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Abstract

Neural population dynamics exhibit rich geometric structure, yet prevailing computational
models often overlook this by primarily accounting for variability in the data. We show
that incorporating prior knowledge about dynamical symmetries yields efficient and inter-
pretable models. Focusing on ring attractor dynamics—canonical circuits that are approx-
imately equivariant under planar rotations—we introduce a symmetry-regularized varia-
tional state space model. Our method augments the standard variational objective with
a symmetry penalty, encouraging the learned dynamical system to respect rotational in-
variance. We demonstrate that this regularization preserves predictive performance while
yielding parsimonious models with interpretable latent dynamics. This framework estab-
lishes a principled approach for embedding symmetry priors into neural dynamical system
learning, highlighting how exploiting geometric structure can improve both scientific insight
and model generalization.

Keywords: Neural dynamics, continuous attractors, symmetry regularization, Lie brack-
ets, variational inference

1. Introduction

Understanding neural population dynamics (in the dynamical system sense) is central
to computational neuroscience, as these dynamics underlie the brain’s ability to process,
integrate, and maintain information over time. One striking example of neural population
dynamics is the maintenance of continuous representations—ranging from head direction
to spatial location—over time (Kim et al., 2017, 2019; Stringer et al., 2002; Gardner et al.,
2022). Similarly, working memory also relies on the brain’s ability to sustain information
over seconds (Wimmer et al., 2014; Seeholzer et al., 2019). To explain how these repre-
sentations can be maintained, theorists have proposed continuous attractor networks as a
unifying framework. In these idealized models, activity patterns evolve along a continuum
of fixed points, allowing the network to store continuous variables (Zhang, 1996; Seung,
1996; Wu et al., 2008; Fung et al., 2010).

A concrete instantiation of continuous attractor dynamics is found in ring attractor
networks, which encode angular variables—such as head direction—through rotationally
symmetric connectivity (Burak and Fiete, 2009; Hulse and Jayaraman, 2020; Noorman
et al., 2024), enabling activity to move continuously along a circular manifold, effectively
maintaining a continuous variable over time (e.g. Drosophila’s central complex (Kim et al.,
2017)). In biological circuits, however, such idealized dynamics are necessarily approximate
(Park et al., 2023; Ságodi et al., 2024). Variability in synaptic strengths, heterogeneity
among neurons, and constraints from development all introduce deviations from the perfect
symmetry assumed in theoretical models (Shimizu et al., 2021). Such variability highlights
that neural circuits—and therefore neural dynamics—are not static. For example, synaptic
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strengths can drift over time while the circuit’s underlying computational principle remains
intact (Chirimuuta, 2024; Ságodi et al., 2024).

These observations motivate a modeling approach that abstracts away spurious de-
tails and emphasizes simple, symmetric structures. By incorporating symmetry constraints
derived from theory, models can become more temporally robust, capturing the core
computation despite ongoing variability. Furthermore, symmetries constrain the net-
work’s activity patterns and the transformations it can implement, reducing complexity
and improving interpretability: it becomes easier to understand what computation the
circuit implements and to compare neural computations across individuals and species.

Exploiting Symmetry State-of-the-art methods for neural system identification, such
as XFADS (Dowling et al., 2024), excel at inferring a low-dimensional nonlinear dynamical
system from observations but do not incorporate inductive biases, such as symmetry, in the
inferred vector field.

In Yang et al. (2024), the authors introduce a general framework for embedding Lie
symmetries into equation discovery pipelines, including sparse regression and genetic pro-
gramming approaches. They show that continuous symmetries of a differential equation
correspond to equivariance of its flow map, providing a principled criterion for enforcing
invariance during model learning. For groups acting linearly on the state space, constraints
can be solved explicitly to reduce the search space, while for nonlinear or unknown symme-
tries they propose a regularization strategy that penalizes deviations from symmetry. Our
approach is inspired by this perspective: rather than discovering governing equations, we ap-
ply symmetry regularization on a flexible nonlinear dynamical system within the variational
state space model, similarly exploiting geometric priors to obtain interpretable and robust
latent dynamics. We develop a framework that augments variational state space models
with continuous symmetry constraints, minimizing deviations from perfect symmetry in the
learned dynamics to recover interpretable neural representations.

