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Figure 1. Demonstration on real-world 3D reconstruction. With only two casually taken photos without camera poses, iFusion can
reconstruct plausible 3D assets. The top row example is taken from DreamBooth3D [52], and we took photos for the cat statue by ourselves.

Abstract
We present iFusion, a novel 3D object reconstruction

framework that requires only two views with unknown cam-
era poses. While single-view reconstruction yields visually
appealing results, it can deviate significantly from the ac-
tual object, especially on unseen sides. Additional views
improve reconstruction fidelity but necessitate known cam-
era poses. However, assuming the availability of pose may
be unrealistic, and existing pose estimators fail in sparse-
view scenarios. To address this, we harness a pre-trained
novel view synthesis diffusion model, which embeds implicit
knowledge about the geometry and appearance of diverse
objects. Our strategy unfolds in three steps: (1) We invert
the diffusion model for camera pose estimation instead of
synthesizing novel views. (2) The diffusion model is fine-
tuned using provided views and estimated poses, turned
into a novel view synthesizer tailored for the target object.
(3) Leveraging registered views and the fine-tuned diffusion
model, we reconstruct the 3D object. Experiments demon-
strate strong performance in both pose estimation and novel
view synthesis. Moreover, iFusion seamlessly integrates
with various reconstruction methods and enhances them.

1. Introduction
Reconstructing objects from sparse views poses a signifi-
cant challenge yet holds paramount importance for various
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applications, including 3D content creation, augmented re-
ality, virtual reality, and robotics. Recent breakthroughs,
guided by pre-trained models, have facilitated visually plau-
sible reconstructions from a single view, without requiring
the camera pose [32, 33, 38, 49, 66, 67, 82]. However, the
reconstructed assets might not precisely capture the actual
objects due to the inherent single-view ambiguity, e.g., the
object’s side opposite to the camera can only be imagined.
Furthermore, multiple potential 3D structures could corre-
spond to the same input image.

On the other hand, sparse-view methods assume the
availability of an accurate camera pose for each view [3,
19, 35, 65, 90]. To meet this requirement, a Structure-from-
Motion (SfM) pre-processing, e.g., COLMAP [58], is typ-
ically employed. Paradoxically, these methods demand a
substantial number of images, usually more than 50 in prac-
tice, for reliable pose estimation. Recent learning-based
pose estimation [28, 61, 85, 86] and pose-free reconstruc-
tion [21, 22] have sought to alleviate this issue. However,
they still require a minimum of five input views to achieve
favorable results and are primarily demonstrated on objects
with simple geometry or within a constrained set of object
categories. A generic framework for pose-free, sparse-view
3D reconstruction is still lacking, posing a significant obsta-
cle to real-world applications with casually captured photos.
We hereby raise the research question: How can one ensure
the reconstruction fidelity of diverse objects using extremely
sparse views without camera poses?

The key is a sparse-view pose estimator. Our motiva-
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tion stems from a recent novel view synthesis diffusion
model, namely Zero123 [33], which is pre-trained on the
most extensive 3D object dataset to date [8]. Given a refer-
ence view image, Zero123 can generate a novel view (query
view) from a specified pose (Fig. 2, left). We thus hy-
pothesize that Zero123 can be effectively used for pose es-
timation, with an intuition that a well-estimated pose fed
into Zero123 will produce an image similar to the query
view. Conversely, if the query view is provided as input,
the model should be able to infer the pose by generating
an image that best matches the query view. This strategy
shares a similar concept with Textual Inversion [14], which
finds the token that generates the image through Text-to-
Image models. In our case, we recover the camera pose
that generates the viewpoint through Zero123. Following
this idea, we repurpose Zero123 by inverting it to take
the two views and estimate the relative camera transforma-
tion (Fig. 2, right). More specifically, we adopt an analysis-
by-synthesis paradigm [7, 47, 81] that optimizes the trans-
formation by minimizing the difference between the de-
noised latent visual features, i.e., Zero123’s output image
feature map, and the query view’s feature. Empirically, the
proposed approach achieves strong pose estimation with as
few as 2 views, even outperforming existing approaches’
results with 5 views.

