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ABSTRACT

Modern neural networks trained on large datasets achieve state-of-the-art (in-
distribution) generalization performance on various tasks. However, their good
generalization performance has been shown to be contributed largely to overfit-
ting spurious biases in large datasets. This is evident by the poor generalization
performance of such models on minorities and out-of-distribution data. To al-
leviate this issue, subsampling the majority groups has been shown to be very
effective. However, it is not clear how to find the subgroups (e.g. within a class)
in large real-world datasets. Besides, naively subsampling the majority groups
can entirely deplete some of their smaller sub-populations and drastically harm
the in-distribution performance. Here, we show that tracking gradient trajecto-
ries of examples in initial epochs allows for finding large subpopulations of data
points. We leverage this observation and propose an importance sampling method
that is biased towards selecting smaller subpopulations, and eliminates bias in the
large subpopulations. Our experiments confirm the effectiveness of our approach
in eliminating spurious biases and learning higher-quality models with superior
in- and out-of-distribution performance on various datasets.

1 INTRODUCTION

Large datasets have enabled modern neural networks to achieve unprecedented success on various
tasks. Large datasets are, however, often heavily biased towards the data-rich head of the distri-
bution (Le Bras et al., 2020; Sagawa et al., 2020; 2019). That means, there are large groups of
potentially redundant data points belonging to majority subpopulations, and smaller groups of ex-
amples representing minorities. Larger groups often contain spurious biases, i.e., unintended but
strong correlations between examples (e.g. image background) and their label. In such settings,
overparameterized models learn to memorize the spurious features instead of the core features for
the majority, and overfit the minorities (Sagawa et al., 2020). As a result, despite their superior per-
formance on in-distribution data, overparameterized models trained on biased datasets often have a
poor worst-group and out-of-distribution generalization performance.

To improve the high worst-group error and of out-of-distribution generalization, techniques such as
distributionally robust optimization (DRO), or up-weighting the minority groups are commonly used
(Sagawa et al., 2019; 2020). However, such methods have been shown to be highly ineffective for
overparameterized models in the presence of spurious features (Sagawa et al., 2020). When majority
groups are sufficiently large and the spurious features are strong, overparameterized models choose
to exploit the spurious features for the majorities and memorize the minorities, as it entails less
memorization on the entire data. In this setting, upweighting minorities only exacerbates spurious
correlations, and subsampling the majorities has been advocated for (Sagawa et al., 2020). But, this
requires the groups to be specified beforehand, which is not available for real-world datasets. Be-
sides, random subsampling of the majority groups can entirely deplete some of their subpopulations
and drastically harm the in-distribution performance (Toneva et al., 2018; Paul et al., 2021).

In this work, we propose an effective way to find large subpopulations of examples (see Fig. 1), and
subsample them to ensure inclusion of representative examples from all the subpopulations. We rely
on the following recent observations. In the initial training epochs, the network learns important
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Figure 1: An illustration of large/small subpopulations within the majority/minority groups in the
same class of the Waterbirds dataset (Sagawa et al., 2019).

features and the NTK undergoes rapid changes, which determine its final basin of convergence (Fort
et al., 2020). This results in learning a linear function during the initial epochs, followed by learning
functions of increasing complexity (Nakkiran et al., 2019). We show that large subpopulations are
responsible for forming the initial linear model, by inserting large gradient forces in the first few
epochs. The minorities, on the other hand, dictate the higher-complexity functions later in training.
To find the large subpopulations, we track the gradient trajectories—the way the gradient changes—
during initial training epochs. Then, we cluster similar gradient trajectories together, and employ an
importance sampling method that samples data points from every cluster by a probability equal to the
inverse of the size of the cluster it belongs to. This allows selecting a balanced subset from different
clusters. By studying the effect of our method on the evolution of the model early during the training,
we show that our method allows the model to better learn from all the subpopulations by balancing
the gradient forces between different groups. This enables learning higher-quality features.

Our empirical studies confirm the effectiveness of our method in improving the worst-group and
out-of-distribution generalization, while enjoying a superior in-distribution performance even when
the size of the selected sample is small. Notably, on CMNIST (Alain et al., 2015) and Waterbird
(Sagawa et al., 2019) datasets which contain strong spurious biases, our method achieves a com-
parable or even better performance than the state-of-the-art methods, which rely on the underlying
group information to uniformly subsample the majority group. In addition, on CIFAR10, CIFAR100
(Krizhevsky et al., 2009), and Caltech256 (Griffin et al., 2007) our method provides a superior in-
distribution performance to state-of-the-art data pruning methods, based on forgettability (Toneva
et al., 2018) and El2N (Paul et al., 2021) scores, especially for small subsets. At the same time, it
outperforms such methods on out-of-distribution data, CIFAR10C (Hendrycks & Dietterich, 2019).