Contributions 1. We develop a general formulation for symmetry-regularized learning
in variational inference of neural dynamical systems. 2. Through comprehensive experi-
ments on ring attractor dynamics, we demonstrate that our method recovers interpretable,
symmetry-preserving vector fields from noisy high-dimensional observations.

2. Symmetry Regularization

This section summarizes our approach, a detailed treatment is found in App. A.

We propose a framework that augments variational state space models with symmetric
regularization terms based on a chosen continuous invariance. Following Yang et al. (2024),
we enforce that learned vector field fθ : Rn → Rn approximately commute with generators
v ∈ g of a predefined symmetry group G (e.g., rotations for ring attractors). The degree of
non-commutativity is measured by the ℓ2 norm of the Lie bracket:

Llie = ∥Lfθ v∥
2
2 = ∥fθ ·Dv − v ·Dfθ∥22 . (1)

When this quantity vanishes, the flows generated by fθ and v commute, indicating that fθ
is preserved by G. By adding this term to the standard evidence lower bound (ELBO), we
create a trade-off between data fitting accuracy and symmetry satisfaction.
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To impose a more global rotational symmetry, we use the following group equivariance
loss term to penalize deviations from equivariance:

Lgroup = ∥f(g · x) − g · f(x)∥22 , (2)

where g ∈ SO(2) denotes an element of the group of all rotations in R2, sampled randomly
at each training step to encourage generalization across the full group. See App. A.2
for XFADS implementation and training details and App. C for regularization strength
optimization details.

3. Experiments
We validate our approach on a canonical neuroscience problem: recovering ring attractor

dynamics from high-dimensional noisy observations. We perturb the perfect ring attractor
vector field by adding a smooth, spatially correlated random field. Specifically, a Gaussian
process is sampled on a grid of points and interpolated via radial basis functions to produce
bounded perturbation vectors. The resulting dynamics are f(x) = x (1 − ∥x∥) + hpert(x),
where the first term defines the baseline ring attractor and hpert(x) is the RBF-interpolated
perturbation of controlled magnitude, resulting in an approximate ring attractor (Fig. 2A).
Further details on the data generation procedure are provided in App. A.1.

For regularization, we use a pure rotation vector field: gtarget(x) = 1
2

[
−x2 x1

]⊤
, derived

from the generator of SO(2). This encourages the learned dynamics to exhibit rotational
symmetry characteristic of ring attractors. The model is trained by combining the standard
ELBO loss (Eq. 12) with the rotational regularization (Eq. 2): Ltotal = LELBO+λgroupLgroup.

10 5 10 4 10 3 10 2 10 1 100 101 102 103

group

2300

2325

2350

2375

2400

2425

E
LB

O
 L

os
s

ELBO Loss
Group Loss
Lie Loss (*0.1)

10 5

10 4

10 3

Sy
m

m
et

ry
 L

os
s

Figure 1: Trade-off between accuracy and sym-
metry regularization. Increasing the strength of
the symmetry regularization improves symme-
try but may eventually reduce accuracy. Local
(Llie, green) and global (Lgroup, red) symmetry
are consistent, with values related by a simple
scaling factor.

We evaluate model performance using multiple complementary metrics that capture
both reconstruction quality and symmetry adherence. Data reconstruction is assessed via
the ELBO loss, which quantifies how well the model reproduces observed trajectories. To
evaluate the learned dynamics, we compare the inferred vector field to ground truth us-
ing vector field similarity, providing both visual and quantitative assessments. Symmetry
preservation is measured in two ways: the Lie equivariance loss (Llie) that calculates in-
finitesimal departures from symmetry using Lie derivatives, and the group equivariance loss
(Lgroup) that quantifies semi-global departure from equivariance by averaging over G.

