
Published as a conference paper at ICLR 2025

TOP-ERL: TRANSFORMER-BASED OFF-POLICY
EPISODIC REINFORCEMENT LEARNING

Ge Li∗ Dong Tian Hongyi Zhou Xinkai Jiang
Rudolf Lioutikov Gerhard Neumann
Karlsruhe Institute of Technology, Germany

ABSTRACT

This work introduces Transformer-based Off-Policy Episodic Reinforcement
Learning (TOP-ERL), a novel algorithm that enables off-policy updates in an ERL
framework. In ERL, policies predict entire action trajectories over multiple time
steps instead of single per-step actions. These trajectories are typically parame-
terized by trajectory generators such as Movement Primitives (MP), allowing for
smooth and efficient exploration over long horizons while capturing temporal cor-
relations. However, ERL methods are often constrained to on-policy frameworks
due to the difficulty of evaluating state-action values for action sequences, limiting
their sample efficiency and preventing the use of more efficient off-policy architec-
tures. TOP-ERL addresses this shortcoming by segmenting long action sequences
and estimating the state-action values for each segment using a transformer-based
critic architecture alongside an n-step return estimation. These contributions result
in efficient and stable training that is reflected in the empirical results conducted on
sophisticated robot learning environments. TOP-ERL significantly outperforms
state-of-the-art RL methods. Thorough ablation studies additionally show the im-
pact of key design choices on the model performance. Our code is available here.

1 INTRODUCTION

This work proposes a novel off-policy Reinforcement Learning (RL) algorithm that utilizes a trans-
former architecture for predicting the values for action sequences. These returns are effectively used
to update the policy that predicts a smooth trajectory instead of a single action in each decision step.
Predicting a whole trajectory of actions is commonly done in episodic RL (ERL) (Kober & Peters,
2008) and differs conceptually from conventional step-based RL (SRL) methods like SAC (Haarnoja
et al., 2018a) where an action is sampled in each time step. The action selection concept in ERL is
promising as shown in recent works in RL (Otto et al., 2022; Li et al., 2024). Similar insights have
been made in the field of Imitation Learning, where predicting action sequences instead of single ac-
tions has led to great success (Zhao et al., 2023; Reuss et al., 2024). Additionally, decision-making
in ERL aligns with the human’s decision-making strategy, where the human generally does not de-
cide in each single time step but rather performs a whole sequence of actions to complete a task –
for instance, swinging an arm to play tennis without overthinking each per-step movement.

Episodic RL is a distinct family of RL that emphasizes the maximization of returns over entire
episodes, rather than optimizing the intermediate states during environment interactions (Whitley
et al., 1993; Igel, 2003; Peters & Schaal, 2008). Unlike SRL, ERL shifts the solution search from
per-step actions to a parameterized trajectory space, leveraging techniques like Movement Primitives
(MPs) (Schaal, 2006; Paraschos et al., 2013) for generating action sequences. This approach enables
a broader exploration horizon (Kober & Peters, 2008), captures temporal and degrees of freedom
(DoF) correlations (Li et al., 2024), and ensures smooth transitions between re-planning phases (Otto
et al., 2023). Recent advances have integrated ERL with deep learning architectures, demonstrating
significant potential in areas such as versatile skill acquisition (Celik et al., 2024) and safe robot
reinforcement learning (Kicki et al., 2024). However, despite their advantages, ERL methods often
suffer from low update efficiency. Nearly all ERL approaches to date remain constrained to an

∗Accepted as a Spotlight at ICLR 2025. Email to <geli.bruce.ai@gmail.com, ge.li@kit.edu>

1

https://brucegeli.github.io/TOP_ERL_ICLR25/


Published as a conference paper at ICLR 2025

on-policy training paradigm, limiting their ability to exploit more efficient off-policy update rules,
where an action-value function, or critic, is explicitly learned to guide policy updates and action
selection. The primary challenge is that prominent off-policy methods, such as SAC (Haarnoja
et al., 2018a), rely on temporal difference (TD) error (Sutton, 1988) to update the critic, which
implicitly assumes that actions are selected based on each perceived state, rather than a sequence of
actions predicted at the start of the episode, as in ERL approaches. In this paper, we address this
limitation by predicting the N-step return (Sutton & Barto, 2018) for a sequence of actions using a
Transformer architecture, enabling the learning of sequence values within an off-policy framework.

Transformer in RL. Over the past few years, the Transformer architecture (Vaswani, 2017) has
emerged as one of the most powerful models for sequence data. It has been been integrated into RL
across various domains, capitalizing on their strengths in sequence pattern recognition from static
datasets and functioning as a memory-based architecture, which aids in task understanding and credit
assignment. Applications of Transformers in RL include offline RL (Chebotar et al., 2023; Yamagata
et al., 2023; Wu et al., 2024), offline-to-online fine-tuning (Zheng et al., 2022; Ma & Li, 2024; Zhang
et al., 2023), handling partially observable states (Parisotto et al., 2020; Ni et al., 2024; Lu et al.,
2024), and model-based RL (Lin et al., 2023). However, the use of Transformers within a model-free
online RL framework, specifically for sequence action prediction and evaluation, remains largely
unexplored (Yuan et al., 2024). This is noteworthy, as similar techniques, such as action chunking
(Bharadhwaj et al., 2024), have already proven successful in other domains like imitation learning.

In this paper, we propose Transformer-based Off-Policy ERL (TOP-ERL), which leverages the
Transformer as a critic to predict the value of action sequences. Given a trajectory from ERL, we
split it into smaller segments and input them into the Transformer for value prediction. We adapt
off-policy update rules for action sequences, using the N-step TD error for critic updates. The
policy then selects action sequences based on the preferences of the Transformer critic, similar to
SAC. Compared to existing ERL and SRL methods, we show that TOP-ERL improves both policy
quality and sample efficiency, outperforming them in several simulated robot manipulation tasks.
Our contributions are: (a) A novel off-policy RL method that integrates the Transformer as a critic
for action sequences in a model-free, online RL framework. (b) The use of N-step return as the
learning objective for the Transformer critic. (c) Comprehensive evaluation on simulated robotic
manipulation tasks, demonstrating superior performance against baselines. (d) Analysis of different
critic update rules, design choices, and the impact of segment length on model performance.

2 RELATED WORKS

Episodic RL. The study of ERL approaches dates back to the 1990s. Early approaches employed
black-box optimization techniques to update parameters of policies, such as small MLPs (Whitley
et al., 1993; Igel, 2003; Gomez et al., 2008). Due to the substantial data requirements of black-box
algorithms and the limited computational resources available at the time, these approaches were
constrained to low-dimensional tasks like Pendulum and Cart Pole. Subsequent works (Salimans
et al., 2017; Mania et al., 2018) demonstrated that, given sufficient computational resources, ERL
methods can also achieve comparable performance to step-based RL on challenge locomotion tasks,
such as Ant and Humanoid, at the cost of more samples for convergence. Another line of research
in ERL focuses on more compact policy representations. Peters & Schaal (2008) first proposed
using movement primitives (MPs) as parameterized policies for ERL, reducing the search space
from the high-dimensional neural network parameter space to the MP weight space, which typically
ranges from 20 to 50 dimensions, resulting in less samples required for convergence. Using MPs as
policies also provides additional benefits, such as smooth trajectory generation and more consistent
exploration (Li et al., 2024). MP-based ERL approaches have demonstrated the ability to master
complex manipulation tasks such as robot baseball (Peters & Schaal, 2008) and juggling (Ploeger
et al., 2021). To further improve sample efficiency, Abdolmaleki et al. (2015) introduced a model-
based method to enable more sample-efficient black-box searching. However, these methods are
limited in handling tasks with contextual variations, e.g., changing goals. To address this limitation,
Abdolmaleki et al. (2017) and Celik et al. (2022) extend MP-based ERL by using linear policies
conditioned on context. Otto et al. (2022) enhanced contextual MPRL by employing neural network
policies and trust-region regularized policy update. Despite these advances, existing ERL methods
generally treat the episodic trajectory as a black box. While this approach allows them to handle
sparse and even non-Markovian rewards, ignoring the temporal structure within each episode leads

2



Published as a conference paper at ICLR 2025

to lower sample efficiency compared to step-based methods, especially in settings with dense re-
wards. To address this issue, a most recently proposed method, Temporally-Correlated ERL (TCE)
(Li et al., 2024) introduced a more efficient update scheme that ”opens the black-box” and utilizes
sub-segment information for policy update while retaining the benefit of episodic exploration. Al-
though TCE improves the sample efficiency of contextual ERL methods, it still relies on on-policy
policy gradient updates, which are considered sample-inefficient. To the best of our knowledge,
TOP-ERL is the first off-policy ERL algorithm capable of handling contextual tasks.

Transformers in model-free RL. Inspired by the success of Transformers in domains requir-
ing sequence reasoning, the study incorporating Transformers in RL to solve tasks that require
long-horizon memory emerged. However, using standard Transformers in RL could results in
performance comparable to random policy (Parisotto et al., 2020). To address this issue, Gated
Transformer-XL(GTrXL) (Parisotto et al., 2020) augmented Transformer-XL with GRU-style gat-
ing layers between multi-head self-attention layers, stabilizing the training of deep Transformer
networks (up to 12 layers) with online RL. Another research line focuses on utilizing Transformers
to enhance offline RL, where the learning process is based on a fixed dataset collected by arbitrary
behavior policies. Decision Transformers (Chen et al., 2021) were the first to formulate offline RL
as a sequence modeling problem. Subsequent works extended this approach by incorporating dy-
namic history length adjustment (Wu et al., 2024), Q-learning (Yamagata et al., 2023), and replacing
the Transformer with a more efficient state-space model (Ota, 2024). Online Decision Transform-
ers (Zheng et al., 2022) further advanced Decision Transformer by introducing online fine-tuning.
In contrast to these studies, which primarily focus on offline RL or fine-tuning pre-trained models,
TOP-ERL is designed for online RL and does not rely on offline training. Additionally, TOP-ERL
is not designed to solve tasks that require long-horizon memory. Instead, it focuses on using a
Transformer-based critic to improve multi-step TD learning within the ERL framework.