2 RELATED WORK

Data pruning for worst-group generalization. To improve the generalization performance on
minorities, preventing the model from learning spurious features is very helpful (Sagawa et al., 2019;
2020). For overparameterized models, randomly subsampling the majorities has been shown to be
the most effective (Sagawa et al., 2020) than distributionally robust optimization (DRO) (Sagawa
et al., 2019) and up-weighting the minority groups (Sagawa et al., 2020). However, this requires
the group labels to be specified beforehand, which is not available for large real-world datasets. Be-
sides, if the majority contains imbalanced subpopulations, random subsampling inherits similar bi-
ases. Finally, random subsampling of the majority groups can entirely deplete some of their smaller
subpopulations and drastically harm the in-distribution performance, as we empirically show.

A different line of work (Sohoni et al., 2020; Nam et al., 2020; Ahmed et al., 2020; Liu et al., 2021;
Creager et al., 2021; Taghanaki et al., 2021; Zhang et al., 2022; Nam et al., 2021) studies how to
improve worst-group generalization without having access to group labels. These methods require
training a model first to minimize the average empirical risk before training the robust model, which
doubles the training time and is thus also not practical for large real-world datasets.
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Data pruning for OOD generalization. Spurious features have been shown to also harm the out-
of-distribution generalization (Le Bras et al., 2020). To alleviate this, Swayamdipta et al. (2020)
proposed to train on the subset of most ambiguous instances whose true class probabilities fluctuate
frequently during training, and Le Bras et al. (2020) employed AFLite (Le Bras et al., 2020) to iter-
atively filter highly-predictable examples by training multiple linear classifiers on different random
partitions of the data. However, such methods drastically harm the in-distribution performance.

Data pruning for in-distribution generalization. The main idea behind all data pruning methods
is to define a notion of example difficulty, and prune the easy-to-learn examples. Notably, Coleman
et al. (2020) used a smaller trained proxy model to find the most uncertain examples to train a larger
model. Toneva et al. (2018) defined a forgetting event of an example as transitioning from being
classified correctly to incorrectly during training, and drop the examples with no forgetting events.
Most recently, Paul et al. (2021) dropped examples with the lowest average errors (EL2N) recorded
early in training and averaged over several initializations. The above heuristics require full or partial
training of multiple models, can only drop a relatively small fraction of the examples, and hurt
the out-of-distribution performance, as we show in our experiments. In contrast, our method can
successfully alleviate bias and achieve a superior in- and out-of-distribution performance.

3 PROBLEM FORMULATION

Training machine learning models is often reduced to minimizing an empirical risk function (ERM).
That is, the goal is to find the parameter www∗ that minimizes the average error on the entire training
data D = (XXX,yyy) = {(xi, yi)}i∈V , where V = {1, · · · , n} indexes the training data. Formally,

www∗ = argminwww∈WL(w), L(www) = E(xxxi,yi)∈D[l(f(www,xxxi), yi))], (1)

wherewww is the model parameter, and f(www,xxxi) and l(f(www,xxxi), yi)) are the output of the network and
the value of the loss associated to a training example (xxxi, yi), respectively. For large datasets, the
average error L is minimized by applying (Stochastic) Gradient Descent with learning rate η starting
from a random initial point www0:

wwwt+1 = wwwt − η∇L(wwwt), ∇L(wwwt) = J (wwwt,XXX)T∇f l(f(wwwt,XXX), yyy), (2)

where yyy = {yi}ni=1, XXX = {xxxi}ni=1, and J (www,XXX) ∈ Rn×m is the Jacobian matrix associated with
the nonlinear network f : Rd → Ro defined as

J (www,XXX) =
[∂f(www,xxx1)

∂www
· · · ∂f(www,xxxn)

∂www

]T
, (3)

and ∇f l(f(wwwt,XXXS), yyyS) is the gradient of the loss w.r.t. the network. Furthermore, ΘΘΘt(XXX,XXX) =
J (wwwt,XXX)J (wwwt,XXX)T is the empirical neural tangent kernel (NTK) (Jacot et al., 2018; Du et al.,
2018), describing the evolution of the network during training by gradient descent.

Spurious features and majority groups. We consider a similar setting with (Sagawa et al.,
2019; 2020), where each training example (xxxi, yi) is associated with a spurious attribute ai that
is correlated with its label yi. The examples with the same spurious attribute and label make
a group gj,k ∈ G, where gj,k = {(xxxi, yi)|i ∈ V, ai = j, yi = k}. The groups which contain
considerably more examples than the rest are referred to as majority groups. For example, in the
Waterbirds dataset (Sagawa et al., 2019), every example (xxxi, yi) belongs to one of the 2 classes,
yi ∈ {waterbird, landbird} and the image background ai ∈ {water background, land background}
is spuriously correlated with the label yi. Thus, there are four groups of examples associated
with every combination of spurious attribute and label, i.e., G ={(waterbird, water background),
(waterbird, land background), (landbird, water background), (landbird, land background)}. The
majority groups are (waterbird, water background), and (landbird, land background). Importantly,
in this work, we assume that the groups and spurious attributes are not known at training time.

