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Abstract

A challenging problem in many modern machine learning tasks is to process
weight-space features, i.e., to transform or extract information from the weights
and gradients of a neural network. Recent works have developed promising
weight-space models that are equivariant to the permutation symmetries of sim-
ple feedforward networks. However, they are not applicable to general architec-
tures, since the permutation symmetries of a weight space can be complicated
by recurrence or residual connections. This work proposes an algorithm that
automatically constructs permutation equivariant models, which we refer to as
universal neural functionals (UNFs), for any weight space. Among other ap-
plications, we demonstrate how UNFs can be substituted into existing learned
optimizer designs, and find promising improvements over prior methods when
optimizing small image classifiers and language models. Our results suggest that
learned optimizers can benefit from considering the (symmetry) structure of the
weight space they optimize. We open-source our library for constructing UNFs at
https://github.com/AllanYangZhou/universal_neural_functional.

1 Introduction

Many problems in machine learning require handling weight-space features, such as the weights,
gradients, or sparsity masks of neural networks. For example, optimizers iteratively map the current
weights and gradient history to updated weights. Taking this perspective, researchers have proposed
a variety of data-driven methods that train a neural network to process these weight-space features.
Examples applications of these neural functionals [Zhou et al., 2023a] include training neural
networks to predict classifier generalization from weights [Eilertsen et al., 2020], to optimize other
networks [Metz et al., 2022], and to classify or edit implicit neural representations (INRs) [De Luigi
et al., 2023].

Until recently, researchers lacked a unifying and principled framework for designing neural function-
als, and would implement a custom model for their particular weight-space task. A significant recent
advance was the development of weight-space models that are permutation equivariant [Navon et al.,
2023, Zhou et al., 2023a]. Neuron permutation symmetries arise in a neural network’s weight space
because re-ordering hidden neurons has no effect on the network’s function [Hecht-Nielsen, 1990]. A
permutation equivariant neural functional can guarantee that under a neuron permutation of its input,
its output permutes accordingly.

Navon et al. [2023] showed that permutation equivariance significantly improves performance on
weight-space tasks, but their models only apply to the weight spaces of simple feedforward multilayer
perceptrons (MLPs). Permutation equivariant neural functionals [Zhou et al., 2023a] added the ability
to process weights from simple feedforward convolutional networks (CNNs). However, in practice
we may deal with the weight spaces of complex networks that have residual connections, recurrence,
normalization layers, and so on. Extending existing approaches to each possible weight space would
be tedious and challenging.
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Figure 1: Illustration of the permutation symmetries in the weight space of a recurrent neural network
(Example 2.2). Left: Each layer contains feedforward (ff) weights mapping between different layer’s
activations, and recurrent (rec) weights transforming activations over time. We can permute the
hidden activations as illustrated without changing the final outputs hL

t . Right: Permuting the hidden
activations induces a permutation on the weights. Here, the rows and columns of the feedforward
weights are permuted by (σℓ+1, σℓ), while the recurrent weights are permuted by (σℓ, σℓ). Our
algorithm automatically constructs permutation equivariant models for any collection of weight
tensors given a description of its symmetries (Appendix A).

We propose an approach that automatically constructs permutation equivariant models for any
collection of tensors whose dimensions can permute according to a shared set of permutations. This
naturally encompasses the permutation equivariance we might desire for any given weight space. We
show that our algorithm constructs the most general linear layer that operates on a given weight space
while guaranteeing equivariance to the specified permutation symmetries. Stacking multiple such
layers with pointwise nonlinearities produces a deep permutation equivariant model, which we refer
to as a universal neural functional.

To evaluate the empirical effectiveness of UNFs, we apply them to tasks that require processing
networks with complex architectures containing recurrence, layer normalization, residual connections,
and more. We use UNFs to implement learned optimizers and then optimize small image classifiers,
RNNs, and Transformer language models, observing promising improvements over prior methods. In
a generalization prediction task, we use UNF to predict the performance of sequence-to-sequence
RNN models from their weights. Our experiments show that universal neural functionals are flexible,
can be easily applied to different weight spaces, and improve upon prior weight-space methods.

2 Preliminaries

We largely follow or extend the notation and naming of Zhou et al. [2023a]. Given a fixed neural
network architecture, there is a weight spaceW of possible parameters (weights, biases, normal-
ization scalings, etc.). We refer to all such parameters as “weights”. A particular set of weights
W =

(
W (1), · · · ,W (L)

)
contains multiple “tensors”, or multidimensional arrays. Depending on

the architecture, W contains numerous symmetries [Hecht-Nielsen, 1990, Godfrey et al., 2022],
i.e., transformations on the weight space that do not affect the network’s behavior. Following prior
work [Navon et al., 2023, Zhou et al., 2023a], this work focuses only on the permutation symmetries,
which are called neuron permutations.

Neuron permutations correspond to re-arranging the neurons within (hidden) layers, which have
no canonical ordering. We make the simplifying assumption that all layers can be re-arranged–this
assumption can be later corrected using positional encodings [Zhou et al., 2023a]. Assuming there
are N independently permutable layers of neurons, the neuron permutation group is the direct product
S = Sn1 × · · · × SnN

, where ni is the number of neurons being permuted in each layer.

