λ is the diagonal eigenvalues matrix. Due to the uniqueness of eigendecomposition, the
eigenvectors and eigenvalues of the small matrix Λ̃ ∈ Rk+1×k+1 are QT and diag(Λ), respectively.
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(a) (b)

Figure 2: (a) Approximation of the 2-dimensional SE of the moon dataset using SpectralNet (in
blue) and GrEASE (in green) over 100 runs, on train (top row) and test (bottom row). Left column:
distribution of the Grassmann distance between the output and true subspace. Second to Fourth
columns: distribution of the sin2 distance between each output and true eigenvector separately.
Evidently, GrEASE is able to separate the eigenvectors. (b) Running times of SE using GrEASE vs.
other methods on the Moon dataset (a 2D moon linearly embedded into 10D input space), relative
to the number of samples, and with standard deviation confidence intervals. Evidently, GrEASE is
the fastest asymptotically.

Hence, by diagonalizing Λ̃ we get the eigenvalues and are also able to separate the eigenvectors (i.e.,
approximate the SE).

In practice, as Q is a property of SpectralNet optimization (manifested by the parameters), we com-
pute the matrix Λ̃ by averaging over a few random minibatches and diagonalize it. Thereby, making
this addition very cheap computationally. The eigenvectors matrix of Λ̃ is the inverse of the orthog-
onal matrix Q, and hence by multiplying the output of the learned map Fθ by this matrix, the SE is
retained. Also, the eigenvalues of Λ̃ are the eigenvalues of L.

The effect of this intentional rotation is represented in the Fig. 2a. GrEASE was not only able to
consistently approximate the space, but also approximate each eigenvector. While SpectralNet errors
are distributed over a large range of values, GrEASE errors are small, capturing only the smallest
error bin in the figure.

Algorithms Layout. Our end-to-end training approach is summarized in Algorithms 1 and 2 in
Appendix B. We run them consecutively: First, we train Fθ to approximate the first eigenfunctions
up to isometry (Algorithm 1) (Shaham et al., 2018). Second, we find the matrices QT and Λ to
separate the eigenvectors and retrieve the SE and its corresponding eigenvalues (Algorithm 2). App.
C details additional considerations about the implementation.

Once we have Fθ and QT , computing the embeddings of the train set or of new test points (i.e., out-
of-sample extension) is straightforward: we simply propagate each test point xi through the network
Fθ to obtain their embeddings ỹi, and use QT to get the SE embeddings yi = ỹiQ

T .

Time and Space complexity. As the network iterates over small batches, and the post-processing
operation is much cheaper, GrEASE’s time complexity is approximately linear in the number of
samples. This is also demonstrated in Fig. 2b, where the continuous red line, representing linear
regression, aligns with our empirical results. App. C provides a discussion about the complexity of
GrEASE. Note also that GrEASE is much more memory-efficient than existing methods, as it does
not require storing the full graph, or any large matrix, in the memory, but rather one small graph or
matrix (of a minibatch) at a time.

4.3 NUMAP

We focus on GrEASE application to UMAP, one of many methods which can benefit from a gen-
eralizable SE. As discussed in Sec. 3.3, the SE initialization is crucial for the global preservation

6
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Figure 3: UMAP vs. NUMAP vs. P. UMAP overview. A green arrow represents a non-parametric
step. NUMAP integrates SE, as in UMAP, while enabling generalization.

abilities of UMAP. Therefore, we seek a method to incorporate SE into a generalizable version of
UMAP. It is important to note that a naive approach would be to fine-tune GrEASE using UMAP
loss. However, during this implementation, we encountered the phenomenon of catastrophic forget-
ting (see App. F).