Subpopulations. Every dataset can be partitioned into s different subpopulations of examples that
are similar in terms of their effect on training, i.e. the indices of the training data V can be partitioned
into V = {V1, · · · , Vs}. For a formal definition, see Section 4.2. Note that subpopulations may
represent a finer clustering compared to group clustering. Fig. 1 shows an illustration of groups vs.
subpopulations for Waterbird dataset. We develop a method that automatically clusters the data and
identifies large subpopulations.

3



Under review as a conference paper at ICLR 2023

Objective. Our goal is to find a subset S ⊆ V of size r = |S| from all training examples indexed
by V , such that training on the subset alleviates the effect of spurious biases and improves (1) the
worst-group generalization when the groups are imbalanced, or (2) out-of-distribution generalization
under distribution shift. In both cases, we aim to preserve a good performance on the in-distribution
data. In particular, the worst-group error is defined as,

Errwg = max
g∈G

Exxxi,yi|g[yi ̸= yf (www,xxxi)], (4)

where yf (www, (xxxi, yi) is the label predicted by the model. In other words, Errwg measures the highest
fraction of examples that are incorrectly classified across all groups. Similarly, the out-of distribution
(OOD) performance measures the performance of the model f trained on the training set D, and
tested on D′ = (c(XXX), yyy), when c is from a set of shifting functions C. Formally,

Errood = E(xxxi,yi)∈D′ [yi ̸= yf (www,xxxi)], (5)

measures the fraction of examples that are misclassified when (xxxi, yi) is drawn i.i.d. from D′.

4 ELIMINATING BIAS IN THE DATA

In this section, we present our main results. We start by discussing the effect of large subpopulations
on early learning dynamics. Then, we explain how gradient trajectories of examples during the
initial training epochs allow finding the large subpopulations. Next, we employ importance
sampling to find a subset that contains a similar number of examples from subpopulations. Finally,
we study how the subset found by our method affects the network’s early learning dynamics.

4.1 EFFECT OF LARGE SUBPOPULATIONS ON EARLY LEARNING DYNAMICS

Recent empirical studies on neural networks’ training dynamics show that in the initial epochs the
performance of a network trained by SGD can be explained by a linear classifier. Formally, if F and
L are the corresponding random variables for the neural network and a linear model respectively,
the mutual information between F and yyy conditioned on L, I(F ;yyy|L), captures the part of F ’s
success on the prediction of yyy in addition to L. Then the performance correlation between F and
L, µyyy(F ;L) := I(F ;yyy) − I(F ;yyy|L), is the part of F ’s success on the prediction of yyy that can be
explained by L. Nakkiran et al. (2019) show that there exists T0 such that µyyy(Ft;L) ≈ I(Ft;yyy)
at training step t for all t < T0. As training progresses, the network learns functions of increasing
complexity (Nakkiran et al., 2019). Furthermore, Fort et al. (2020) show that during the first few
epochs of training, neural network experience a rapid initial transient which determines the final
basin of convergence. During this period, the NTK changes very rapidly and learns useful features.

First, we empirically show that large subpopulations are responsible for forming the initial linear
model in the first few training epochs. Effectively, during training every example contributes to
minimizing the loss by its gradient. Examples with similar gradients insert a similar force on the
model and affect the model in the same direction. In the first few epochs, large gradient forces
of large subpopulations highly bias the initial linear function. As the gradient forces of large sub-
populations persist during training, the initially learned linear function is retained, to the point of
zero training error (Nakkiran et al., 2019). As a result, large subpopulations dictate the rapid initial
change of the NTK and the prominent features learned in this phase. On the other hand, smaller sub-
populations have a smaller influence on the model, and require a larger number of training iterations
to be learned by the higher-complexity functions that are shaped later during the training.

When the spurious bias is strong, the initial linear function is dictated mainly by the spurious fea-
ture, and persists during training. This provides a good training and generalization error on the large
groups, and thus prevents learning their core features . On the other hand, on the small subpopula-
tions, functions with much higher complexity overfit and memorize the minorities. Such functions
result in a small training error but a poor worst-group generalization performance on the minorities.
This further explains the observation by Sagawa et al. (2020) showing that overparameterized mod-
els memorize the spurious feature and overfit the minorities. Effectively, the spurious features in
large subpopulations prevent the model from learning the core features from the data.