In general, each weight is a “tensor” (multi-dimensional array) of real numbers. Using M(a, b, · · · )
to denote arrays Ra×b×···, consider a rank-Dℓ tensor W (ℓ) ∈M

(
ndℓ

1
, · · · , ndℓ

Dℓ

)
. Each dimension

dℓi is permuted by σdℓ
i
. That is, the action of σ on the indices of the weight tensor is:

σ (i1, · · · , iDℓ
) :=

(
σdℓ

1
(i1), · · · , σdℓ

Dℓ

(iDℓ
)
)
. (1)
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Defining the multi-index i⃗ := (i1, · · · , iDℓ
), the action on the weight tensor is to permute the entries:[

σW (ℓ)
]⃗
i
:= W

(ℓ)

σ−1(⃗i)
, and the action onW is σW :=

(
σW (1), · · · , σW (L)

)
.

We now elaborate on the definition of the group and action in several common cases.

Example 2.1 (Multilayer perceptron). A multilayer perceptron (MLP) with L+ 1 layers has acti-
vations hℓ+1 = s

(
W (ℓ)hℓ + b(ℓ+1)

)
, with h1 being the first (input) layer and hL+1 the output. If

each hℓ is a vector of length nℓ, then the weights are matrices W (ℓ) ∈M(nℓ+1, nℓ) and the biases
are vectors b(ℓ) ∈M(nℓ). Then we have a neuron permutation group S = Sn1

× · · · × SnL+1
, and

σ ∈ S can be written σ = (σℓ)
L+1
ℓ=1 . The action on the weights and biases is:

W (ℓ) 7→ P (σℓ+1)W
(ℓ)P (σℓ)

⊤ and b(ℓ) 7→ P (σℓ) b
(ℓ), (2)

where P (σℓ) is the nℓ × nℓ permutation matrix corresponding to σℓ. This corresponds exactly to the
“NP” setting in Zhou et al. [2023a].

Example 2.2 (Recurrent neural network). Consider a deep recurrent neural network (RNN) [Elman,
1990] without biases. We follow the presentation of Wang et al. [2023]:

hℓ+1
t = s

(
W ℓ+1

rec hℓ+1
t−1 +W ℓ

ffh
ℓ
t

)
, (3)

where h1
t are the inputs and hL+1

t are the outputs at each timestep, with hℓ
0 initialized to 0. The

weight space consists of feedforward (ff) weights W ℓ
ff ∈ M (nℓ+1, nℓ) and recurrent (rec) weights

W ℓ
rec ∈M (nℓ, nℓ). We again define the neuron permutation group S := Sn1

× · · · × SnL+1
, but the

action of the group on the weight space is now different. Here, re-arranging the neurons corresponds
to transforming the weights:

W ℓ
ff 7→ P (σℓ+1)W

ℓ
ffP (σℓ)

⊤ and W ℓ
rec 7→ P (σℓ)W

ℓ
recP (σℓ)

⊤
.

As illustrated by Figure 1, the feedforward weights transform just as in the MLP case (Eq. 2), but the
recurrent weights’ rows and columns must be transformed by the same permutation.

Example 2.3 (Convolutional neural network). Consider a 1D convolutional neural network (CNN)
without biases. Using ⋆ to denote cross-correlation, we have activations hℓ+1 = s

(
W (ℓ) ⋆ hℓ

)
,

where the input is h1 and the output is hL+1. If each filter has spatial dimension kℓ and each
hℓ has nℓ channels, then we have rank-3 weight tensors W (ℓ) ∈ M (nℓ+1, nℓ, kℓ) and neuron
permutation group S =

∏L
ℓ=1 Snℓ

× Skℓ
. Looking at how each dimension of W (ℓ) permutes, we

would have σnℓ+1
∈ Snℓ+1

permute the first dimension (output channels), σnℓ
∈ Snℓ

permute the
second dimension (input channels), and σkℓ

∈ Skℓ
permute the third dimension (spatial).

We note that permutating the spatial dimensions of a convolution filter would change the CNN’s
behavior and is not a true symmetry of the weight space. This is a notable difference between how
our framework handles convolutional weight spaces compared to NFNs [Zhou et al., 2023a], where
the action of the neuron permutation group does not affect the spatial dimensions at all. Assuming
that all dimensions of each weight tensor can permute simplifies the development of our framework,
and undesired symmetry can be broken (if desired) by positional encodings of the input [Zhou et al.,
2023a, Lim et al., 2023].

Equivariance and invariance. We are interested in functions T :W →W that are equivariant,
meaning that it doesn’t matter whether we apply a neuron permutation to the input or the output. We
define LS (W,W) as the space of equivariant linear maps, i.e., those T satisfying:

T (σW ) = σT (W ) ,∀σ ∈ S,W ∈ W. (4)

Our goal is to design a layer (i.e., a parameterized space of functions) that is equivalent to LS (W,W).

In some applications, we may instead desire invariance, that is a function P satisfying

P (σW ) = P (W ) ,∀σ ∈ S,W ∈ W. (5)

Following prior work [Navon et al., 2023, Zhou et al., 2023a], we can build invariant neural functionals
by composing several equivariant layers with an invariant pooling layer, e.g., one that sums over
every dimension of each weight tensor and concatenates the results.
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3 Universal neural functionals

Since equivariance is preserved under composition, and pointwise non-linearities are already permu-
tation equivariant, we can build deep equivariant models as long as we have an equivariant linear
layer. Additionally, composing equivariant layers with an invariant pooling operation produces a deep
invariant model. This section introduces a method for producing equivariant weight-space layers for
any given weight space, which enables the flexible construction of universal neural functionals.

3.1 Decomposing equivariant weight-space maps

The weight space is a direct sum of individual weight subspacesW =W(1) ⊕ · · · ⊕W(L), so the
problem of defining an equivariant layer onW can be decomposed into defining equivariant layers
between each pair of weight subspacesW(m) andW(ℓ), for all ℓ and m [Navon et al., 2023].

