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Abstract

The growing number of Large Language Models (LLMs) with diverse capabilities and re-
sponse styles provides users with a wider range of choices, which presents challenges in
selecting appropriate LLMs, as user preferences vary in terms of performance, cost, and re-
sponse style. Current LLM selection methods typically optimize for a single fixed objective,
such as performance, cost, or a trade-off between them, and fail to learn user preferences
from interaction data. To address these limitations in supporting users, we propose Person-
alizedRouter, a graph-based framework that models diverse user profiles and performs per-
sonalized LLM selection by leveraging interaction data that includes task context, queries,
candidate LLMs, and user decisions. To capture contextual information between user queries
and optimal LLMs, PersonalizedRouter converts the interaction data into a heterogeneous
graph, where the relationships between different types of nodes are represented by edges.
To further assess the adaptability for multiple users, we design two strategies to simulate
different user interaction data: the multi-cost-efficiency simulation strategy and the LLM-
as-a-Judge strategy. The experimental results from two simulation settings demonstrate
that our PersonalizedRouter outperforms existing LLM selection methods and surpasses
the strongest methods by a large margin of 16.97% and 9.83%. In a larger-scale setting with
more users and LLMs, it achieves at least 49.26% time cost reduction while outperforming
all baselines and maintaining superior robustness. Moreover, PersonalizedRouter exhibits
few-shot learning capabilities, effectively adapting to new users and new LLMs, achieving
64.81% and 85.80% of the fully trained model’s performance, respectively.

1 Introduction

In recent years, the rapid growth of model scale and advances in training techniques have fueled the explosive
emergence of LLMs, offering users diverse choices. Although large-scale language models have shown remark-
able performance on many tasks, they tend to be inefficient when dealing with simple problems. In some
scenarios, small-scale language models can achieve comparable performance while requiring fewer resources.
Moreover, different LLMs excel at different tasks, exhibiting varying performance and cost efficiency on the
specific application, and some domain-specific expert models achieve superior results in specialized tasks. In
addition to differences in response quality and cost, LLMs also exhibit diverse response styles, which influ-
ence users’ understanding of the query. In multi-user scenarios, users often have distinct preferences that are
difficult to directly model, making it challenging for a single LLM to serve all users consistently. Therefore,
our paper aims to raise attention to this pressing research question: Given multiple user preferences, how
can we design an LLM router that is personalized for each individual user?

Current LLM selection methods aim to predict the most suitable LLM for a given user query using various
strategies. HybridLLM (Ding et al., 2024) utilizes a pre-trained language model to make binary decisions
between a large and a small LLM. FrugalGPT (Chen et al., 2023) uses a pre-trained model to score the
responses to select the best LLM with a given cost constraint. RouterDC (Shuhao et al., 2024) encodes the
input query using a pre-trained encoder and selects the LLM whose embedding is most similar to the query
embedding. GraphRouter (Feng et al., 2024) constructs a heterogeneous graph based on user interaction data
and uses a Graph Neural Network (GNN) to predict the most suitable LLM for a given query. However,
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Table 1: Comparison of PersonalizedRouter with current LLM selection methods. In comparison,
PersonalizedRouter introduces an inductive graph framework for multi-user scenarios that leverages user
interaction information, enabling it to capture user latent preferences to generalize to new users.

Method Multi-task Support Generalization to New LLMs and Users User preference modeling
Hybrid LLM (Ding et al., 2024) ✗ ✗ ✗
FrugalGPT (Chen et al., 2023) ✗ ✗ ✗
C2MAB-V (Dai et al., 2024) ✗ ✗ ✗
RouterDC (Shuhao et al., 2024) ✗ ✗ ✗
GraphRouter (Feng et al., 2024) ✓ ✗ ✗

PersonalizedRouter (ours) ✓ ✓ ✓

a fundamental limitation inherent in current approaches is that they fail to adequately account for user
preferences (Table 1). Many existing methods depend on simplistic representations such as BERT-based
embeddings to distinguish between queries and optimize for a single fixed objective (e.g., performance only).
This narrow focus restricts their ability to generalize to multi-user scenarios.

Existing methods struggle to adapt to multiple users because they fail to capture user preferences from
historical interaction data and typically rely on a fixed optimization objective. To address these challenges,
we propose PersonalizedRouter, a graph-based framework that leverages user interaction data to provide
personalized LLM selection for different users. Specifically, PersonalizedRouter constructs a heterogeneous
graph consisting of query nodes, task nodes, LLM nodes, and user nodes, and these nodes are connected
through edges that represent different user preferences, such as performance-first or style-oriented choices.
By aggregating information across different types of nodes, the GNN captures diverse latent user preferences
through embeddings, enabling more effective LLM selection for new queries.

To comprehensively evaluate the adaptability of LLM selection methods in multi-user scenarios, we design
two simulation strategies that model diverse user behaviors to generate corresponding interaction data.
Multi-cost-efficiency simulation strategy, which calculates a reward score for each response based on users’
varying preferences between performance and inference cost. LLM-as-a-Judge strategy, which leverages a set
of system prompts to instruct an LLM to simulate different user groups with various subjective preferences
and select the best response from responses. We conduct experiments using interaction datasets generated
by these two strategies. The experiment results show that PersonalizedRouter significantly outperforms
existing LLM selection methods. Our approach achieves at least a 9.83% advantage compared to the best
baseline. To evaluate the scalability of PersonalizedRouter, we further designed a larger-scale experimental
setting. Results show that our model outperforms the strongest baseline by at least 29.41%, while achieving a
minimum of 49.26% reduction in time cost. Moreover, as the scale increases, PersonalizedRouter shows only
a 2–3% drop in performance. To simulate real-world scenarios where new users and new LLMs continuously
join the system, we introduce a new user and a new LLM experimental setting, in which interaction data
from new users or new LLMs is excluded from the training process. The experimental results demonstrate
that PersonalizedRouter generalizes well to new users and new LLMs, achieving at least 64.81% of the fully
trained model’s performance in the new user setting and 85.90% in the new LLM setting.

To summarize, our main contributions are as follows.

• We introduce a novel multi-user scenario to the LLM selection problem and propose Personalize-
dRouter, a personalized routing framework that simultaneously supports diverse user profiles and
effectively models individualized user preferences through interaction datasets.

