
Published as a conference paper at ICLR 2025

ADAPTIVE TRANSFORMER PROGRAMS:
BRIDGING THE GAP BETWEEN PERFORMANCE
AND INTERPRETABILITY IN TRANSFORMERS

Quoc-Vinh Lai-Dang1, Taemin Kang2, Seungah Son1

1Cho Chun Shik Graduate School of Mobility 2The Robotics Program
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea
{ldqvinh, tmkang9826, seungahson}@kaist.ac.kr

ABSTRACT

Balancing high performance with interpretability in increasingly powerful
Transformer-based models remains a challenge. While mechanistic interpretabil-
ity aims to specify neural network computations in explicit, pseudocode-like for-
mats, existing methods often involve laborious manual analysis or struggle to
fully elucidate learned internal algorithms. Recent efforts to build intrinsically
interpretable models have introduced considerable expressivity and optimization
challenges. This work introduces Adaptive Transformer Programs, an enhanced
framework building upon RASP language and Transformer Programs to create
more robust and interpretable models. The proposed method increases expressiv-
ity by redesigning two primary attention modules to improve categorical and nu-
merical reasoning capabilities. To overcome optimization hurdles, we introduce a
novel reparameterization scheme that enhances the exploration-exploitation trade-
off during training. We validate our approach through extensive experiments on
diverse tasks, including in-context learning, algorithmic problems (e.g., sorting
and Dyck languages), and NLP benchmarks such as named entity recognition and
text classification. Results demonstrate that Adaptive Transformer Programs sub-
stantially narrow the performance gap between black-box Transformers and inter-
pretable models, enhancing transparency. This work advances the development
of high-performing, transparent AI systems for critical applications, addressing
crucial ethical concerns in AI development.

1 INTRODUCTION

Balancing high performance with model interpretability has emerged as a central challenge in arti-
ficial intelligence. The introduction of Transformer architectures (Vaswani et al., 2017) and the rise
of large language models (LLMs) (Brown et al., 2020) have significantly advanced natural language
processing. However, these powerful models often operate as “black boxes,” making it difficult to
understand their decision-making processes. This issue is especially critical in fields like healthcare,
finance, and law, where AI-driven decisions can have profound impacts. Addressing this challenge
within the context of Transformers and LLMs is both timely and essential.

Various interpretability techniques have been proposed to illuminate how AI models make decisions,
each offering unique insights yet presenting distinct challenges. Behavioral approaches, such as
those by Ribeiro et al. (2020); Warstadt et al. (2020), probe model responses to diverse inputs,
providing an external view of model behavior but lacking access to internal reasoning mechanisms.
Attribution methods like Integrated Gradients (Sundararajan et al., 2017) and SmoothGrad (Smilkov
et al., 2017) quantify the influence of input features on predictions but often fail to capture underlying
causal relationships. Concept-based interpretabilities (Kim et al., 2018; Belinkov, 2022) adopt a
top-down approach to unraveling a model’s decision-making processes but risk introducing biases
through subjective concept selection. Mechanistic interpretability efforts (Elhage et al., 2021; Nanda
et al., 2023) delve into the internal computations of models but struggle with scalability as model
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complexity grows. These limitations underscore the necessity for inherently interpretable models
that offer transparent decision-making processes without sacrificing performance.

Advancements such as RASP, Tracr, and Transformer Programs represent significant strides toward
inherently interpretable Transformer models. RASP (Weiss et al., 2021) introduces a programming
language that allows users to define Transformer operations in a human-readable format, effectively
mapping neural computations to symbolic logic. Building on this, Tracr (Lindner et al., 2024) serves
as a compiler that translates RASP programs into actual Transformer weights, bridging the gap be-
tween high-level specifications and low-level implementations. Transformer Programs (Friedman
et al., 2024) take this a step further by proposing a method to train Transformers that can be directly
translated into discrete, interpretable programs. While these innovations move us closer to trans-
parent AI systems, challenges in expressivity and optimization persist. Our work addresses these
challenges by introducing novel enhancements to Transformer Programs.

In this paper, we introduce three key innovations that enhance the expressivity and optimization
of Transformer Programs (Friedman et al., 2024) while preserving interpretability. First, we pro-
pose a seamless transition mechanism between Gumbel-Softmax and Sparsemax, improving the
exploration-exploitation trade-off during training by allowing the model to dynamically adjust its at-
tention distributions. Second, we develop an uncertainty-aware attention mechanism that integrates
categorical and score-based attention through Jensen-Shannon Divergence, enabling the model to
handle varying levels of uncertainty in data processing. Third, we enhance the numerical mechanism
by incorporating positional encodings. These contributions not only extend the functional capacity
of Transformer Programs but also maintain their inherent interpretability, addressing limitations in
previous approaches.

Our extensive validation on diverse tasks, including in-context learning, algorithmic problems
(Weiss et al., 2021), and NLP benchmarks, demonstrates the effectiveness of our Adaptive Trans-
former Programs. Experimental results show a substantial improvement in bridging the perfor-
mance gap between black-box Transformers and interpretable models while offering enhanced trans-
parency. This work not only advances the state-of-the-art in interpretable AI but also paves the way
for the responsible and ethical integration of AI systems in critical applications, potentially trans-
forming how we develop and deploy AI in high-stakes environments.

2 BACKGROUND

Transformer Architecture and Circuits. The Transformer architecture (Vaswani et al., 2017) has
revolutionized sequential data processing, achieving unprecedented performance across NLP tasks.
It processes token sequences w = {w1, w2, . . . , wN} from a vocabulary V , converting each into a
high-dimensional embedding. The initial representation x0 ∈ RN×d combines learned token em-
beddings with positional encodings, crucial for capturing sequential information. The architecture
consists of L layers, each refining the input representation through two main components: Multi-
Head Attention (MHA) and Multilayer Perceptron (MLP). The output of layer i is computed as:

xi = xi−1 + MLPi(xi−1 + MHAi(xi−1)), (1)

where MHA allows the model to attend to different positions within the sequence:

MHA(x) =

H∑
h=1

softmax

(
xW h

Q(xW
h
K)⊤

√
dk

)
xW h

V W
h
O. (2)

Recent research has focused on understanding Transformers through the lens of “Transformer cir-
cuits” (Elhage et al., 2021), viewing them as a residual stream architecture where each component
reads from and writes to a running representation:

xi = xi−1 + f(xi−1Win)Wout (3)

This approach has yielded insights into emergent behaviors, such as induction heads for in-context
learning (Olsson et al., 2022). While offering insights into attention heads and neurons, their ap-
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proach to interpretability is limited by the complexity of modern models. This has led to efforts to
bridge the gap between symbolic reasoning and neural network models.

Bridging Transformers and Programs. Bridging the gap between Transformers and symbolic
programs has emerged as a promising direction for enhancing interpretability. RASP (Weiss et al.,
2021) offers a programming language designed to express Transformer computations in a human-
readable format. Its key select function, analogous to attention in Transformers, which takes se-
quences of keys k ∈ KN and queries q ∈ QM , along with a boolean predicate p : Q×K → {0, 1}, to
produce an attention matrix A ∈ {0, 1}M×N . This is followed by an aggregate operation, akin
to value aggregation in Transformers. Building on RASP, Lindner et al. (2024) introduced Tracr, a
compiler that converts RASP programs into Transformer weights. This led to Learning Transformer
Programs (Friedman et al., 2024), a method for training Transformers that can be automatically con-
verted into discrete, human-readable programs. This approach advances neural-symbolic integration
by combining neural network expressiveness with symbolic transparency. However, a key challenge
remains in implementing effective discrete optimization to ensure both accuracy and interpretability
in the learned programs.