We re-state this result in our own notation. For any ℓ,m pair we define LS
(
W(m),W(ℓ)

)
as the

space of equivariant maps between the two weight subspaces. It contains all T ℓm :W(m) →W(ℓ)

satisfying

T ℓm
(
σW (m)

)
= σT ℓm

(
W (m)

)
∀σ,W (m), (6)

noting that the action on the left and right hand sides of the equivariance condition are not, in general,
the same.

Assume that we already have a basis Bsp for LS
(
W(p),W(s)

)
. A basis function E ∈ Bsp can be

extended to Ē :W →W by defining:

Ē(W )ℓ :=

{
E
(
W (p)

)
ℓ = s

0 otherwise
, (7)

where Ē(W ) :=
(
Ē1(W ), · · · , ĒL(W )

)
.

Theorem 3.1 (Navon et al. [2023]). Let {Bℓm } be bases for each LS
(
W(m),W(ℓ)

)
. Then the

union of these bases (extended by Eq. 7) is a basis for linear equivariant maps onW . That is, we
have the basis B for LS (W,W) defined:

B =
⋃

ℓ,m∈JLK2

{
Ē

∣∣ E ∈ Bℓm }
. (8)

This result tells us that we can construct an equivariant basis B for LS (W,W) by simply combining
the equivariant bases {Bℓm } for each pair of weight subspaces.

3.2 Equivariant layers between tensors

Algorithm 1 Basis for equivariantW(m) →W(ℓ) layer

Require: W(m),W(ℓ)

1: Initialize basis Bℓm ← { }
2: I ← { o1, · · · , oDℓ

, i1, · · · , iDm }
3: for P in VALIDPARTITIONS (I) do
4: Label each subset sp ∈ P by unique character

CHAR(sp)
5: for α ∈ I do
6: Map index c[α]← CHAR(sp) where α ∈ sp
7: end for
8: EP(X)c[o1],··· ,co[Dℓ]

:=
∑

R Xc[i1],··· ,c[iDm ]

9: Bℓm ← Bℓm ∪ {EP }
10: end for
11: return Bℓm

Since weights are tensors, our decomposed
problem involves finding bases for permu-
tation equivariant maps between tensors.
Variants of this problem have been stud-
ied by numerous prior works–in particular,
Maron et al. [2018] theoretically character-
ize a basis for equivariant maps between
arbitrary-rank tensors, and provide a con-
crete implementation of the basis functions
in the rank-2 case. Here, we describe a
general algorithm that automatically con-
structs a basis for permutation equivariant
maps between arbitrary-rank tensors. Con-
cretely, it implements each basis function
in terms of simple array operations that
are amenable to efficient computation with
modern deep learning frameworks.
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Functions in LS
(
W(m),W(ℓ)

)
take input tensors indexed by { i1, · · · , iDm } and produces output

tensors indexed by { o1, · · · , oDℓ
}. We can construct a basis Bℓm for this space where each element

is identified by a valid partition P of these indices. Recall that the indices (i1, i2, · · · ) of W (m)

are permuted by
(
σdm

1
, σdm

2
, · · ·

)
. We say that two indices i1 and i2 “permute simultaneously” if

dm1 = dm2 .

Definition 1. A valid partition is a partition P of the output and input indices I =
{ o1, · · · , oDℓ

, i1, · · · , iDm
} into non-empty subsets, such that each subset only contains indices that

are permuted simultaneously.

Example 3.1 (W(m) = W(ℓ) = Rn1×n2). Here the output and input indices are { o1, o2, i1, i2 }.
The partition { { o1, o2 } , { i1, i2 } } is not valid because o1, o2 are permuted by σ1, σ2, so they do
not permute simultaneously. On the other hand, { { o1, i1 } , { o2, i2 } } is a valid partition.

Example 3.2 (W(m) = W(ℓ) = Rn1×n1). This time, the partition { { o1, o2 } , { i1, i2 } } is valid
because o1, o2 are both permuted by σ1, as are i1, i2.

To construct the equivariant basis, we enumerate all valid partitions and then map each partition P to
a basis function EP . Concretely, we label each subset of P with a distinct character α, β, γ, · · · and
then remap each of our original indices { o1, · · · , oDℓ

, i1, · · · , iDm
} to a a character based on which

subset the index was in. This mapping is best illustrated by continuing our previous example.

Example 3.3 (W(m) =W(ℓ) = Rn1×n2 ). Here input and output are both matrices, with combined
indices { o1, o2, i1, i2 }. We have two permutations (σ1, σ2) ∈ Sn1 × Sn2 that can act on the rows
and columns of the input and output matrices. There are four valid partitions:

P1 = { { o1, i1 } , { o2, i2 } } , P2 = { { o1, i1 } , { o2 } , { i2 } } ,
P3 = { { o1 } , { i1 } , { o2, i2 } } , P4 = { { o1 } , { o2 } , { i1 } , { i2 } } . (9)

Consider P2–we assign a character to each subset:

P2 = { { o1, i1 }︸ ︷︷ ︸
α

, { o2 }︸ ︷︷ ︸
β

, { i2 }︸ ︷︷ ︸
γ

} . (10)

which tells us to remap the output indices (o1, o2) 7→ (α, β) and the input indices (i1, i2) 7→ (α, γ),
producing the basis function EP2

(
W (m)

)
αβ

:=
∑

γ W
(m)
αγ , where summation over γ can be inferred

because it only contains an input index.