Well-estimated poses also open up a new opportunity.
Using the given views registered with poses, a mini-dataset
can be constructed to further fine-tune Zero123 and cus-
tomize the diffusion model for synthesizing the target ob-
ject’s novel views. Specifically, we can form a set of (ref-
erence view, camera pose, query view) triplets from the
given sparse views and fine-tune Zero123. To accelerate
training and prevent overfitting, we use Low-Rank Adap-
taion (LoRA) [17] to fine-tune the diffusion model, a rec-
ognized technique for customizing diffusion models.1 Ex-
periments demonstrate that this step significantly improves
novel view synthesis, achieving an average increase of +3.6
in PSNR across two datasets, and is beneficial to the fi-
nal reconstruction. Note that our approach shares a similar
spirit with test-time training [64], test-time adaptation [68],
and self-training [59, 77]. Like test-time training and adap-
tation, we align the model to the test distribution based
on test inputs (given views) but without test labels (novel
views). Analogous to self-training, we synthesize addi-
tional labels (camera poses) using the learning model itself.
To the best of our knowledge, the above combination is new
for diffusion-based 3D reconstruction.

To this end, we introduce iFusion, a novel framework
that reconstructs diverse 3D objects with sparse, pose-free
views. First, the pose estimation is achieved by inverting
the Zero123 difFusion model, as described earlier. With
the estimated camera pose, an object-specific improve-

1https://github.com/cloneofsimo/lora
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Figure 2. Zero123 vs. iFusion. Unlike Zero123 [33] (left), which
synthesizes an object’s novel view given an image and a transfor-
mation T , iFusion (right) instead optimizes an unknown relative
transformation T̂ from two given views.

ment on Zero123’s novel view synthesis capability is per-
formed, which can be further utilized as additional recon-
struction guidance. Finally, for reconstructing the 3D as-
set, any differentiable renderer can be plugged in, including
NeRFs [40] and the recently proposed 3D Gaussian Splat-
ting [25]. It is noteworthy that our framework does not as-
sume any specific reconstruction pipeline, and experimental
results demonstrate that iFusion is readily applicable to four
different single-view reconstruction methods. Improved ge-
ometric fidelity is observed with a significant +7.2% in-
crease in volume IoU, showcasing the necessity of addi-
tional views for reliable 3D reconstruction.

Our contributions are summarized as follows:
1. We propose a novel camera pose estimator that signifi-

cantly outperforms existing methods in terms of both ac-
curacy and required number of input views, while being
effective for diverse objects.

2. A self-training and test-time training inspired fine-tuning
stage is innovated. This stage results in a much stronger
novel view synthesis diffusion model, which plays a cru-
cial role in guiding the reconstruction process.

3. For the first time, we escalate diffusion-based single-
view reconstruction to multi-view for enhanced fidelity
with merely two pose-free images.

2. Preliminary

iFusion repurposes a novel view synthesizing diffusion
model for camera pose prediction. To prepare readers with
the necessary backgrounds, we briefly introduce the basics
of Diffusion Models (DM) and how they can be used for
novel view synthesis. Next, we summarize a recently popu-
lar approach to utilize DM for 3D reconstruction, which we
integrate into iFusion to allow reconstruction.
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Diffusion Models. Diffusion models [16, 62, 63] are a
class of deep generative models that has become the main-
stream approach for high-fidelity visual synthesis. In image
generation, they work by “diffusing” an image by adding
noise over repeated steps, and then a deep neural network
is trained to predict the applied step-wise noise from a cor-
rupted image. This allows the reversion of the diffusion pro-
cess, thus an image can be generated from a random noise
by iterative denoising using the trained noise predicting net-
work. More specifically, Ho et al. [16] formulated the dif-
fusion process in the following analytical form:

xt =
√
αtx0 +

√
1− αtϵ, t ∈ [0, 1, . . . , T ], (1)

where ϵ ∼ N (0, 1) denotes the Gaussian noise and hyper-
parameter αt denotes the noise schedule. For the reverse
process, the noise predictor is denoted as ϵθ(xt, t), where
θ is the set of trainable parameters. Instead of directly
modeling the RGB pixel values x, a widely used diffusion
model, Stable Diffusion (SD),2 applies the Latent Diffusion
Model (LDM) [54] to model the latent feature maps z. The
encoding and reconstruction of images is done via a pre-
trained VQ-VAE: z = E(x), and x = D(z). Moreover, DM
may optionally take conditional inputs c, e.g., texts, bound-
ing box layouts, and depth maps. For instance, the stan-
dalone SD takes texts as the condition c and enables text-
to-image generation (T2I). Formally, the training loss of the
prediction network can be written as:

L(x, c) = Ez,ϵ,t
[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (2)

where ∥ · ∥2 denotes the L2 norm.