• We propose a graph-based framework that leverages interaction datasets to generalize effectively to
unseen users and new LLMs, demonstrating strong scalability and adaptability.

• We propose two simulation strategies to evaluate the adaptability of methods, considering response
quality, inference cost, and response style. Our model consistently outperforms baseline models
by at least 9.83%. Furthermore, in scalability evaluations, it not only surpasses the baselines in
larger-scale scenarios but also exhibits only 2-3% performance degradation.
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2 Related Works

2.1 LLM Selection

With the emergence of LLMs with diverse model scales, users now have the option to choose not only high-
performance but high-cost models, but also smaller LLMs that offer competitive performance. This scenario
motivates various LLM selection strategies. From the cost-efficiency perspective, Zhu et al. (2023) fine-
tunes a pre-trained language model to predict the appropriate LLM to achieve lower overall computational
cost. Ding et al. (2024) considers not only cost but also response quality, aiming to select small-scale LLM
whenever the quality difference is within an acceptable range. RouterLLM (Ong et al., 2024) leverages
real user preference data from the Chatbot Arena and applies matrix factorization for query assignment.
Beyond binary LLM selection, other approaches extend the setting to multiple candidate LLMs. Chen
et al. (2023) scores all responses and selects the one with the highest score under the given cost budget.
PolyRouter (Stripelis et al., 2024) explores routing strategies built upon k-nearest neighbors and a multilayer
perceptron. Feng et al. (2024) formulates the LLM selection task as a link prediction problem, predicting the
link between a query and the best LLM. C2MAB-V (Dai et al., 2024) employs a bandit-based routing model
with an exploration mechanism to balance exploration and exploitation when selecting LLMs. RouterDC
(Shuhao et al., 2024) selects the most suitable LLM based on the cosine similarity between the query and
each LLM’s embedding. Building upon existing LLM selection methods, we introduce a multi-user scenario
and design two distinct simulation strategies to model user preference. By leveraging the user interaction
data through GNN, our framework can effectively generalize to new users without retraining.

2.2 GNN for Link Prediction

GNNs are a class of neural networks designed to learn node embeddings by aggregating information from
neighboring nodes, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GAT
(Veličković et al., 2017). Based on these foundations, heterogeneous GNNs including HeterGNNs (Hu et al.,
2020; Peng et al., 2019; Schlichtkrull et al., 2017) and HGATs (Wang et al., 2019) have been developed
to handle graphs containing multiple types of nodes and edges. Furthermore, GNNs have demonstrated
strong zero-shot and few-shot generalization capabilities, making them well-suited for tasks with limited
supervision (Gao & Xu, 2020; Fey et al., 2023; Cao et al., 2023; Chen et al., 2022). The strong embedding
capabilities of GNNs have led to significant advancements in applications, including recommender systems
(Min et al., 2022) and social network analysis (Wu et al., 2020). Link prediction is another important
application of GNNs, where the goal is to infer potential connections between nodes based on the existing
graph structure. It also plays an important role in areas such as bioinformatics (Zitnik et al., 2018; Long
et al., 2022) and recommender systems (Wu et al., 2021; He et al., 2020b). In the static graph setting,
node representation-based GNN approaches (Huang et al., 2023; Wang et al., 2022) and local subgraph-
based methods (Chamberlain et al., 2023; Yun et al., 2022) are capable of handling more complex scenarios.
Inspired by these works, we apply GNNs to the LLM selection problem, aiming to capture users’ latent
preferences and make more effective LLM predictions.

3 Methods

In this section, we present PersonalizedRouter, a graph-based framework for LLM selection based on user
interaction data. An overview is illustrated in Figure 1. We introduced the problem of user-level LLM
selection (Section 3.1). Next, we present the PersonalizedRouter framework, which is capable of generalizing
for diverse users (Section 3.2).

3.1 Problem Formulation

For the LLM selection problem, the router serves as a critical component that is responsible for understanding
user requirements and preferences to make optimal selections. Given a user query qu that contains contextual
information, the router selects the most suitable LLM Mi from the given candidate pool {M1, M2, . . . , Mn},
aiming to optimize multiple factors, including model performance, computational cost, and answer styles.
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Figure 1: Overview of PersonalizedRouter methodology. As shown in the left part, we first utilize the
candidate LLMs to generate responses based on the multi-task dataset. Next, under two simulation strate-
gies, we obtain the corresponding interaction data. As illustrated in the middle part, PersonalizedRouter
transforms the user interaction data into a graph, where nodes represent the user, task, query, and LLM,
and the edges capture the relationships between different node types. In the right part, we leverage a GNN
to embed both node and edge features, updating and capturing the user’s hidden features. Ultimately, we
select the optimal LLM from the predicted probability distribution.

Since the user profile is not directly accessible, the router is trained on user interaction data containing query
content, response quality, and answer feedback, which is expected to allow the router to capture hidden user
preferences and generalize effectively on diverse users.

3.2 PersonalizedRouter Framework

Users Graph Construction. We leverage user interaction data to construct a user graph, where the GNN
learns to represent hidden user preferences through message passing. To construct the graph, the framework
extracts users, tasks, queries, and LLMs from the interaction data and represents them as different types of
nodes in a heterogeneous graph. Specifically, queries represent the users’ contextual information, while tasks
correspond to the task type of each query. Edges are constructed based on the relationships among these
entities, including user–task, task–query, and query–LLM. With the constructed graph, we apply GNN to
embed node and edge features, enabling message passing across the graph and model user preferences, and
constructing user profiles for LLM selection.

Initialization of Node Features. In the graph constructed by PersonalizedRouter, we define four types of
nodes: user nodes h

(l)
u , task nodes h

(l)
t , query nodes h

(l)
q , and LLM nodes h

(l)
m . Correspondingly, we construct

three types of edges: user–task edge, task–query edge, and query–LLM edge. For node initialization, the tex-
tual descriptions of each entity are encoded using a shared pre-trained language model (e.g., BERT (Devlin,
2018)), and the resulting embeddings are used as the initial node representations. The detailed descriptions
of tasks and LLMs are provided in Appendix A.4. For the user nodes, we initialize their embeddings using
one-hot encodings based on user interaction. For edge initialization, user–task and task–query edges are
assigned an initial weight of 1. In contrast, query–LLM edges are initialized differently depending on the
simulation setting. For the multi-cost-efficiency simulation strategy setting, the edge features are derived
from interaction data, incorporating a combination of performance and cost. Under the LLM-as-a-Judge
trategy setting, the edge embedding is initialized as a binary indicator, reflecting whether the LLM produced
the best response according to the LLM judge.