Repeating this index-remapping process for each valid partition will generate a total of four basis
functions EP1

, · · · , EP4
for LS

(
W(m),W(ℓ)

)
. Our equivariantW(m) →W(ℓ) layer will be defined

as the linear combination T ℓm
(
W (m);λ

)
:=

∑4
k=1 λk ·EPk

(
W (m)

)
, which is the layer introduced

in Hartford et al. [2018].

To generalize the previous example, for each valid partition of the indices P we label its subsets with
characters α, β, γ, · · · and then construct a basis function:

E(W (m))c[o1],··· ,c[oDℓ
] =

∑
R

W
(m)
c[i1],··· ,c[iDm ], (11)

where c[·] maps each index to the subset of P that contains it. We sum over the characters in R,
which is the (possibly empty) subset of characters that only contain input indices (i.e., only appear on
the right-hand side). Entries that are not explicitly assigned by the left-hand side are 0. Algorithm 1
gives a formal description of the complete process for generating Bℓm.

Theorem 3.2. Algorithm 1 produces a basis for the equivariant linear maps fromW(m) toW(ℓ).
Proof. See Appendix B.1.

Once Algorithm 1 has generated a basis of equivariant functions Bℓm, we can implement an equivari-
ant layer using a vector λℓm ∈ R|Bℓm| of learned coefficients:

T ℓm
(
W (m);λℓm

)
:=

|Bℓm|∑
b=1

λℓm
b · EPb

(
W (m)

)
. (12)
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3.3 Equivariant layers on weight spaces

Theorem 3.1 now tells us that we may now construct the equivariant weight-space layer by combining
the bases {Bℓm } into a basis B of functions on W . The weight-space layer T (·, λ) can then be
defined by a linear combination of the basis functions with learned coefficients λ. Explicitly, the full
layer is defined:

T (W,λ) =
(
T 1

(
W,λ1,:

)
, · · · , TL

(
W,λL,:

))
, (13)

where λℓ,: = {λℓm | ℓ = 1, · · · , L } and T ℓ
(
W,λℓ,:

)
=

∑L
m=1 T

ℓm
(
W (m), λℓm

)
.

Appendix A provides a concrete description of how we specify the weight space in code and how the
algorithm is then used to automatically construct an equivariant weight space layer. Our open-source
implementation is compatible with most JAX [Bradbury et al., 2018] neural network libraries.
Theorem 3.3. The weight-space layer (Eq.-13) is S-equivariant, and can express any linear equiv-
ariant function onW .

Proof. Each T ℓm is a linear combination of basis functions in Bℓm. Then, as described by Thm 3.1,
Eq. 13 is a linear combination of functions that form a basis for LS (W,W).

For an MLP weight space with neuron permutation group defined as in Example 2.1, this approach
will generate the exact same layer as NFNNP [Zhou et al., 2023a]. This is because the layers each
parameterize all possible linear maps equivariant to the same symmetry group, and hence can express
the same set of functions.

3.4 Multiple feature channels

In practice, we may be interested in simultaneously processing multiple weight-space features,
such as the weights and a history of gradients. These features can be stacked into a “channel”
dimension analogous to the channels of convolutional networks. In that case, we must consider
direct sums of weight spaces of the form Wc = ⊕c

k=1W , with elements that can be written as1

W = (W [1], · · · ,W [c]), for W [k] ∈ W . Then the action is σW := (σW [1], · · · , σW [c]) for
σ ∈ S , extending the (single channel) definition. The definition of equivariance can then be extended
to layers of the form T (·) :Wci →Wco , where ci, co are the number of input and output channels.

Extending equivariant layers to the multi-channel setting is quite common in the geometric deep
learning literature and simply involves taking linear combinations along the channel dimension [Cohen
and Welling, 2016, Ravanbakhsh et al., 2017]. That is, we modify the equivariant layer between
subspaces as:

T ℓm
(
W (m);λℓm

)
[k′] :=

|Bℓm|∑
b=1

ci∑
k=1

λℓm
b [k′, k] · EPb

(
W (m)

)
[k], (14)

where each λℓm
b is now a learned co × ci matrix instead of a scalar.

3.5 Deep models

The previous sections describes the construction of S-equivariant layers that operate operate on
weight-space features inWc. We construct universal neural functionals by stacking multiple such
layers (interleaved with pointwise non-linearities) into a deep, permutation equivariant model that
can process weights. To construct a permutation invariant model, we can add an invariant pooling
layer after the equivariant layers, as in prior work [Navon et al., 2023, Zhou et al., 2023a].

4 Experiments

In this section, we refer to weight-space models constructed using our algorithm as universal neural
functionals (UNFs). We compare their performance to prior methods on two types of weight-space
tasks: predicting the generalization of recurrent sequence-to-sequence models, and training learned
optimizers for a variety of architectures and datasets.

1In the multichannel setting we overload notation and use W to refer to elements of Wc, not W .
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4.1 RNN generalization prediction

One promising application of neural functionals is in predicting the generalization of neural network
models from their weights Eilertsen et al. [2020]. We construct Tiny RNN Zoo2, a dataset of recurrent
neural networks trained to do arithmetic by completing given questions character-by-character. For
example, given the input string “15+20=” the correct completion would be “35<EOS>”. To construct
the dataset, we train 104 sequence-to-sequence [Sutskever et al., 2014] models on example problems
with input numbers up to five input digits. Both encoder and decoder RNNs contain a single GRU
cell [Chung et al., 2014] with hidden size 128. Each model is trained with a distinct learning rate and
batch size, and it’s test success rate (SR) is recorded. The learning rate is sampled from a log-uniform
distribution over [10−4, 10−2], and the batch size is sampled uniformly from { 64, 128, 256 }. With
the goal of predicting test SR from weights, we split the Tiny RNN Zoo into 8000/1000/1000
training, validation, and test examples.