The core of our idea is illustrated in Fig. 3. Initially, we use GrEASE to learn a parametric rep-
resentation of the k-dimensional SE of the input data. Subsequently, we train an NN to map from
the SE to the UMAP embedding space, utilizing UMAP contrastive loss. The objective of the sec-
ond NN is to identify representations that best capture the local structure of the input data graph.
SE transforms complex non-linear structures into simpler linear structures, allowing the second NN
to preserve both local and global structures effectively. To enhance this capability, we incorporate
residual connections from the first to the last layer of the second NN. Specifically, the objective is
to minimize the residual between the ℓ-dimensional UMAP embedding and the ℓ-dimensional SE.
Note that this could not have been made possible without GrEASE’s ability to separate the eigen-
vectors (and would not be practical without its inherent generalizability and scalability). Fig. 1
demonstrates this capability with several simple structures.

4.4 ADDITIONAL APPLICATIONS

In this section we seek to highlight GrEASE’s potential impact on important tasks and applica-
tions (besides UMAP), as it integrates generalizability, scalability and eigenvectors separation. As
discussed in Sec. 1, SE is applied across various domains, many of which can benefit generaliz-
ability capabilities by simply replacing the current SE implementation with GrEASE. We therefore
elaborate herein the significance of SE in selected applications, and discuss how GrEASE, as a
generalizable approximation of it, can enhance their effectiveness and applicability.

Fiedler vector and value. A special case of SE is the Fiedler vector and value (Fiedler, 1973;
1975). The Fiedler value, also known as algebraic connectivity, refers to the second eigenvalue of the
Laplacian matrix, while the Fiedler vector refers to the associated eigenvector. This value quantifies
the connectivity of a graph, increasing as the graph becomes more connected. Specifically, if a graph
is not connected, its Fiedler value is 0. The Fiedler vector and value are a main topic of many works
(Andersen et al., 2006; Barnard et al., 1993; Kundu et al., 2004; Shepherd et al., 2007; Cai et al.,
2018; Zhu & Schlick, 2021; Tam & Dunson, 2020).

As GrEASE is able to distinguish between the eigenvectors and approximate the eigenvalues, it has
the capability to approximate both the Fiedler vector and value, while also generalizing the vector
to unseen samples (see Sec. 5.1).

Diffusion Maps. A popular method which incorporates SE, alongside the eigenvalues of the
Laplacian matrix, is Diffusion Maps (Coifman & Lafon, 2006b). Diffusion Maps embeds a graph
(or a manifold) into a space where the pairwise Euclidean distances are equivalent to the pairwise
Diffusion distances on the graph.

In practice, for an k-dimensional embedding space and a given t ∈ N, Diffusion Maps maps the
points to the leading eigenvectors of the RW-Laplacian matrix of the data as follows:

X →
(
(1− λ2)

tv2 · · · (1− λk+1)
tvk+1

)
= Y

7
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Figure 4: A demonstration of the alignment between the intuitive expectation and the Grass-
mann Score (GS) results on a toy dataset of two 3-dimensional tangent spheres. Four possible
2-dimensional embeddings of this dataset are provided, along with their corresponding GS, KNN
accuracy and Silhouette score. Unlike KNN and Silhouette, GS effectively captures the preservation
of global structure.

Where X ∈ Rn×d is a matrix containing each input point as a row, and Y ∈ Rn×k is a matrix
containing each of the representations as a row. As GrEASE is able to approximate both the eigen-
vectors and eigenvalues of the Laplacian matrix, it is able to make Diffusion Maps generalizable and
efficient (Sec. 5.1).

4.5 EVALUATING UMAP EMBEDDING - GRASSMANN SCORE

Common evaluation methods for dimensionality reduction, particularly for visualization, are pre-
dominantly focused on local structures. For instance, McInnes et al. (2018); Kawase et al. (2022)
use KNN accuracy and Trustworthiness, which only account for the local neighborhoods of each
point while overlooking global structures such as cluster separation. One global evaluation method
is the Silhouette score, which measures the clustering quality of the classes within the embedding
space. However, this score does not capture the preservation of the overall global structure.

To address this gap, we propose a new evaluation method, specifically appropriate for assessing
global structure preservation in graph-based dimensionality reduction methods (e.g., UMAP, t-SNE).
The leading eigenvectors of the Laplacian matrix are known to encode crucial global information
about the graph (Belkin & Niyogi, 2003). Thus, we measure the distance between the global struc-
tures of the original and embedding manifolds using the Grassmann distance between the first eigen-
vectors of their respective Laplacian matrices. We refer to this method as the Grassmann Score (GS).