3 PRELIMINARIES

3.1 OFF-POLICY REINFORCEMENT LEARNING

Markov decision process (MDP). RL learns policies that maximize cumulative rewards in a given
environment, modeled as an MDP. Formally, we consider an MDP defined by a tuple (S,A, P, r, γ),
where both state S and action spaces A are continuous. Here, P (s′|s, a) denotes the state transition
probability, r(s, a) is the reward function, and γ ∈ [0, 1] is the discount factor. The goal of RL is
to find a policy π(a|s) that maximizes the expected return, which is the sum of discounted future
rewards as Gt(st, at) =

∑∞
i=0 γ

irt+i.

In off-policy RL, the agent learns a policy π(a|s) using data generated by a different behavior policy
πb(a|s). This enables off-policy methods to reuse past experiences, significantly improving sample
efficiency against on-policy methods. A common approach in off-policy RL is to use a critic, which
estimates the action-value function Qπ(s, a) and is updated using a temporal difference (TD) error

Qπ(s, a) = Eπ [Gt | st = s, at = a] , δt = rt + γQπ(st+1, at+1)−Qπ(st, at), (1)
where the TD error δt estimates the difference between the current Q-value and the target Q-value.
While the above single-step TD error is useful, it can suffer from high bias and slow convergence,
especially in environments with delayed rewards. To address this, N-step returns (Sutton, 1988) are
often used to provide a better balance between bias and variance.

The N-step return extends the single-step TD return by incorporating multiple future time-steps
into the target. Unlike bootstrapping after a single time step, the N-step return accumulates rewards
over N steps before using the current value estimate for bootstrapping. These estimates are typically
less biased than the 1-step return, but also contain more variance. In off-policy settings, the N-step
return typically involves importance sampling (Sutton & Barto, 2018), as the selection of the future
action path used to accumulate rewards differs from the current policy π(a|s), seen as:

G
(N)
t (st, at) =

N−1∑
i=0

 i∏
j=0

ρt+j

 γirt+i +

N−1∏
j=0

ρt+j

 γNQπ(st+N , at+N ), (2)

where ρt =
π(at|st)
πb(at|st) is the importance sampling ratio, ensuring that updates remain unbiased even

when using trajectories generated by a different policy.

3



Published as a conference paper at ICLR 2025

Despite this mathematical correction, applying N-step returns in off-policy learning can face dif-
ficulties, particularly for long sequences. The product of importance ratios can become highly
volatile, leading to either exploding or vanishing values over extended trajectories, which in turn
can cause high variance in the value estimates and destabilize the learning process. In TOP-ERL,
however, we employ N-step return for computing the target value of a sequence of actions, i. e.
G

(N)
t (st, at, at+1, ..., at+N ), where N-step actions are determined in a sequence read from the re-

play buffer, rather than sampled from the policy. Therefore, the resulting formulation does not
contain the importance weights. We will further discuss the details in Sec. 4.3.

3.2 EPISODIC REINFORCEMENT LEARNING (ERL)

Episodic RL (Whitley et al., 1993; Kober & Peters, 2008) focuses on predicting an entire sequence
of actions to complete a task, optimizing the cumulative return without explicitly considering de-
tailed state transitions within the episode. Typically, ERL methods utilize a parameterized trajectory
generator, such as motion primitives (MP) (Schaal, 2006; Paraschos et al., 2013), which predicts a
trajectory parameter vector w. This vector is then mapped to a full action trajectory a(w) = [at]t=0,
where T is the trajectory length. Here, at ∈ RD denotes the action at time step t, and D represents
the dimensionality of the action space, such as the degrees of freedom (DOF) in a robotic system.
In this framework, an intelligent agent—such as a robot—executes the predicted action sequence
directly as motor commands or follows the trajectory using a tracking controller.

Although ERL predicts an entire action trajectory, it still adheres to the Markov property, where
the state transition probability depends only on the current state and action (Sutton & Barto, 2018).
Thus, while the action sequence in ERL spans multiple time steps, the underlying process remains
consistent with the MDP formalism. This approach is conceptually related to techniques such as
action repeat (Braylan et al., 2015) and temporally correlated action selection (Raffin et al., 2022;
Eberhard et al., 2022), which also incorporate temporal dependencies into action selection.

Movement Primitives (MP), as parameterized trajectory generators, play a crucial role in ERL. We
briefly highlight key MP methodologies and their mathematical foundations used in this work, with
a more detailed discussion in Appendix B. Schaal (2006) introduced Dynamic Movement Primitives
(DMPs), which incorporates a forcing term into a dynamical system to generate smooth trajectories
from a given initial condition, such as a robot’s position and velocity at a particular time1.

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (3)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of the
system at time t, respectively. Constants α and β are spring-damper parameters, with g as the goal
attractor and τ as a time constant modulating the speed of trajectory execution. The functions φi(x)
represents the basis functions for the forcing term, and the trajectory’s shape is determined by the
weight parameters wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by nu-
merically integrating the dynamical system from the start to the end. Building on the same concepts,
Li et al. (2023) proposed Probabilistic Dynamic Movement Primitives (ProDMPs), which directly
uses the closed-form solution of Eq.(3). ProDMP employs a linear basis function representation to
directly map a parameter vector w to its corresponding trajectory [yt]t=0:T :

y(t) = Φ(t)⊺w + c1y1(t) + c2y2(t). (4)

Here, the terms c1y1(t) + c2y2(t) ensure precise trajectory initialization, with the constants c1, c2
calculated based on the initial condition yb, ẏb at time tb. The term Φ(t) denotes the integral form
of the basis functions φ used in the Eq.(3). Unlike DMP, ProDMP benefits from the closed-form
solution of the dynamic system, enabling faster computation and probabilistic modeling without the
burden for numerical integration. This allows for flexible trajectory generation and precise initial
condition enforcement. In TOP-ERL, we leverage ProDMP’s fast initial condition enforcement to
compute accurate target values for the Transformer critic, thereby reducing bias in policy learning.

ERL Learning Objectives. A key distinction between ERL and step-based RL (SRL) lies in the
action space. ERL shifts the solution search from the per-step action space A to a parameterized

1An initial condition in mathematics refers to the value of a function or its derivatives at a starting point,
which can be specified at any time and is not necessarily at t = 0.

4



Published as a conference paper at ICLR 2025

trajectory space W , predicting the trajectory parameters as π(w|s). As a result, a trajectory param-
eterized by w is treated as a single data point in W . This often leads ERL to employ black-box
optimization methods for trajectory optimization (Salimans et al., 2017). The learning objective in
ERL is often formulated using an importance sampling ratio, such as in BBRL (Otto et al., 2022)

Update using trajectory parameter: J = Eπold(w|s)

[
πnew(w|s)
πold(w|s)

Gπold(s,w)

]
, (5)

where π represents the policy parameterized by θ, typically using a neural network. The terms
new and old refer to the current policy being optimized and the policy used for data collection,
respectively. The initial state s ∈ S defines the starting configuration and objective of the task,
serving as input to the policy. The policy πθ(w|s) determines the likelihood of selecting trajectory
parameters w. The term Gπold(s,w) =

∑T
t=0 γ

trt represents the return accumulated by executing
the trajectory under an old policy, where γ is the discount factor and rt is the reward at time step t. By
leveraging parameterized trajectory generators like MPs, ERL benefits from consistent exploration,
smooth action trajectories, and improved robustness against local optima, as highlighted by Otto
et al. (2022). To further enhance learning efficiency, recent work TCE (Li et al., 2024) proposes a
hybrid update strategy that decomposes the trajectory parameter-wise update into the segment-wise
updates, incorporating per-step information into ERL’s learning objective. This approach divides
the longer action trajectory into smaller segments, calculating the return of each segment. The new
learning objective adapts Eq.(5), with the maximization of segment-wise returns as

Update using segments: J = Eπold(w|s)

[
1

K

K∑
k=1

pπnew([ak
t ]t=0:L|s)

pπold([ak
t ]t=0:L|s)

Gπold(sk0 , [a
k
t ]t=0:L)

]
, (6)

where K and L represent the number and length of the trajectory segments, respectively, with K =
25 in the original paper and k = 1, ...,K denotes the segment index. In this expression, pπ denotes
the likelihood of reproducing the segment, calculated using the parameterized policy πθ(w|s), and
G(sk0 , [a

k
t ]t=0:L) represents the return of executing the k-th action sequence segment [ak

t ]t=0:L from
the segment’s starting state sk0 . It is worth noting, despite the usage of importance sampling, both
Eq. (5) and Eq. (6) still remain within the on-policy RL framework. In TOP-ERL, we employ a
similar strategy in splitting a long action trajectory into smaller segments, and use these segments
for efficient critic and policy updates, under an off-policy framework.

4 TRANSFORMER-BASED OFF-POLICY ERL

Figure 1: Trajectory genera-
tion and environment rollout.

In this section, we present TOP-ERL, an innovative off-policy so-
lution for ERL that leverages a Transformer for action sequence
evaluation. The section is structured as follows: Section 4.1 in-
troduces the Gaussian policy modeling and action trajectory gen-
eration, followed by the design of the transformer critic in Section
4.2. The learning objectives for the critic and policy are detailed in
Section 4.3 and Section 4.4, respectively, with additional technical
details. Lastly, we summarize other design choices in Section 4.5.
The main contributions of our model are described from Section
4.2 to Section 4.4, while the remaining sections cover techniques
adopted from the literature.