Method Test τ
Deep Set 0.8306± 0.0006
STATNN 0.8839± 0.0007

UNF (Ours) 0.8968± 0.0006

Table 1: Rank correlation between predicted
and actual success rates of RNNs on an arith-
metic task. Predicting with UNF signif-
icantly outperforms STATNN [Unterthiner
et al., 2020].

The success rate of each RNN model is clearly invariant
under permutation symmetries of its weights, so invariance
is a natural inductive bias for any generalization predic-
tor. We evaluate STATNN [Unterthiner et al., 2020] and a
UNF-based predictor (note that NFNs are not applicable
to the weights of recurrent networks). STATNN is operates
on basic statistical features3 of the weights, and has been
shown to be a very strong baseline on previous general-
ization prediction tasks [Unterthiner et al., 2020]. On the
other hand, UNF operates on raw weight inputs and may
be able to extract more nuanced signals than STATNN, as was shown (for CNN classifiers) in Zhou
et al. [2023a].

In particular, STATNN computes the mean, variance, and (0, 25, 50, 75, 100)-percentiles of each
weight tensor in the RNN and feeds them into a six-layer MLP with hidden width 600. UNF is
a permutation invariant model, implemented using a three-layer equivariant backbone (16 hidden
channels) followed by invariant pooling and a three-layer MLP (512 hidden neurons). We train each
predictor with binary cross entropy loss (since the target SR is in [0, 1]), using the Adam optimizer
with learning rate 0.001, batch size 10, and training for up to 10 epochs. We use the validation
data only for early stopping, and assess the performance of each predictor on the test inputs using
Kendall’s τ , the rank correlation between predicted and actual success rate.

Results. Table 1 shows the performance of each predictor on held out weight inputs. Our UNF-based
predictor achieves significantly higher rank correlation between predicted and actual success rate,
suggesting that the equivariant layers are able to extract more informative features from the raw
weights compared to STATNN.

4.2 Learned optimizers

Choosing the optimizer is a key step in training any modern neural network. Though most popular
optimizers are variants of stochastic descent, the non-convexity of neural network training leaves few
rigorous guidelines for ideal optimizer design. This has led some researchers to propose training
good optimizers using some form of meta-learning [Bengio et al., 1990, 2013, Andrychowicz et al.,
2016, Wichrowska et al., 2017, Metz et al., 2019].

Common optimizers today (including the learned ones) are equivariant to any permutation of the
weights. This is because permuting the weights also permutes the gradients, so stochastic gradient
descent and similar optimizers will produce permuted updates. However, equivariance to any
permutation ignores the actual symmetry structure of the optimized neural network. Arguably the
more appropriate constraint is to only require equivariance to the neuron permutation group, which
enables more expressive optimizers while still respecting the symmetries of the weight space. As we
will see, this can be achieved by using UNFs to implement a learned optimizer.

Training learned optimizers that generalize well is extremely compute-intensive [Metz et al., 2022],
so we conduct our experiments in several smaller settings to analyze the impact of architecture

2Inspired by the Tiny CNN Zoo [Unterthiner et al., 2020].
3Notably, it computes statistics that are invariant to permutations of the weights.
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Figure 2: Training loss (negative log-likelihood) curves for different tasks and architectures using
meta-learned optimizers. We implement learned optimizers with either universal neural functionals
(UNFs), NFNs [Zhou et al., 2023a], or Deep Sets [Zaheer et al., 2017]. Deep Sets are the current
standard choice for implementing learned optimizers. Note that NFN is identical to UNF in the
MLP case, different for CNN case, and not applicable to RNNs or Transformers. All loss curves
are smoothed and averaged over 5 random initializations (3 for Transformer), with shaded regions
showing standard error.

choice on learned optimizer performance. In each setting, an optimizer is meta-trained to optimize an
architecture type on a task from random initializations. Following Harrison et al. [2022], our learned
optimizers track momentum terms mγ

t ← γmt−1 +∇t and produce updates of the form:

Wt+1 ←Wt − α (mγ0

t + βf (Wt,∇t, {mγi

t }i , t)) . (15)

Here αmγ0

t is a “nominal term” that biases the learned optimizer to behave like stochastic gradient
descent with momentum coefficient γ0. The neural functional f(·) ingests weights Wt, gradients∇t,
momentum terms at several coefficients {mγi

t }i, and the iteration t.

During meta-training, we optimize network f and scalars α, β, γ0 to minimize the task training
loss after a fixed number of training steps T , the “inner training horizion.” To avoid the issue
of backpropagating through an optimization process, we estimate meta-gradients using persistent
evolutionary strategies [Vicol et al., 2021].

Comparisons. The default architecture choice for f(·) in prior work is Deep Sets [Zaheer et al.,
2017], which offers equivariance to any permutation symmetry. We study the effect of replacing
Deep Sets by UNFs. We also try the NFNNP architecture [Zhou et al., 2023a] where applicable,
though it cannot be used on the RNN and Transformer experiments. Finally, we consider stochastic
gradient descent with momentum (SGDM), which is equivalent to fixing β = 0 in Eq. 15. The
SGDM baseline is also meta-trained to tune the learning rate α and momentum decay rate γ0. We
compare the different learned optimizers in four tasks:

MLP on FashionMNIST. Each optimizer trains an MLP classifier on a downsized and flattened
version of the FashionMNIST dataset [Xiao et al., 2017]. We note that for MLP weight spaces, UNF
are identical to NFNNP [Zhou et al., 2023a].