It is important to note that GS includes a hyper-parameter - the number of eigenvectors considered.
Increasing the number of eigenvectors incorporates more local structure into the evaluation. A nat-
ural choice for this hyperparameter is 2, which corresponds to comparing the Fiedler vectors (i.e.,
the second eigenvectors of the Laplacian). The Fiedler vector is well known for encapsulating the
global information of a graph (Fiedler, 1973; 1975). Unless stated otherwise, we use two eigen-
vectors for computing the GS. Fig. 4 demonstrates GS (alongside Silhouette and KNN scores for
comparison) on a few embeddings of two tangent spheres, independently to the embedding methods.
Notably, the embedding on the right appears to best preserve the global structure, as indicated by the
smallest GS value. In contrast, the KNN scores are comparable across all embeddings (e.g., KNN
ignores separation of an existing class), and the Silhouette score even favors other embeddings. In
App. D we mathematically formalize GS and provide additional examples of embeddings and their
corresponding GS. These examples further support the intuition that GS effectively captures global
structure preservation better than previous measures.

5 EXPERIMENTS

5.1 EIGENVECTORS SEPARATION - GENERALIZABLE SE

In this section, we demonstrate GrEASE’s ability to approximate and generalize the SE using four
real-world datasets: CIFAR10 (via their CLIP embedding); Appliances Energy Prediction dataset
(Candanedo, 2017); Kuzushiji-MNIST (KMNIST) dataset (Clanuwat et al., 2018); Parkinsons Tele-
monitoring dataset (Tsanas & Little, 2009). Particularly, we compare our results with SpectralNet,
which has been empirically shown to approximate the SE space. However, as our results demon-
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(a) GrEASE (b) NUMAP

Figure 5: (a) A comparison between GrEASE and SpectralNet SE and Fiedler Vector (FV) ap-
proximation on real-world datasets. The values are the mean and standard deviation of the sin2

distance between the predicted and true eigenvector of the test set, over 10 runs. Lower is better.
GrEASE ability to separate the eigenvectors is evident. (b) Banknote’s visualization by NUMAP
and P. UMAP. A better separation between classes is observed in NUMAP.

strate, SpectralNet is insufficient for accurately approximating SE. For additional technical details
regarding the datasets, architectures and training procedures, we refer the reader to Appendix G.

Evaluation Metrics. To assess the approximation of each eigenvector (i.e., the SE), we com-
pute the sin2 of the angle between the predicted and true vectors. This can be viewed as the 1-
dimensional case of the Grassmann distance, a well-known metric for comparing equidimensional
linear subspaces (see formalization in App. D). Concerning the eigenvalues approximation evalua-
tion, we measure the Pearson Correlation between the predicted and true eigenvalues (computed via
SVD).

Fig. 5a presents our results on the real-world datasets. GrEASE’s output is used directly, while
SpectralNet’s predicted eigenvectors are resorted to minimize the mean sin2 distance. The results
clearly show that GrEASE consistently produces significantly more accurate SE approximations
compared to SpectralNet, due to the improved separation of the eigenvectors.

Additionaly, note the GrEASE approximates the eigenvalues as well. When concerning a series
of Laplacian eigenvalues, the most important property is the relative increase of the eigenvalues
(Coifman & Lafon, 2006b). GrEASE demonstrates a strong ability to approximate this property.
To see this, we repeated GrEASE’s eigenvalue approximation (10 times) and calculated the Pear-
son correlation between the predicted and accurate eigenvalues vector. We compared the first 10
eigenvalues. The resulting mean correlation and standard deviation are: Parkinsons Telemonitoring:
0.917±0.0381; Appliances Energy Prediction: 0.839±0.0342;

5.2 SCALABILITY

Noteworthy, GrEASE not only generalizes effectively but also does so more quickly than the most
scalable (yet non-generalizable) existing methods. Fig. 2b demonstrates this point on the toy moon
dataset - a 2D moon linearly embedded into 10D input space. To evaluate scalability, we measured
the computation time required for SE approximation, for an increasing number of samples. We
compared the results with the three most popular methods for sparse matrix decomposition, which
are currently the fastest implementations: ARPACK (Lehoucq et al., 1998), LOBPCG (Benner &
Mach, 2011), and AMG (Brandt et al., 1984). For each number of samples, we calculated the
Laplacian matrix that is 99% sparse. Each method was executed five times, initialized with different
seeds. As discussed in Sec. 4, GrEASE demonstrates approximately linear time complexity, and
indeed, for higher numbers of samples, GrEASE converges significantly faster.