Discrete Optimization. Discrete optimization is crucial for training interpretable models with dis-
crete representations like Transformer Programs. The Gumbel-Softmax estimator (Jang et al., 2017)
enables differentiable sampling from discrete distributions, generating one-hot encoded vectors ap-
proximating discrete selections. This allows gradient-based optimization in Transformers. While
effective, it has limitations in finding optimal solutions and promoting sparsity, crucial for inter-
pretability. This paper explores alternative methods, including Sparsemax (Martins & Astudillo,
2016), and introduces a novel smooth transition mechanism addressing these limitations, leading to
more effective, interpretable program learning.

3 ADAPTIVE TRANSFORMER PROGRAMS

3.1 OVERVIEW

Our approach builds upon the Transformer Programs framework (Friedman et al., 2024), which
introduces two key constraints for interpretable Transformers: a disentangled residual stream and
rule-based modules.

The disentangled residual stream encodes each program variable in a dedicated, orthogonal sub-
space, preventing the entanglement often seen in standard Transformers (Vaswani et al., 2017) and
facilitating clear reading and writing mechanisms. When reading, each module accesses specific
variables using projection matrices parameterized by one-hot indicator vectors. Formally, if the
residual stream encodes m categorical variables, each with cardinality k, resulting in input em-
beddings x ∈ {0, 1}N×mk, then each projection matrix W ∈ Rmk×k is defined by an indicator
π ∈ {0, 1}m: W = [π1Ik; . . . ;πmIk]

⊤, where Ik is the k × k identity matrix. Writing involves
concatenating new information to maintain separation: xi = [xi−1;h(xi−1)], where i denotes the
layer and h is an attention head.

Transformer Programs enforce interpretable, rule-based mappings between input and output vari-
ables. Categorical attention heads compute attention patterns using boolean predicate matrices and
employ hard attention for aggregation. The attention pattern is determined using a boolean pred-
icate matrix Wpredicate ∈ {0, 1}k×k, defining mappings between query and key values. This re-
sults in an attention score matrix S ∈ {0, 1}N×N where S = xWQWpredicate(xWK)⊤. Hard
attention ensures each query attends to a single key, producing a categorical output variable:
Ai = One-hot (argmaxj Si,j). Additional modules include factored categorical embeddings, lim-
ited numerical attention, and feed-forward layers as lookup tables.

While effective, the original framework’s use of Gumbel-Softmax reparameterization (Jang et al.,
2017) faces challenges in finding optimal solutions and promoting sparsity. Our work addresses
these challenges through three main contributions: (1) a Smooth Transition Mechanism for discrete
optimization, (2) Uncertainty-Aware Categorical Attention, and (3) Position-Aware Numerical At-
tention. These enhancements improve both interpretability and performance, leading to Adaptive
Transformer Programs.
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3.2 SMOOTH TRANSITION MECHANISM FOR DISCRETE OPTIMIZATION

Our Smooth Transition Mechanism facilitates effective discrete optimization in Transformer Pro-
grams (Friedman et al., 2024) by gradually shifting from exploration to exploitation during training.
The inherently discrete nature of Transformer Programs, with modules containing discrete parame-
ters like predicate matrices and gate vectors, poses challenges for traditional gradient-based meth-
ods. To address this, differentiable relaxation techniques have been employed, with the Gumbel-
Softmax estimator (Jang et al., 2017) being widely adopted:

z̃i =
zi + gi

τ
(4)

ysoft,i = softmaxi(z̃) =
exp(z̃i)∑
j exp(z̃j)

. (5)

where gi is Gumbel noise, τ is temperature, zi is raw logit, and z̃i is perturbed and scaled logit.
However, Gumbel-Softmax (Jang et al., 2017) often yields sub-optimal programs due to local optima
and fails to encourage sparsity, hindering interpretability and efficiency.

To address these limitations, we introduce a Smooth Transition Mechanism combining Gumbel-
Softmax and Sparsemax (Martins & Astudillo, 2016). This hybrid approach balances exploration
and exploitation during training. Initially, it behaves like Gumbel-Softmax, encouraging diverse
program structures. As training progresses, it shifts towards a Sparsemax variant with Gumbel
noise, which we term Gumbel-Sparsemax:

ysparse,i = sparsemax(z̃) := argmin
p∈∆K−1

∥p− z̃∥2. (6)

where ∆K−1 is the (K − 1)-dimensional probability simplex, and the equation finds the closest
point to the perturbed logit z̃. This promotes sparsity and more deterministic program choices,
refining promising solutions and encouraging concise, interpretable programs. This balance enables
the discovery of high-quality, interpretable, and efficient program structures.

The temperature parameter τ controls the smooth transition between Gumbel-Softmax and Gumbel-
Sparsemax. High τ favors exploration (Gumbel-Softmax), while low τ promotes exploitation
(Gumbel-Sparsemax). The transition is governed by α(τ):

α(τ) =
τ1 − τ

τ1 − τ2
(7)

where τ1, τ2 are the transition points (τ1 > τ2). The hybrid distribution is:

y = (1− α(τ)) · ysoft + α(τ) · ysparse (8)

While improving discrete optimization, this mechanism falls short of fully addressing the need for
adaptability and robustness in real-world scenarios, motivating our next contribution: Uncertainty-
Aware Attention.

3.3 UNCERTAINTY-AWARE ATTENTION

Categorical attention heads in Transformer Programs, as in Tracr (Lindner et al., 2024) and RASP
(Weiss et al., 2021), enforce one-to-one attention, excelling at discrete, rule-based relationships but
struggling with nuanced or continuous relationships. Weiss et al. (2021) proposed an extension
to RASP combining a binary function predicate : Q × K → {0, 1} with a continuous function
score : Q × K → R, capturing fine-grained relationships useful for tasks like semantic similar-
ity in NLP. This continuous score function forms the basis of what we term score-based attention.
While Friedman et al. (2024) suggested incorporating score-based attention in Transformer Pro-
grams, this approach increases program complexity. Our preliminary experiments with separate
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binary (predicate-based) and continuous functions (score-based) revealed scenario-dependent per-
formance variations, motivating the development of a hybrid mechanism to create more Adaptive
Transformer Programs.

We employ Jensen-Shannon Divergence (JSD) (Lin, 1991), a symmetric and smoothed version
of Kullback-Leibler divergence (Kullback & Leibler, 1951), to measure uncertainty in categori-
cal attention. JSD’s non-negativity, boundedness, and symmetry make it suitable for this task. In
this context, JSD measures uncertainty in probability distributions, where higher values indicate
greater uncertainty and a larger divergence between categorical attention and a reference distri-
bution. Given a query q and keys k1, . . . , kn, we define categorical attention (CatAttention) as
Acat,i = predicate(q, ki) and score-based attention (ScoreAttention) as Ascore,i = score(q, ki). We
introduce a dynamic reference attention Aref,i that adapts during training, allowing flexible uncer-
tainty estimation. The JSD is formulated as:

JSD(Acat,i ∥ Aref,i) =
1

2
KL(Acat,i ∥ Aavg,i) +

1

2
KL(Aref,i ∥ Aavg,i) (9)

where Aavg,i = (Acat,i +Aref,i)/2. This formulation enables uncertainty estimation in the attention
mechanism, which is used to adjust attention weights accordingly.

A learnable gating mechanism, driven by the JSD-based uncertainty estimate, dynamically
weights the contributions of CatAttention and ScoreAttention. The gating mechanism: g =
MLP(JSD(Acat,i ∥ Aref,i)), that implemented as a network module that takes the JSD value as
input and outputs a gating weight between 0 and 1. This weight is used to combine the outputs of
CatAttention and ScoreAttention:

Ai = g ·Acat,i + (1− g) ·Ascore,i (10)

In high uncertainty scenarios (high JSD), the gate favors ScoreAttention, which is more reliable in
uncertain contexts. In low uncertainty (low JSD), CatAttention is preferred, as it is more confident
in its categorical decisions. This adaptive mechanism provides flexible and robust decision-making
by dynamically adjusting the balance between attention types based on uncertainty.