CNN on CIFAR-10. Each optimizer trains a convolutional classifier on a downsized 16× 16 CIFAR-
10. In this setting our algorithm produces a UNF that is different to NFNNP (see Example 2.3).

RNN on LM1B. Each optimizer trains a character-level RNN-based language model (LM) on the
One Billion Word Language Model Benchmark (LM1B) dataset [Chelba et al., 2013].

Transformer on LM1B. Each optimizer trains a Transformer LM on LM1B, this time predicting
tokens instead of characters.

We use an inner training horizon T = 2,000 for the first three tasks and T = 5,000 for the Transformer
task, since it takes longer to train. When implementing f(·) for each method, we use a network with
four layers, 32 hidden channels, and ReLU nonlinearities. The Deep Set optimizer uses exclusively
Deep Set layers [Zaheer et al., 2017, Eq. 4], while the UNF and NFN optimizers uses three Deep Set
layers followed by a single UNF or NFN layer. See Appendix C.1-C.2 for full descriptions of the
tasks and meta-training.

Results. Figure 2 shows the training curves produced by each of the meta-trained optimizers in
each experiment. Learned optimizers with deep architectures (UNF, Deep Set, or NFN) outperform
SGDM, even after tuning SGDM’s learning rate and momentum decay. UNF typically learns fastest
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and achieves the lowest training loss across all methods, though Deep Set and NFN can be comparable
in some settings. One interesting observation is that UNF outperforms NFN in the CNN experiment.
As noted in Example 2.3, UNFs make the stronger assumption that all tensor dimensions–including
the spatial dimensions of the convolution filter–are permutable, while NFNs do not. Although the
UNF assumption is technically incorrect, the stronger assumption leads to a lower parameter count
(see Table 3 in the appendix) which may be easier for meta-optimization.

Overall, our results show the promise of using UNFs to create more expressive learned optimizers
that utilize the specific symmetry structure of the weight spaces they optimize. Further work could
investigate their capacity for generalization to new tasks and architectures, for example by meta-
training on diverse tasks [Metz et al., 2022]. Moreover, as Table 3 in the appendix shows, a necessary
trade-off of UNFs being more expressive is that they require more parameters for an equivalent
number of layers and hidden channels. Since learned optimizers are still much smaller than the
networks they could optimize, this may not be a significant computational constraint in practice. Still,
it could be a challenge to meta-optimization, since evolutionary strategies are known to struggle
in higher dimensions. Hence, further work on efficient high-dimensional meta-gradient estimators
would complement the development of expressive weight-space models like UNF.

5 Related Work

There is a long history of neural network architectures that are equivariant to various symmetry
groups [LeCun et al., 1995, Cohen and Welling, 2016, Ravanbakhsh et al., 2017, Kondor and Trivedi,
2018, Cohen et al., 2018]. Existing frameworks for automatically constructing equivariant mod-
els [Finzi et al., 2021] produce equivariant matrices, which would be intractable for our task. Our work
constructs efficient equivariant basis functions for a particular class of permutation symmetries that
arise in the weight spaces of neural networks. Permutation equivariant networks have been developed
for sets [Zaheer et al., 2017], matrices whose rows and columns permute independently [Hartford
et al., 2018], and tensors under higher-order permutation actions [Thiede et al., 2020, Pan and Kondor,
2022]–the latter may also be viewed as equivariant models on graphs or polytopes [Maron et al.,
2018, Albooyeh et al., 2019]. This work observes that a weight space is a collection of tensors under
higher-order permutation symmetries, and develops equivariant models for that setting.

There has been significant interest in designing architectures that that either optimize or generate
neural network weights [Schmidhuber, 1993, Ha et al., 2016, Krueger et al., 2017, Kirsch and
Schmidhuber, 2021, Peebles et al., 2022, Metz et al., 2022]. Some works have identified the
importance of respecting the relevant symmetries when implementing black box meta-learners [Kirsch
et al., 2022]. However, precise characterizations of equivariant models on neural weight spaces are
relatively recent and were initially restricted to simple feedforward models [Navon et al., 2023, Zhou
et al., 2023a,b].

A recent alternative approach has been to leverage message passing neural networks (MPNNs) [Zhang
et al., 2023] to process weights as edges of a graph. Concurrent to this work, Kofinas et al. [2024]
demonstrated applications of MPNNs to learned optimization for MLPs and CNNs and Lim et al.
[2023] extended MPNNs to process general weight-spaces. MPNN-based approaches benefit from
more flexible adaptation to heterogenous inputs, and the computational cost of message passing does
not grow as rapidly as our basis–this is because our approach guarantees each linear layer to be
maximally expressive while MPNNs do not. We give a more detailed exposition of this trade-off in
Appendix B.3

6 Conclusion

We introduce a method for constructing permutation-equivariant neural functionals that operate
on arbitrary weight spaces, removing a major limitation of previous frameworks that were only
applicable to the weight spaces of simple MLPs and CNNs. Our algorithm constructs maximally
expressive equivariant linear layers for processing any collection of tensors given a description of their
permutation symmetries, and implements these layers in terms of efficient array operations in standard
deep learning frameworks. We empirically validate that the resulting universal neural functionals
(UNFs) are effective at tasks that involve processing the weights and gradients of convolutional
image classifiers, recurrent sequence-to-sequence models, and Transformer language models. In
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particular, we find that UNFs show promising improvements over existing learned optimizer designs
in small scale experiments.