Diffusion Models for Novel View Synthesis. The orig-
inal Stable Diffusion was trained on web-scale image-text
pairs3 for text-to-image generation. Recently, Liu et al. [33]
proposed Zero123 to further fine-tune SD on Objaverse [8],
a large-scale 3D assets dataset, for object-centric novel view
synthesis. Given an image at the reference viewpoint xr

and the reference-to-query transformation Tr→q ∈ SE(3),
the model synthesizes the desired query view xq with con-
dition c(xr, Tr→q). This is formulated as a DM and shares
the same training objective as Eq. (2).

3D Reconstruction via Score Distillation Sampling.
Recent studies [20, 41, 48, 69] indicated that large-scale
pre-trained 2D vision models [51, 54, 56] implicitly encap-
sulate rich 3D geometric prior. Notably, DreamFusion [48]
introduced the Score Distillation Sampling (SDS) to facil-
itate 3D generation guided by a pre-trained 2D DM. Let
x = Rψ(T ) be the rendered image at viewpoint T ∈ SE(3),
where R is a differentiable renderer parameterized by ψ,

2https://github.com/CompVis/stable-diffusion
3https://laion.ai/blog/laion-aesthetics/

e.g., Neural Radiance Fields (NeRFs) [40] or 3D Gaussian
Splatting [25]. Given a denoising network ϵθ, SDS opti-
mizes the renderer ψ by minimizing the residuals between
the predicted noise and the added noise, thereby producing
the gradients:

∇ψLSDS(x, c) = Ez,ϵ,t
[
(ϵθ(zt, t, c)− ϵ)

∂z

∂ψ

]
. (3)

3. Method
Figure 3 presents an overview of the iFusion framework.
The key of our pose-free reconstruction framework is the
sparse-view pose estimator shown in Fig. 3 (a). By inverting
the diffusion model, accurate poses can be estimated. Next,
the registered views are leveraged to customized the novel
view synthesis model for the target object as in Fig. 3 (b).
Finally, 3D reconstruction can be done using the registered
views, and the customized diffusion model serves as the
guidance, shown in Fig. 3 (c).

3.1. Diffusion as a Pose Estimator

The goal is to recover the relative camera pose Tr→q from a
reference view xr to the query view xq , leveraging the pre-
trained diffusion model ϵθ. Intuitively, a model trained for
a task involving camera poses could potentially be used in
reverse: to retrieve or estimate the camera pose from given
inputs, as evident in [7, 47, 81]. Hence, rather than optimiz-
ing DM parameters θ to reconstruct xq given c(xr, Tr→q)
as in the training stage described in Eq. (2) and Sec. 2,
we solve the inverse problem by freezing θ and optimizing
T̂r→q to reconstruct xq:

T̂r→q = argmin
T∈SE(3)

L(xq, c(xr, T )). (4)

To minimize Eq. (4), we query a view in its latent
space zt ∼ E(xq) using Eq. (1), followed by denoising zt
to ẑt−1 conditioned on c(xr, T̂r→q). Finally, we compute
the residuals for backpropagation of the transformation’s
gradient ∇T̂r→q . To ensure that the estimated pose T̂r→q

continue to lie on the SE(3) manifold during the gradient-
based optimization, we parameterize the pose Tr→q =

exp(ξ̂), where ξ ∈ R6 is the twist coordinates of the Lie
algebra se(3) associated with the Lie group SE(3) [37], fol-
lowing Engel et al. [11]. Therefore, we reformulate Eq. (4)
as follows:

ξr→q = argmin
ξ∈se(3)

L(xq, c(xr, exp(ξ̂))). (5)

Note that Eq. (5) can further be constrained by the inverse
transformation defined by the same vector representation,
i.e., Tq→r = exp(−ξ̂). We therefore obtain:

ξr→q = argmin
ξ∈se(3)

L(xq, c(xr, exp(ξ̂))) + L(xr, c(xq, exp(−ξ̂))).