Symmetry regularization improves the model’s adherence to rotational symmetry, as
reflected in both the local Llie and the global Lgroup (Fig. 1). Appropriate regularization
preserves ring topology while enforcing rotational bias (Fig. 2), balancing reconstruction
and symmetry (Fig. 1).
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Training with local symmetry regularization, using the Llie computed through the Ja-
cobians (Eq. 14), did not result in symmetric vector fields for high regularization strengths
(Fig. 4). Local symmetry regularization enforces only infinitesimal constraints via Jaco-
bians, which appears insufficient for producing consistent global symmetry and can desta-
bilize training, whereas global regularization directly enforces the full symmetry of the
vector field.

Figure 2: Flow fields for the
target (perturbed ring at-
tractor, A) versus the in-
ferred vector fields with dif-
ferent symmetry regulariza-
tion strengths (B-D) with the
ring invariant manifolds (ma-
genta, App. B.1). (B) With-
out symmetry regularization
the inferred system inherits
the asymmetries of the tar-
get system. (C) For a reg-
ularization strength that op-
timally trades-off some ac-
curacy for more symmetry
(λgroup = 101), the inferred
system is close to a per-
fect ring attractor. (D) For
the highly regularized inferred
system (λgroup = 103), the
vector field is symmetrical,
but the manifold is rescaled.
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4. Discussion

We address a fundamental challenge in computational neuroscience: extracting inter-
pretable dynamical principles from complex, high-dimensional neural data. We present a
framework for learning neural dynamics with geometric constraints, combining variational
inference with symmetry regularization. Our approach successfully recovers interpretable,
symmetry-preserving dynamics from high-dimensional observations and demonstrates that
soft symmetry constraints via symmetry regularization provide an effective inductive bias
for learning neural dynamics with discoverable symmetry. The Lie bracket formulation pro-
vides a foundation that could extend to other continuous symmetries beyond rotations, such
as translational invariance in grid cell networks or scaling symmetries in sensory processing.

Recent theoretical work using persistent manifold theory shows that approximate con-
tinuous attractors with slow manifolds can perform analog memory tasks nearly as well
as ideal attractors (Ságodi et al., 2024). Our regularization approach uses this insight
by biasing learning towards symmetries, thereby smoothing out imperfections, instead of
quantifying them (Ságodi and Park, 2025).
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Appendix A. Implementation Details

A.1. Ring Attractor Data Generation

We generate synthetic data mimicking neural recordings from a perturbed ring attractor:

1. Ideal dynamics: Start with a perfect ring attractor:

f(x) = x (1 − ∥x∥) (3)

2. Perturbation: Add Gaussian process noise to simulate biological variability:

ftrue(x) = fring(x) + ϵ · δf(x), δf ∼ GP(0, kRBF) (4)

3. Initial latent state: We generate initial points for the latent state x0 from a multi-
variate Gaussian distribution:

x0 ∼ N (m, σ Id), (5)

where m ∈ Rn is the mean and σ is the variance.
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4. Latent state dynamics: The system state evolves according to the perturbed vector
field:

dx = ftrue(xt)dt + dB (6)

or in discrete time:
xt+1 = xt + ftrue(zt) ∆t +

√
∆tη (7)

for η ∼ N (0, 1).

5. Observations: Linear readout with Gaussian noise:

yt = Czt + ηt, ηt ∼ N (0, R), C ∈ R100×2 (8)

A.2. XFADS Framework

We build upon the XFADS variational state space model, which posits:

Latent dynamics: zt ∼ N (fθ(zt−1), Q) (9)

Observations: yt ∼ p(yt|zt) (10)

Inference: q(z1:T |y1:T ) ≈
∏
t

N (µt,Σt) (11)

The model is trained by maximizing the evidence lower bound (ELBO):

LELBO = Eq[log p(y1:T |z1:T )] − KL[q(z1:T )||p(z1:T )] (12)

where the expectation is approximated via Monte Carlo sampling and the KL divergence
has a closed form for Gaussian distributions.