While Uncertainty-Aware Attention improves the handling of categorical and contextual informa-
tion, processing numerical data poses additional challenges. To address this, we introduce the
Position-Aware Attention module, which extends the original Numerical Attention mechanism.

3.4 POSITION-AWARE ATTENTION

The numerical attention mechanism in Transformer Programs (Friedman et al., 2024) is restricted
to outputting integer values within a bounded range. This limitation hinders the model’s ability to
represent and process continuous or fractional values, thereby reducing expressiveness and compli-
cating tasks that require nuanced numerical representations or complex calculations. Additionally,
numerical attention employs a binary predicate matrix and computes a weighted sum instead of a
weighted average, simplifying standard Transformer attention and diminishing the model’s capacity
to capture intricate relationships between inputs. Furthermore, numerical variables are limited to
being either constant (set to one at the input layer) or outputs of numerical attention heads, con-
straining the model’s ability to learn and represent arbitrary numerical values and restricting its
problem-solving capabilities.

Our Position-Aware Attention mechanism extends the numerical attention in Transformer Programs
(Friedman et al., 2024). It uses categorical variables as keys and queries, and numerical variables
as values. We incorporate both Learnable (Gehring et al., 2017) and Sinusoidal (Vaswani et al.,
2017) Positional Encodings into the numerical value variable var, creating a position-aware value
varpos. This allows the model to learn nuanced positional relationships. Given attention scores
S ∈ {0, 1}N×N , the output for the ith token is computed as:

Anum,i =

N∑
j=1

Si,jvarpos[j] (11)
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The integration of learnable and sinusoidal positional encodings offers several advantages. Learn-
able encodings capture nuanced positional information and enable processing of non-integer values,
expanding the model’s numerical capabilities for tasks requiring fine-grained representations. By
incorporating positional information, each token can distinguish between identical numerical values
at different positions. Additionally, Sinusoidal Positional Encodings provide a structured approach
to embedding positional information, improving the model’s ability to handle sequence-dependent
tasks and maintain interpretability. These enhancements, combined with the Smooth Transition
Mechanism and Uncertainty-Aware Attention, enable Transformer Programs to be effectively con-
verted into interpretable programs, as discussed in the subsequent section on Experimental Results.

Table 1: Accuracy (Acc.) and Program Length (Lines) for Transformer Programs (Baseline) and
Adaptive Transformer Programs (Ours) on In-Context Learning (Friedman et al., 2024) and RASP
tasks Weiss et al. (2021).

Dataset Description Example Baseline Ours
Acc. Lines Acc. Lines

Induction In-context learning. induction("a1b2b2a") = 1 100.0 107 100.0 101
Reverse Reverse the order. reverse("abbc") = "cbba" 99.74 859 99.99 779
Histogram Count the number of tokens. hist("abbc") = "1221" 99.94 199 99.95 189

Double hist. Count the number of unique tokens sharing
identical frequency count.

hist2("abbc") = "2112" 66.78 586 91.81 513

Sort Arrange the input elements in alphabetically
ascending order.

sort("cbba") = "abbc" 99.98 945 99.86 895

Most-Freq Order unique elements by occurrence fre-
quency, using earlier positions to break ties.

most freq("abbc") = "bac" 76.44 1334 80.80 894

Dyck-1 Classify if each position i is a valid string(T),
a valid prefix(P), or an invalid(F).

dyck1("(())") = "PTPTF" 99.69 1297 99.93 1086

Dyck-2 The same analysis with above, but in Dyck-2. dyck2("(()[])") = "PPPPTPF" 97.98 1316 98.14 1065

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND DATASETS

To evaluate the effectiveness of Adaptive Transformer Programs, we conducted experiments on a di-
verse set of tasks: a simple in-context learning task (Friedman et al., 2024), algorithmic RASP tasks
(Weiss et al., 2021), and two standard NLP tasks—named entity recognition using CoNLL-2003
(Tjong Kim Sang & De Meulder, 2003) and text classification using TREC, MR, Subj, and AG News
datasets (Voorhees & Tice, 2000; Pang & Lee, 2004; 2005; Zhang et al., 2015). In the in-context
learning task, the model processed sequences of up to 10 tokens of alternating letters and numbers
from a vocabulary of four letters and four numbers, outputting the number following a repeated let-
ter or unk for a new letter, using an attention-only Transformer with two layers and one attention
head per layer, fixed one-hot encoded token and position variables as input, and a causal attention
mask. For the RASP tasks, as summarized in Table 1, we tested our models on small-scale datasets
with sequence lengths up to 16 (Dyck tasks) or 8 (others), using vocabularies matching the sequence
lengths; the models employed fixed one-hot token and position embeddings, variable cardinality set
to the maximum sequence length, and incorporated our enhanced modules—Uncertainty-Aware cat-
egorical attention and Position-Aware numerical attention heads and MLPs with two input variables.
In the NLP tasks, sentences were limited to 32 words for named entity recognition and 64 words for
text classification, both using a 10,000-word vocabulary and initialized with 300-dimensional GloVe
embeddings (Pennington et al., 2014); for named entity recognition, only categorical attention heads
and MLPs were employed, while text classification used averaged token embeddings for sentence
representation.

4.2 IN-CONTEXT LEARNING AND RASP TASKS

Performance. Table 1 compares Adaptive Transformer Programs (Ours) to Transformer Programs
(Friedman et al., 2024) (Baseline) across eight tasks, showing improvements in accuracy and pro-
gram complexity. Our approach consistently matches or outperforms the baseline, with notable gains
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in challenging tasks: Double histogram (91.81% vs 66.78%) and Most-Freq (80.80% vs 76.44%).
For tasks like Induction and Sort, where baseline accuracy was already high, our model maintains
performance (100% and 99.86% respectively) while reducing program complexity. Slight accuracy
improvements are observed in Reverse, Histogram, and Dyck-1 tasks. Interestingly, for the Dyck-2
task, which involves more complex string analysis, our model achieves a small increase in accuracy
from 97.98% to 98.14%. These results demonstrate that Adaptive Transformer Programs maintain
high accuracy across diverse RASP tasks while showing significant improvements in challenging
scenarios, highlighting the effectiveness of our proposed enhancements in complex reasoning tasks.

Interpretability. A key advantage of Adaptive Transformer Programs is their ability to achieve
more concise and interpretable representations, evidenced by the reduced program length (lines of
code) across all tasks in Table 1. This improved sparsity not only suggests greater computational effi-
ciency but also enhances interpretability, making it easier to understand the model’s decision-making
process. Notably, our approach achieves substantial reductions in program length for both complex
tasks like Dyck-1 (16.3% reduction) and Dyck-2 (19.1% reduction) and simpler tasks like Induction
(5.6% reduction) and Histogram (5% reduction). The most significant reduction is observed in the
Most-Freq task (33% reduction, from 1334 to 894 lines). These improvements in conciseness, com-
bined with maintained or improved accuracy across tasks, demonstrate the effectiveness of Adaptive
Transformer Programs in balancing performance with interpretability.

Ours Program Standard
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Ours Program Standard

Sort

Ours Program Standard

Most Freq
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Figure 1: RASP accuracy comparison of Adaptive Transformer Programs (Ours), Program Trans-
formers (Program), and Standard Transformers (Standard) across increasing input vocabulary sizes
(|V|) and sequence lengths (N ).