5.3 NUMAP - GENERALIZABLE UMAP

In this section, we demonstrate NUMAP’s ability to preserve global structure, while enabling fast in-
ference of test points. We compare our results with P. UMAP. We begin with showcasing NUMAP’s
capacity to preserve global structure using three toy datasets. These examples are particularly in-

9
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Table 1: A comparison between NUMAP and P. UMAP visualization on real-world datasets. The
values are the mean and standard deviation of the measures on the test set, over 5 runs. NUMAP is
superior in preserving global structure.

Metric Method Cifar10 Appliances Wine Banknote

KNN ↑ NUMAP 0.764±0.044 0.946±0.020 0.972±0.020 0.946±0.056

P. UMAP 0.880±0.007 0.992±0.003 0.961±0.058 0.944±0.030

GS ↓ NUMAP 0.158±0.062 0.554±0.031 0.437±0.076 0.626±0.056

P. UMAP 0.195±0.087 0.719±0.242 0.563±0.104 0.686±0.024

sightful, as P. UMAP fails to visualize correctly even these simple datasets. Following this, to
further demonstrate NUMAP’s effectiveness in preserving global structure, we present quantitative
results on real-world datasets: CIFAR10 (via their CLIP embedding); Appliances Energy Prediction
dataset; Wine (Aeberhard & Forina, 1992); Banknote Authentication (Lohweg, 2012). For addi-
tional technical details regarding the datasets, architectures and training procedures, we refer the
reader to Appendix G.

Evaluation Metrics. To evaluate and compare the embeddings, we employed both local and global
evaluation metrics. For local evaluation, we used the well-established accuracy of a KNN classifier
on the embeddings (McInnes et al., 2018; Sainburg et al., 2021). For global evaluation, we use GS
(see discussion in Sec. 4.5).

Synthetic data. Fig. 1 presents three simple non-linear synthetic 3-dimensional structures and
their 2-dimensional visualizations using UMAP (non-parametric), P. UMAP and NUMAP. UMAP
(using its default configuration, SE initialization) accurately preserves the global structure in its
2-dimensional representations, but lack the ability to generalize to unseen points. Among the gen-
eralizable methods (i.e., P. UMAP and NUMAP), P. UMAP fails to preserve the global structure:
in the top two rows, it does not separate the clusters, while in the bottom row, it introduces unde-
sired color overlaps. In contrast, NUMAP effectively preserves these separations and avoids the
unnecessary overlapping.

Real-world data. Tab. 1 presents our results on real-world datasets. The local (i.e., KNN) results
are comparable with P. UMAP. However, NUMAP better captures the global structure (based on
the lower GS). In other words, NUMAP achieves comparable local preservation results with P.
UMAP, while possessing more global structure expressivity. The synthetic datasets emphasize the
importance of global structure preservation. Fig. 5b further demonstrates NUMAP’s superior ability
to preserve global structure, as evidenced by the improved class separation in the Banknote dataset.

6 CONCLUSIONS

We first introduced GrEASE, a deep-learning approach for approximate SE. GrEASE addresses the
three primary drawbacks of current SE implementation: generalizability, scalability and eigenvec-
tors separation. By incorporating a post-processing diagonalization step, GrEASE enables eigen-
vectors separation without compromising generalizability or scalability. Remarkably, this one-shoot
post-processing operation lays the groundwork for a wide range of new applications of SE, which
would not have been possible without its scalable and generalizable implementation. It also presents
a promising pathway to enhance current applications of SE.