4.1 TRAJECTORY GENERATION: TECHNIQUES ADOPTED FROM ERL LITERATURE

TOP-ERL adopts a policy structure similar to previous ERL approaches, such as BBRL (Otto
et al., 2022). As shown in Fig. 1, our policy is modeled as a Gaussian distribution, πθ(w|s) =
N (w|µw,Σw), where s defines the initial observation and the task objective, and w represents the
parameters of the movement primitive (MPs). In TOP-ERL, we employ ProDMPs (Li et al., 2023) to
help correct the target computation via enforcing the initial condition of the MP, as discussed later in
Section 4.3.1. Given an initial task state s, the policy predicts the Gaussian parameters and samples
a parameter vector w∗. This vector is then passed into the movement primitive to generate the action
trajectory [at]t=0:T . The agent then executes the action trajectory in the environment until the end
of the episode. During the rollout, both the state trajectory and the reward trajectory are recorded.
These, along with the action trajectory, are subsequently stored in the replay buffer B for later use.

5



Published as a conference paper at ICLR 2025

Figure 2: Architecture overview of the Transformer critic, as described in Sec. 4.2.

4.2 TRANSFORMERS AS VALUE PREDICTOR FOR ACTION SEQUENCES

An architectural overview of our Transformer critic is depicted in Fig. 2. At each iteration, we
sample a batch B of trajectories from the replay buffer and split each trajectory into K segments,
where each segment is L time steps long. An ablation on how to select the segment length L can be
found in Sec. 5.3. The transformer-based critic has L+ 1 input tokens that are given by each action
in the segment [ak

t ]t=0:L−1 and the starting state sk0 of the corresponding segment. These tokens are
first processed by corresponding state and action encoders, each modeled by a single linear layer.
Positional information is added to the processed tokens through a trainable positional encoding, with
sk0 and the first action token ak

0 sharing the same positional encoding (both at t = 0). The tokens
are subsequently fed into a decoder-only Transformer, followed by a linear output layer, producing
L + 1 output tokens. The first output represents the state value V (sk0) for the starting state, while
the remaining outputs correspond to the state-action values for the subsequent action sequence. For
example, Q(sk0 ,a

k
0 ,a

k
1 ,a

k
2) represents the value of executing the actions ak

0 ,a
k
1 ,a

k
2 sequentially

from the starting state sk0 and subsequently following policy π. A causal mask is applied in the
Transformer to ensure that actions do not attend to future steps.

4.3 N-STEP RETURNS AS THE TARGET FOR TRANSFORMER CRITIC

For each predicted state-action value Q(s0,a
k
0 , ...,a

k
N−1) we utilize the N-step return as its target.

The objective to update the parameters ϕ of the critic is the N-step squared TD error2

Critic loss: L(ϕ) = 1

L

L−1∑
N=1

Qϕ(s
k
0 ,a

k
0 , ...,a

k
N−1)︸ ︷︷ ︸

Predicted value of N actions

−G(N)(sk0 ,a
k
0 , ...,a

k
N−1)︸ ︷︷ ︸

Target using N-step return


2

+

 Vϕ(s
k
0)︸ ︷︷ ︸

Predicted state value

− Ew̃∼πθ(·|s)[Qϕtar(s
k
0 , ã

k
0 , ..., ã

k
L−1)︸ ︷︷ ︸

Target of new actions using w̃

]


2

, (7)

N-step return: G(N)(sk0 ,a
k
0 , ...,a

k
N−1) =

N−1∑
i=0

γiri︸ ︷︷ ︸
N-step rewards

+ γNVϕtar(sN ).︸ ︷︷ ︸
Future return after N-step

(8)

Here, N ∈ [1, L − 1] represents the number of actions in a sub-sequence starting from sk0 . The
term Qϕtar(s

k
0 , ã

k
0 , ..., ã

k
L−1) in Eq.(7) denotes the target value of Vϕ(s

k
0) with actions ãk

0 , ..., ã
k
L−1

generated by new MP parameters w̃ sampled from the current policy, w̃ ∼ πθ(· |s). The term
Vϕtar(sN ) in Eq.(8) represents the future return after N steps. Both Qϕtar and Vϕtar are predicted by
a target critic (Mnih et al., 2015), with a delayed update rate ρ = 0.005. Please note that Qϕtar and
Vϕtar are the same transformer network, with and without action tokens.

2For simplicity, we omit the expectation over buffer B and average over segment number K in Eq.(7).

6



Published as a conference paper at ICLR 2025

In off-policy RL literature, there are several alternatives to replace Vϕtar(sN ) in Eq.(8). However,
we find that this choice alone performs well in our experiments. In other words, TOP-ERL does not
necessarily rely on some common off-policy techniques, such as the clipped double-Q (Fujimoto
et al., 2018), to be stable and effective. We attribute this to the usage of the N-step returns, which
help reduce value estimation bias. In Sec. 5.3, we show that our model can be further improved
using these augmentations, though at a cost of additional computation.

Unlike Eq.(2), our N-step return targets G(N)(sk0 ,a
k
0 , . . . ,a

k
N−1) in Eq.(8) do not include impor-

tance sampling as the the action sequence ak
0 , . . . ,a

k
N−1 is directly used as input tokens for the

Q-function. Hence, the actions are fixed and we do not require to compute any expectations over
the current policy’s action selection. Hence, using the fixed action sequence in Eq.(8) as input to the
Q-Function eliminates the need for importance sampling, thus avoiding the high variance typically
introduced by it in off-policy methods, as discussed in Sec. 3.1.

4.3.1 ENFORCE INITIAL CONDITION FOR NEWLY PREDICTED ACTION SEQUENCE

Figure 3: Enforce action
initial condition

When calculating the target value Qϕtar(s
k
0 , ã

k
0 , ..., ã

k
L−1) in Eq.(7), a

new parameter vector is sampled from the current policy w̃ ∼ πθ( · |s),
generating a new action trajectory [ãt]t=0:T , with [ãk

t (w̃)]t=0:L−1 as a
sub-sequence. However, this sequence is not necessarily guaranteed to
pass through the segment’s starting state sk0 , which creates a mismatch
between the state and corresponding action sequence when querying the
target in Eq.(7). To address this issue, we append the old reference po-
sition to sk0 , and then leverage the dynamic system formulation inherent
in ProDMPs by setting the initial condition of the new action sequence
to match the old reference at sk0 , as illustrated in Fig. 3. The result-
ing action sequence [ãk

t (w̃, sk0)]t=0:L−1 is therefore depending on both
the MP parameters w̃θ(s) and the initial condition sk0 . This approach
is mathematically equivalent to resetting the initial conditions of an or-
dinary differential equation (ODE), ensuring consistency between the state and action sequences.
Further mathematical details and illustration are provided in Appendix B.3 and B.4.

4.4 POLICY UPDATES USING THE TRANSFORMER CRITIC

We utilize the transformer critic to guide the training of our policy, using the reparameterization trick
similar to that introduced by SAC (Haarnoja et al., 2018a). The learning objective is to maximize
the expected value of the averaged action sequence over varying lengths, defined as:

Policy Objective: J(θ) = Es∼BEw̃∼πθ(·|s)

[
1

KL

K∑
k=1

L−1∑
N=0

Qϕ(s
k
0 ,
[
ãk
t

]
t=0:N

)

]
, (9)

where [ãk
t ]t=0:N denotes the new action sequence generated by the new MP parameters w̃θ ∼

πθ(·|s). This learning objective allows the policy πθ(w|s) to be trained based on the value prefer-
ences provided by the Transformer critic. We refer Appendix A.1 for more detailed discussion.

4.5 ADDITIONAL DESIGN CHOICES FROM THE LITERATURE FOR STABLE LEARNING

We summarize the key learning steps in Algorithm1. To effectively capture a broader range of corre-
lations in both temporal and DoF movements, we utilize a full covariance matrix Σw in the Gaussian
policy (Li et al., 2024). Since the Gaussian policy over MP parameters is typically high-dimensional,
we employ the Trust Region Projection Layer (TRPL) (Otto et al., 2021) for stable policy updates,
following the design of previous ERL methods (Otto et al., 2022; Li et al., 2024). More discussions
are in Appendix A.2. For the Transformer critic, we apply Layer Normalization (Ba, 2016) as the
sole data normalization technique, while disabling dropout, as we found it detrimental to perfor-
mance. In our experiments, we identified the segment length L as a key hyperparameter. The best
results were achieved by randomly sampling L at each update iteration, which we attribute to the
Transformer critic’s ability to attend to different time horizons, resulting in more robust outcomes.

7



Published as a conference paper at ICLR 2025

TOP-ERL (ours) TCE BBRL PPO GTrXL(PPO) gSDE SAC PINK

0 0.5 1 1.5 2

0.4

0.6

0.8

1

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Metaworld Agg.
of 50 tasks

0 0.5 1 1.5 2 2.5 3 3.5

1.5

1.6

1.7

1.8

1.9

Environment Interactions (×106)

M
ax

Ju
m

p
H

ei
gh

t[
m

],
IQ

M

(b) Hopper Jump
Max Height

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(c) Box Pushing
Dense Reward

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(d) Box Pushing
Sparse Reward

Figure 4: Task Evaluation of (a) Metaworld success rate of 50 tasks aggregation. (b) Hopper Jump
Max Height. (c) Box Pushing success rate in dense reward, and (d) sparse reward settings.