Scalability. Adaptive Transformer Programs demonstrate robust scalability when faced with in-
creasing input complexity, outperforming both Program Transformers and Standard Transformers
in some scenarios. Figure 1 illustrates the performance across three representative RASP tasks (Re-
verse, Sort, and Most Freq) as we increase the input vocabulary size (|V|) from 8 to 16 and the
maximum sequence length (N ) from 8 to 16. For the Reverse task, our model maintains high ac-
curacy (99.99%) with |V| = 8 and N = 8, and experiences less degradation (83.11% and 59.35%)
compared to baselines as complexity increases. In the Sort task, Adaptive Transformer Programs
consistently outperform Standard Transformers and show better resilience than Program Transform-
ers, maintaining 87.6% accuracy even at |V| = 16 and N = 16. The Most Freq task presents a
challenge for all models, but our approach still demonstrates competitive performance, particularly
at higher complexities. These results highlight the superior scalability of Adaptive Transformer
Programs, showing their potential for handling more complex, real-world data distributions while
maintaining interpretability.

Ablation Study. Table 2 presents our comprehensive ablation study, evaluating the impact of three
key enhancements: the Smooth Transition Mechanism, Uncertainty-Aware Attention, and Position-
Aware Attention on the Most-Freq task. We manually enable or disable these components in various
combinations, training separate models for each configuration. The results reveal that the full model,
with all enhancements enabled, achieves the highest accuracy of 80.8% while maintaining a rela-
tively concise program length of 894 lines. As observed in the ablation study where only Smooth
Transition is enabled and the others disabled, while the Smooth Transition Mechanism (which incor-
porates Gumbel-Sparsemax) contributes significantly to program conciseness, it also shows a slight
decrease in accuracy when used in isolation, highlighting the trade-off between interpretability and
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Table 2: Ablation study on Most-Freq task: Impact of model enhancements on performance (Accu-
racy) and program length (Lines).

Smooth Transition
Mechanism

Uncertainty-Aware
Attention

Position-Aware
Attention Accuracy Lines

✓ ✓ ✓ 80.8 894
✓ ✓ - 78.25 850
✓ - ✓ 75.01 939
- ✓ ✓ 78.62 938
✓ - - 73.61 920
- ✓ - 77.34 896
- - ✓ 76.26 1028
- - - 76.44 1334

performance. Disabling individual components leads to performance drops, with Uncertainty-Aware
Attention showing the most significant impact (accuracy decrease to 75.01% when disabled). No-
tably, removing all enhancements (equivalent to baseline Transformer Programs) results in a lower
accuracy (76.44%) and the longest program (1334 lines), highlighting the cumulative benefit of
our proposed enhancements. When multiple components are disabled, the performance declines
further—removing both Uncertainty-Aware Attention and Position-Aware Attention leads to an ac-
curacy of 73.61% and a less efficient program length of 920 lines. These results demonstrate the
critical role each enhancement plays in maintaining high performance and concise, interpretable
program structures.

4.3 NLP TASKS

Table 3: NER Performance Metrics and Program Length on CoNLL-2003 Dataset.

Model Accuracy Precision Recall F1 Lines
Standard Transformers 92.2 71.1 62.5 66.6 -
Transformer Programs 94.2 78.9 72.9 75.8 991
Ours 94.1 77.2 73.2 75.1 916

Named Entity Recognition (NER). On the CoNLL-2003 Named Entity Recognition (NER) task,
a standard benchmark for sequence labeling, Adaptive Transformer Programs demonstrate com-
petitive performance while offering significant advantages in interpretability. Table 3 presents the
results, comparing our approach to Standard Transformers and Transformer Programs. Our model
achieves 94.1% accuracy, closely matching the 94.2% of Transformer Programs and significantly
outperforming the 92.2% of Standard Transformers. Although the F1 scores are similar across
Transformer Program and our approach (75.8 and 75.1, respectively), Adaptive Transformer Pro-
grams achieve this performance with a notably shorter program length (916 lines compared to 991).
This conciseness, indicative of greater program sparsity, is a key advantage, promoting easier anal-
ysis and understanding of the learned programs, a crucial aspect for interpretability. This result
highlights the ability of Adaptive Transformer Programs to maintain competitive performance while
generating more interpretable program representations.

Table 4: Accuracy and Program Length for Various Text Classification Tasks.

Model TREC MR Subj AG
Acc. Lines Acc. Lines Acc. Lines Acc. Lines

Standard Transformer 83.4 - 75.9 - 90.9 - 89.1 -
Transformer Program 84.2 5520 77.1 3972 92.3 3065 90.3 1881
Ours 83.6 827 77.9 773 90.4 1954 90.0 1790

Text Classification. Adaptive Transformer Programs exhibit robust performance across diverse
text classification tasks, demonstrating their capacity for generalization to various real-world sce-
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narios. As shown in Table 4, our approach performs competitively on four distinct classification
tasks: TREC (question type identification), MR (sentiment evaluation), Subj (subjectivity assess-
ment), and AG news (topic categorization). Notably, our model achieves the highest accuracy on
the MR task at 77.9%, surpassing both Standard Transformers (75.9%) and Transformer Programs
(77.1%). While performance on other tasks is comparable to the baselines, with slight variations
in accuracy, the most striking difference lies in program length. Across all tasks, Adaptive Trans-
former Programs consistently produce more concise programs. For instance, on the TREC task, our
model requires only 827 lines compared to 5520 lines for Transformer Programs, representing an
85% reduction in complexity. This significant decrease in program length, coupled with competitive
accuracy, underscores the efficiency and interpretability of our approach in handling diverse text
classification challenges.

5 RELATED WORK

Learning Programs. Program synthesis has evolved from classical symbolic approaches to deep
learning-based methods, driven by the need to scale to complex programs learned by modern neural
architectures. Traditional paradigms like Inductive Logic Programming (Muggleton & de Raedt,
1994) and Deductive Program Synthesis (Manna & Waldinger, 1980) relied on symbolic reasoning
and expert knowledge. The field then shifted towards neural program induction, with works like
Neural Programmer-Interpreters (Reed & de Freitas, 2016) and Neuro-Symbolic Program Synthesis
(Devlin et al., 2017) learning programs directly from data. However, these methods struggle with
scalability to large datasets, complex program structures, and incorporating domain-specific knowl-
edge (Gulwani et al., 2017). Transformer Programs (Friedman et al., 2024) address these limitations
by leveraging Transformer architectures’ representation learning capabilities while imposing con-
straints to learn interpretable programs.

Transformers and Formal Languages. Recent research has demonstrated the expressive power
of Transformers in relation to formal languages. Studies show that Transformers can learn regular
and context-free languages, and implement algorithms like first-order logic with majority quantifiers
(Hahn, 2020; Merrill & Sabharwal, 2022). Work by Giannou et al. (2023) further supports the view
of Transformers as general-purpose computation devices. Weiss et al. (2021) established an initial
connection between Transformer operations and program-like representations through the RASP
language. Adaptive Transformer Programs build on this foundation, enhancing interpretability and
programmatic representation to align Transformers with human-understandable symbolic systems.

Interpretable Machine Learning Models. The field of interpretable machine learning has seen
a surge in methods for understanding deep learning models. Post-hoc methods include attention
visualization (Bahdanau et al., 2014), feature attribution (Ribeiro et al., 2016; Lundberg & Lee,
2017), and concept activation vectors (Kim et al., 2018). Architectural modifications, such as sparse
attention (Zhang et al., 2021) and inductive biases (Geiger et al., 2024), attempt to enhance inter-
pretability through model design. In contrast, intrinsically interpretable models offer direct access to
underlying algorithms, improved transparency, and the potential for formal verification. Our Adap-
tive Transformer Programs aim to learn inherently interpretable models, providing more faithful and
complete explanations of decision-making processes. This approach addresses the limitations of
post-hoc methods and architectural modifications by representing complex computations transpar-
ently.