In particular, we presented NUMAP, a novel application of GrEASE for generalizable UMAP vi-
sualization. We believe the integration of SE with deep learning can have a significant impact on
unsupervised learning methods. Further research should delve into exploring the applications of SE
across various fields.
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Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–
758. PMLR, 2021.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. Advances in neural infor-
mation processing systems, 19, 2006.

Peter Benner and Thomas Mach. Locally optimal block preconditioned conjugate gradient method
for hierarchical matrices. PAMM, 11(1):741–742, 2011.

Achi Brandt, Steve McCormick, and John Ruge. Algebraic multigrid (amg) for sparse matrix equa-
tions. Sparsity and its Applications, 257, 1984.

Jiayue Cai, Aiping Liu, Taomian Mi, Saurabh Garg, Wade Trappe, Martin J McKeown, and Z Jane
Wang. Dynamic graph theoretical analysis of functional connectivity in parkinson’s disease: The
importance of fiedler value. IEEE journal of biomedical and health informatics, 23(4):1720–
1729, 2018.

Kieran Campbell, Chris P Ponting, and Caleb Webber. Laplacian eigenmaps and principal curves
for high resolution pseudotemporal ordering of single-cell rna-seq profiles. bioRxiv, pp. 027219,
2015.

Luis Candanedo. Appliances Energy Prediction. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5VC8G.

Ziyu Chen, Yingzhou Li, and Xiuyuan Cheng. Specnet2: Orthogonalization-free spectral embedding
by neural networks. arXiv preprint arXiv:2206.06644, 2022.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.
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Evert J Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen auf
randwertaufgaben. 1930.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
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A PROOF OF LEMMA 1

First, we remind an important property of the Rayleigh Quotient.

Remark 1. The Rayleigh Quotient of a positive semi-definite matrix L ∈ Rn×n with eigenvectors
v1, . . . , vn corrisponding to the eigenvalues λ1 ≤ · · · ≤ λn, RL satisfies argmin||v||=1 RL(v) = v1
and for each i > 1 argmin||v||=1 RL(v) = vi for v ⊥ v1, . . . , vi−1 (Li, 2015).

Lemma 1. Let L ∈ Rn×n be an Unnormalized Laplacian matrix and RL : O(n, k) → R its
corresponding RQ, and Let A be a minimizer of RL. Denote V ∈ Rn×k as the matrix containing
the first k eigenvectors of L as its columns, and Λ the corresponding diagonal eigenvalues matrix.
Then, there exists an orthogonal matrix Q ∈ Rk×k such that A = V Q.

Proof. As V minimizes RL, we get that minURL(U) = RL(V ) =
∑k

i=1 λi, where 0 = λ1 ≤
λ2 ≤ · · · ≤ λn are the eigenvalues of L. This yields

RL(A) = Tr(ATLA) =
k∑

i=1

λi

ATLA is symmetric, and hence orthogonally diagonalizable, which means there exists an orthogo-
nal matrix Q ∈ Rk×k and a diagonal matrix D ∈ Rk×k s.t.

ATLA = QTDQ

Which can be written as
(AQT )TL(AQT ) = D

Denoting by d1, . . . , dk the diagonal values of D, the last equation yields

k∑
i=1

di = RL(AQT ) = RL(A) =

k∑
i=1

λi

Note that based on Remark 1 λi ≤ di for each i, as AQT ∈ O(n, k). Hence, di = λi, i.e.,

(AQT )TL(AQT ) = Λ

As the eigendecomposition of a matrix is unique, this yields AQT = V , which means A = V Q.