Limitations and future work. It remains to be demonstrated how UNFs can be applied to het-
erogenous weight-space inputs, e.g., to have a single UNF act as a learned optimizer for any input
architecture. Moreover, our experimental results only validate the promise of UNF-based learned
optimizers in relatively limited settings, and more work would needed to test generalization across
arbitrary tasks. Finally, computational tractability may be a significant challenge for more complex
architectures as the number of basis terms generated by Alg. 1 would grow rapidly for higher rank
tensors with higher-order interactions (see Appendix B.2). Resolving these challenges would further
improve the scalability and applicability of neural functionals to weight-space tasks.
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A Weight-space specifications

Here we discuss the concrete specification that precisely describes a weight space and must be
provided as input to the algorithm before it can construct equivariant weight-space layers. Our
implementation is compatible with most JAX [Bradbury et al., 2018] neural network libraries.

Suppose we wish to process an MLP’s weights that are stored in a (nested) Python dictionary:

params = {
"layer1": {"weight": Array[64, 32], "bias": Array[64]},
"layer2": {"weight": Array[64, 64], "bias": Array[64]},

}

Then a specification should match the nested dictionary structure but provide a string or integer name
for each dimension of each array. The name tells the algorithm which permutation affects which
dimensions of each array.

In this example, the specification closely follows the MLP description in Example 2.1, where
W (1) ∈M(n2, n1) is permuted as W (1) 7→ P (σ2)W

(1)P (σ1)
⊤.

specification = {
"layer1": {"weight": ("n2", "n1"), "bias": ("n2",)},
"layer2": {"weight": ("n3", "n2"), "bias": ("n3",)},

}

Providing this specification object to our algorithm is sufficient for it to deduce the symmetry
group, its action, and construct the corresponding equivariant layer.

Since most neural networks consist of repeating layers or blocks, the process of constructing the
specification can be semi-automated by first defining a function that creates the specification for a
single layer or block and then re-using that function for each block. Although we did not find this
necessary for our experiments, it may also be possible to automatically deduce the specifications for
a network in common deep learning frameworks by analyzing its computation graph.

B Further analysis of UNFs

B.1 Algorithm 1 generates a basis for LS
(
W(m),W(ℓ)

)
Here we show that Algorithm 1 produces a basis Bℓm for LS

(
W(m),W(ℓ)

)
, the space of linear

equivariant maps between W(m) and W(ℓ). Consider instantiating these linear maps as matrices
multiplying flattened input vec

(
W (m)

)
. Maron et al. [2018] characterize a basis {Bµ }µ for these

matrices, where the entries of each basis matrix are defined:

Bµ
a,b =

{
1 (a, b) ∈ µ

0 otherwise
. (16)

Here a ∈ Im and b ∈ Iℓ are multi-indexes for the input and output spaces, and µ ∈ Im × Iℓ/ ∼ is an
equivalence class of the combined input-output index space Im × Iℓ under the equivalence relation ∼
defined by a ∼ a′ if and only if ai = aj ⇐⇒ a′i = a′j for all i, j, i.e. the two multi-indexes a, a′
have the same equality pattern.

Re-arranging Maron et al. [2018, Eq. 10b], any equivariant linear map is defined:

L(W (m))b =
∑
a∈Im

∑
µ∈Im×Iℓ/∼

wµB
µ
a,bW

(m)
a =

∑
µ∈Im×Iℓ/∼

wµ

∑
a∈Im

I{(a, b) ∈ µ}W (m)
a , (17)

where I{·} is an indicator function for the given condition.

Notice that each equivalence class µ is represented by what we call a valid partition of [Dm+Dℓ] :=
{1, · · · , Dm +Dℓ}, so this is already a sum over valid partitions as in Eq. 12. We can now observe
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that each term on the RHS is equivalent to one of our basis functions (Alg 1 Line 8). That is, for a
given equivalence class µ represented by valid partition P:∑

a

I{(a, b) ∈ µ}W (m)
a = EP(W

(m)). (18)

This is because for any I := (a, b) yielding a nonzero term on the LHS, if i, j ∈ [Dm + Dℓ] are
grouped together by partition P then Ii = Ij , otherwise they would violate the equality pattern of µ.
Therefore, we can replace all indices grouped together in a partition with a single shared symbol, i.e.
the characters in Eq. 11.

Hence, Algorithm 1 produces a basis that spans the same space of equivariant functions defined in
Maron et al. [2018], but constructs the basis functions in terms of efficient array operations instead of
as matrices. Note that this is similar to the construction in Pan and Kondor [2022], but generalized to
multi-node sets (non-square tensors whose axes can potentially permute independently).

B.2 Size of basis produced by Algorithm 1

Suppose we have a neuron permutation symmetry group S = Sn1
× · · · × SnN

, i.e., every neuron
permutation σ is composed of N distinct permutations (σ1, · · · , σN ). For each i = 1, · · · , N we
define ci

(
W(ℓ)

)
to be the number of indices that σi ∈ Sni

permutes in weight tensors W (ℓ) ∈ W(ℓ)

(which could be 0). Finally, denote b(k) to be the k’th Bell number. Then the number of basis
functions generated by Algorithm 1 is:

|Bℓm| =
∑
ℓ,m

N∏
i=1

b
(
ci

(
W(ℓ)

)
+ ci

(
W(m)

))
. (19)

B.3 Comparison to MPNN-based approaches

Each UNF layer can express any linear equivariant function on a given weight space (Thm 3.3).
Compared to methods based on message-passing neural networks (MPNNs), this means UNFs can
have very expressive individual layers, but may also be more computationally challenging due to the
growth in the size of the basis (see next section).