Uncertainty in Deep Learning. Uncertainty estimation plays a crucial role in developing reli-
able and interpretable deep learning models. Quantifying uncertainty improves model reliability
(Kendall & Gal, 2017), facilitates human-AI collaboration (Gal & Ghahramani, 2016), and en-
hances interpretability (Leibig et al., 2017). Prominent techniques include Bayesian Neural Net-
works (MacKay, 1995), Monte Carlo Dropout (Gal & Ghahramani, 2016), and Ensemble Methods
(Lakshminarayanan et al., 2017). Our Uncertainty-Aware Attention mechanism dynamically com-
bines attention types based on uncertainty estimates, leading to more robust and interpretable mod-
els. This approach uniquely integrates program synthesis, Transformer architectures, interpretabil-
ity, and uncertainty estimation.
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6 CONCLUSION AND DISCUSSION

The study presents a novel framework for developing robust, expressive, and interpretable Trans-
former models that can be translated into human-readable programs. Key contributions include a
Smooth Transition Mechanism for discrete optimization, an Uncertainty-Aware Attention mecha-
nism for adaptive attention blending, and a Position-Aware Attention module for numerical reason-
ing. Empirical results on synthetic and real-world NLP tasks demonstrate superior performance
compared to benchmarks and provide concise, insightful interpretability analysis. This work ad-
vances interpretable AI by improving performance and clarity through new adaptive mechanisms,
facilitating the creation of transparent and reliable AI systems. Additionally, it explores the con-
vergence of program synthesis, deep learning, and uncertainty estimation, promoting accountability
and the societal benefits of AI.

Integration of Contributions. The three enhancements introduced in this work synergistically
contribute to the effectiveness of Adaptive Transformer Programs. The Smooth Transition Mecha-
nism promotes program sparsity by gradually shifting from exploration-focused Gumbel-Softmax to
exploitation-focused Gumbel-Sparsemax. Uncertainty-Aware Attention dynamically adapts the at-
tention strategy based on uncertainty estimates, enhancing expressiveness and robustness. Position-
Aware Attention improves numerical reasoning and training stability through positional encodings.

Future Research Directions. Adaptive Transformer Programs exhibit potential but face chal-
lenges such as scaling to larger models and tasks, necessitating improved training methods or com-
pact representations. The complexity of these programs can impede human understanding, high-
lighting the need for simplification, summarization, or visualization techniques. Extending their
application to computer vision or robotics will require adapting knowledge representation and ex-
traction processes. Future research might explore advanced structures like recursion and hierarchical
composition for greater expressiveness and leverage interpretability to support human-AI collabora-
tion through interactive program refinement tools.
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A PROGRAM EXTRACTION AND INTERPRETATION

A.1 DETAILED EXTRACTION PROCESS

A.1.1 DEFINITION OF “LINES OF CODE” METRIC

To quantify the complexity and interpretability of extracted programs, we define ”lines of code”
(LOC) as the number of active program components derived from a trained Transformer model. The
LOC metric serves as a quantitative measure of program complexity and interpretability. In our
framework, LOC is formally defined as the sum of active rules or operations in the symbolically
extracted program representation. Specifically, LOC is calculated by summing the contributions
from the following program components:

• Predicate Functions: For each predicate function, we count the number of conditional
branches (e.g., if, elif, else) and the return statement. Each such statement consti-
tutes one line of code.

• Attention Pattern Selection: Each invocation of functions like select closest or
select to determine attention patterns is counted as one line. These functions represent
the core attention mechanism.

• Aggregation Functions: Each call to aggregation functions such as aggregate or
aggregate sum, which combine attention outputs, contributes one line to the LOC.

• Output Score Calculation: The operations involved in accessing and processing the
classifier weights to compute output scores are also counted. Typically, indexing
operations and subsequent processing contribute to the LOC.

A.1.2 PROGRAM EXTRACTION METHODOLOGY

Our program extraction methodology translates learned model parameters into symbolic code,
adapting to the Gumbel-Sparsemax transition and uncertainty-aware attention mechanisms. The
key steps are detailed below:

Gumbel-Sparsemax Transition. The Smooth Transition Mechanism, employing a blend of
Gumbel-Softmax and Sparsemax, primarily influences the training process and the resulting learned
parameters. It does not necessitate changes to the fundamental program extraction methodology it-
self. The extraction process for predicate matrices, attention weights, and aggregation operations
remains consistent with the original Transformer Programs. The effect of the Gumbel-Sparsemax
transition is observed indirectly in the extracted programs: the learned predicates tend to be sparser,
and the attention patterns are more focused. These characteristics, which contribute to program sim-
plicity and reduced ”lines of code,” are a consequence of the improved optimization facilitated by
the Smooth Transition Mechanism, rather than a direct change in the extraction procedure.

Uncertainty-Aware Attention. The Uncertainty-Aware Attention mechanism introduces a dy-
namic blending of categorical and score-based attention, guided by Jensen-Shannon Divergence
(JSD)-based gating. While the extraction process for the individual components (categorical pred-
icates, score functions, and aggregation) remains fundamentally similar, the key adaptation lies in
how we interpret the extracted program and understand the influence of uncertainty awareness.

The core idea is that uncertainty-aware training shapes the learned parameters of the categorical
predicates and score functions to be more robust and contextually appropriate. During extraction,
we observe the resulting predicate logic and attention patterns which reflect the effects of this
uncertainty-aware training. For instance, due to uncertainty-aware gating:

• More Generalized Predicates: Extracted predicates may exhibit greater generalization,
being less sensitive to minor input variations, reflecting the influence of score-based simi-
larity under high uncertainty.

• Context-Aware Grouping: The program may demonstrate groupings of query positions
with similar behaviors, even if their categorical features are not identical, indicating learn-
ing driven by contextual similarity guided by uncertainty.
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In summary, the extraction process for ATP retains the core principles of the original Transformer
Programs method. The novelty lies in the enhanced training mechanisms that lead to qualitatively
different and more interpretable extracted programs. The “lines of code” metric effectively captures
the resulting reduction in program complexity stemming from these mechanisms.

A.1.3 IMPACT OF UNCERTAINTY-AWARE ATTENTION ON PROGRAM STRUCTURE

While the extraction methodology remains largely consistent, Uncertainty-Aware Attention signifi-
cantly impacts the structure and complexity of the extracted programs. This mechanism allows the
model to adapt its attention strategy dynamically based on uncertainty, leading to more robust and
efficient program logic. During training, this dynamic gating, driven by the JSD-based uncertainty
estimate, encourages the model to:

• Learn Robust Predicates: By blending with score-based attention when categorical at-
tention is uncertain (high JSD), the model learns categorical predicates that are less brittle
and more generalized. This reduces the need for highly specific and numerous conditional
clauses within predicates, thus simplifying predicate definitions and decreasing LOC.

• Develop Context-Appropriate Attention: The adaptive blending allows the model to uti-
lize categorical attention when confident (low JSD) and rely more on score-based attention
in ambiguous or noisy contexts (high JSD). This context-dependent attention strategy leads
to more efficient information processing and potentially reduces the complexity of subse-
quent program modules.

• Achieve Concise Program Logic: The overall effect of learning more robust predicates
and context-appropriate attention is a more streamlined and concise program structure.
This manifests as fewer “lines of code” due to simplified predicates, more efficient module
interactions, and reduced redundancy in program logic.

In essence, Uncertainty-Aware Attention guides the learning process to favor program structures
that are not only accurate but also more robust and interpretable by dynamically adapting attention
strategies based on the context-dependent uncertainty.

A.1.4 DIFFERENCES IN “LINES OF CODE” ACROSS TRAINED MODELS

The “lines of code” metric can vary significantly between trained models, even for the same task,
reflecting differences in the learned program structures. This variability arises from several factors:

• Optimization Path and Randomness: Neural network training involves stochastic op-
timization. Different random initializations and training trajectories can lead to models
converging to different, yet functionally similar, solutions. Some solutions may be more
concise and interpretable (lower LOC) than others due to variations in the optimization
path taken.

• Effectiveness of Learning Mechanisms: The effectiveness of mechanisms like Gumbel-
Sparsemax and Uncertainty-Aware Attention in guiding the model towards simpler and
more efficient solutions directly influences the final program length. Models trained with
ATP, leveraging these mechanisms, tend to learn programs with lower LOC compared to
baseline models.