B ALGORITHM LAYOUTS

Algorithm 1: SpectralNet training (Shaham et al., 2018)

Input: X ⊆ Rd, number of dimensions k, batch size m
Output: Trained Fθ which approximates the first k+1 eigenfunctions up to isometry

1 Randomly initialize the network weights θ
2 while L(θ) not converged do
3 Orthogonalization step:
4 Sample a random minibatch X of size m

5 Forward propagate X and compute inputs to orthogonalization layer Ỹ
6 Compute the QR factorization QR = Ỹ
7 Set the weights of the orthogonalization layer to be

√
mR−1

8 Gradient step:
9 Sample a random minibatch x1, . . . , xm

10 Compute the m×m affinity matrix W
11 Forward propagate x1, . . . , xm to get y1, . . . , ym
12 Compute the loss L(θ)(Sec. 3.2)
13 Use the gradient of L(θ) to tune all Fθ weights, except those of the output layer;
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Algorithm 2: Eigenvectors separation

Input: X ⊆ Rd, batch size m, Trained Fθ which approximates the first k + 1
eigenfunctions up to isometry

Output: Fθ which approximates the leading eigenfunctions
1 n iterations← ⌊ |X |

m ⌋
2 sample n iterations minibatches Xi ∈ Rm×d

3 Forward propogate all Xi and obtain Fθ outputs Yi ∈ Rm×k+1

4 Compute the m×m affinity matrices Wi

5 compute all corresponding RW-Laplacians Li

6 Λ̃← 1
n iterations

∑
i Y

T
i LiYi

7 Diagonalize Λ̃ to get Q̃T and the leading eigenvalues
8 Sort the leading eigenvalues, and the columns Q̃T correspondingly
9 QT ← last k columns of Q̃T

C IMPLEMENTATION’S ADDITIONAL CONSIDERATIONS

C.1 TIME AND SPACE COMPLEXITY

Specifying the exact complexity of the method is difficult, As this is a non-convex optimization
problem, However, we can discuss the following approximate complexity analysis. Assuming con-
stant input and output dimensions and a given network architecture, we can take a general view
on the complexity of each iteration by the batch size m. The heaviest computational operations at
each iteration are the nearest-neighbors search, the QR decomposition and the loss computation (i.e.,
computation of the Rayleigh Quotient). For the nearest-neighbor search, we can use approximation
techniques (e.g, LSH Gionis et al. (1999)) which work in almost linear complexity by m. A naive
implementation of the QR decomposition would lead to an O(m2) time complexity. The loss com-
putation also takes O(m2) due to the required matrix multiplication. Thereby, the complexity of
each iteration is quadratic by the batch size. This is comparable to other approximation techniques
such as LOBPCG Benner & Mach (2011) (which also utilizes sparse matrix operations techniques
for faster implementation). However, GrEASE leverages stochastic training, allowing each iteration
to consider only a batch of the data, rather than the entire dataset.

Assessing the complexity of each epoch is now straightforward, and results a time complexity of
O(nm), where n, the number of samples, satisfies n ≫ m. This indicates an almost-linear com-
plexity.

C.2 GRAPH CONSTRUCTION

To best capture the structure of the input manifold D, given by a finite number of samples X , we
use a similar graph construction method used by Gomez et al. in UMAP (McInnes et al., 2018),
proven to capture the local topology of the manifold at each point. However, as opposed to the
method in (McInnes et al., 2018), GrEASE does not compute the graph of all points, which can lead
to scalability hurdles and impose significant memory demands. Instead, GrEASE either computes
small graphs on each batch, or can be provided by the user with an affinity matrix W corresponding
to X . Our practical construction of the graph affinity matrix W is as follows:

Given a distance measure δ between points, we first compute the k-nearest neighbors of each point
xi under δ, {xi1 , . . . , xik}, and denote

ρi = min
j

δ(xi, xij ), σi = median{δ(xi, xij )|1 ≤ j ≤ k}

Second, we compute the affinity matrix using the Laplace kernel

Wij =

{
exp

(ρi−δ(xi,xj)
σi

)
xj ∈ {xi1 , . . . , xik}

0 otherwise

Third, we symmetries W simply by taking W+WT

2 .
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We refer the reader to McInnes et al. (2018) for further discussion about the graph construction.

D GRASSMANN SCORE

In this section, we provide the formulation for the Grassmann Score (GS) evaluation method, and
present simple examples to visualize its meaning.