As an example, consider a simple “RNN” where ht+1 = Wht and ht ∈ Rn has exchangeable entries,
meaning that W 7→ PWPT is a symmetry. Algorithm 1 would produce an equivariant basis with
b(2 + 2) = 15 terms4.

On the other hand, we could construct a parameter graph [Lim et al., 2023] with n nodes and 2n2

directed edges between them (allowing a forward and backward edge for each weight, equivalently
n2 undirected edges). Then using a similar construction to Lim et al. [2023, Appendix C.1.2], we
would get a linear GNN that computes:

f(W ) = aW⋆,⋆ + bWj,⋆ + cW⋆,k + dWk,⋆ + eW⋆,j + fWjk, (20)

which is a linear combination of 6 equivariant basis functions, instead of 15. This leads to a potientially
interesting trade-off between expressivity vs tractability. However, we also note that in practice
MPNNs use non-linear MLPs in their message passing updates, and the comparison between UNF
and MPNN-style approaches remains an open empirical question.

C Experimental details

C.1 Learned optimization tasks

Here we describe each of the experimental settings we evaluated the learned optimizers on. Across
all experiments, the training loss is negative log-likelihood.

4In this case, the full basis is also given by Maron et al. [2018, Appendix A].
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Figure 3: Number of parameters used by f(·) in each learned optimizer, for each task. Note that NFN
and UNF are identical for the MLP task. This count does not include the other meta-learned scalars
in Eq. 15, which are α, γ0, β.

Task UNF Deep Set NFN
MLP on FashionMNIST 3,783 2,788 3,783
CNN on CIFAR-10 7,369 2,788 41,603
RNN on LM1B 8,043 2,788 N/A
Transformer on LM1B 64,168 2,788 N/A

MLP on FashionMNIST. Train a three-layer MLP classifier on a downsized (8× 8) and flattened
version of the FashionMNIST dataset [Xiao et al., 2017]. The MLP has a hidden size of 32 and ReLU
activation function. We use a batch size of 128.

CNN on CIFAR-10. Train a convolutional classifier on a downsized 16 × 16 CIFAR-10. The
classifier has two convolutional layers (16 and 32 channels), followed by global average pooling and
a linear classification head, and is trained with a batch size of 128.

RNN on LM1B. Trains a character-level RNN-based language model (LM) on LM1B [Chelba et al.,
2013]. The RNN itself has one hidden layer with size 64, and uses identity-initialization [Le et al.,
2015]. An embedding layer with dimension 32 maps tokens to embeddings before feeding into the
RNN, and an output layer produces token predictions from the RNN output. The LM is trained to
predict the next token with teacher forcing at batch size 64, on sequences of length 16.

Transformer on LM1B. Train a Transformer LM on LM1B, this time predicting tokens instead
of characters. The Transformer has two blocks with an embedding dimension of 32, and uses four
self-attention heads. We train with a batch size of 8 on length-8 sequences.

C.2 Learned optimization meta-training

Call DS[c] a single equivariant Deep Set layer [Zaheer et al., 2017, Eq 4] with c output channels (sim-
ilarly for UNF[c] and NFN[c]). Then f(·) in our learned optimizers (Eq. 15) is always implemented
as a feedforward architecture:

DeepSetOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> DS[1]
UNFOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> UNF[1]
NFNOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> NFN[1]

For all methods, we initialize α = 0.1 and γ0 = 0.9 before starting meta-training. For non-SGDM
methods, we initialize β = 0.001, and provide six momentum values {mγi

t }i with coefficients
γi = 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999. The iteration number t is converted into an 11-dimensional
sinusoidal encoding, and all inputs to f(·) are concatenated along the channel dimension. Concretely,
this results in an input inW19. The output is inW1.

We meta-train for 50,000 steps using Adam, estimating meta-gradients over 16 parallel training runs
using persistent evolutionary strategies (PES) [Vicol et al., 2021] with a truncation length of 50 and a
noise standard deviation of 0.01. The meta-training objective is training loss at the end of the inner
training horizon (T = 5,000 for the Transformer setting, and T = 2,000 otherwise), and we apply a
gradient clipping of 1.0.

Size of each learned optimizer f(·). Since Deep Set layers are agnostic to the specific weight space
being optimized, the Deep Set learned optimizer uses the same number of parameters in each task.
The same is not true of UNF layers, where the number of parameters grows in proportion to the size
of the bases generated by Algorithm 1. Table 3 lists the number of parameters in f(·) for each learned
optimizer.

C.3 Compute

Experiments were run on a mix of TPU v3 and v4 accelerators. On a TPU v3-8, training a UNF for
our RNN generalization prediction task takes < 3 hours. Also on a TPU v3-8, meta-training a UNF
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for one of our learned optimizers takes ∼ 4 hours for the MLP task, ∼ 7 hours for the CNN task, and
∼ 20 hours for the RNN task.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract contains exactly the description of the algorithm we developed
and experiments we ran.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is discussed at various points of the paper, including in the Conclusion
(final section of the main paper).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide proofs for both Thm 3.2 and 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide code to implement the proposed method as well as details in the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provide code for implementing the proposed algorithms, but data and code
for some of the experiments could not be released due to proprietary restrictions. However,
we do include details for how to implement these experiments in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our results report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no obvious relevant societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No relevant risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No third-party assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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