Fig. 2a shows that the network’s prediction early in training can be well explained by a linear clas-
sifier (red). Besides, the network trained on large subpopulations can be well explained by the same
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Figure 2: CIFAR-10/4-layer CNN. (a) mutual information between the labels, and a linear model
fitted to entire training data, with networks trained on full data, large subpopulations, and our subset.
(b) Fraction of network predictions explained by a linear classifier fitted to full data (blue) , large
subpopulations (orange), and our subset (green). Large subpopulations shape the model initially.

linear classifier (purple). This confirms that early training dynamics are dictated by large subpopu-
lations. We also see that the behavior of the network trained on the subset selected by our method
(discussed in Section 4.3) cannot be explained by the same linear model (brown). Fig. 2b shows
that the linear model explaining the network trained on full data (blue) is similar to the linear model
explaining the network trained on large subpopulations (orange), but different than the one explain-
ing the network trained on our chosen subset (green). We see that the performance of the network
can be well explained by a linear mode, and the linear model fitted on large subpopulations closely
matches the one fitted on the entire data. These results further confirm that the linear classifiers fitted
to entire data and large subpopulations are effectively the same during the initial training epochs.

4.2 FINDING THE LARGE SUBPOPULATIONS IN EVERY CLASS

The first question we aim to answer is how to find the large subpopulations of the data, without hav-
ing such labels. As discussed, larger subpopulations insert a large gradient force on the model, and
are learned during the initial epochs. When an example is learned, its gradient becomes nearly zero.
Hence, every example has a gradient trajectory interpolating between its gradient at initialization
and zero. Subpopulations that affect the model similarly have a similar gradient trajectory during
training. Therefore, large subpopulations with similar gradient trajectories can be identified based
on their gradient trajectory during the first few epochs.

To find the large subpopulations, we cluster the gradient trajectories during the initial epochs of
training. As gradients are very high-dimensional, we first reduce the gradient dimensionality to
better find the clusters. To do so, we rely on the following observation: for neural networks, the
variation of the gradient norms is mostly captured by the gradient of the loss w.r.t. the input to the
last layer of the network (Katharopoulos & Fleuret, 2018). The above lower-dimensional gradients
can be efficiently computed in a closed form, and has been used as a gradient proxy in several recent
works (Mirzasoleiman et al., 2020; Paul et al., 2021; Pooladzandi et al., 2022). Formally, for every
example i we build its gradient trajectory by concatenating the lower-dimensional gradients during
the first t training epochs, i.e.,

∇0:t
f l(xxxi, yi) = [∇f l(f(www0,xxxi), yi),∇f l(f(www1,xxxi), yi), · · · ,∇f l(f(wwwt,xxxi), yi)], (6)

where∇f l(f(wwwj ,xxxi), yi) is the gradient of the loss w.r.t. the input to the last layer of the network at
epoch j for training example (xxxi, yi). Note that as the gradient of an example depends on its label,
examples from different classes do not have a similar gradient. Hence, we find similar gradient
trajectories from every class separately.

Next, we cluster gradient trajectories to find the large subpopulations in every class. While any
clustering algorithm can be used, we use the k-medoids objective to find the clusters efficiently. In
particular, for 0 < κ < 1, we partition a class indexed by Vc ⊆ V to kc = κ · |Vc| subpopulations,
by first finding the set Sc of its kc most centrally located gradient trajectories (medoids) by solving:

S∗
c ∈ argmax

S⊆Vc, |S|≤kc

F (S) s.t. F (S) :=
∑
i∈Vc

max
j∈Sc

(cnt− ∥∇0:t
f l(xxxi, yi)−∇0:t

f l(xxxj , yj)∥), (7)
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Algorithm 1 Training without Bias

Input: Model f , initial epoch number t, subset fraction κ
Output: Model f trained without bias

1: Train the model f for t epochs fromwww0 and save gradient trajectories∇0:t
f l(xxxi, yi) for all i ∈ V

2: for every class Vc do
3: Sc ← ∅
4: for i = 1, 2, · · · , κ · |Vc| do
5: j ∈ argmaxe∈V \Sc

F (e|Sc)

6: Sc = Sc ∪ {j}
7: for i ∈ |Sc| do
8: Vc,i = {j ∈ Vc|i = argmin∥∇lf (www,xxxi)−∇lf (www,xxxj)∥
9: for j ∈ V do

10: wj = |Vc,i| s.t. j ∈ Vc,i

11: pi=u
1/wi

i s.t. ui∈(0, 1) is a uniform random number
12: S = {r examples with the largest pi}
13: Train the model f from www0 on S

where cnt is a large constant. Then to find the subpopulations, we assign every example to the
medoid j ∈ S with the most similar trajectory. This partitions examples in class Vc to kc subpopula-
tions Vc = {Vc,1, · · ·, Vc,kc}, where Vc,j = {i∈Vc|j=argmins∈Sc

∥∇0:t
f l(xxxi, yi)−∇0:t

f l(xxxr, ys)∥}.