D.1 FORMALIZATION OF GS

First, we remind Grassmann distance (see Def. 1). Grassmann distance is a metric function between
equidimensional linear subspaces, where each is represented by an orthogonal matrix containing the
basis as its columns. In other words, this is a metric which is invariant under multiplication by an
orthogonal matrix.

Definition 1. Given two orthogonal matrices A,B ∈ Rn×k, the Grassmann Distance between them
is defined as:

dGr(A,B) =
k∑

i=1

sin2θi

where θi = arccosσi(A
TB) is the ith principal angle between A and B, and σi is the ith smallest

singular value of ATB.

Assuming we are given a dataset X = {x1, . . . , xn} ⊆ Rd and a corresponding low-dimensional
representation Y = {y1, . . . , yn} ⊆ Rk. We want to evaluate the dissimilarity between the global
structures of X and Y . We build graphs from X and Y , saved as affinity matrices WX and WY ,
respectively. We construct the corresponding Unnormalized Laplacians (see Sec. 3.1) LX and LY .
We define the matrices VX , VY ∈ Rn×t so that their columns are the first t eigenvectors of LX , LY ,
respectively.

Finally, we define the GS of Y (w.r.t X ) as follows:

Definition 2. GSX (Y) = dGr(VX , VY)

t is a hyper-parameter of GS. A reasonable choice would be to take t = 2, which is equivalent to
measure the Grassmann distance between the Fiedler vectors of the Laplacians. The Fiedler vector
is known for its hold of the most important global properties. The larger t, the more complicated
structures are taken into consideration in the GS computation (which is not necceray desired).

Note that for the construction of the affinity matrices WX ,WY we use the same construction scheme
detailed in App. C.2. This construction method is similar to the one presented by McInnes et al.
(2018), and proved to capture the local topology of the underlying manifold.

It is important to note that GS might ignore the local structures, while concentrating on the global
structures (especially for smaller values of t). The ultimate goal in visualization is to find a balance
between the global and local structure.

D.2 ADDITIONAL GS EXAMPLES

Fig. 6 depicts two additional demonstrations of the alignment between the intuitive expectation and
the GS results on two toy dataset. The basic global structure of both of these datasets is two distinct
clusters. This structure is indeed captured by GS. However, KNN gives perfect score also when
the one of the clusters is separated. Silhouette score favourites the 2-points embedding. Namely,
it trade-offs local structure (i.e., giving lower score for preserving local structure, even when the
global properties are the same).

E ADDITIONAL REAULTS

the full results of Fig. 5a are summarized in Tab. 2.
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(a)

(b)

Figure 6: Additional demonstrations of the alignment between the intuitive expectation and the GS
results on two toy dataset. Four possible 2-dimensional embeddings of these dataset are provided,
along with their corresponding GS, KNN accuracy and Silhouette score. Unlike KNN and Silhou-
ette, GS effectively captures the preservation of global structure.

Table 2: A comparison between GrEASE and SpectralNet dimensional SE and Fiedler Vector (FV)
approximation on real-world datasets. The values are the mean and standart deviation of the sin2

distance between the predicted and true eigenvector, over 10 runs. Lower is better. GrEASE ability
to separate the eigenvectors is evident.

Dataset Method v2 v3 v4 v5

Cifar10 GrEASE 0.016±0.004 0.052±0.008 0.069±0.034 0.106±0.037

SpectralNet 0.449±0.199 0.325±0.148 0.399±0.194 0.414±0.17

Appliances GrEASE 0.063±0.002 0.094±0.007 0.109±0.001 -
SpectralNet 0.307±0.047 0.530±0.114 0.401±0.106 -

KMNIST GrEASE 0.0.044±0.002 0.101±0.010 - -
SpectralNet 0.372±0.174 0.396±0.137 - -

Parkinsons GrEASE 0.056±0.006 - - -
SpectralNet 0.229±0.138 - - -

F FINE-TUNING GREASE WITH UMAP LOSS

One way to get a generalizable version of UMAP may be an extension of GrEASE by fine-tuning the
network with UMAP loss. We tried that idea, but were forced to stop this direction, as we stumbled
upon the well-known catastrophic forgetting case.