Heterogeneous GNN. Based on the constructed users graph, we utilize a heterogeneous GNN as the
prediction model f, which aggregates information from four types of nodes (user, task, query, and LLM nodes)
and three types of edges (LLM–user-task edges, task–query edges, and LLM–query edges). The heterogeneous
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GNN performs multiple rounds of message passing and weighted aggregation to extract information from
the local neighborhoods to capture meaningful node embeddings. Therefore, even in the absence of explicit
user profiles, the user embeddings can be inferred through GNN iterations, which enables more effective
predictions. In our framework, for an l-layer GNN, the node embedding at the l-th layer is updated as:
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where h(l)
u , h(l)

t , h(l)
q , and h(l)

m represent the node embedding after l layers of message passing of the user, task,
query, and LLM nodes, respectively. The four node embeddings have been initialized as h(0)

u , h(0)
t , h(0)

q , h(0)
m =

eu, et, eq, em respectively. n ∈ N (v) denotes the neighboring nodes of v, and v can be a task, query, user, or
LLM node. σ(·) is the activation function, such as ReLU or softmax, and we utilize ReLU. ⊕ denotes vector
concatenation. 1[v ∈ Vd, u ∈ Vt] represents the distinct message type. For task nodes, the message is from
user to task or from query to task, and for query nodes, the message is from task to query or from LLM
to query. In addition, w1[t∈Vt,m∈Vt] indicates that different edge types correspond to different edge weights;
specifically, for query nodes, if it is from task to query, it is represented as wtq, and from LLM to query, it
is represented as wmq, and for task nodes, if it is from user to task, it is represented as wut, and from query
to task, it is represented as wqt. H(l), W(l) are learnable parameters.

We formulate the LLM selection problem as the link prediction problem in a constructed user graph, where
the model is trained to predict the probability of the edge between the given query and each candidate LLM
and set edge labels for training based on the different simulation strategies. Under the multi-cost-efficiency
simulation strategy, the best LLM is identified with the highest reward score associated with the trade-off
between accuracy and inference cost. Under the LLM-as-a-Judge strategy, an LLM acting as a judge simu-
lates user preferences and determines the optimal LLM based on the content of the responses. Consequently,
we assign an edge label of 1 to the best LLM and 0 to all remaining query–LLM edges. After multiple
GNN iterations, we obtain final representations of four types of nodes. We first combine the embeddings of
the user, task, and query nodes to generate a unified embedding that jointly captures information from all
three aspects h(l)

uqt = MLP(Concat(h(l)
u , h(l)

t , h(l)
q )). Next, we predict the probability for each edge using

EdgePred(·), which is formulated as ŷlogits = MEAN
(

Dot(h(l)
uqt, h(l)

m )
)

. Ultimately, we identify the most

suitable one by selecting the edge with the highest scores: ŷ = arg maxm

(
EdgePred(hqt, hm)

)
.

Generalization to New Users and New LLMs. Existing LLM selection methods often struggle to
represent diverse user scenarios, as they are typically built upon simplistic, fixed objectives that constrain
either performance or cost. Such rigid assumptions limit their effectiveness in real-world applications, where
systems must adapt to varying user needs. Furthermore, as companies rapidly iterate on their LLMs, it
becomes increasingly important for the router to remain both effective and robust when dealing with new
models. To evaluate the real-world potential of our model and baselines, we construct an auxiliary dataset
under both simulation strategies following (Cao et al., 2023; Fey et al., 2023), which includes query-level
interaction records from new users or new LLMs, sampled from the same distribution as the training data.
We train all models using interaction data from known users or known LLMs only, while the auxiliary dataset
is excluded from the training phase and is instead used during testing to initialize the GNN in a few-shot
setting, allowing us to assess the model’s ability to generalize to unseen users or LLMs.

5



Under review as submission to TMLR

4 Experimental Setup

4.1 Candidate LLMs and Task Datasets

We selected a set of candidate LLMs for our experiments, using the Together API and OpenRouter API.
Details of these models are provided in Appendix A.5, including their sizes and cost per million tokens.

In this paper, we focus on modeling the relationship between user queries and LLM answers. To simulate
typical user input scenarios in real-world settings, we select four representative datasets. For user daily chat
behavior, we use Alpaca (Taori et al., 2023), a hybrid question-answering (QA) dataset containing 52K
samples, which covers a wide range of tasks such as casual conversation and instruction following, effectively
simulating user queries in daily scenarios. For multi-step mathematical reasoning, we adopt GSM8K
(Cobbe et al., 2021), which includes 8.5K school math word problems. That requires multi-hop reasoning.
For contextual understanding, we use SQUAD (Rajpurkar, 2016), a widely-used QA dataset consisting
of over 100K question-answer pairs linked to more than 500 Wikipedia articles. For information details,
we choose Multi-News (Fabbri et al., 2019), a multi-document summarization dataset consisting of 56K
news–summary pairs written by professional editors, reflecting the capability for capturing key information.
The task types, evaluation metrics, and the number of selected tasks from four task datasets are detailed in
Table 2.

Table 2: Overview of the task datasets. We sampled 600 cases from each of four distinct types of task
datasets. Each task dataset is associated with a different evaluation metric.