• Underlying Program Structure Efficiency: Different models might discover different
algorithmic approaches to solve the same task. Some algorithms are inherently more com-
plex (requiring more steps and rules) than others. ATP aims to facilitate the discovery of
more efficient, algorithmically simpler solutions, leading to reduced LOC.

A.2 EXAMPLE PROGRAM COMPARISONS

This section presents side-by-side comparisons of extracted programs for the Double Histogram and
Histogram tasks, demonstrating the improved conciseness and interpretability achieved by Adaptive
Transformer Programs (ATP) compared to baseline Transformer Programs. We analyze the specific
program structures and quantify the reduction in ”lines of code” (LOC) and accuracy improvements.
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A.2.1 DOUBLE HISTOGRAM TASK COMPARISON

We compare code snippets from Layer 2, Attention Head 0 (attn 1 0) and Attention Head 1
(attn 1 1) for both baseline and ATP models trained on the Double Histogram task.

Baseline Transformer Program
# Baseline code: attn_1_0
def predicate_1_0(q_position, k_position):

if q_position in {0}:
return k_position == 7

elif q_position in {1}:
return k_position == 2

elif q_position in {2}:
return k_position == 3

elif q_position in {3}:
return k_position == 5

elif q_position in {4, 5}:
return k_position == 6

elif q_position in {6}:
return k_position == 1

elif q_position in {7}:
return k_position == 4

attn_1_0_pattern = select_closest(positions, positions, predicate_1_0)

Adaptive Transformer Program (ATP)
# Our code: attn_1_0
def predicate_1_0(q_position, k_position):

# Grouped positions: {0, 3, 4} mapped to k_position == 7
if q_position in {0, 3, 4}:

return k_position == 7
# Grouped positions: {1, 2, 5} mapped to k_position == 6
elif q_position in {1, 2, 5}:

return k_position == 6
elif q_position in {6}:

return k_position == 1
elif q_position in {7}:

return k_position == 0
attn_1_0_pattern = select_closest(positions, positions, predicate_1_0)

Figure 2: Side-by-Side Comparison of attn 1 0 Predicates for Double Histogram Task. The ATP
program groups query positions (e.g., {0, 3, 4} and {1, 2, 5}) to improve efficiency.

Analysis of attn 1 0 Comparison (Figure 2):

* Grouped Query Positions: The ATP program groups query positions within the if and
elif conditions in predicate 1 0, as highlighted in q position in {0, 3, 4} and
q position in {1, 2, 5}. The baseline program lacks this grouping, having separate con-
ditions for each query position (e.g., elif q position in {0}:, elif q position in
{3}:, elif q position in {4}: in a fully expanded version).

* Concise Predicate Logic: Grouping query positions significantly reduces the number of condi-
tional checks, leading to more concise logic in ATP’s predicate. ATP’s predicate 1 0 has fewer
elif clauses compared to a fully expanded baseline predicate.

* Line Count Reduction:

• Baseline predicate 1 0 (expanded): ≈ 9 lines (if fully expanded based on separate
conditions)
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• ATP predicate 1 0: 7 lines

Baseline Transformer Program
# Baseline code: attn_1_1
def predicate_1_1(q_position, k_position):

if q_position in {0}:
return k_position == 6

elif q_position in {1, 3}:
return k_position == 4

elif q_position in {2}:
return k_position == 7

elif q_position in {4}:
return k_position == 2

elif q_position in {5}:
return k_position == 3

elif q_position in {6, 7}:
return k_position == 5

attn_1_1_pattern = select_closest(positions, positions, predicate_1_1)

Adaptive Transformer Program (ATP)
# Our code: attn_1_1
def predicate_1_1(attn_0_0_output, position):

# Conditions on attn_0_0_output
if attn_0_0_output in {0}: # Condition on prev. output

return position == 4
elif attn_0_0_output in {1, 5, 7}: # Condition on prev. output

return position == 6
elif attn_0_0_output in {2, 3, 4}: # Condition on prev. output

return position == 5
attn_1_1_pattern = select_closest(positions, attn_0_0_outputs, predicate_1_1)

Figure 3: Side-by-Side Comparison of attn 1 1 Predicates for Double Histogram Task. Note that
ATP uses conditions based on attn 0 0 output.

Analysis of attn 1 1 Comparison (Figure 3):

* Conditioning on Previous Attention Output: ATP’s predicate 1 1 conditions on
attn 0 0 output (output of the previous attention head) instead of just position as in the
baseline. This is highlighted in if attn 0 0 output in {0}:. This indicates a more hierar-
chical and efficient logic, where attention decisions are informed by the outputs of earlier processing
stages.

* Compact Logic via Output Conditioning: By conditioning on the output of attn 0 0, ATP
achieves a significantly more compact predicate 1 1 with fewer clauses. The baseline predi-
cate requires more specific positional rules, whereas ATP leverages the information processed by
attn 0 0.

* Line Count Reduction:

• Baseline predicate 1 1: 9 lines
• ATP predicate 1 1: 7 lines

Overall Impact on Double Histogram Task:

The combined effect of grouped query positions in attn 1 0 and output-conditioned logic in
attn 1 1 in ATP leads to a substantial reduction in program length and improved accuracy for
the Double Histogram task:
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* Line Count Reduction: 586 lines (Baseline) → 513 lines (ATP)

* Accuracy Improvement: 66.78% (Baseline) → 91.81% (ATP)

This example clearly demonstrates how ATP learns more concise and efficient programs by leverag-
ing its novel mechanisms. The grouped query positions and hierarchical, output-conditioned logic
contribute to both improved interpretability (shorter program, easier to understand logic) and en-
hanced performance.

B METHOD DETAILS AND ANALYSIS

B.1 SMOOTH TRANSITION MECHANISM

B.1.1 VISUALIZATION OF α(τ) EVOLUTION OVER TRAINING

Mathematical Formulation of the Smooth Transition Mechanism:

The Smooth Transition Mechanism blends Gumbel-Softmax and Sparsemax using the interpolation
parameter α(τ), which is dynamically adjusted based on the temperature τ .

• Gumbel-Softmax Distribution:

ysoft,i = softmaxi(z̃) =
exp(z̃i)∑
j exp(z̃j)

where z̃i = (zi + gi)/τ , zi is the raw logit, and gi is Gumbel noise.

• Gumbel-Sparsemax Distribution:

ysparse,i = sparsemax(z̃) = arg min
p∈∆K−1

∥p− z̃∥2

where ∆K−1 is the (K − 1)-dimensional probability simplex.

• Smooth Transition Interpolation:

y = (1− α(τ)) · ysoft + α(τ) · ysparse

• Transition Function α(τ):

α(τ) =


1, if τ ≥ τ1
τ1−τ
τ1−τ2

, if τ2 < τ < τ1
0, if τ ≤ τ2

where τ1 and τ2 are predefined transition temperatures (τ1 > τ2). In practice, we use a
simplified linear function as described in the main paper,

α(τ) =
τ1 − τ

τ1 − τ2

for τ2 < τ < τ1, clamped to 1 for τ ≥ τ1 and 0 for τ ≤ τ2.

B.1.2 COMPARISON WITH FIXED GUMBEL-SOFTMAX AND SPARSEMAX

Table 2 presents an ablation study comparing the performance of Adaptive Transformer Programs
using the Smooth Transition Mechanism against models using fixed Gumbel-Softmax (no transition,
α(τ) = 0 effectively throughout training) and fixed Sparsemax (no transition, α(τ) = 1 effectively
throughout training) optimization strategies on the Most-Freq task.