5 EXPERIMENTS Algorithm 1 TOP-ERL
1: Initialize critic ϕ; target critic ϕtar ← ϕ
2: Initialize policy θ and replay buffer B
3: repeat
4: Reset environment and get initial task state s
5: Predict the policy mean µw and covariance Σw

6: Sample w∗ and generate action trajectory [a]0:T
7: Execute the action trajectory till task ends.
8: Store the visited states [s]0:T , rewards [r]0:T , and

the action [a]0:T trajectories in replay buffer B
9: for each update step do

10: From B, sample a batch of s,a, r trajectories.
11: Split them into K segments, each L time steps.
12: Compute N-step return targets as in Eq.(8)
13: Update transformer critic, using Eq.(7)
14: Update policy, using Eq.(9)
15: end for
16: Update target critic ϕtar ← (1− ρ) ϕtar + ρ ϕ
17: until converged

Our experiments focus on the following
questions: I) Can TOP-ERL improve sample
efficiency in classical ERL tasks featured by
challenging exploration problems? II) How
does TOP-ERL perform in large-scale, gen-
eral manipulation benchmarks? III) How do
key design choices affect the performance of
TOP-ERL? We compare TOP-ERL against a
set of strong baselines. For the ERL compar-
isons, we select BBRL and TCE as SoTA
ERL methods. For step-based RL, we use
PPO (Schulman et al., 2017) (on-policy)
and SAC (off-policy) as established base-
lines. Additionally, we employed gSDE and
PINK, two step-based RL methods that aug-
ment with consistent exploration techniques,
to test the impact of exploration strategies.
To assess the impact of using Transformer-based architectures in RL, we include GTrXL as base-
line for online RL with Transformers architecture. It is worth noting that in the original work,
GTrXL was trained using VMPO. However, since the original code was not open-sourced, we used
the implementation from Liang et al. (2018), where GTrXL is trained with PPO instead. For all
ERLs, the trajectories are generated using ProDMPs with the same hyperparameters and tracked
with PD-controllers (or P-controller for MetaWorlds); for all the SRLs, the action outputs are torque
(or delta position for MetaWorlds). An overview of the baselines can be find in Table 3, and details
regarding the implementation and hyperparameters are provided in the Appendix E.

The evaluation of TOP-ERL are structured in three phases. First, we demonstrated that TOP-ERL
significantly improve the sample efficiency over state-of-the-art ERL methods, showcasing its ability
to better handle the challenges of sparse rewards and difficult exploration scenarios (Li et al., 2024).
Next, we evaluate TOP-ERL on the Meta-World MT50 (Yu et al., 2020) benchmark, a large-scale
suite of general manipulation tasks. In this setting, TOP-ERL consistently outperform all baselines,
demonstrated TOP-ERL’s ability to generalize across a wide range of manipulation tasks. Finally,
we conduct a comprehensive ablation study to analysis which ingredient accounts for the strong
performance of TOP-ERL. The results confirm that theses components are essential to achieving the
strong performance observed with TOP-ERL. To ensure a robust evaluation, all empirical results
are reported using Interquartile Mean (IQM), accompanied by a 95% stratified bootstrap confidence
interval (Agarwal et al., 2021) across 8 random seeds.

5.1 IMPROVING SAMPLE EFFICIENCY IN TASKS WITH CHALLENGING EXPLORATION

ERL methods are renowned for their superior exploration abilities, which often give them an ad-
vantage over step-based methods in environments with exploration challenges. However, ERL al-

8



Published as a conference paper at ICLR 2025

gorithms are also notoriously sample inefficient, limiting their applicability in scenarios where ob-
taining samples is expensive. In this evaluation, we investigate whether TOP-ERL can address this
limitation by comparing it with baselines on three challenging tasks from Li et al. (2024): Hopper-
Jump, a sparse-reward environment where the objective is to maximize the jump height within an
episode, and two variants of a contact-rich Box Pushing task. We evaluate the Box Pushing task
under both dense and sparse reward settings. Further details about the environments and rewards
can be found in Appendix C. The results of these experiments, shown in Fig. 4, demonstrate that
TOP-ERL achieved the highest final performance across all three tasks. Notably, in the dense-reward
Box Pushing task, TOP-ERL reached an 80% success rate after just 10 million samples, while the
second-best method, TCE, only reaches 60% success after 50 million samples. Similar results is
observed in the sparse-reward Box Pushing task, where TOP-ERL reaches 70% success rate with
14 million environment interactions, while TCE and gSDE require 50 million samples to reach 60%
success. GTrXL performs moderately in the dense-reward setting, achieving a 50% success rate,
but fails completely in the sparse-reward environment. Step-based methods like SAC, PINK and
PPO failed in both cases, underscoring the difficulty of these tasks. Among the step-based algo-
rithms, only gSDE achieved comparable performance in compare with ERL methods in these three
environments, which we attribute to its state-dependent exploration strategy.

5.2 CONSISTENT PERFORMANCE IN LARGE-SCALE MANIPULATION BENCHMARKS

In the previous evaluation, we demonstrated that TOP-ERL significantly improves sample efficiency
compared to state-of-the-art ERL baselines, while maintaining strong performance in tasks with
challenge exploration. In this evaluation, we focus on answering the second question: How does
TOP-ERL perform on standard manipulation benchmarks with dense rewards? We conducted ex-
periments on the Meta-World benchmark(Yu et al., 2020), reporting the aggregated success rate
across 50 tasks in the MT50 task set. To ensure a fair comparison, we followed the same evaluation
protocol described in Otto et al. (2022) and Li et al. (2024), where an episode is only considered
successful if the success criterion is met at the end of the episode, a more rigours measure than the
original setting where success at any time step counts. The results in Fig. 4a show that TOP-ERL
achieved highest asymptotic success rate (98%) after 10 million samples. TCE was able to achieve
the same success rate but required 20 million interactions. SAC also converged after 10 million
samples but with a significantly lower success rate of 85%. BBRL and other step-based methods
achieved moderate success rate but required significantly more samples.

5.3 ABLATION STUDY AND DISCUSSION

Single Q-Network leads to stable and efficient training. We compare four common design choices
for targets calculation in Q-function update in Eq.(8): 1) V-Target which uses a single V target
network, 2) Q-Target, which employs single Q target network, 3)V-Ensemble, which consists of an
ensemble of predictions from two V target networks, 4) V-Clip, which takes the minimum of two V
target networks. Detailed description of these design choices can be found in Appendix A.3. Fig. 5
presents the learning curves for TOP-ERL in dense-reward (5a) and sparse-reward (5b) Box Pushing,
while Table 1 presents the numerical success rate and computation times per update. The results
demonstrate that using a single V target network yields performance comparable to approaches that
rely on two target networks, with additionally benefit of significantly reduced computation time
(approximately 50% faster). We attribute the stable performance with single target network to the
use of N-step Bellman equation in target calculation, as discussed in Sec. 4.3.

Key Components Ablation. We evaluate the impact of five key components on the performance of
TOP-ERL: trust region constraints in policy updates, enforcing the initial condition at each segment,
the presence of layer normalization, fixed vs. random segment lengths, and the inclusion of dropout
in Transformer layers. These evaluations were conducted in both dense-reward and sparse-reward
Box Pushing environments using 8 random seeds. The results, presented in Fig. 5 as dashed lines,
show performance for TOP-ERL with corresponding component been added or removed. The results
indicate that the random segment length has the most significant effect on TOP-ERL’s performance.
When using fixed 25 segments the success rate dropped from 80% to 35% in the dense-reward
setting, and from 70% to 20% in the sparse-reward setting. Layer normalization, trust region con-
straints, and enforcing initial conditions also contributed positively to the performance. Interestingly,
adding even a small dropout rate (0.05 in the ablation) had negative impacts on the performance in

9



Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing
Dense Reward

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

(b) Box Pushing
Sparse Reward

V-Target
Q-Target
Ensemble
Clipped

No TR
No Init Cond.
No LN
Fixed Seg.
Dropout

Figure 5: Performance of different critic update strategies
(solid lines) and model ablations (dashed lines), using Box
pushing dense and sparse reward settings respectively.

Table 1: Quantitative performance
and update time of different critic
update strategies. With additional
computational cost, TOP-ERL can
be further enhanced.

Variant
# Time Dense Sparse

critic s / iter Success, % Success, %

↓ ↑ ↑
V-Target

1 1.55 82.0±2.6 65.7±4.0(default)

Q-Target 1 2.44 86.1 ± 2.7 69.1 ± 7.5

V-Ensem. 2 2.49 83.8 ± 3.1 75.7 ± 4.4

V-Clip 2 2.49 86.0 ± 3.2 75.5 ± 3.7

both tasks. We hypothesize that this effect may be attributed to the use of a relatively small replay
buffer combined with a higher buffer update ratio (0.1% in our setting), which likely mitigates the
risk of overfitting in Q-function learning, thereby diminishing the benefit of dropout.

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

Random
100%.
50%.
20%
10%
5%

Figure 6: Random or Fixed
segment length

Impact of Random Segment Lengths. As shown in the pre-
vious ablation study, random segment length played a cru-
cial role in the strong performance of TOP-ERL. To further
examine whether this conclusion holds for different segment
lengths, we evaluated the dense-reward Box Pushing task with
segment lengths ranging from 5% of the episode length to
100% (i.e., no segmentation). The results in Fig. 6 indicate
that fixed-length segmentation leads to significant performance
variation depending on the segment length. In contrast, ran-
dom segment lengths consistently achieve faster convergence
and higher asymptotic performance. We infer that using a vari-
ety of action sequence lengths regularizes the training of the critic network. For example, in Eq. (7),
the expectation of the Q-value over L actions is used as the target for the V-function’s prediction.
When L varies across update iterations, the V-function is trained on Q-values derived from different
amounts of actions. Additionally, random segmentation simplifies hyperparameter tuning, making
it a practical choice. Therefore, we adopt random segmentation length as the default setting for
TOP-ERL. To further illustrate the impact of random segment lengths, we provide a visualization of
action correlations under different segmentation strategies in Appendix D.

6 CONCLUSION

This work introduced Transformer-based Off-Policy Episodic RL (TOP-ERL), a novel off-policy
ERL method that leverages Transformers for N-steps return learning. By integrating ERL with an
off-policy update scheme, TOP-ERL significantly improves the sample efficiency of ERL methods
while retaining their advantages in exploration. The use of a Transformer-based critic architecture
allows TOP-ERL to bypass the need for importance sampling in N-steps target calculation, stabi-
lizing training while enjoying the benefit of low-bias value estimation provided by N-steps return.
TOP-ERL has demonstrated superior performance compared to state-of-the-art ERL approaches and
step-based RL methods augmented with exploration mechanism across 53 challenging tasks, pro-
viding strong evidence for its broader applicability to wide range of problems. The ablation studies
reveal the reasons behind design choices and components, providing insights into the factors con-
tributing to the strong performance of TOP-ERL.