Dataset Task Type Metric Cases

Alpaca Hybrid QA F1 600
GSM8K Multi-step Reasoning Accuracy 600
SQUAD Reading Comprehension F1 600

Multi-News Article Summary F1 600

4.2 Construction of Interaction Datasets

Two Simulation Strategies. Current LLM selection methods typically rely on fixed cost-efficiency con-
straints, e.g., cost-first or performance-first preferences, which limit the adaptability to diverse user scenarios.
Therefore, we introduce the first simulation strategy: multi-cost-efficiency simulation strategy, which con-
siders a set of cost-efficiency constraints at the same time to measure how effectively the method adapts
to various user preferences. With the emergence of models that emphasize emotional expression, users are
increasingly valuing not only the performance of LLMs but also the response styles. Recent studies have
shown that the system prompt can influence the persona exhibited by an LLM(Zhong et al., 2024; Kong
et al., 2024). Therefore, we propose the second simulation strategy: LLM-as-a-Judge strategy, in which
we utilize an additional LLM as a judge with system prompts to simulate different users. This approach
evaluates the router’s ability to generalize across users with diverse contextual expectations.

Under the two simulation strategies, using the four task datasets introduced in Section 4.1 and a pool of
candidate LLMs, we construct two interaction datasets. First, we uniformly sample queries from four task
datasets and merge them into a query set. Then, for each query, we collect responses from all candidate LLMs
based on the two simulation strategies with different metrics to build interaction datasets. The structure of
two interaction datasets is shown in the left part of Figure 1.

For the multi-cost-efficiency simulation strategy, we collect responses for each query from 10 candidate
LLMs, which contain performance, cost, and reward value. Methods are required for optimal routing decisions
that maximize the reward score.

• Performance value is to evaluate the quality of the LLM’s response using different task metrics
mentioned in Section 4.1
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• Cost value is measured with the total number of tokens calculated by GPT-2 and the corresponding
token cost for each LLM (Appendix A.5).

• Reward value reflects the trade-off between performance and cost. To ensure comparability, we
first normalize both performance and cost. Next, we defined Reward = α · Performance − β · Cost.
To simulate diverse user preferences, we introduce nine α and β weight pairs (Appendix A.1),
representing different user types ranging from those who prioritize high performance to those who
prefer cost-efficient performance.

For the LLM-as-a-Judge strategy, we first collect responses for each query from 10 candidate LLMs and
then utilize an additional LLM DeepSeek-v3(DeepSeek-AI et al., 2025) as a judge to generate a binary label
called best-answer based on distinct system prompts. The system prompts are listed in Appendix A.3, and
the detailed instruction prompts can be found in AppendixA.2.

• Best Answer is selected by the LLM judge, which represents the response that best aligns with
the predefined system prompt. The label reflects users’ preferences on diverse response styles in the
real scenario.

Datasets Splitting. After generating the corresponding interaction datasets under the two simulation
strategies, each interaction dataset is applied to two experimental settings: a standard setting and a new
user setting. For both settings, the dataset is divided into three parts, training, validation, and test sets,
with a ratio of 70% : 10% : 20%. In the standard setting, all user interaction data is accessible, allowing
the model to learn user preferences from historical data and capture hidden user profiles more effectively. In
the new user setting, we assume that the first three users are new users, while the remaining six users are
visible, whose interaction data is available for model training. As mentioned in Section 3.2, we remove all
interaction data of new users from the training and validation sets, while keeping the test set unchanged.
Next, we construct an auxiliary dataset following (Cao et al., 2023; Fey et al., 2023), which consists of a
uniformly sampled query subset of new users in the training set. This auxiliary dataset is used as a few-shot
dataset only during the testing phase for the model to adapt to unseen users.

4.3 Baseline

In this paper, we introduce the following baselines to compare with PersonalizedRouter.

• Hybrid LLM (Ding et al., 2024) is designed for scenarios with only two LLMs. It trains a pre-
trained language model to assign queries to either a small or a large LLM, aiming to balance various
factors such as performance and cost. In the experiment, we replace DeBERTa (He et al., 2020a) with
RoBERTa (Liu, 2019) as the pre-trained model for routing queries, which shows better performance.
Under the multi-cost-efficiency simulation strategy, we select Mistral-7B and LLaMA-3.1-Turbo
(70B) as the small and large models, respectively. For the LLM-as-a-Judge strategy, we use LLaMA-3
(8B) and LLaMA-3.1 (70B) as the two candidate LLMs.

• FrugalGPT (Chen et al., 2023)A pre-trained language model is used to generate scores for responses
generated by candidate LLMs, providing an evaluation of response quality. Under a given total cost,
the LLM with the highest score is selected as the final executor. In the experiment, we use RoBERTa
(Liu, 2019) as the pre-trained model.

• RouterDC (Shuhao et al., 2024) uses a pre-trained model mDeBERTaV3-base (He et al., 2023) to
encode the input query, and computes cosine similarity with each candidate LLM embedding. The
LLM with the highest score is selected as the final prediction.

Furthermore, to provide a more comprehensive evaluation of PersonalizedRouter, we incorporate the optimal
solution as a golden baseline.

• Oracle represents the upper bound achieved by the best selection, where each query is routed to
the most suitable LLM.
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4.4 Implementation Details

For router training, we use a two-layer graph attention network with a hidden dimension of 32. The model
is trained with a batch size of 32 for up to 400 epochs. We use the Adam optimizer (Kingma & Ba, 2014),
and apply a LambdaLR scheduler to gradually decay the learning rate from 1e-3 to 0 during training. Our
method is implemented using PyTorch and PyG, and all experiments are conducted on an NVIDIA A6000
48GB Tensor Core GPU. In terms of LLMs, we use Together AI and Openrouter API for calling candidate
LLMs and an LLM judge for the response.

5 Experimental Results

5.1 Comparison with Existing Baseline

We compare PersonalizedRouter with three representative baseline methods under two different simulation
strategies. All models are trained under the general experimental setting, which involves 10 LLMs and 9
users, aiming to evaluate their ability to adapt to new queries from existing users. Detailed information
about the LLMs and users is provided in Appendix A.4 and Appendix A.3, respectively.

Multi-cost-efficiency Simulation Strategy. Under the multi-cost-efficiency simulation strategy, the
reward score represents the trade-off between performance and cost (Section 4.2). As shown in Table 3,
PersonalizedRouter consistently outperforms all baseline methods and surpasses the strongest methods by
a large margin of 16.97%. Furthermore, PersonalizedRouter achieves 83.88% of the oracle performance,
demonstrating its strong adaptability and effective selection strategy.