(6)

https://github.com/CompVis/stable-diffusion
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Figure 3. iFusion framework. (a) Given as few as two pose-free images (xr, xq), we estimate the pose T̂r→q from T0 to optimally recon-
struct the input view through the frozen diffusion model. (b) Based on T̂r→q , we efficiently fine-tune the diffusion model by LoRA [17]
to customize the model to synthesize novel views of the given object with enhanced fidelity. (c) Conditioned on T̂r→q and the refined
diffusion model, we optimize a reconstruction module to perform sparse view 3D reconstruction.

In practice, we initialize our optimization from four dis-
tinct canonical poses relative to the reference view, i.e.,
front, left, right, and back, designated as T0. This helps
reduce the possibility of stucking at a local minima during
the optimization. The final estimated camera pose can be
denoted as follows:

T̂r→q = T0 · exp(ξ̂r→q). (7)

Furthermore, taking inspiration from Huang et al. [18],
instead of sampling the timestep t from a uniform distri-
bution as in training, we linearly decrease t. This adjust-
ment aligns with diffusion models’ coarse-to-fine progres-
sive optimization and has been empirically observed to lead
to more stable optimization.

3.2. From Single-View to Multi-View

Even with a fairly accurate estimated pose T̂r→q , there is
still no guarantee that the diffusion model generates the
pixel-exact query image xq . We propose to close the gap
by further fine-tuning the DM with the given views and es-
timated poses. However, due to limited training samples,
naively optimizing all trainable parameters θ is inefficient
and may jeopardize the pre-trained model. To this end, we
incorporate LoRA [17], injecting thin trainable layers ϕ to
the attention module in the U-Net ϵθ while freezing the pre-
trained θ. The objective in Eq. (2) is reformulated as fol-
lows:

Lϕ(x, c) = Ez,ϵ,t
[
∥ϵ− ϵθ,ϕ(zt, t, c)∥22

]
, (8)

where (x, c) ∈
{(
xq, (xr, T̂r→q)

)
,
(
xr, (xq, T̂q→r)

)}
. In

other words, the fine-tuning process adapts the DM to gen-
erate the query view xq from the condition c(xr, T̂r→q), and
vice versa, for a specific object. Empirically, this LoRA

fine-tuning effectively customize the DM to generate novel
views different from xr and xq of the target object, despite
the small number of training samples and parameters ϕ, and
the inherent noise from the estimated poses.

While the original Zero123 only conditions on a sin-
gle view, we have multiple images available along with
their relative transformations in a sparse-view setting.4 This
raises the question: How can we better utilize these addi-
tional views for improved generation quality? To address
this, we employ a simple stochastic conditioning strategy
inspired by Watson et al. [75]. The key concept is that all
given views should collectively shape the final output. More
specifically, we randomly sample a registered view as the
input condition at each denoising timestep. Empirically, this
stochastic multi-view conditioning (MVC) significantly im-
proves the novel view synthesis results compared to naively
using the nearest view as the condition. Moreover, the final
reconstruction quality is also improved.

3.3. From Sparse Views to 3D Reconstruction

There are two primary lines of existing literature for 3D ob-
ject reconstruction via diffusion, namely image-based re-
construction [32, 34] and SDS-based generation [30, 48, 49,
67]. To integrate our proposed technique with the image-
based approaches, we may simply generate multi-view im-
ages using the fine-tuned model obtained from Eq. (8) with
stochastic multi-view conditioning outlined in Sec. 3.2, and
then feed them as the training data to the differentiable ren-
derer, e.g., NeRF [40] and NeuS [71]. For SDS-based meth-
ods, in addition to Eq. (3), we further incorporate the recon-

4We mainly formulate the two-view setting (xr and xq). Multi-view
settings are achieved via treating all distinct image pairs as query-reference
pairs and estimating the pose transform for each pair.



Figure 4. Qualitative results on pose estimation. We visualize the predicted poses (thin) alongside the ground truth (bold), using the same
color, while the reference views are plotted in red. iFusion accurately predicts poses even on the opposite side of the reference view (red),
emphasizing its effectiveness in leveraging the strong prior knowledge embedded in Zero123 [33].

struction loss on the registered input views:

Lrec =
∥∥∥x−Rψ(T̂ )

∥∥∥2
2
, (9)

where x is the input image and Rψ(T̂ ) is the rendered view
from viewpoint T̂ acquired from Eq. (7). The final objective
is the weighted sum of Lrec and LSDS . For above steps, the
LoRA model and MVC are also employed.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments using two pub-
licly available object datasets: Google Scanned Ob-
ject (GSO) [10] and OmniObject3D (OO3D) [76]. We ran-
domly select 70 instances from each dataset, synthesizing
5 camera poses and rendering their observation views. For
pose estimation experiments, we sample 1000 sets from the
available combinations of views per dataset. In view syn-
thesis and reconstruction tasks, we select two views from
the rendered five with the largest parallax motion around
the object to minimize the overlapping between views.