The maximization problem (Eq. (7)) is NP-hard. However, since the k-medoids objective is mono-
tone and submodular1, a near-optimal solution of size k can be found efficiently in O(|V | · k) time.
For maximizing a monotone submodular function, the greedy algorithm provides a (1 − 1/e) ap-
proximation guarantee (Wolsey, 1982). The greedy algorithm starts with the empty set S0 = ∅, and
at each iteration l, chooses an element e∈V such that Sl = Sl−1 ∪ {argmaxe∈V F (e|Sl−1)}.

4.3 BALANCING THE SUBPOPULATIONS

To alleviate the bias of the large subpopulations and enable effective learning of core features, we
aim to prune the large gradient trajectory clusters formed in initial epochs. This prevents the initial
linear model from being biased toward the large subpopulations. In doing so, we allow the initial
linear model to capture the complexity in different subpopulations, and learn the core features in-
stead of the spurious features of the majorities. Hence, the model obtains a better generalization
performance on minorities and out-of-distribution data. However, this should be done carefully as
over-pruning the large subpopulations prevents them from participating in forming the initial model.
This drastically harms the in-distribution generalization performance of the model.

To address this, we employ an importance sampling method on the union of the subpopulations of all
classes, to select every example by probability equal to the inverse of the size of the subpopulation
it belongs to. In particular, we weigh every example i ∈ Vc,j by the size of the cluster j ∈ Sc it
belongs to, i.e., wi = |Vc,j |. Then, we use the algorithm of Efraimidis & Spirakis (2006) to select a
sample with probabilities equal to pi=1/wi, without replacement. The sampling procedure works
as follows. For each example i in the dataset, we independently generate a uniform random number
ui∈(0, 1) and calculate qi=u

1/wi

i . Examples that possess the r largest qi form the final subset S.

Our sampling method biases the sample selection towards the smaller subpopulations, and drops
many examples from the larger subpopulations. However, it still preserves the patterns in larger
subpopulations, by including a smaller number of their examples in the sample. Effectively, our
method balances the gradient forces between different subpopulations. This increases the strength
of the core gradient vs. the spurious gradient. In doing so, it allows different subpopulations to
participate in forming the initial linear model and dictate a more generalizable basin in which the
model can be further fine-tuned. Hence, it enables better learning of the core features.

The pseudocode is illustrated in Algorithm 1.

1A set function F : 2V → R+ is submodular if F (e|S) = F (S ∪ {e})− F (S) ≥ F (T ∪ {e})− F (T ),
for any S ⊆ T ⊆ V and e ∈ V \ T . F is monotone if F (e|S) ≥ 0 for any e∈V \S and S ⊆ V .
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Figure 3: Average gradient norm per cluster vs. cluster size.

4.4 EFFECT OF PRUNING ON EARLY NETWORK EVOLUTION

Next, we take a closer look at the effect of our method on the evolution of the model. In particular,
we show that training on the subset S selected by our method decreases the speed of learning on large
subpopulations and lets the other groups have a larger contribution to the initial phase of learning.

When the model is trained on the subset DS =(XXXS , yyyS), the weight evolution over one step can be
written as

∆Swwwt = −∇L(wwwt,XXXS) = −ηJ (wwwt,XXXS)
T∇f l(f(wwwt,XXXS), yyyS). (8)

Furthermore, the network evolution can be approximated using a first-order Taylor expansion, i.e.,
∆Sf(wwwt,XXX) = J (wwwt,XXX)∆Swwwt = −ηJ (wwwt,XXX)J (wwwt,XXXS)

T∇f l(f(wwwt,XXXS), yyyS) (9)
= −ηΘΘΘt(XXX,XXXS)∇f l(wwwt, (XXXS , yyyS)), (10)

where ΘΘΘt(XXX,XXXS) = J (wwwt,XXX)J (wwwt,XXXS)
T is the empirical neural tangent kernel, describing the

evolution of the network when training only on the subset S. The following Lemma quantifies the
effect of pruning the large subpopulation on the model evolution at one training step.

Lemma 4.1 Training on the subset S sampled from ζ subpopulations found by our method, with
learning rate η ≤ 1/∥J (wwwt,XXX)∥ changes the predictions of the model at every step by at most:
∥∆f(wwwt,XXX)−∆Sf(wwwt,XXX)∥ = η∥ΘΘΘt(XXX,XXX)∇f l(XXX,wwwt)−ΘΘΘt(XXX,XXXS)∇f l(XXX,wwwt)∥ (11)

≤
∑
z∈[ζ]

|α′
z − αz| · ∥max

j∈Vz

∇l(f(wwwt,xxxj), yj)∥, (12)

where αz = |Vz| is the size of subpopulation Vz , and α′
z = |Vz ∩ S| is its size in the subset S.