Figure 7 presents an experiment on the simple 2circles dataset. Each row is represented the same ex-
periment, run with a different seed. We trained GrEASE to output the 2D SE of the 2circles dataset,
as shown in the left column. Then, we initialized a new network, with the same architecture, with
the pre-trained weights from GrEASE. This network was trained with UMAP loss, as in (Sainburg
et al., 2021). We tried different learning-rates for fine-tuning, to best match the desired UMAP em-
bedding (i.e. retaining the local structure), without losing the global structure (e.g., separation of the
two clusters). Unfortunatly, there was no learning-rate that matched our goals.

G TECHNICAL DETAILS

To compute the ground truth SE on the train set and its corresponding eigenvalues, we constructed
an affinity matrix W from the train set (as detailed in Appendix C.2), with a number of neighbors
detailed in Table 4. After constructing W , we computed the leading k eigenvectors of its corre-
sponding Unnormalized Laplacian L = D−W via Python’s Numpy SVD or Scipy LOBPCG SVD
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Figure 7: The catastrophic forgetting phenomenon when fine-tuning GrEASE to much UMAP per-
formance on the 2circles dataset. Each column represents a fine-tuning using a different learning-
rate. Each row is a repetition, initialized with a different seed.

Table 3: Technical details of the real-world datasets used for GrEASE and NUMAP ex-
periments.

Cifar10 Appliances KMNIST Parkinsons Wine Banknote
#samples 60,000 19735 70,000 5875 178 1372
#features 500 28 784 19 13 4

(depending on the size). To get the generalization ground truth, we constructed an affinity matrix
W from the train and test sets combined, computed the leading k eigenvectors of its corresponding
Unnormalized Laplacian L = D −W , and extracted the representations corresponding to the test
samples. We used a train-test split of 80-20 for all datasets.

For the SE implementation via sparse matrix decomposition techniques, we used Python’s
sklearn.manifold.SpectralEmbedding, using a default configuration (in particular, 10 jobs, 1% neigh-
bors).

The architectures of GrEASE’s and SpectralNet’s networks in all of the experiments were as follows:
size = 128; ReLU, size = 256; ReLU, size = 512; ReLU, size = k+1; orthonorm. NUMAP’s second
NN and PUMAP’s NN architectures for all datasets was: size = 200; ReLU, size = 200; ReLU, size
= 200; ReLU, size = 2; The SE dimensions for NUMAP were: Cifar10 - 20; Appliances - 10; Wine
- 10; Banknote - 3.

The learning rate policy for GrEASE and SpectralNet is determined by monitoring the loss on a
validation set (a random subset of the training set); once the validation loss did not improve for a
specified number of epochs, we divided the learning rate by 10. Training stopped once the learning
rate reached 10−7. In particular, we used the following approximation to determine the patience
epochs, where n is the number of samples and m is the batch size: if n

m ≤ 25, we chose the patience
to be 10; otherwise, the patience decreases as max (1, 250m

n ) (i.e., the number of iterations is the
deciding feature).

To run UMAP, we used Python’s umap-learn implementation (UMAP’s formal implementation). We
used the built-in initialization option ”spectral” (i.e., SE), and initialized contumely with PCA (im-
plemented via Python’s sklearn.decomposition.PCA) and GrEASE. For Parametric UMAP we used
the Pytorch implementaion (Liu, 2024). For all methods we used a default choice of 10 neighbors.

As for the evaluation methods, we used a default choice of 5 neighbors to compute the KNN ac-
curacy. The graph construction for GS is as detailed in App. C.2, using 50 neighbors to ensure
connectivity.

Table 4: Technical details in the GrEASE experiments for all datasets.

Moon Cifar10 Appliances KMNIST Parkinsons
Batch size 2048 2048 2048 2048 512

n neighbors 20 20 20 20 5
Initial LR 10−2 10−2 10−3 10−3 10−2

Optimizer ADAM ADAM ADAM ADAM ADAM
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We ran the experiments using GPU: NVIDIA A100 80GB PCIe; CPU: Intel(R) Xeon(R) Gold 6338
CPU @ 2.00GHz;
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