Experiments and Metrics. We evaluate our proposed
framework on pose estimation, novel view synthesis,
and 3D reconstruction. For pose estimation, we report the
relative pose error in rotation and translation, where the
rotation error is the angle between estimated and ground
truth poses, and the translation error is their positional dif-
ference. We adopt the standard metrics PSNR, SSIM,
and LPIPS to evaluate novel view synthesis results, follow-
ing Liu et al. [33], Mildenhall et al. [40]. For 3D recon-
struction, we report Chamfer Distances and volumetric IoU
between ground truth shapes and reconstructed ones.

4.2. Experimental Result

Pose Estimation. We compare our proposed method with
RelPose++ [28], FORGE [21], RayDiffusion [86], and
SfM-based HLoc [57, 58] for pose estimation given 2∼5
views of an object. We adopted the official pre-trained

checkpoints for all baselines, i.e., RelPose++ and RayDiffu-
sion trained on CO3Dv2 [53], and FORGE trained on a vari-
ant of ShapeNet [4]. In the case of HLoc, we utilized Super-
Point feature [9] and LightGlue [31] for matching. We did
not compare with SparsePose [61] and PF-LRM [72] since
no public source code is available. Quantitative and quali-
tative results are depicted in Fig. 5 and Fig. 4, respectively.
Figure 5 verifies the effectiveness of our proposed solution
over the baselines with substantial improvements across all
metrics. By leveraging Zero123 [33], iFusion excels at han-
dling diverse objects thanks to its rich visual knowledge
learned from Objaverse [8], which significantly differenti-
ates our method from the baselines. In Fig. 4, we again
corroborate that our solution accurately estimates camera
poses even with little overlap, e.g., the blue camera is on
the opposite sides to the camera reference (red camera).

Although we aim to compare all methods under a
training-free setting to emphasize generalization, we fine-
tune RelPose++ on Objaverse as its fine-tuning achieves
consistent improvement. However, even with this fine-
tuning, the performance of RelPose++ remains notably
lower than iFusion. Note that FORGE’s performance is
considerably lower than the officially reported results. We
argue that this inconsistency may arise from differences in
rendering styles, which underscores a potential limitation
in FORGE’s generalization ability. Similar observations re-
garding this issue have also been reported in PF-LRM.

Novel View Synthesis. Table 1 shows our novel view syn-
thesis comparison against 2D-based Zero1235, 3D-based
methods, i.e., FORGE and LEAP [22], and hybrid-based
(2D+3D) SyncDreamer [34]. It is observed that both the
3D-based methods do not perform well under extremely
few-view scenarios. Moreover, iFusion significantly out-
performs all methods on all metrics. Figure 6 includes
qualitative examples to demonstrate iFusion’s advantage
in novel view synthesis. We observe that images gener-
ated by Zero123, although mostly visually plausible, do not
faithfully represent the actual objects, especially those with

5By default, we use Zero123-XL for all modules that require Zero123.
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Figure 5. Evaluation results on pose estimation. iFusion achieves significant improvements in pose estimation with only 2 input views
on both datasets. To ensure a comprehensive evaluation, we also assess baseline methods using more views, yet our method consistently
outperforms them.

Table 1. Novel view synthesis results. iFusion performed sig-
nificantly better than the original Zero123, SyncDreamer, and 3D-
based methods.

Dataset Method PSNR↑ SSIM↑ LPIPS↓

GSO [10]

FORGE [21] 10.45 0.673 0.449
LEAP [22] 12.51 0.751 0.312

Zero123 [33] 15.40 0.788 0.184
SyncDreamer [34] 15.67 0.806 0.180
iFusion 18.73 0.836 0.121

OO3D [76]

FORGE 10.48 0.684 0.447
LEAP 12.63 0.759 0.305

Zero123 15.84 0.801 0.184
SyncDreamer [34] 15.98 0.814 0.181
iFusion 19.78 0.851 0.117

complex geometry. SyncDreamer, an enhanced iteration of
Zero123, yields better outcomes but shares the same limita-
tion. In contrast, our iFusion improves novel views’ image
fidelity by conditioning on an additional pose-free view.