Limitations and Future Works. Despite all the advantages, TOP-ERL shares a limitation common
to ERL methods: it generates trajectories only at the start of each episode, making it incapable of
handling tasks involving dynamic or target changes within an episode. A promising future research
direction would be to incorporate replanning capabilities into TOP-ERL. Additionally, although
TOP-ERL uses Transformers as critic, it is not designed to address POMDPs, as the Transformer is
used for action-to-go processing in Q-function learning, rather than incorporating state sequences as
input. Merging these two paradigms and enhancing TOP-ERL with the ability to handle POMDPs
presents another avenue for future investigation.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank our friends and colleagues Juan Li, Onur Celik, Aleksandar Taranovic, Tai Hoang and
Zuzhao Ye for their valuable discussion and technical support. We thank the anonymous reviewers
for their insightful feedback which greatly improved the quality of this paper.

The research presented in this paper was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 448648559 and 471687386, and was supported in part by the
Helmholtz Association of German Research Centers. Gerhard Neumann was supported in part by
Carl Zeiss Foundation through the Project JuBot (Jung Bleiben mit Robotern). The authors acknowl-
edge support by the state of Baden-Württemberg through bwHPC, and the HoreKa supercomputer.

7 ETHICS STATEMENT

No human participants were involved in this study. All data used in this work was generated through
simulations. As such, there are no privacy or security concerns related to personal or sensitive
information. We acknowledge the importance of fairness in AI and have taken care to ensure that
our methodology does not introduce bias in simulated environments, though broader fairness issues
in real-world applications of such models should be considered in future work. There are no conflicts
of interest or sponsorship concerns associated with this research, and all practices adhere to legal
and ethical standards.

8 REPRODUCIBILITY STATEMENT

The considerable efforts were made to ensure that our work is fully reproducible. All relevant code,
including the implementation of the proposed algorithms, simulation environments, and trained
models, will be made available in an GitHub repository provided in the main paper. Detailed de-
scriptions of the experimental setup, including hyperparameter configurations can be found in the
appendix.

11



Published as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 28, 2015.

Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Contextual co-
variance matrix adaptation evolutionary strategies. In IJCAI 2017. International Joint Conferences
on Artificial Intelligence Organization (IJCAI), 2017.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies
for end-to-end sensorimotor learning. Advances in Neural Information Processing Systems, 33:
5058–5069, 2020.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
tions and action chunking. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4788–4795. IEEE, 2024.

Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a pow-
erful parameter for learning to play atari. In Workshops at the twenty-ninth AAAI conference on
artificial intelligence, 2015.

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing ver-
satile skill libraries using local mixture of experts. In Conference on Robot Learning, pp. 1423–
1433. PMLR, 2022.

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curricu-
lum reinforcement learning with mixture of experts. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=9ZkUFSwlUH.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Faustino Gomez, Jürgen Schmidhuber, Risto Miikkulainen, and Melanie Mitchell. Accelerated neu-
ral evolution through cooperatively coevolved synapses. Journal of Machine Learning Research,
9(5), 2008.

Sebastian Gomez-Gonzalez, Gerhard Neumann, Bernhard Schölkopf, and Jan Peters. Using prob-
abilistic movement primitives for striking movements. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pp. 502–508. IEEE, 2016.

12

https://openreview.net/forum?id=9ZkUFSwlUH


Published as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. The ICLR Blog Track
2023, 2022.

Christian Igel. Neuroevolution for reinforcement learning using evolution strategies. In The 2003
Congress on Evolutionary Computation, 2003. CEC’03., volume 4, pp. 2588–2595. IEEE, 2003.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013.

Piotr Kicki, Davide Tateo, Puze Liu, Jonas Günster, Jan Peters, and Krzysztof Walas. Bridging
the gap between learning-to-plan, motion primitives and safe reinforcement learning. In 8th An-
nual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=
ZdgaF8fOc0.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural
information processing systems, 21, 2008.

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023.

Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, and Gerhard
Neumann. Open the black box: Step-based policy updates for temporally-correlated episodic
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=mnipav175N.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

Haoxin Lin, Yihao Sun, Jiaji Zhang, and Yang Yu. Model-based reinforcement learning with multi-
step plan value estimation. In ECAI 2023, pp. 1481–1488. IOS Press, 2023.

Chenhao Lu, Ruizhe Shi, Yuyao Liu, Kaizhe Hu, Simon Shaolei Du, and Huazhe Xu. Rethinking
transformers in solving POMDPs. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=SyY7ScNpGL.

Xiao Ma and Wu-Jun Li. Weighting online decision transformer with episodic memory for offline-
to-online reinforcement learning. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 10793–10799. IEEE, 2024.

Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and Gerhard
Neumann. Learning interaction for collaborative tasks with probabilistic movement primitives.
In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534. IEEE, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in Neural Information Processing Systems, 31,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

13

https://openreview.net/forum?id=ZdgaF8fOc0
https://openreview.net/forum?id=ZdgaF8fOc0
https://openreview.net/forum?id=mnipav175N
https://openreview.net/forum?id=SyY7ScNpGL


Published as a conference paper at ICLR 2025

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36, 2024.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Differ-
entiable trust region layers for deep reinforcement learning. International Conference on Learning
Representations, 2021.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Conference on Robot
Learning, pp. 1244–1265. PMLR, 2022.

Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. Mp3:
Movement primitive-based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023.

Rok Pahič, Barry Ridge, Andrej Gams, Jun Morimoto, and Aleš Ude. Training of deep neural
networks for the generation of dynamic movement primitives. Neural Networks, 2020.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic movement
primitives. Advances in neural information processing systems, 26, 2013.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Kai Ploeger, Michael Lutter, and Jan Peters. High acceleration reinforcement learning for real-world
juggling with binary rewards. In Conference on Robot Learning, pp. 642–653. PMLR, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on Robot Learning, pp. 1634–1644. PMLR, 2022.

Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal diffu-
sion transformer: Learning versatile behavior from multimodal goals. In Robotics: Science and
Systems, 2024.

Leonel Rozo and Vedant Dave. Orientation probabilistic movement primitives on riemannian man-
ifolds. In Conference on Robot Learning, pp. 373–383. PMLR, 2022.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for pol-
icy gradient methods. In Walter Daelemans, Bart Goethals, and Katharina Morik (eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 234–249, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-87481-2.

Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn, 1:14–24, 2010.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans and hu-
manoid robotics. In Adaptive motion of animals and machines, pp. 261–280. Springer, 2006.

14

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


Published as a conference paper at ICLR 2025

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

RB Ashith Shyam, Peter Lightbody, Gautham Das, Pengcheng Liu, Sebastian Gomez-Gonzalez,
and Gerhard Neumann. Improving local trajectory optimisation using probabilistic movement
primitives. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2666–2671. IEEE, 2019.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jens Timmer and Michel Koenig. On generating power law noise. Astronomy and Astrophysics,
300:707, 1995.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W Anderson. Genetic reinforcement
learning for neurocontrol problems. Machine Learning, 13:259–284, 1993.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in
Neural Information Processing Systems, 36, 2024.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Weilin Yuan, Jiaxing Chen, Shaofei Chen, Dawei Feng, Zhenzhen Hu, Peng Li, and Weiwei Zhao.
Transformer in reinforcement learning for decision-making: a survey. Frontiers of Information
Technology & Electronic Engineering, 25(6):763–790, 2024.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

You Zhou, Jianfeng Gao, and Tamim Asfour. Learning via-point movement primitives with inter-
and extrapolation capabilities. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4301–4308. IEEE, 2019.

15



Published as a conference paper at ICLR 2025

List of Content in Appendix

A. Further technical details of TOP-ERL.

B. Mathematical formulations of MP trajectories and initial condition enforcement.

C. Experiment settings and details as a complementary to Sec. 5.

D. Action Correlation Visualization.

E. Hyper-parameters selection and sweeping.

A FURTHER TECHNICAL DETAILS OF TOP-ERL

A.1 POLICY TRAINING USING SAC-STYLE REPARAMETERIZATION TRICK

We utilize the transformer critic to guide the training of our policy, using the reparameterization trick
similar to that introduced by SAC (Haarnoja et al., 2018a). Given a task initial state s, the current
policy πθ(w|s) ∼ N (w|µw,Σw) predicts the Gaussian parameters of the MP’s and samples w̃ as
follows:

Sample MP parameter vector: w̃ = µw +Lwϵ, ϵ ∼ N (0, I). (10)

Here, Lw is the Cholesky decomposition of the covariance matrix Σw, where LwLT
w = Σw. This

parameterization technique is commonly used for predicting full covariance Gaussian policies. The
term ϵ is a Gaussian white noise vector with the same dimensionality as w. Eq. (10) represents
the full covariance extension of the reparameterization trick typically used in RL, known as ã =
µa + σaϵ, ϵ ∼ N (0, 1).

The sampled w̃ is then used to compute the new trajectory segments. The resulting trajectory seg-
ments are computed using the linear basis function expression in Eq. (4) from Section 3.2, where the
coefficients c1 and c2 are determined by the initial conditions and solved using Eq. 22 in Appendix
B.3:

Compute action segment: ã(t) = Φ(t)⊺w̃ + c1y1(t) + c2y2(t) (4)

Here, t = 0 : N represents the time interval from the beginning to the end of the k-th segment.
There are two design choices for the initial conditions: the first is to always use the task initial state
s for all segments, while the second is to use the state sk0 specific to each segment. While the second
choice aligns with the techniques described in Section 4.3.1, our empirical results show that the
first choice leads to better performance. To the best of our knowledge, we attribute this interesting
finding to the following reason. Although the second design choice ensures better consistency in
the input to the value function, the per-segment initial conditions were not provided to the policy for
action selection, which introduced challenges in updating the policy. We believe this phenomenon
is worth further investigation in future research.