Our experiments use the following architecture:

• Dynamics: GRU with 32 hidden units

• Local encoder: MLP [100 → 64 → 32 → 4] (rank-2 output)

• Backward encoder: MLP [100 → 64 → 32 → 4] (rank-2 output)

• Likelihood: Gaussian with learned diagonal covariance

Training Hyperparameters

• Optimizer: Adam with learning rate 10−3

• Batch size: 32 trials

• Maximum epochs: 25

• Early stopping: Patience 5 on validation ELBO

• Monte Carlo samples: 5 for training, 10 for evaluation

• Gradient clipping: Norm threshold 1.0
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Appendix B. Analysis Methods

B.1. Approximation Of the Invariant Manifold

To approximate the invariant manifold, we focus on the convergence of the flow under the
perturbed vector field. By simulating trajectories starting from various initial conditions,
we identify regions where the dynamics quickly converge, revealing the low-dimensional
structure that captures the long-term behavior of the system. This approach allows us to
characterize the manifold without requiring an explicit analytical solution.

B.2. Lie Bracket Computation

For completeness, we provide the full derivation of the Lie bracket in coordinates. Given
vector fields f = (f1, . . . , fn) and g = (g1, . . . , gn):

Lf g
i =

n∑
j=1

(
f j ∂g

i

∂xj
− gj

∂f i

∂xj

)
(13)

For vector fields f, g : Rn → Rn, the Lie bracket measures the failure of their (local)
flows to commute:

Lf g = f ·Dg − g ·Df, (14)

where Df denotes the Jacobian of f . When this quantity vanishes, the flows generated by
fθ and v commute, indicating that fθ is preserved by G.

Appendix C. Extended Results

Regularization Strength Sweep We conducted a comprehensive sweep across the fol-
lowing regularization strengths for Lgroup and Llie:

λgroup ∈ {0, 10−5, 10−3, 10−1, 101, 103}, (15)

λlie ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104} (16)

For each value, we trained models with:

• 1000 trials × 75 time bins × 100-dimensional observations

• Early stopping based on validation ELBO (patience = 5)

• Fixed random seed for reproducibility

• 5 Monte Carlo samples for variational inference

Our systematic parameter sweep reveals a tradeoff of ELBO loss and symmetry loss with
increasing λgroup (Fig. 1). We plot the final flow fields for each run (Fig. 3, 4), noting the
instability of inferred vector fields for the Lie algebra regularization sweep. This suggests
that local symmetry constraints may be insufficient for capturing the global geometric
structure of ring attractors. The choice of symmetry regularization may need to align with
the spatial scale of the target dynamical system’s geometric properties.
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Figure 3: Inferred flow fields with different regularization strengths with short tra-
jectories sampled from random initial conditions. From left to right: λgroup ∈
{0, 10−5, 10−3, 10−1, 101, 103}
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Figure 4: Inferred flow fields with different regularization strengths with short tra-
jectories sampled from random initial conditions. From left to right: λlie ∈
{0, 10−4, 10−2, 100, 102, 104}

10



Appendix D. Limitations
Our current validation focuses on 2D ring attractors, and extending the framework to

higher-dimensional manifolds, such as tori or spheres, will require addressing the associated
computational complexity. Validation on experimental neural recordings introduces further
challenges, including missing data, and unknown ground truth for the symmetry. Moreover,
automatically identifying underlying symmetries remains an open challenge, which could
be approached either by searching over the group space (Zuo et al., 2024) or by leveraging
equivariant neural network architectures (Yang et al., 2023).
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