LLM-as-a-Judge Strategy. Under the LLM-as-a-Judge strategy, the metric accuracy measures the
prediction capability on new queries based on interaction data (Section 4.2). As shown in Table 3, Person-
alizedRouter shows better performance than other methods in terms of accuracy. Compared to the best
baseline, PersonalizedRouter achieves a 9.83% advantage, further demonstrating its effectiveness.

Table 3: Comparison between different methods under two simulation strategies in the general
experimental setting. The Improvement is measured relative to the best baseline. The best result for
each routing method is highlighted in bold and the second best result is highlighted with an underline.

Scenario Multi-cost-efficiency Simulation Scenario LLM-as-a-Judge

Method Reward Improvement (%) Method Accuracy Improvement (%)

HybridLLM 0.141 -35.32 HybridLLM 0.347 -14.74
RouterDC 0.208 -4.59 FrugalGPT 0.354 -13.22
FrugalGPT 0.218 0.00 RouterDC 0.407 0.00

PersonalizedRouter 0.255 16.97 PersonalizedRouter 0.447 9.83

Oracle 0.304 39.45 Oracle 1.000 145.70

5.2 Comparison with Baselines at Larger Scale

To further assess the scalability of the router, we conducted experiments in a large-scale scenario with 15
LLMs and 15 users. The experimental results are shown in Table 4. Consistent with the small-scale results
in Sec 5.1, our model outperforms all baselines under both simulation strategies. Specifically, under the
two simulation strategies, our model outperforms the strongest baseline by 29.41% and 35.29%, respectively.
Moreover, the results indicate that our model achieves better performance while requiring less computation
time. In detail, under the two simulation strategies, our model reduces time cost by 96.28% and 49.26%
compared to the best-performing baseline, respectively.

To more intuitively demonstrate the scalability of PersonalizedRouter, we compare the results from two
experiments conducted at different scales. The results provided in Table 5 indicate that PersonalizedRouter
exhibits the most stable performance, with only a 2–3% drop relative to the Oracle. In contrast, although
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the strongest baseline, HybridLLM, experiences only a modest 3–4% performance drop, it is fundamentally
restricted to handling only two LLMs at a time, which limits its practical applicability. All other baselines
suffer more performance drops, highlighting the superior robustness of our approach.

Table 4: Comparison between different methods under two simulation strategies in the large-
scale experimental setting. The Deltas represent the improvement of the Reward over the best baseline.
The Reduction indicates the relative reduction in time cost compared to the best baseline. The best result
for each routing method is highlighted in bold and the second best result is highlighted with an underline.
The oracle represents the best selection without a defined time cost, which we indicate using slashes (/).

Scenario Multi-cost-efficiency Simulation LLM-as-a-Judge

Method Reward Delta (%) Time Reduction (%) Accuracy Delta (%) Time Reduction (%)

HybridLLM 0.149 -32.58 67.31 92.34 0.306 0.00 71.2 0.00
FrugalGPT 0.158 -28.51 93.10 89.40 0.086 -71.90 99.52 -39.78
RouterDC 0.221 0.00 878.58 0.00 0.231 -24.51 902.31 -1167.29

Ours 0.286 29.41 32.71 96.28 0.414 35.29 36.13 49.26

Oracle 0.350 58.37 / / 1.000 226.80 / /

Table 5: Comparison between different methods under two simulation strategies on two ex-
periment scales. The small scale refers to the setting in the paper with 10 LLMs and 9 users, while the
large scale refers to the supplementary setting with 15 LLMs and 15 users. The Ratio is relative to the
Oracle. The ∆ represents the difference between the small-scale and large-scale ratio. The best result for
each routing method is highlighted in bold and the second best result is highlighted with an underline.

Scenario Multi-cost-efficiency Simulation LLM-as-a-Judge

Scale Small Scale Large Scale Small Scale Large Scale

Method Reward Ratio Reward Ratio ∆ Accuracy Ratio Accuracy Ratio ∆

HybridLLM 0.141 0.464 0.149 0.426 0.038 0.347 0.347 0.306 0.306 0.041
FrugalGPT 0.218 0.717 0.158 0.451 0.266 0.354 0.354 0.086 0.086 0.268
RouterDC 0.208 0.684 0.221 0.631 0.053 0.407 0.407 0.231 0.231 0.176

PersonalizedRouter 0.255 0.839 0.286 0.817 0.022 0.447 0.447 0.414 0.414 0.033

Oracle 0.304 1.000 0.350 1.000 0.000 1.000 1.000 1.000 1.000 0.000

5.3 Generalization to New Users

To evaluate the ability of different LLM selection methods to generalize to new users, we also train all models
under the new user experimental setting (Section 3.2). Specifically, we treat the first three users as new users
and the remaining six as known users for model training. Detailed user information is provided in Appendix
A.3. To ensure consistent evaluation standards, we append the same auxiliary dataset to the test sets of all
baseline methods. The final results are presented in Table 6.

Multi-cost-efficiency Simulation Strategy. Under the multi-cost-efficiency simulation strategy, the
router makes trade-offs between performance and cost to achieve the best reward score without access
to explicit user preferences. As shown in Table 6, PersonalizedRouter (few-shot) achieves 69.30% of the
performance of the best baseline. Moreover, despite a limited few-shot interaction data from new users,
PersonalizedRouter (few-shot) achieves 71.30% of PersonalizedRouter (trained), which demonstrates the
strong generalization ability of our framework to new users.

LLM-as-a-Judge Strategy. Under the LLM-as-a-Judge strategy with an auxiliary dataset, the method
demonstrates strong performance on new users. PersonalizedRouter (few-shot) improves 6.46% performance
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over the best-performing baseline and achieves 96.01% of its trained model, which demonstrates the scalability
and efficiency of our framework in handling new users with few-shot supervision.

Table 6: Comparison between different methods under simulation strategies in the new user
experimental setting. The Improvement is measured relative to the best baseline. The best result for
each routing method is highlighted in bold and the second best result is highlighted with an underline.