3D Reconstruction. We showcase the efficacy of the iFu-
sion framework in 3D reconstruction by integrating it with
various existing reconstruction methods. Specifically, One-
2-3-45 [32] represents image-based methods, which di-
rectly regresses SDFs from the generated multi-view im-
ages; on the other hand, Zero123-SDS [33], Magic123 [49],
and DreamGaussian [67] are SDS-based approahces. For
completeness, Zero123-SDS optimizes Instant-NGP [43]

via Zero123-guided SDS. Magic123 combines Zero123 and
SD for improved quality.6 DreamGaussian leverages the 3D
Gaussian Splatting renderer [25]. As illustrated in Tab. 2
and Fig. 7, the incorporation of iFusion enhances the per-
formance of all reconstruction modules by a large mar-
gin. In addition, iFusion clearly outperforms other none-
optimization-based methods Point-E [44] and Shape-E [23],
which are trained on a large-scale private dataset. To con-
clude, when faithful reconstruction is desired, iFusion is ex-
tremely beneficial, requiring very few additional views that
can be casually captured without knowing the camera poses.

4.3. Ablation Study

Sparse-view Fine-tuning. Table 3 assesses the efficacy
of the proposed fine-tuning stage for object-specific novel
view synthesis. This process takes approximately 30 sec-
onds per object on a 3090 GPU. Upon examining row (a),
i.e., Zero123, alongside row (b), it is evident that the per-
formance is boosted by incorporating the additional view
and an accurately estimated pose. Row (c) highlights the
substantial improvement from the stochastic re-sampling of
multi-view conditions at each timestep, providing more ro-
bust outcomes than row (b). Moreover, the multi-view fine-
tuning with LoRA in row (d) significantly enhances per-
formance by improving the understanding of the target ob-
ject. Finally, row (e) underscores the potential for achieving
higher-quality synthesis by incorporating more views. All

6The implementations of Zero123-SDS and Magic123 are adopted
from threestudio: https://github.com/threestudio-project/threestudio.
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Figure 6. Qualitative examples on novel view synthesis. iFusion takes two unposed images and Zero123 [33] only conditions on the first
view. We observe that iFusion effectively leverages the additional images without camera poses and generates more faithful images.

Input Views GT Zero123 + iFusion DreamGaussian + iFusion Magic123 + iFusion
Figure 7. Qualitative comparison of surface reconstruction. It is clear that iFusion significantly enhances existing reconstruction
methods including Zero123-SDS [33], DreamGaussian [67], and Magic123 [49], by adding an additional view without the camera pose.

are achieved with self-estimated camera poses.

3D Reconstruction. We validate the proposed compo-
nents contributing to reconstruction in Tab. 4, using Dream-
Gaussian as the reconstruction module on the OO3D
dataset. The results in rows (a) and (b) distinctly illustrate
that adding an extra view with an estimated pose and su-
pervising with reconstruction loss significantly enhance the
single-view baseline. Incorporating stochastic multi-view
conditioning (MVC) further improves the performance, as
evident in row (c). Finally, fine-tuning via LoRA demon-

strates an additional improvement in customizing the model
for faithful reconstruction of the given object.

5. Related Work

Few-shot NeRFs. Neural Radiance Fields (NeRFs) [40]
have revolutionized 3D modeling with its powerful repre-
sentations and high-fidelity render quality, but struggling
under insufficient views. Follow-up works introduced regu-
larizations to stabilize training [26, 45, 80], or prior models
for auxiliary 3D reasoning [5, 19, 73, 82]. Nevertheless, the



Table 2. Evaluation results on 3D Reconstruction. We integrate iFusion with various state-of-the-art single-view reconstruction baselines
and consistently improve their performance.