Analysis of Ablation Study:

* Adaptive (Smooth Transition) outperforms both fixed strategies in accuracy and significantly
reduces program length. This highlights the benefit of dynamically balancing exploration and
exploitation during training.
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* Fixed Sparsemax achieves higher sparsity rates than fixed Gumbel-Softmax, but at the cost
of accuracy. While Sparsemax promotes sparsity, using it throughout training without the explo-
ration phase of Gumbel-Softmax appears to hinder the discovery of optimal solutions, leading to
lower accuracy.

* The Smooth Transition Mechanism achieves the best balance, attaining high accuracy while
also inducing significant sparsity, as reflected in the lowest program length and highest sparsity rate.

B.2 UNCERTAINTY-AWARE ATTENTION

This section provides a formal description of the reference attention, details of the JSD-based gating
mechanism, and ablation studies comparing different attention strategies.

B.2.1 FORMAL DESCRIPTION OF REFERENCE ATTENTION Aref

The reference attention distribution Aref is a learned distribution that dynamically adapts during
training to represent the expected categorical attention distribution. It is initialized as a uniform
distribution and annealed towards a one-hot distribution over training.

• Initialization: A(0)
ref = uni dist, a uniform distribution over keys.

• Update Rule at Training Step t:

A
(t)
ref = α(t) · uni dist + (1− α(t)) · one hot dist(t)

where one hot dist(t) is the one-hot distribution corresponding to the categorical attention
A

(t)
cat at step t, and α(t) = self.temp(t)

3.0 is the annealing parameter, with self.temp(t) decreasing
from 3.0 to 0.01 over training.

B.2.2 JSD-BASED GATING MECHANISM DETAILS

The gating mechanism g in Uncertainty-Aware Attention is based on the Jensen-Shannon Diver-
gence (JSD) between the categorical attention Acat,i and the reference attention Aref,i.

• Jensen-Shannon Divergence (JSD):

JSD(P ||Q) =
1

2
KL(P ||M) +

1

2
KL(Q||M)

where M = 1
2 (P+Q) and KL(P ||Q) =

∑
i Pi log

Pi

Qi
is the Kullback-Leibler Divergence.

In our case, P = Acat,i and Q = Aref,i.
• Gating Weight Calculation:

g = MLP (JSD(Acat,i||Aref,i))

where MLP is a small multi-layer perceptron network that maps the JSD value to a gating
weight g ∈ [0, 1].

B.2.3 SCORE-BASED VS. CATEGORICAL ATTENTION ABLATION

To evaluate the effectiveness of our uncertainty-aware attention (UAA) mechanism, we compare
it against purely categorical attention (Cat, baseline TP) and purely score-based attention (Score)
approaches across diverse tasks. Table 5 presents the results, detailing accuracy (%) and lines of
code (LoC) for each method.

Our UAA approach consistently outperforms or matches the baseline categorical method in accu-
racy while significantly reducing LoC across most tasks. Compared to score-based attention, UAA
achieves higher accuracy (e.g., 91.81% vs. 79.68% for Double Histogram) and lower LoC (e.g., 513
vs. 927), demonstrating the efficacy of JSD-based gating. Notably, score-based attention increases
LoC in complex tasks like Double Histogram (927) and Dyck-2 (1568) due to its dense, continuous
logic, whereas UAA adapts by selecting categorical rules when uncertainty is low, yielding concise
programs (e.g., 513 and 1065). This ablation highlights the novelty of our hybrid mechanism in
balancing performance and interpretability.
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Table 5: Ablation Study: Categorical (Cat), Score-Based (Score), and Uncertainty-Aware Attention
(UAA)

Task Cat (Baseline TP) Score UAA (Ours)
Acc (%) LoC Acc (%) LoC Acc (%) LoC

Induction 100.00 107 100.00 105 100.00 101
Reverse 99.74 859 100.00 808 99.99 779
Histogram 99.94 199 99.95 185 99.95 189
Double Hist. 66.78 586 79.68 927 91.81 513
Sort 99.98 945 99.96 929 99.86 895
Most-Freq 76.44 1334 74.15 962 80.80 894
Dyck-1 99.69 1297 99.52 1289 99.93 1086
Dyck-2 97.98 1316 98.49 1568 98.14 1065

C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETERS AND IMPLEMENTATION

This section provides detailed information regarding the hyperparameters used, model configura-
tions for different tasks, and training protocols.

C.1.1 OPTIMIZATION SETTINGS

Table 6 summarizes the key hyperparameters used for training Adaptive Transformer Programs
across all experiments, based on a grid search and initial experiments on RASP tasks.

Table 6: Global Hyperparameter Settings

Hyperparameter Value

Optimizer Adam
Learning Rate 0.05
Learning Rate Scheduler None (Geometric Annealing)
Weight Decay 0.01
Batch Size 512
Epochs 250
Gumbel Temperature Annealing Geometric, 3.0 to 0.01
Gumbel Samples 1 per step
Gradient Clipping Norm 1.0

Hyperparameter Search: We conducted a grid search over the number of layers (2, 3), number
of attention heads (4, 8), and number of MLPs per layer (2, 4) for Adaptive Transformer Programs
on RASP tasks to optimize performance. Attention heads and MLPs were evenly divided between
categorical and numerical types, where applicable. The reported hyperparameters and model con-
figurations reflect the best performing settings identified through this search. For standard Trans-
formers (baseline), we followed a similar grid search for layers (2, 3) and attention heads (4, 8) but
otherwise largely adopted the hyperparameters described by (Weiss et al., 2021), including a hidden
dimension of 256, learning rate of 0.0003, batch size of 50, and training for up to 100 epochs.

C.2 DATASET DETAILS

This section provides details about the datasets used in our experiments, addressing the nature of
“small-scale” datasets and providing relevant statistics.
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C.2.1 DEFINITION OF “SMALL-SCALE” DATASETS

In the context of algorithmic reasoning and Transformer Programs, “small-scale” datasets refer to
datasets designed for focused analysis of model capabilities on specific algorithmic tasks. These
datasets are characterized by:

• Controlled Sequence Lengths: Sequence lengths are typically limited (e.g., up to 16 for
Dyck languages, 8 for other RASP tasks, 32-64 for NLP tasks) to manage computational
complexity and enable detailed program extraction and analysis.

• Vocabularies Matching Sequence Lengths (for RASP tasks): For RASP tasks, vocab-
ularies are often kept small and matched to the sequence lengths to isolate algorithmic
reasoning without relying on large-scale pretraining or extensive vocabulary knowledge.

• Focus on Algorithmic Reasoning: The datasets are specifically designed to evaluate the
model’s ability to learn and execute particular algorithms or reasoning patterns (e.g., re-
versing sequences, counting tokens, checking Dyck language validity, named entity recog-
nition, text classification).

“Small-scale” in this context is *not* indicative of limited complexity in the algorithmic tasks them-
selves, but rather a design choice to enable focused interpretability analysis in a controlled experi-
mental setting.

C.2.2 DATASET STATISTICS AND PREPARATION

Table 7 provides key statistics for the datasets used in our experiments.

Table 7: Dataset Statistics

Dataset Task Type Avg. Sequence Length Vocabulary Size Training Examples

Induction RASP 8 8 10,000
Reverse RASP 8 8 10,000
Histogram RASP 8 8 10,000
Double hist RASP 8 8 10,000
Sort RASP 8 8 10,000
Most-Freq RASP 16 16 10,000
Dyck-1 RASP 16 2 10,000
Dyck-2 RASP 16 3 10,000
CoNLL-2003 NER 20 (avg.) 10,000 14,985
TREC Text Classification 10 (avg.) 10,000 5,452
MR Text Classification 20 (avg.) 10,000 8,529
Subj Text Classification 23 (avg.) 10,000 11,500
AG News Text Classification 25 (avg.) 10,000 120,000

Dataset Preparation: For RASP tasks, datasets were generated following the specifications in
(Weiss et al., 2021). GloVe embeddings (Pennington et al., 2014) were used to initialize token
embeddings for NLP tasks. No other specific preprocessing or data augmentation techniques were
applied beyond standard tokenization and vocabulary building.