Scenario Multi-cost-efficiency Simulation Scenario LLM-as-a-Judge

Method Reward Improvement (%) Method Accuracy Improvement (%)

HybridLLM -0.142 -240.59 FrugalGPT 0.192 -34.69
FrugalGPT 0.044 -56.44 RouterDC 0.208 -29.25

Ours (Few-shots) 0.07 -30.69 HybridLLM 0.294 0.00
RouterDC 0.101 0.00 Ours (Few-shots) 0.313 6.46

Ours (Trained) 0.108 6.93 Ours (Trained) 0.326 10.88

Oracle 0.116 14.85 Oracle 1.000 240.14

5.4 Generalization to New LLMs

To evaluate the generalization capability of PersonalizedRouter to new LLMs, we conduct experiments under
the new LLM experimental setting (Section 3.2). Similar to the generalization to new users’ settings, the
model is trained on data from the first 10 LLMs, while the remaining 5 LLMs are treated as an auxiliary
dataset for evaluation. Detailed information about the LLMs is provided in Appendix A.4. The final results
are presented in Table 7.

Multi-cost-efficiency Simulation Strategy. Under the multi-cost-efficiency simulation strategy, Per-
sonalizedRouter (few-shot) performs closely to the best baseline with a 7.80% gap. It also achieves 85.90%
of the performance of PersonalizedRouter (trained), demonstrating strong generalization capabilities.

LLM-as-a-Judge Strategy. Under the LLM-as-a-Judge strategy, PersonalizedRouter (few-shot) outper-
forms all baselines and achieves 85.90% of the performance of PersonalizedRouter (trained), demonstrating
that our model remains robust and effective when faced with new LLMs.

Table 7: Comparison between different methods under simulation strategies in the new user
experimental setting. The Improvement is measured relative to the best baseline. The best result for
each routing method is highlighted in bold and the second best result is highlighted with an underline.

Scenario Multi-cost-efficiency Simulation Scenario LLM-as-a-Judge

Method Reward Improvement (%) Method Accuracy Improvement (%)

HybridLLM 0.137 -37.16 FrugalGPT 0.038 -86.08
FrugalGPT 0.182 -16.51 RouterDC 0.199 -27.10

Ours (few-shot) 0.201 -7.80 HybridLLM 0.273 0.00
RouterDC 0.218 0.00 Ours (few-shot) 0.329 20.51

Ours (trained) 0.234 7.34 Ours (trained) 0.383 40.29

Oracle 0.371 70.18 Oracle 1.000 266.30

5.5 Ablation Studies

The impact of GNN depth on PersonalizedRouter’s prediction performance. Under two simu-
lation strategies, we further explore the impact of the GNN layer on prediction performance. As shown in
Figure 2a and 2b, we evaluate models with GNN layers ranging from 0 to 5. The results show that prediction
performance improves with increasing GNN layers, peaking at 2 or 3 layers, but begins to decline as the
GNN becomes deeper. We believe that GNN helps aggregate information across different types of data, but
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excessive depth leads to over-smoothing, where node representations become increasingly similar, ultimately
degrading the model’s predictive performance.
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(a) Reward of different numbers of GNN layers under
the multi-cost-efficiency simulation strategy.
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(b) Accuracy of different numbers of GNN layers un-
der the LLM-as-a-Judge strategy.

Figure 2: Comparison of reward and accuracy under different GNN layer counts using two
simulation strategies.

6 Conclusion

In this paper, we propose PersonalizedRouter, a graph-based inductive framework designed for multi-user
scenarios. Existing LLM selection methods overlook the scenario of different users, where the routing system
cannot directly access user profiles, posing a challenge in predicting the best LLM for each user. To address
the limitation, we extract various types of nodes from user data and use GNN to capture user latent prefer-
ences for effective prediction. Specifically, we model the LLM selection problem as a link prediction task, in
which GNN predicts the probability scores of edges between queries and each candidate LLM. Furthermore,
to evaluate the adaptation ability of LLM selection methods to diverse users, we introduce two simulation
strategies for generating user interaction data. The multi-cost-efficiency simulation strategy aims to evaluate
the trade-off between performance and cost, and the LLM-as-a-Judge strategy utilizes an additional LLM
guided by diverse system prompts to select the best answer. Based on the interaction data generated by the
two simulation strategies, we conducted experiments with several baselines. The results demonstrate that
our framework outperforms the other competitive baselines, confirming its strong capabilities in multi-user
scenarios. To further assess the ability to generalize to new users, we introduce a new user experimental
setting, in which new user interaction data are introduced during the testing phase. The experimental results
further demonstrate that PersonalizedRouter outperforms other competitive baselines, providing additional
evidence of the strong generalization capabilities. With the explosive emergence of various LLMs, perfor-
mance is no longer the only factor to consider. Therefore, the customized LLM selection based on individual
preference has become an important and practical research topic. We hope this paper will facilitate more
user-centric LLM routing research.

7 Limitations

This paper proposes two simulation strategies to evaluate whether LLM selection methods can be generalized
to new users. However, in real-world applications, user behavior is often more complex, potentially involving
a mixture of preferences and evolving over time. We will focus on exploring more sophisticated ways to
represent and learn dynamic and diverse user preferences.
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A Appendix

A.1 Weight pairs of calculating reward metric

Under the multi-cost-efficiency simulation strategy, we define nine pairs of α and β weights to simulate
users, ranging from performance-oriented individuals to those with strong cost constraints. The specific
weight pairs are presented in Table 8. The small-scale setting involves users 1–9, while the large-scale setting
includes users 1–15.
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Table 8: Overview of the weight pairs for simulated users.

User Value of α Value of β

User 1 0.2 0.8
User 2 0.3 0.7
User 3 0.4 0.6
User 4 0.5 0.5
User 5 0.6 0.4
User 6 0.7 0.3
User 7 0.8 0.2
User 8 0.9 0.1
User 9 1.0 0.0
User 10 0.45 0.55
User 11 0.55 0.45
User 12 0.65 0.35
User 13 0.75 0.25
User 14 0.85 0.15
User 15 0.95 0.05

A.2 Instruction Prompts for LLM to judge the best answer

To instruct the LLM judge to select the response that best aligns with the system prompt, we design the
following prompt, following (Sun et al., 2025), as shown in Table 9.

Table 9: The instruction prompt for LLM judge with system prompt to select the best answer
generated by candidate LLMs.