The proof can be found in Appendix A.1.

Lemma 4.1 upper-bounds how training on the subset found by our method changes the effect of
different subpopulations on the model predictions. When the subpopulations are approximately
balanced, we have α′

z ≈ καz . Thus, training on the subset S yields similar network evolu-
tion to that of the full data, and only scales down the learning rate. However, when subpop-
ulations are imbalanced, it effectively decreases the gradient force of large subpopulations by
|αz − α′

z| · ∥maxj∈Vz
∇f l(f(wwwt,xxxj), yj)∥. Effectively, this reduces the speed of learning and

bias of such subpopulations on the model. On the other hand, our importance sampling method
preserves the small subpopulations, i.e., αz ≈ α′

z and maintains their original gradient force on
the model. Therefore, our subset balances the gradient forces and let different subpopulations par-
ticipate in forming the lower-complexity models in the initial epochs. As Fig. 3 shows, individual
examples in large subpopulations have a smaller gradient norm. Hence, a larger number of them can
be pruned without significantly affecting the model. However, entirely dropping the large subpopu-
lations have a larger cumulative effect compared to dropping a smaller number of examples in small
subpopulations with larger norms. Hence, it drastically harms the in-distribution performance.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our method in assisting neural networks to learn
better features. In particular, we consider the following two scenarios. First, we apply our method
to improve the worst-group generalization performance, when training data contains spurious corre-
lation. Then, we consider the application of our method to improve out-of-distribution performance,
under distribution shift. In both cases, we also compare the in-distribution generalization perfor-
mance of the networks trained on our subset vs full training data.
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Figure 4: GradCAM Visualization. Warmer colors denote higher saliency, and correspond to the
pixels that are more important in making the final classification. The subset found by our method
allows the model to effectively learn the core features instead of spurious ones.

Table 1: Worst-group and average accuracy (%) on Waterbird and CMNIST 20% subsets.
Group Train CMNIST Waterbirds
Labels Twice Worst-group Average Worst-group Average

ERM No No 56.4±18.8 89.8±1.4 67.4± 2.9 97.7± 0.1
Balanced Yes No 92.5±1.0 95.1±1.0 89.1± 0.4 90.7± 0.9
Upweight Yes No 0.0±0.0 21.2±0.0 78.0± 2.0 86.8± 1.8
Random No No 56.7±3.2 90.0±0.3 67.7± 2.0 97.7± 0.1
Ablation No No 0.0±0.0 20.0±0.1 20.0± 1.3 93.7± 0.2
Ours-Prune No No 85.5±4.9 94.2±0.6 77.2± 1.3 97.7± 0.2
Ours-Reweight No No 91.6±1.0 96.0±0.7 79.1± 0.9 97.4± 0.1

5.1 WORST-GROUP GENERALIZATION IN PRESENCE OF SPURIOUS CORRELATION

First, we evaluate the worst-group generalization performance of a model trained on our subset
vs full data, in presence of spurious correlation. We record gradient trajectories during the initial 4
epochs and select 10% training examples as the subset. The reported results are averaged over 3 runs.
Datasets & Models. We apply our method to the Colored-MNIST and Waterbirds datasets. The
Colored-MNIST dataset is a synthetic dataset derived from MNIST (LeCun et al., 1998). It was first
proposed in (Alain et al., 2015) as a binary classification task that contains spurious correlations—
the grey-scale digits are changed to colors that are strongly correlated with the labels. We use a 5-
layer CNN with 2 convolutional layers and 3 fully-connected layers. The Waterbirds dataset is intro-
duced by Sagawa et al. (2019) to study the spurious correlation between the background and the fore-
ground in image recognition. Species in Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset
(Wah et al., 2011) are grouped into two classes, waterbirds and landbirds. All birds are then cut and
pasted onto new background images, with waterbirds more likely to appear on water and landbirds
having a higher probability on land. There are 4795 training examples in total, 3498 for landbirds
with land background, 184 for landbirds with water background, 56 for waterbirds with land back-
ground, and 1057 for waterbirds with water background. We use a pretrained ResNet-50 model.
Baselines. Empirical risk minimization (ERM) trains on all data, Random selects a subset uni-
formly at random, Upweight weights every example by the inverse of the group size, Balanced
samples an equal number of examples from different groups. Ablation. To show the failure mode
of random sampling when the majority has imbalanced subpopulations, we modify the dataset to
make it more imbalanced, by pruning smaller clusters.
Evaluation metrics. We use two metrics proposed in Sagawa et al. (2019), namely worst-group
accuracy and adjusted average accuracy. Worst-group accuracy is the minimum accuracy across all
groups, and Adjusted average accuracy is the average accuracy over groups weighted by their size.
Results. Table 1 shows that the models trained on subsets found by our method obtain the high-
est worst-group and in-distribution test accuracy, when compared with baselines that do not require
group labels. Besides, our method achieves a comparable performance to those that use the group in-
formation, and even outperforms them on the Waterbird dataset. We note that having group labels is
not available in real-world datasets. Methods that do not rely on group labels, including our method,
do not require knowing the minority groups. Therefore, they are more practical in realistic settings.