We evaluate and maximize the value of these action segments, using their expectation as the policy’s
learning objective, as shown in Eq. (9) in Section 4.4:

SAC style Objective: J(θ) = Es∼BEw̃∼πθ(·|s)

[
1

KL

K∑
k=1

L−1∑
N=0

Qϕ(s
k
0 ,
[
ãk
t

]
t=0:N

)

]
. (9)

Since Eq.(4), (9), (22) and (10) are all differentiable, the policy neural network parameters θ can be
trained using gradient ascent. Compared to the technique introduced in SAC, TOP-ERL adds only
one additional step: computing the action sequence [ãk

t ]t=0:N from the sampled MP parameter w̃.

16



Published as a conference paper at ICLR 2025

A.2 UTILIZING TRPL FOR STABLE FULL-COVARIANCE GAUSSIAN POLICY TRAINING

In Episodic Reinforcement Learning (ERL), the parameter space W generally has a higher dimen-
sionality than the action space A, creating distinct challenges for achieving stable policy updates.
Trust region methods (Schulman et al., 2015; 2017) are widely regarded as reliable techniques for
ensuring convergence and stability in policy gradient algorithms.

Although methods like PPO approximate trust regions using surrogate objectives, they lack the
ability to enforce trust regions precisely. To address this limitation, Otto et al. (2021) proposed
trust region projection layer (TRPL), a mathematically rigorous and scalable approach for exact
trust region enforcement in deep RL algorithms. Leveraging differentiable convex optimization
layers (Agrawal et al., 2019), trust region projection layer (TRPL) enforces trust regions at the per-
state level and has demonstrated robustness and stability in high-dimensional parameter spaces, as
evidenced in methods like BBRL (Otto et al., 2022) and TCE (Li et al., 2024).

TRPL operates on the standard outputs of a Gaussian policy—the mean vector µ and covariance
matrix Σ—and enforces trust regions through a state-specific projection operation. The adjusted
Gaussian policy, represented by µ̃ and Σ̃, serves as the foundation for subsequent computations. The
dissimilarity measures for the mean and covariance, denoted as dmean and dcov (e.g., KL-divergence),
are bounded by thresholds ϵµ and ϵΣ, respectively. The optimization problem for each state s is
expressed as:

argmin
µ̃s

dmean (µ̃s,µ(s)) , s. t. dmean (µ̃s,µold(s)) ≤ ϵµ, and

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s. t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ.

(11)

If the unconstrained, newly predicted per-state Gaussian parameters µ(s) and Σ(s) exceed the trust
region bounds defined by ϵµ and ϵΣ, respectively, TRPL projects them back to the trust region
boundary, ensuring stable update steps. In TOP-ERL, the old Gaussian parameters, µold(s) and
Σold(s), can be derived either from the behavior policy that interacted with the environment or from
an exponentially moving averaged (EMA) policy, which serves as a delayed version of the current
policy. This approach is analogous to the concept employed in the target critic network.

A.3 TARGET OPTIONS

Table 2: Options for the future return used in Eq.(8)

Option Math Description

V-target V tar
ϕ (sN ) State value after N steps

Q-target Qtar
ϕ (sN ,aN , ...) Action value after N steps

Clipped Min(·, ·) Minimum of 2 target critics

Ensemble Avg.(·, ·) Mean of ≥ 2 target critics

B MATHEMATICAL FORMULATIONS OF MOVEMENT PRIMITIVES.

In this section, we provide an overview of the movement primitive formulations used in this paper.
We begin with the basics of DMPs and ProMPs, followed by a detailed explanation of ProDMPs.
For clarity, we start with a single DoF system and then expand to multi-DoF systems.

B.1 DYNAMIC MOVEMENT PRIMITIVES

Schaal (2006); Ijspeert et al. (2013) describe a single movement as a trajectory [yt]t=0:T , which
is governed by a second-order linear dynamical system with a non-linear forcing function f . The
mathematical representation is given by

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (12)

17



Published as a conference paper at ICLR 2025

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of
the system at a specific time t, respectively. Constants α and β are spring-damper parameters, g
signifies a goal attractor, and τ is a time constant that modulates the speed of trajectory execution. To
ensure convergence towards the goal, DMPs employ a forcing function governed by an exponentially
decaying phase variable x(t) = exp(−αx/τ ; t). Here, φi(x) represents the basis functions for the
forcing term. The trajectory’s shape as it approaches the goal is determined by the weight parameters
wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by numerically integrating
the dynamical system from the start to the end point (Pahič et al., 2020; Bahl et al., 2020). However,
this numerical process is computationally intensive. For example, to compute the trajectory segment
in the end of an episode, DMP must integrate the system from the very beginning till the start of the
segment.

B.2 PROBABILISTIC MOVEMENT PRIMITIVES

Paraschos et al. (2013) introduced a framework for modeling MPs using trajectory distributions,
capturing both temporal and inter-dimensional correlations. Unlike DMPs that use a forcing term,
ProMPs directly model the intended trajectory. The probability of observing a 1-DoF trajectory
[yt]t=0:T given a specific weight vector distribution p(w) ∼ N (w|µw,Σw) is represented as a
linear basis function model:

Linear basis function: [yt]t=0:T = Φ⊺
0:Tw + ϵy, (13)

Mapping distribution: p([yt]t=0:T ; µy,Σy) = N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI). (14)

Here, ϵy is zero-mean white noise with variance σ2
y . The matrix Φ0:T houses the basis functions for

each time step t. Similar to DMPs, these basis functions can be defined in terms of a phase variable
instead of time. ProMPs allows for flexible manipulation of MP trajectories through probabilistic
operators applied to p(w), such as conditioning, combination, and blending (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016; Shyam et al., 2019; Rozo & Dave, 2022; Zhou et al., 2019). However,
ProMPs lack an intrinsic dynamic system, which means they cannot guarantee a smooth transition
from the robot’s initial state or between different generated trajectories.

B.3 PROBABILISTIC DYNAMIC MOVEMENT PRIMITIVES

Solving the ODE underlying DMPs Li et al. (2023) noted that the governing equation of DMPs,
as specified in Eq. (12), admits an analytical solution. This is because it is a second-order linear non-
homogeneous ODE with constant coefficients. The original ODE and its homogeneous counterpart
can be expressed in standard form as follows:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (15)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (16)

The solution to this ODE is essentially the position trajectory, and its time derivative yields the
velocity trajectory. These are formulated as:

y = [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
+ c1y1 + c2y2 (17)

ẏ = [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
+ c1ẏ1 + c2ẏ2. (18)

Here, the learnable parameters w and g which control the shape of the trajectory, are separable from
the remaining terms. Time-dependent functions y1, y2,p1, p2, q1, q2 in the remaining terms offer
the basic support to generate the trajectory. The functions y1, y2 are the complementary solutions
to the homogeneous ODE presented in equation 16, and ẏ1, ẏ2 their time derivatives respectively.
These time-dependent functions take the form as:

y1(t) = exp
(
− α

2τ
t
)
, y2(t) = t exp

(
− α

2τ
t
)
, (19)

p1(t) =
1

τ2

∫ t

0

t′ exp
( α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
( α

2τ
t′
)
x(t′)φ⊺

xdt
′, (20)

q1(t) =
( α

2τ
t− 1

)
exp

( α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

( α

2τ
t
)
− 1

]
. (21)

18



Published as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0.2

0.1

0.0

0.1

0.2
Po

sit
io

n 
of

 th
e 

1s
t j

oi
nt

 [r
ad

]

Old Traj
New Traj. w/o init cond.
Seg-0 with init cond.
Seg-1 with init cond.
Seg-2 with init cond.
Seg-3 with init cond.
Seg-4 with init cond.

Figure 7: TOP-ERL leverages the initial condition enforcement techniques of a dynamic system to
ensure that the new action trajectory starts from the corresponding old state. These action trajecto-
ries are taken from the first DoF of the robot in the box pushing task.

It’s worth noting that the p1 and p2 cannot be analytically derived due to the complex nature of the
forcing basis terms φx. As a result, they need to be computed numerically. Despite this, isolating
the learnable parameters, namely w and g, allows for the reuse of the remaining terms across all
generated trajectories. These residual terms can be more specifically identified as the position and
velocity basis functions, denoted as Φ(t) and Φ̇(t), respectively. When both w and g are included
in a concatenated vector, represented as wg , the expressions for position and velocity trajectories
can be formulated in a manner akin to that employed by ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (22)

Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (23)

In the main paper, for simplicity and notation convenience, we use w instead of wg to describe the
parameters and goal of ProDMPs.

Intial Condition Enforcement The coefficients c1 and c2 serve as solutions to the initial value
problem delineated by the Eq.(22)(23). Li et al. propose utilizing the robot’s initial state or the
replanning state, characterized by the robot’s position and velocity (yb, ẏb) to ensure a smooth com-
mencement or transition from a previously generated trajectory. Denote the values of the comple-
mentary functions and their derivatives at the condition time tb as y1b , y2b , ẏ1b and ẏ2b . Similarly,
denote the values of the position and velocity basis functions at this time as Φb and Φ̇b respectively.
Using these notations, c1 and c2 can be calculated as follows:[

c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (24)

Despite the complex form used in the initial condition enforcement, the solutions conducted above
only rely on solving several linear equations and can be easily implemented in a batch-manner and
is therefore computationally efficient, normally ≤ 1 ms.

B.4 ENFORCE TRAJECTORY SEGMENTS’ INITIAL CONDITION IN TOP-ERL

In Figure 7, we illustrate how TOP-ERL leverages this mechanism. The figure is based on the
motion trajectory of the first degree of freedom of the robot in the box-pushing task. In the critic
update, we use five segments as an example.

19



Published as a conference paper at ICLR 2025

ProDMP, as a trajectory generator, models the trajectory as a dynamic system. In TOP-ERL, the RL
policy predicts ProDMP parameters, which are used to generate a force signal applied to the dynamic
system. The system evolves its state based on this force signal and the given initial conditions, such
as the robot’s position and velocity at a specific time. The resulting evolution trajectory, shown as
the black curve in Fig. 7, can be computed in closed form and used to control the robot.