Instruction Prompt for Selection

Given the Query and m answers, you need to select the best answer that you are most satisfied with.
Ensure that the order of the responses does not influence your decision.
Do not let the length of the responses impact your evaluation.
The system’s input is in this format:
[User Query]
{query}
[The Start of Answer 1]
{answer_1}
[The End of Answer 1]
...
[The Start of Answer {m}]
{answer_{m}}
[The End of Answer {m}]
Your response can only include the answer number, ranging from 1 to {m}, no anything else.

A.3 System Prompts for the Simulated User Profiles

Under the LLM-as-a-Judge strategy, we utilize an additional LLM as a judge to simulate diverse user groups
with different preferences through system prompts. The detailed descriptions of the system prompts are
presented in Table 10. The small-scale setting involves users 1–9, while the large-scale setting includes users
1–15.
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Table 10: The system prompt settings for simulated user profiles.

User Profile System Prompt

User 1: Person full of sensibility You are a person full of sensibility, and you tend to choose answers
that are natural, warm, and relatable rather than overly formal or
calm expressions.

User 2: Inquisitive young person You are an inquisitive young person, and you prefer answers that are
creative and light-hearted with humor.

User 3: Math enthusiast You are a math enthusiast, and you tend to choose answers that are
clearly explained, step-by-step, and have a logical process.

User 4: Engineer You are an engineer who prefers answers that are simple and direct,
especially those that lead to conclusions through practical calculations
and formulae.

User 5: Student You are a student, and you prefer answers that contain detailed expla-
nations and help you understand the concepts.

User 6: Information retrieval specialist You are an information retrieval specialist, and you tend to choose
answers that answer the question precisely and where the answer is
highly relevant to the context.

User 7: News editor You are a news editor who prefers summaries that contain all the
important information, are logical, and are concise.

User 8: Literature enthusiast You are a literature enthusiast who tends to prefer answers that are
eloquent, rhetorically rich, and capable of conveying deep emotions.

User 9: Expert in childhood education You are an expert in early childhood education, who prefers explana-
tions that use simple language, are vivid and engaging, easy to under-
stand, and inspiring.

User 10: Legal expert You are a legal expert who values clarity, objectivity, and well-
structured arguments. You prefer answers that are precise in language,
logically sound, and avoid emotional bias.

User 11: Visual artist You are a visual artist, and you tend to favor answers that use vivid
imagery, metaphorical language, and evoke strong sensory impressions.

User 12: Executive You are a busy executive who appreciates answers that are concise,
actionable, and get straight to the point without unnecessary elabora-
tion.

User 13: Philosopher You are a philosopher who prefers answers that are thoughtful, nu-
anced, and show a deep consideration of multiple perspectives.

User 14: Healthcare professional You are a healthcare professional who values answers that are accurate,
empathetic, and focused on practical well-being.

User 15: Online content creator You are an online content creator who favors responses that are catchy,
emotionally engaging, and easy to share.

A.4 Descriptions for Task Datasets and LLMs

To enhance the expressiveness of the initial node embeddings, we use GPT-4o to generate textual descriptions
for task datasets and LLMs. These descriptions are then encoded into embedding vectors using a BERT
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model, which are used to initialize the GNN. Detailed descriptions are provided in Table 11, Table 12 and
Table 13.

Table 11: The descriptions of task datasets.

Task dataset Description

Alpaca The Alpaca dataset is designed for instruction-following tasks, where the model
is required to generate coherent and contextually appropriate responses to given
instructions or prompts. It focuses on understanding diverse user requests and
providing informative and accurate outputs based on those instructions.

GSM8K The GSM8K dataset is tailored for mathematical problem-solving tasks. It con-
sists of natural language math problems that require the model to comprehend
the problem statement, apply the correct mathematical operations, and provide
the solution. The primary challenge lies in both parsing complex language and
performing accurate calculations.

SQUAD The SQuAD dataset is focused on question-answering tasks, where the model is
given a passage of text and needs to extract or generate a precise answer to a ques-
tion based on the content of the passage. The dataset emphasizes comprehension,
retrieval of relevant information, and concise answer generation.

Multi-News The Multi-News dataset is aimed at text summarization tasks. It contains mul-
tiple news articles on the same topic, and the model’s objective is to generate
a concise and comprehensive summary that integrates information from all the
articles. The challenge is to distill key points while maintaining coherence and
avoiding redundancy.
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Table 12: The descriptions of LLMs (Part 1).

LLM Description

LLaMA-3 (8b) This is a relatively small-sized model (8 billion parameters) designed for general-
purpose language tasks. Its low cost per million tokens (0.2) makes it an affordable
option for many applications requiring quick responses with moderate accuracy.

Mixtral-8x7B With a combined size of 56 billion parameters, this model aims to provide stronger
language modeling capabilities. Its cost per million tokens is 0.6, reflecting its
balance between performance and affordability for more complex tasks.

NousResearch A mid-sized model with 34 billion parameters, suitable for handling moderately
complex language tasks. Its cost is higher at 0.8 per million tokens, indicating a
greater computational demand, likely due to its enhanced capabilities over smaller
models.

Ministral-8b A highly efficient model with 8 billion parameters, tailored for fast performance
and optimized cost-effectiveness. With a cost of just 0.2 per million tokens, it
delivers rapid processing while maintaining exceptional value for resource usage.

Mistral-7b With 7 billion parameters, Mistral-7b is optimized for lightweight tasks, balancing
speed and efficiency. Its cost per million tokens is 0.2, making it cost-effective for
standard use cases without the need for complex computations.

LLaMA-3.1 (8b) A variant optimized for speed and efficiency with 8 billion parameters. Its cost per
million tokens is only 0.2, suggesting that it is designed to handle tasks quickly
while being highly cost-effective.

LLaMA-3 (70b) This model, at 70 billion parameters, is tailored for high performance with an
emphasis on efficiency. The cost is 0.9 per million tokens, reflecting its advanced
capabilities for a broad range of tasks requiring more computation.

LLaMA-3.1 (70b) Large model with 70 billion parameters, likely to offer strong capabilities for var-
ious language tasks. Its cost is also 0.9 per million tokens, suggesting similar
performance and computational needs as other 70b models.