8



Under review as a conference paper at ICLR 2023

0.2 0.6 0.7 0.8
Fraction of Dataset Pruned

84

86

88

90

92

94

Fin
al

 Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10

No Pruning
Random
Forget-Epoch200
EL2N-Epoch20
Ours

(a) CIFAR-10

0.2 0.4 0.6 0.7
Fraction of Dataset Pruned

58

60

62

64

66

68

70

72

74

76

Fin
al

 Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100

No Pruning
Random
Forget-Epoch200
EL2N-Epoch20
Ours

(b) CIFAR-100

0.2 0.6 0.8 0.9
Fraction of Dataset Pruned

50

55

60

65

70

75

80

Fin
al

 Te
st

 A
cc

ur
ac

y 
(%

)

Caltech-256

No Pruning
Random
Forget-Epoch40
EL2N-Epoch40
Ours

(c) Caltech-256

gaussian_noise shot_noise impulse_noisedefocus_blur glass_blur motion_blur zoom_blur snow fog frost brightness contrast elastic_transform pixelate jpeg_compression
Corruption

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

49.1
57.7 55.3

71.0

45.6

64.1 66.7 68.0 71.1
64.0

81.5

55.7

73.9 70.3
76.6

52.6
61.6 57.4

74.4

48.1

66.5 69.7 72.7
77.7

70.1

85.4

62.6

76.9
71.1

77.7

One-shot Sparsification - 80% Pruned

Method
No Pruning
Random
EL2N-Epoch20
Forget-End
Ours

(d) Out-of-distribution performance on CIFAR-10C

Figure 5: In-distribution and out-of-distribution generalization. (a)-(c) final test accuracy on a stan-
dard (in-distribution) test set, (d) out-of-distribution performance for subset of size 20%.
GradCam. Fig. 4 demonstrates GradCAM (Selvaraju et al., 2017) visualizations depicting
saliency maps for samples from the Waterbirds dataset with water and land backgrounds. Warmer
colors denote higher saliency, suggesting that the model considered these pixels more important in
making the final classification measured by gradient activations. We see that the subset found by our
method allows the model to learn the core features much better than ERM and Random baselines.

5.2 OUT-OF-DISTRIBUTION GENERALIZATION UNDER DISTRIBUTION SHIFT

Next, we empirically evaluate the in-distribution. and out-of-distribution performance of our method
under distribution shift. The results are based on 3 independent runs, each with a different mini-batch
order and initial parameter values. We record gradient trajectories during the initial 4 epochs.
Datasets. We apply our method to CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), and
Caltech-256 (Griffin et al., 2007). In particular, we keep the number of training iterations fixed
(78k for CIFAR-10 and CIFAR-100, and 4.8k for Caltech-256) as we vary the size of the subset.
Baselines. We compare our method with Random sampling, and the state-of-the-art baselines for
in-distribution data pruning, based on EL2N (Paul et al., 2021), forgetting scores (Toneva et al.,
2018). The EL2N score of a training example i is defined as E∥∇f l(www,xxxi) − yi∥2. We calculate
EL2N after 20 epochs of training and average it over 10 different runs, as this is shown to be the most
accurate. Forgetting score of an example is the number of times the examples are misclassified after
being correctly classified during the entire training. We calculate the number of forgetting events for
each training example by averaging over 5 runs of 200 epochs, as suggested by Toneva et al. (2018).
Results. Fig. 5 (a), (b), (c) show that on different datasets, training on the subset selected by
our method gives much higher in-distribution test accuracy than Random, and EL2N or forgetting
scores particularly when the subset is small. Note that El2N and forgettability baselines use more
information over many training epochs and multiple runs. Importantly, Fig. 5 (d) confirms that our
method outperforms the baselines on CIFAR-10C (Hendrycks & Dietterich, 2019), with distribution
shift. We train on our downsampled CIFAR-10 training set, and test on CIFAR-10-C (Hendrycks &
Dietterich, 2019), a collection of OOD test sets for CIFAR-10. For each corruption type, we report
the average test accuracy over 5 different intensity levels. Our method can achieve at least 2%
higher test accuracy than other baselines. For some corruption types (Gaussian noise, shot noise,
and impulse noise), our performance is even on par with or surpasses training on the full data.