D FAILURE ANALYSIS AND FUTURE WORK

D.1 ERROR PATTERN ANALYSIS

This section analyzes common failure modes observed across different task categories, investigates
program structures associated with these errors, and examines suboptimal attention mechanism
choices in failure instances.
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D.1.1 COMMON FAILURE MODES ACROSS TASK CATEGORIES

Table 8 categorizes common failure modes observed across RASP, NER, and Text Classification
tasks, with example instances to illustrate each failure type.

Table 8: Common Failure Modes Across Task Categories

Task Category Failure Mode Example Instance

RASP
Incorrect Counting Histogram: Miscounting tokens in sequences like ”aabbc”
Logic Error in Predicate Dyck-2: Incorrectly classifying ”([)]” as valid
Positional Misunderstanding Sort: Incorrectly ordering elements in longer sequences

NER Entity Type Confusion Misclassifying ”Apple Inc.” as LOC instead of ORG
Boundary Error Incorrectly tagging multi-word entities (e.g., ”New York City”)

Text Classification Misclassification of Nuance Subj: Failing to identify subtle subjective language

In RASP tasks, errors in counting often correlate with overly simplistic numerical attention modules
or predicate logic that fails to capture token frequency accurately. Logic errors in Dyck languages
can be linked to predicate structures that do not fully capture the recursive nature of Dyck language
grammar. Positional misunderstandings in Sort may arise from numerical attention modules not
effectively leveraging positional encodings for long-range dependencies.

In NER, entity type confusions can sometimes be traced back to categorical attention heads relying
too heavily on local context and failing to integrate broader sentence-level information. Boundary
errors often indicate limitations in the predicate logic responsible for identifying entity boundaries,
potentially due to insufficient context window or overly strict predicate conditions.

D.2 TASK-SPECIFIC ANALYSIS

D.2.1 LIMITATIONS IN CURRENT TASK SCOPE

The current task scope primarily focuses on discriminative tasks (classification, tagging) and algo-
rithmic reasoning tasks with deterministic outputs. Limitations of the current framework become
apparent when considering generative tasks like machine translation or text summarization:

• Decoding Mechanisms: Adaptive Transformer Programs, in their current form, lack ex-
plicit decoding mechanisms required for generating variable-length output sequences in
generative tasks. Standard Transformer decoders with autoregressive generation capabili-
ties would need to be integrated.

• Handling Variable-Length Outputs: The current framework is primarily designed for
tasks where output length is either fixed or predictable based on input length. Generative
tasks require handling variable and potentially unbounded output lengths.

• Training for Generation: Training paradigms for generative tasks (e.g., sequence-to-
sequence training, reinforcement learning for generation) differ significantly from the
classification-focused training used for the current tasks. Adaptations to the training pro-
cedure would be necessary.

Example - Machine Translation Challenge: Consider translating “Hello world” to French. ATP
would need to learn not just to classify the input but to *generate* the sequence “Bonjour le monde,”
word by word, while maintaining interpretability. This requires significant architectural and training
modifications beyond the current framework.

D.2.2 ADAPTATION CHALLENGES FOR GENERATIVE TASKS

Adapting Adaptive Transformer Programs for generative tasks presents several key challenges:

• Interpretable Decoding: Designing interpretable decoding mechanisms that maintain the
program-like transparency of ATP is a major challenge. Standard autoregressive decoders
in Transformers, while effective, can be complex and less directly interpretable.
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• Maintaining Sparsity in Generation: Ensuring that the generation process itself remains
sparse and interpretable, rather than becoming a complex black box decoder, is crucial.
Sparsity-inducing techniques would need to be extended to the decoding stage.

• Balancing Generation Quality and Interpretability: Achieving high-quality genera-
tion while preserving a high degree of interpretability may involve trade-offs. Research
is needed to find optimal balances between these competing objectives.

D.3 FUTURE RESEARCH DIRECTIONS

This section outlines future research directions to address the identified limitations, expand the task
scope, and explore alternative uncertainty quantification approaches.

D.3.1 ADDRESSING IDENTIFIED LIMITATIONS

A research agenda to address the limitations identified in our failure analysis and task-specific anal-
ysis includes:

• Enhanced Numerical Reasoning: Further improve numerical reasoning capabilities by
exploring more sophisticated positional encoding schemes and numerical attention mecha-
nisms. Investigate methods to reduce errors in complex counting and numerical manipula-
tion tasks.

• Contextual Predicate Learning: Develop techniques to enable categorical predicates to
better leverage broader context and sentence-level information, particularly for tasks like
NER where long-range dependencies are important. Explore attention mechanisms that
explicitly model contextual scope.

• Improved Gating Mechanisms: Investigate refinements to the JSD-based gating mecha-
nism in uncertainty-aware attention. Explore alternative uncertainty measures and gating
network architectures to optimize the dynamic blending of categorical and score-based at-
tention for different tasks and input contexts.

D.3.2 ARCHITECTURAL ADAPTATIONS FOR BROADER TASK COVERAGE

To extend Adaptive Transformer Programs to broader task coverage, especially generative tasks, key
architectural adaptations include:

• Integration of Interpretable Decoders: Develop or adapt interpretable decoding mech-
anisms compatible with the ATP framework. Explore constrained decoding methods or
program-guided generation approaches that maintain transparency.

• Handling Variable-Length Outputs: Design program structures and training procedures
that can effectively handle variable-length output sequences, allowing ATP to be applied to
tasks like machine translation and text summarization.

• Modular Generative Program Components: Investigate the development of modular, in-
terpretable program components specifically designed for generative tasks, such as program
modules for sequence generation, copy mechanisms, or hierarchical output construction.

D.3.3 ALTERNATIVE UNCERTAINTY QUANTIFICATION APPROACHES

Exploring alternative uncertainty quantification approaches beyond Jensen-Shannon Divergence
could further enhance the robustness and adaptability of Uncertainty-Aware Attention. Potential
directions include:

• Bayesian Uncertainty Estimation: Integrate Bayesian methods (e.g., Monte Carlo
Dropout, Bayesian Neural Networks) to obtain more principled uncertainty estimates for
categorical attention distributions.

• Entropy-based Measures: Investigate using entropy or other information-theoretic mea-
sures to quantify uncertainty in categorical attention as an alternative to JSD. For example,
using the Shannon Entropy H(P ) = −

∑
i Pi logPi of the categorical attention distribu-

tion Acat,i.

22



Published as a conference paper at ICLR 2025

• Learned Uncertainty Estimators: Explore training dedicated uncertainty estimator net-
works that directly predict uncertainty measures based on input and intermediate represen-
tations, potentially providing more task-specific and adaptive uncertainty quantification.

D.3.4 POTENTIAL INTEGRATION WITH OTHER INTERPRETABLE MODELS

Future research could explore integrating Adaptive Transformer Programs with other interpretable
model architectures, such as:

• Neuro-Symbolic Systems: Combine ATP with neuro-symbolic approaches to create hy-
brid systems that leverage the strengths of both neural and symbolic reasoning for enhanced
interpretability and robustness.

• Program Synthesis Techniques: Explore tighter integration with program synthesis tech-
niques to further constrain and guide the learning of interpretable programs, potentially
using program synthesis to initialize or refine extracted ATP programs.

• Contrastive Learning for Interpretability: Investigate contrastive learning frameworks
to explicitly train ATP models to produce more disentangled and interpretable representa-
tions, potentially by contrasting program representations for similar and dissimilar inputs.

These future research directions aim to push the boundaries of interpretable AI by addressing current
limitations, expanding the applicability of Adaptive Transformer Programs to a wider range of tasks,
and exploring novel approaches to uncertainty quantification and model integration.
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