Method GSO [10] OO3D [76]

Chamfer Dist. (×102) ↓ Volume IoU (%) ↑ Chamfer Dist. (×103) ↓ Volume IoU (%) ↑
Point-E [44] 6.414 18.92 6.766 19.83
Shape-E [23] 5.839 29.00 6.086 29.02

One-2-3-45 [32] 7.173 28.77 5.424 43.75
+ iFusion 6.359 31.68 4.739 48.32

Zero123-SDS [33] 6.456 33.63 5.676 45.90
+ iFusion 4.178 39.73 3.293 56.36

DreamGaussian [67] 4.728 35.35 4.298 44.35
+ iFusion 3.977 42.07 2.947 57.58

Magic123 [49] 4.839 39.46 3.842 53.69
+ iFusion 3.076 46.70 2.682 60.31

Table 3. Ablation study of novel view synthesis on GSO [10].
Multi-view conditioning and LoRA finetuning are validated. In-
creased views also improve the results.

n views Strategy LoRA [17] PSNR↑ LPIPS↓

(a) 1 - - 15.40 0.184
(b) 2 closest-view - 16.19 0.169
(c) 2 multi-view - 17.30 0.149
(d) 2 multi-view ✓ 18.73 0.121
(e) 4 multi-view ✓ 21.32 0.092

Table 4. Ablation study of 3D reconstruction on OO3D [76] using
DreamGaussian [67]. MVC and LoRA are essential to the best
results.

n views MVC LoRA Chamfer Dist. ↓ IoU ↑

(a) 1 - - 4.298 44.35
(b) 2 - - 3.427 53.04
(c) 2 ✓ - 3.241 54.16
(d) 2 ✓ ✓ 2.947 57.58
*Chamfer distance measured by ×102 and IoU in (%)

dependency on precise camera poses remains an issue, as
Lin et al. [29] showed that inaccurate poses, which often
arise in pose estimation using a limited number of views,
lead to degraded performance.

Diffusion for 3D Generation. Diffusion models [16, 62,
63] have emerged as the leading visual generative mod-
els. They generate visually plausible images from var-
ious input conditions [12, 13, 27, 39, 78, 79] and cus-
tomize or edit existing photos with diverse controlling
signals [2, 14, 50, 55, 87, 88]. Promising results have
been achieved in 3D generation as well, spanning vari-
ous representations such as point-clouds [36, 83, 89], voxel
grids [42, 89], and tri-planes [1, 15, 60]; however, they are
constrained by the limited diversity of 3D datasets, e.g.,
ShapeNet [4]. To overcome the data scarcity, researchers
utilize pre-trained 2D diffusion models [54, 56] for text-to-

3D generation [6, 30, 48, 74], and further extend them for
single-view reconstruction [32, 33, 38, 49, 66, 67], where
the diffusion model “dreams up” unobserved views. How-
ever, single-view methods diverge from real-world recon-
struction scenarios — the target object needs to be accu-
rately reconstructed, not over-imagined. Although several
methods propose to include additional views, accurate cam-
era poses are still assumed [3, 24, 65, 90].

Reconstructing from Pose-free Sparse-views. To re-
cover the unknown camera poses from sparse views, re-
cent studies have explored either by directly regressing the
pose [21, 28, 85] or through iterative refinement [61, 70,
86]. The estimated poses can then be utilized for recon-
struction [21, 29, 84]. Notably, FORGE [21] combines
the above two stages but lacks robustness for diverse ob-
jects and lighting. A recent follow-up, LEAP [22], utilizes
DINO [46] as a prior, improving generalization but facing
challenges in recovering unseen regions. PF-LRM [72],
akin to our approach, achieves generalized reconstruction
using knowledge acquired from Objaverse [8]. Although
PF-LRM produced promising results, it differs from our
training-free approach based on existing models as it re-
quires extensive training on the Objaverse.

6. Conclusion
We propose iFusion, a framework that reconstructs 3D ob-
jects without requiring poses, by exploiting the rich vi-
sual knowledge in a large-scale pre-trained diffusion model.
Given a few unposed images, we begin with inverting the
diffusion for gradient-based pose optimization. The esti-
mated poses, in turn, enhance the diffusion on view syn-
thesis through multi-view fine-tuning and conditioning. Fi-
nally, by combining the estimated poses and the refined dif-
fusion model, we demonstrate how iFusion achieves pose-
free reconstruction. Experimental results show that our so-
lution outperforms strong baselines on three key tasks: pose
estimation, novel view synthesis, and 3D reconstruction.
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