6 CONCLUSION

We showed that larger subpopulations containing spurious biases prevent learning high-quality fea-
tures. We showed that large subpopulations can be identified by tracking gradient trajectory of
examples in initial epochs. Then, we proposed an importance sampling method to balance the
subpopulations and ensure inclusion of representative examples from all the subpopulations. Our
experiments confirmed the effectiveness of our approach in eliminating spurious biases and learning
higher-quality models with superior in- and out-of-distribution performance on various datasets.
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A APPENDIX

A.1 PROOF OF LEMMA 4.1

The logits evolution at one step can be written as:

∥∆f(wwwt,XXX)−∆Sf(wwwt,XXX)∥ = η∥ΘΘΘt(XXX,XXX)∇f l(XXX,wwwt)−ΘΘΘt(XXX,XXXS)∇f l(XXX,wwwt)∥ (13)

= η∥J (wwwt,XXX)J (wwwt,XXX)T∇f l(XXX,wwwt)−J (wwwt,XXX)J (wwwt,XXXS)
T∇f l(XXXS ,wwwt)∥

(14)

≤ η∥J (wwwt,XXX)∥ · ∥J (wwwt,XXX)T∇f l(XXX,wwwt)− J (wwwt,XXXS)
T∇f l(XXXS ,wwwt)∥ (15)

≤ ∥
∑
i∈V

∇l(f(wwwt,xxxi))−
∑
j∈S

∇l(f(wwwt,xxxj))∥ (16)

≤ ∥
∑
z∈[ζ]

∑
j∈Vz

∇l(f(wwwt,xxxj), yj)∥ (17)

≤
∑
z∈[ζ]

∑
j∈Vz

∥∇l(f(wwwt,xxxj), yj)∥ (18)

≤
∑
z∈[ζ]

|α′
z − αz| · ∥max

j∈Vz

∇l(f(wwwt,xxxj), yj)∥, (19)

where Eq. equation 14 holds because η ≤ 1/J (wwwt,XXX).

A.2 EXPERIMENTATION DETAILS

A.2.1 DATASETS

CMNIST We construct a colored MNIST dataset with spurious correlations by using colors as the
spurious attributes as the following. First, we define an image classification task with 5 classes by
mapping every 2 consecutive digits (0 and 1, 2 and 3, 4 and 5, 6 and 7, 8 and 9) into the same class.
We use the official test split of MNIST, randomly select 50k examples from the train split as the
training set, and then use the rest 10k samples in the train split as the validation set.

Then, for each class yi, we color the foreground of pcorr,i fraction of training examples with color
ai from the set of colorsA={#ff0000, #85ff00, #00fff3, #6e00ff, #ff0018} represented
by their hex codes. We call this fraction of data the majority group of class yi. The higher the pcorr,i,
the stronger the spurious correlation between the class yi and the spurious attribute ai. For the rest
1−pcorr,i training examples, we color them with a random color fromA\ai. In Fig. 6, we visualize
examples in 5 classes with 5 colors and highlight the majority groups with white bounding boxes. In
our experiments, we used pcorr = [0.995, 0.95, 0.9, 0.8, 0.6] to construct spurious correlations with
different strengths and groups with different sizes.

A.3 ADDITIONAL EXPERIMENTS
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Figure 6: Visualization of the CMNIST dataset. We combine every 2 digits into one class and used
5 different colors to construct groups. This figure shows one example for each of the 25 groups.
Groups with white bounding boxes are the majority groups. See Appendix A.2.1 for more details.
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Figure 7: Distribution of cluster sizes, for Fig. 2
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(a) CIFAR-10 images in large clusters. Ex-
amples are similar to each other. (b) CIFAR-10 images in small clusters.

(c) CIFAR-10 images sampled by our algo-
rithm.

Figure 8: Images in large, and small subpopulations of CIFAR-10, vs our subset used for OOD
evaluation in Fig. 5d.
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(d) Worst-group accuracy (%) vs number of clusters.

Figure 9: Average and worst-group accuracy on Waterbirds dataset for different initial epoch number
t (defined in Algorithm 1) and different numbers of clusters.
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Figure 10: Test accuracy on CIFAR-10 dataset for different initial epoch number t (defined in Algo-
rithm 1).
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Figure 11: Mutual information between a linear model trained on full CIFAR-10 and ResNet-18
models trained on full or subsets of CIFAR-10. See the caption for Fig. 2a and Section 4.1 for more
details.
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Figure 12: Comparison of gradient trajectory clusters for a 4-layer CNN vs ResNet-18.
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Figure 13: Number of examples in different groups of CMNIST and examples subsampled with our
algorithm. Each bar represent one group and the dashed lines separate the 5 classes. Our algorithm
effectively pruned the large groups.
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