When the policy is updated and predicts a new force signal for the same task, a new action trajectory
is generated, depicted as the red dashed curve, which gradually deviates from the old trajectory.
However, by utilizing the dynamic system’s features, we can set the initial condition of each segment
of the new trajectory to the corresponding old state. This ensures that the new action sequence used
in the target computation in Eq.(7), can start from the old state, as shown across the five segments
in the figure. Therefore, we matched the old state and new actions by eliminating the gap between
them, as previously discussed in Section 4.3.1.

From our empirical results, we found that this enforcement is highly beneficial for value function
learning. Interestingly, for policy updates, it introduces challenges since these conditions are not
used as inputs to the policy. Therefore, we apply this technique only during value function training.

C EXPERIMENT DETAILS

C.1 DETAILS OF METHODS IMPLEMENTATION

Table 3: Baseline methods categorized by type (ERL or SRL) and update rules (On- or Off-policy).

Method Category Description

BBRL (Otto et al., 2022) ERL, On Black Box Optimization style ERL, policy search in parameter space

TCE (Li et al., 2024) ERL, On Extend BBRL to use per-step info for efficient policy update

PPO (Schulman et al., 2017) SRL, On Standard on-policy method with simplified Trust Region enforcement

gSDE (Raffin et al., 2022) SRL, On Consecutive exploration noise for NN parameters of the policy

GTrXL(Parisotto et al., 2020) SRL, On Transformer-augmented SRL with multiple state as history

SAC (Haarnoja et al., 2018a) SRL, Off Standard off-policy method with entropy bonus for better exploration

PINK (Eberhard et al., 2022) SRL, Off Use temporal correlated pink noise for better exploration

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a prominent on-policy step-
based RL algorithm that refines the policy gradient objective, ensuring policy updates remain close
to the behavior policy. PPO branches into two main variants: PPO-Penalty, which incorporates a
KL-divergence term into the objective for regularization, and PPO-Clip, which employs a clipped
surrogate objective. In this study, we focus our comparisons on PPO-Clip due to its prevalent use in
the field. Our implementation of PPO is based on the implementation of Raffin et al. (2021).

SAC Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) employs a stochastic step-based policy
in an off-policy setting and utilizes double Q-networks to mitigate the overestimation of Q-values
for stable updates. By integrating entropy regularization into the learning objective, SAC balances
between expected returns and policy entropy, preventing the policy from premature convergence.
Our implementation of SAC is based on the implementation of Raffin et al. (2021).

GTrXL Gated TransformerXL (GTrXL) (Parisotto et al., 2020) is a Transformer architecture that
design to stabilize the training of Transformers in online RL, offers an easy-to-train, simple-to-
implement but substantially more expressive architectural alternative to standard RNNs used for
RL agents in POMDPs. Our implementation of GTrXL is based on the implementation of PPO
+ GTrXL from Liang et al. (2018). We augmented the implementation with minibatch advantage
normalization and state-independent log standard deviation as suggested in Huang et al. (2022).

gSDE Generalized State Dependent Exploration (gSDE) (Raffin et al., 2022; Rückstieß et al.,
2008; Rückstiess et al., 2010) is an exploration method designed to address issues with traditional

20



Published as a conference paper at ICLR 2025

step-based exploration techniques and aims to provide smoother and more efficient exploration in
the context of robotic reinforcement learning, reducing jerky motion patterns and potential damage
to robot motors while maintaining competitive performance in learning tasks.

To achieve this, gSDE replaces the traditional approach of independently sampling from a Gaussian
noise at each time step with a more structured exploration strategy, that samples in a state-dependent
manner. The generated samples not only depend on parameter of the Gaussian distribution µ & Σ,
but also on the activations of the policy network’s last hidden layer (s). We generate disturbances ϵt
using the equation

ϵt = θϵs, where θϵ ∼ N d (0,Σ) .

The exploration matrix θϵ is composed of vectors of length Dim(a) that were drawn from the Gaus-
sian distribution we want gSDE to follow. The vector s describes how this set of pre-computed
exploration vectors are mixed. The exploration matrix is resampled at regular intervals, as guided
by the ’sde sampling frequency’ (ssf), occurring every n-th step if n is our ssf.

gSDE is versatile, applicable as a substitute for the Gaussian Noise source in numerous on- and
off-policy algorithms. We evaluated its performance in an on-policy setting using PPO by utilizing
the reference implementation for gSDE from Raffin et al. (2022). In order for training with gSDE to
remain stable and reach high performance the usage of a linear schedule over the clip range had to
be used for some environments.

PINK We utilize SAC to evaluate the effectiveness of pink noise for efficient exploration. Eber-
hard et al. (2022) propose to replace the independent action noise ϵt of

at = µt + σt · ϵt
with correlated noise from particular random processes, whose power spectral density fol-
low a power law. In particular, the use of pink noise, with the exponent β = 1 in
S(f) = |F [ϵ](f)|2 ∝ f−β , should be considered (Eberhard et al., 2022).

We follow the reference implementation and sample chunks of Gaussian pink noise using the in-
verse Fast Fourier Transform method proposed by Timmer & Koenig (1995). These noise variables
are used for SAC’s exploration but the the actor and critic updates sample the independent action
distribution without pink noise. Each action dimension uses an independent noise process which
causes temporal correlation within each dimension but not across dimensions. Furthermore, we fix
the chunk size and maximum period to 10000 which avoids frequent jumps of chunk borders and
increases relative power of low frequencies.

BBRL Black-Box Reinforcement Learning (BBRL) (Otto et al., 2022; 2023) is a recent developed
episodic reinforcement learning method. By utilizing ProMPs (Paraschos et al., 2013) as the trajec-
tory generator, BBRL learns a policy that explores at the trajectory level. The method can effectively
handle sparse and non-Markovian rewards by perceiving an entire trajectory as a unified data point,
neglecting the temporal structure within sampled trajectories. However, on the other hand, BBRL
suffers from relatively low sample efficiency due to its black-box nature. Moreover, the original
BBRL employs a degenerate Gaussian policy with diagonal covariance. In this study, we extend
BBRL to learn Gaussian policy with full covariance to build a more competitive baseline. For clar-
ity, we refer to the original method as BBRL-Std and the full covariance version as BBRL-Cov. We
integrate BBRL with ProDMPs (Li et al., 2023), aiming to isolate the effects attributable to different
MP approaches.

TCE Temporally-Correlated Episodic RL (TCE) (Li et al., 2024) is an innovative ERL algorithm
that leverages step-level information in episodic policy updates, shedding light on the ’black box’
of current ERL methods while preserving smooth and consistent exploration within the parameter
space. TCE integrates the strengths of both step-based and episodic RL, offering performance on
par with recent ERL approaches, while matching the data efficiency of state-of-the-art (SoTA) step-
based RL methods.

C.2 METAWORLD

MetaWorld (Yu et al., 2020) is an open-source simulated benchmark specifically designed for meta-
reinforcement learning and multi-task learning in robotic manipulation. It features 50 distinct ma-

21



Published as a conference paper at ICLR 2025

nipulation tasks, each presenting unique challenges that require robots to learn a wide range of skills,
such as grasping, pushing, and object placement. Unlike benchmarks that focus on narrow task dis-
tributions, MetaWorld provides a broader range of tasks, making it an ideal platform for developing
algorithms that can generalize across different behaviors.

To ensure a fair comparison, we followed the evaluation protocol described in Otto et al. (2022) and
Li et al. (2024), where an episode is considered successful only if the success criterion is met at
the end of the episode. This is equivalent to requiring the robot to complete the task and maintain
its success state until the episode ends, which is a more rigorous measure than the original setting,
where success at any time step is sufficient.

We reported each individual Metaworld task in Fig. 8 and Fig. 9. These tasks cover a wide range of
types and complexities.

22



Published as a conference paper at ICLR 2025

TOP-ERL (ours) TCE BBRL PPO GTrXL(PPO) gSDE SAC PINK

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickOutOfHole

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideBack

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideBackSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s 
ra

te
 IQ

M
BinPicking

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Hammer

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

SweepInto

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

BoxClose

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ButtonPress

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Assembly

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ButtonPressWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ButtonPressTopdown

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ButtonPressTopdownWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

CoffeeButton

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

CoffeePull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

CoffeePush

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DialTurn

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Disassemble

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DoorClose

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DoorLock

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DoorOpen

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DoorUnlock

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandInsert

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DrawerClose

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

DrawerOpen

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

FaucetOpen

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

FaucetClose

Figure 8: Success Rate IQM of each individual Metaworld tasks.

23



Published as a conference paper at ICLR 2025

TOP-ERL (ours) TCE BBRL PPO GTrXL(PPO) gSDE SAC PINK

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePressSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePress

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePullSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

LeverPull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PegInsertSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickPlaceWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Reach

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PushBack

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Push

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickPlace

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PegUnplugSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Soccer

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

StickPush

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

StickPull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s 
ra

te
 IQ

M
PushWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ReachWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ShelfPlace

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Sweep

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

WindowOpen

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

WindowClose

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Basketball

Figure 9: Success Rate IQM of each individual Metaworld tasks.

24



Published as a conference paper at ICLR 2025

C.3 HOPPER JUMP

Figure 10: Hopper Jump

As an addition to the main paper, we provide more details on the Hopper
Jump task. We look at both the main goal of maximizing jump height and
the secondary goal of landing on a desired position. Our method shows
quick learning and does well in achieving high jump height, consistent
with what we reported earlier. While it’s not as strong in landing accu-
racy, it still ranks high in overall performance. Both versions of BBRL
have similar results. However, they train more slowly compared to TCE,
highlighting the speed advantage of our method due to the use of inter-
mediate states for policy updates. Looking at other methods, step-based
ones like PPO and TRPL focus too much on landing distance and miss
out on jump height, leading to less effective policies. On the other hand,
gSDE performs well but is sensitive to the initial setup, as shown by the
wide confidence ranges in the results. Lastly, SAC and PINK shows inconsistent results in jump
height, indicating the limitations of using pink noise for exploration, especially when compared to
gSDE.