Qwen-2 (72b) With 72 billion parameters, Qwen-2 is among the largest models in the list, de-
signed for high-complexity tasks. Its cost per million tokens is 0.9, making it
comparable to other high-performance models in terms of both capability and ex-
pense.

Qwen-2.5 7b Qwen-2.5-7B features 7 billion parameters and is fine-tuned for instruction-
following, dialogue, and task completion. It performs well in interactive settings,
making it suitable for a wide range of practical applications.

Gemma-3 27B Gemma-3-27B, with 27 billion parameters, is fine-tuned for instruction and dia-
logue tasks. It combines strong reasoning ability with fluent generation, making
it well-suited for advanced interactive applications.

Gemma-3 12B Gemma-3-12B has 12 billion parameters and is optimized for instruction-following
and conversational tasks. It offers a balance between capability and efficiency,
suitable for a wide range of interactive use cases.

LLaMA 4 Scout LLaMA 4 Scout is a lightweight variant in the LLaMA 4 series, optimized for
speed and efficiency. It delivers responsive performance in everyday tasks, making
it well-suited for real-time dialogue and low-latency applications

phi-4 Phi-4 is a 14-billion-parameter model focused on high-quality reasoning and lan-
guage understanding. Built with a compact training dataset, it emphasizes align-
ment, factuality, and efficient task completion in instruction-driven scenarios.
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Table 13: The descriptions of LLMs (Part 2).

LLM Description

Mistral Small 3.2 24B Mistral Small 3.2 24B is a 24-billion-parameter model built for balanced perfor-
mance and versatility. It handles a wide range of tasks with strong reasoning and
generation capabilities, while maintaining efficiency across general and instruction-
based applications.

LLaMA-2 (7b) A compact model at 7 billion parameters, it offers similar capabilities and pricing
to LLaMA-3 (7b) at a cost of 0.2 per million tokens. It’s an efficient choice for
tasks requiring decent performance without high computational costs.

LLaMA-3-Turbo (8b) A variant optimized for speed and efficiency with 8 billion parameters. Its cost per
million tokens is only 0.2, suggesting that it is designed to handle tasks quickly
while being highly cost-effective.

LLaMA-3-Turbo (70b) This model, at 70 billion parameters, is tailored for high performance with an
emphasis on efficiency. The cost is 0.9 per million tokens, reflecting its advanced
capabilities for a broad range of tasks requiring more computation.

LLaMA-3.1-Turbo (70b) Large model with 70 billion parameters, likely to offer strong capabilities for var-
ious language tasks. Its cost is also 0.9 per million tokens, suggesting similar
performance and computational needs as other 70b models.

Qwen-1.5 (72b) With 72 billion parameters, Qwen-1.5 is among the largest models in the list,
designed for high-complexity tasks. Its cost per million tokens is 0.9, making it
comparable to other high-performance models in terms of both capability and
expense.

LLaMA-2 (70b) A larger variant of LLaMA-2, this model has 70 billion parameters, providing ad-
vanced capabilities for complex tasks. Its cost per million tokens is 0.9, indicating
its higher computational demand and enhanced performance.

LLaMA-3.1 (8b) A variant optimized for speed and efficiency with 8 billion parameters. Its cost per
million tokens is only 0.2, suggesting that it is designed to handle tasks quickly
while being highly cost-effective.

A.5 Candidate LLMs

In our experiments, we accessed the candidate LLMs via the Together API and OpenRouter API. Detailed
information is provided in Table 14 and Table 15. For the experiments in Sec 5.1 and Sec 5.3, we used the
candidate LLMs listed in Table 14. For the experiments in Sec 5.2 and Sec 5.4, we used the candidate LLMs
shown in Table 15.

It is worth noting that many companies and institutions are rapidly updating their LLMs. As new versions
are released, older LLM APIs often become deprecated or unavailable. As a result, we used different sets of
candidate LLMs across different experiments. Despite variations in the experimental settings due to changing
candidate LLMs, our model consistently demonstrates strong performance, highlighting the generalization
capability of PersonalizedRouter.
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Table 14: Statistics of candidate LLMs and their costs under two simulation strategies. The LLMs
on the left side are calling from Together AI, and the LLMs on the right side are calling from OpenRouter.

Scenario Multi-cost-efficiency Simulation Scenario LLM-as-a-Judge

LLM Size Cost per 1M tokens LLM Size Cost per 1M tokens

LLaMA-3 (7b) 7b 0.2 LLaMA-3 (8b) 8b 0.2
Mixtral-8x7B 56b 0.8 Mixtral-8x7B 56b 0.6
NousResearch 34b 0.6 NousResearch 34b 0.8
LLaMA-2 (7b) 7b 0.2 Mistral-8b 8b 0.2

Mistral-7b 7b 0.2 Mistral-7b 7b 0.2
LLaMA-3 (70b) 70b 0.9 LLaMA-2 (70b) 70b 0.9

LLaMA-3-Turbo (8b) 8b 0.2 LLaMA-3.1 (8b) 8b 0.2
LLaMA-3-Turbo (70b) 70b 0.9 LLaMA-3 (70b) 70b 0.9

LLaMA-3.1-Turbo (70b) 70b 0.9 LLaMA-3.1 (70b) 70b 0.9
Qwen-1.5 (72b) 72b 0.9 Qwen-2 (72b) 72b 0.9

Table 15: Statistics of candidate LLMs and their costs under two simulation strategies.The LLMs
on the right side are calling from OpenRouter.

LLM Size Cost per 1M tokens

LLaMA-3-8b-instruct 8b 0.2
Mixtral-8x7B 56b 0.8

Nous-Hermes-2-Mixtral 34b 0.6
Mistral-8b 8b 0.2
Mistral-7B 7b 0.2

LLaMA-3.1-8b-instruct 8b 0.2
LLaMA-3-70b-instruct 70b 0.9

LLaMA-3.1-70b-instruct 70b 0.9
Qwen-2-72b-instruct 72b 0.9
Qwen-2.5-7b-instruct 7b 0.2

Gemma 3 27B 27b 0.6
Gemma 3 12B 12b 0.4

LLaMA 4 Scout 17b 0.4
phi-4 14b 0.4

Mistral Small 3.2 24B 24b 0.4
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