C.4 BOX PUSHING

Figure 11: Box Pushing

The goal of the box-pushing task is to move a box to a specified goal
location and orientation using the 7-DoFs Franka Emika Panda (Otto
et al., 2022). To make the environment more challenging, we extend
the environment from a fixed initial box position and orientation to a
randomized initial position and orientation. The range of both initial
and target box pose varies from x ∈ [0.3, 0.6], y ∈ [−0.45, 0.45], θz ∈
[0, 2π]. Success is defined as a positional distance error of less than 5
cm and a z-axis orientation error of less than 0.5 rad. We refer to the
original paper for the observation and action spaces definition and the
reward function.

D ACTION CORRELATION WITH SEGMENTATION

(a) No Segmentation (BBRL) (b) Random Segmentation (Ours) (c) Fixed Segmentation (TCE)

Figure 12: This figure presents predicted actions’ correlation across 4 DoF and 100 time steps, vi-
sualized in a 400× 400 correlation matrix. Each 100× 100 square tile demonstrates the movement
correlation between two DoF during these steps. Correlation values range from -1 (negative cor-
relation, depicted in blue) to 1 (positive correlation, depicted in red), with white areas indicating
no correlation. BBRL treats the entire trajectory as a whole and does not have any segmentation;
thus, the correlation broadcasts smoothly across time steps, as shown in (a). On the contrary, TCE
uses segmentation with fixed length, constraining the correlation learning within fixed segments,
resulting in sudden correlation changes at each segment’s boundary, as presented in (c). TOP-ERL
utilizes randomly sampled segment length and positions itself between the two paradigms, being
able to learn the smooth correlation while retaining the benefits of higher sample efficiency by using
segmentation.

25



Published as a conference paper at ICLR 2025

E HYPER PARAMETERS

We executed a large-scale grid search to fine-tune key hyperparameters for each baseline method.
For other hyperparameters, we relied on the values specified in their respective original papers.
Below is a list summarizing the parameters we swept through during this process.

BBRL: Policy net size, critic net size, policy learning rate, critic learning rate, samples per itera-
tion, trust region dissimilarity bounds, number of parameters per movement DoF.

TCE: Same types of hyper-parameters listed in BBRL, plus the number of segments per trajectory.
A learning rate decaying scheduler is applied to stabilize the training in the end.

PPO: Policy network size, critic network size, policy learning rate, critic learning rate, batch size,
samples per iteration.

gSDE: Same types of hyper-parameters listed in PPO, together with the state dependent explo-
ration sampling frequency (Raffin et al., 2022).

SAC: Policy network size, critic network size, policy learning rate, critic learning rate, alpha learn-
ing rate, batch size, Update-To-Data (UTD) ratio.

PINK: Same types of hyper-parameters listed in SAC.

GTrXL: Number of multi-head attention layers, number of heads, dims per head, importance-
sampling ratio clip, value function clip, grad clip, and same hyperparameters listed in PPO

TOP-ERL: Number of multi-head attention layers, number of heads, dims per head, learning
rates. The other movement primitives hyper-parameters are taken from TCE.

The detailed hyper parameters used are listed in the following tables. Unless stated otherwise, the
notation lin x refers to a linear schedule. It interpolates linearly from x to 0 during training. The
ERL methods (TCE, BBRL) take an entire trajectory as a sample where the SRL methods take one
time step as a sample. In this way, one sample in ERL is equivlent to T sample of SRL, where T is
the length of one task episode.

26



Published as a conference paper at ICLR 2025

Table 4: Hyperparameters for the Meta-World experiments. Episode Length T = 500

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 16000 16000 19000 1000 4 16 16 2

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 0.99 0.99 0.99 0.99 0.99 1 1 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.005 0.005 0.005

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.0005 0.0005

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 5 1000 1 50 100 15

learning rate 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 1e-3

use critic True True True True True True True True

epochs critic 10 10 5 1000 1 50 100 50

learning rate critic 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5

number minibatches 32 n.a. n.a n.a. n.a. n.a. n.a. n.a.

batch size n.a. 500 1024 256 512 n.a. n.a. 256

buffer size n.a. n.a. n.a. 1e6 2e6 n.a. n.a. 3000

learning starts 0 0 n.a. 10000 1e5 0 0 2

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0 n.a.

normalized observations True True False False False True False False

normalized rewards True True 0.05 False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.3 10.0 n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.3 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [128, 128] [128, 128] n.a. [256, 256] [256, 256] [128, 128] [32, 32] [ 128, 128]

hidden layers critic [128, 128] [128, 128] n.a. [256, 256] [256, 256] [128, 128] [32, 32] n.a.

hidden activation tanh tanh relu relu relu relu relu leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes

initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8

dims per head - - 16 - - - - 16

number of attention layers - - 4 - - - - 2

max sequence length - - 5 - - - - 1024

1Linear Schedule from 0.3 to 0.01 during the first 25% of the training. Then continued with 0.01.

27



Published as a conference paper at ICLR 2025

Table 5: Hyperparameters for the Box Pushing Dense, Episode Length T = 100

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 48000 80000 8000 8 8 152 152 4

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 5 1 1 50 20 15

learning rate 5e-5 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 5 1 1 50 10 30

learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 1e-3 3e-4 5e-5

number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 1000 512 512 n.a. n.a. 512

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000

learning starts 0 0 0 1e5 1e5 0 0 8000

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0.

normalized observations True True False False False True False False

normalized rewards True True 0.1 False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 10. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256]

hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [256, 256] [256, 256] [256, 256] n.a.

hidden activation tanh tanh relu tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8

dims per head - - 16 - - - - 16

number of attention layers - - 4 - - - - 2

max sequence length - - 5 - - - - 1024

Movement Primitive (MP) type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. value n.a. n.a. 8 8 8

weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

28



Published as a conference paper at ICLR 2025

Table 6: Hyperparameters for the Box Pushing Sparse, Episode Length T = 100

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 48000 80000 8000 8 8 76 76 4

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 5 1 1 50 20 15

learning rate 5e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 5 1 1 50 10 30

learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5

number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 1000 512 512 n.a. n.a. 512

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000

learning starts 0 0 0 1e5 1e5 0 0 400

polyak weight n.a. n.a. 0 5e-3 5e-3 n.a. n.a. 5e-3

SDE sampling frequency n.a. 4 0 n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True False False False True False False

normalized rewards True True 0.1 False False False False False

observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 10.0 n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256]

hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [256, 256] [256, 256] [256, 256] n.a.

hidden activation tanh tanh relu tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8

dims per head - - 16 - - - - 16

number of attention layers - - 4 - - - - 2

max sequence length - - 5 - - - - 1024

MP type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. value n.a. n.a. 8 8 8

weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

29



Published as a conference paper at ICLR 2025

Table 7: Hyperparameters for the Hopper Jump, Episode Length T = 250

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 8000 8192 10000 1000 1 64 64 1

GAE λ 0.95 0.99 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 0.999 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.1 n.a. 0.1

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.02 n.a. 0.02

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 n.a. 1.0

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 10 1000 1 50 100 10

learning rate 3e-4 9.5e-5 5e-4 1e-4 2e-4 1e-4 1e-4 1e-4

use critic True True True True True True True True

epochs critic 10 10 10 1000 1 50 100 20

learning rate critic 3e-4 9.5e-5 5e-4 1e-4 2e-4 1e-4 1e-4 5e-5

number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 128 1024 256 256 n.a. n.a. 256

buffer size n.a. n.a. n.a. 1e6 1e6 n.a. n.a. 1000

learning starts 0 0 0 10000 1e5 0 0 250

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3

SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.0025 0. auto auto 0 0 0

normalized observations True False False False False True False False

normalized rewards True False False False False False False False

observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.4 1. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.4 0.2 n.a. n.a. n.a. n.a. n.a.

hidden layers [32, 32] [256, 256] n.a. [256, 256] [32, 32] [128, 128] [32, 32] [128, 128]

hidden layers critic [32, 32] [256, 256] n.a [256, 256] [32, 32] [128, 128] [32, 32] n.a.

hidden activation tanh tanh relu relu relu leaky relu tanh leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes

initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8

dims per head - - 16 - - - - 16

number of attention layers - - 4 - - - - 2

max sequence length - - 5 - - - - 1024

MP type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. value n.a. n.a. 3 3 3

weight scale n.a. n.a. value n.a. n.a. 1 1 1

goal scale n.a. n.a. value n.a. n.a. 1 1 1

30


	Introduction
	Related works
	Preliminaries
	Off-Policy Reinforcement Learning
	Episodic Reinforcement Learning (ERL)

	Transformer-based Off-Policy ERL
	Trajectory Generation: Techniques Adopted from ERL Literature
	Transformers as value predictor for action sequences
	N-step Returns as the target for Transformer Critic
	Enforce initial condition for newly predicted action sequence

	Policy updates using the Transformer critic
	Additional Design Choices from the Literature for Stable Learning

	Experiments
	Improving Sample Efficiency in Tasks with Challenging Exploration
	Consistent Performance in large-scale Manipulation Benchmarks
	Ablation Study and Discussion

	Conclusion
	Ethics Statement
	Reproducibility statement
	Further Technical Details of TOP-ERL
	Policy Training using SAC-style Reparameterization Trick
	Utilizing TRPL for Stable Full-Covariance Gaussian Policy Training
	Target Options

	Mathematical formulations of Movement Primitives.
	Dynamic Movement Primitives
	Probabilistic Movement Primitives
	Probabilistic Dynamic Movement Primitives
	Enforce trajectory segments' initial condition in TOP-ERL

	Experiment Details
	Details of Methods Implementation
	Metaworld
	Hopper Jump
	Box Pushing

	Action Correlation with Segmentation
	Hyper Parameters

