
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LINEAR MAPS, CONTRASTIVE OBJECTIVES:
A PRINCIPLED STRATEGY FOR FMRI DECODING
CONSISTENT ACROSS MODALITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

A prominent theory in cognitive science suggests that concepts in the brain are
organized as high-dimensional vectors, with semantic meaning captured by direc-
tions and relative angles in this space. Brain decoding is the effort of reconstruct-
ing or retrieving stimuli (or their representations) from neural activity and involves
finding a function that approximates how the brain represents concepts. This mo-
tivates the investigation of contrastive objectives as biologically plausible candi-
dates to reverse the brain loss function. In this work, we study how functional MRI
(fMRI) activity can generally be aligned with the embedding spaces of foundation
models in vision, language, and audio. Although neural computations are highly
non-linear at the microscale, fMRI measurements average signals across space
and time, further smoothed by noise, effectively linearizing the observable repre-
sentation. Consistent with these views, our experiments across multiple datasets
demonstrate that linear contrastive decoders consistently outperform ridge regres-
sion and standard non-linear alternatives, and that these results generalize across
images, text, and sound. These findings indicate that decoding gains arise more
from the choice of training objective than from architectural complexity, pointing
to contrastive-linear models as a principled strategy for brain decoding.

1 INTRODUCTION

A central challenge in cognitive science is to understand how the brain represents concepts and en-
codes sensory information. Recent theoretical work argues that human concepts are most plausibly
represented as high-dimensional vectors (Piantadosi & et al., 2024). Vector-based representations
naturally explain typicality and similarity effects through distances in the representational space,
capture relations and analogies via vector arithmetic, support compositionality and theory-like struc-
tures, and even allow the flexible formation of ad hoc categories. This framework unifies different
theory-based views of concepts under a single representational format. Moreover, it resonates with
the success of modern foundation models, which learn rich embedding spaces where meaning is en-
coded in geometric relations among vectors. If the brain organizes concepts in such vector spaces,
then comparison and learning are likely driven by similarity, suggesting that contrastive learning
provides a biologically plausible approximation of the brain’s own optimization principle.

At the same time, a complementary line of research has challenged the assumption that modeling
brain dynamics at the macroscale necessarily requires complex non-linear systems. A recent large-
scale study from Nozari et al. (2024) on fMRI data showed that linear models not only match but of-
ten outperform a wide range of non-linear approaches across predictive accuracy, residual structure,
and computational efficiency. The authors traced this apparent linearity to several factors intrinsic
to macroscopic measurements: spatial averaging over millions of neurons, temporal filtering of fast
dynamics, observation noise, and the limited sample size relative to dimensionality. Together, these
effects act to smooth and linearize the measured signal, such that what fMRI captures is effectively
a first-order approximation of the underlying neural computations. This provides a principled ex-
planation for why linear models can be highly effective in fMRI decoding, despite the non-linear
nature of the neural processes they ultimately reflect.
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Building on these perspectives, this work is motivated by several key questions: What is the most
effective way to map brain activity into the embedding spaces of foundation models? Do more
complex non-linear models provide an advantage in the context of noisy and high-dimensional data?
Is decoding performance driven more by vector alignment in the representational space than by
average error minimization?

To address these questions, we systematically study brain decoding from functional Magnetic Reso-
nance Imaging (fMRI) across three distinct modalities (images, music, and text), using embeddings
extracted from state-of-the-art foundation models. We evaluate a spectrum of decoding models,
ranging from ridge regression to linear mappings trained with contrastive loss, to shallow MLPs.
Our findings reveal three key insights: (i) a simple linear mapping trained with contrastive learn-
ing consistently outperforms ridge regression across modalities; (ii) introducing non-linearities via
MLPs does not improve decoding performance, and in fact degrades retrieval accuracy; (iii) priori-
tizing discriminative separation of embeddings is more important than minimizing pointwise error.

We emphasize that our conclusion is related to the data regime and preprocessing commonly used in
fMRI decoding (GLM betas or HRF-averaged responses). We do not claim that non-linear architec-
tures cannot outperform linear ones in other settings—for example, with minimally averaged data,
larger datasets, or temporal models.

2 RELATED WORKS

Recent years have witnessed remarkable progress in decoding complex stimuli from neural activity,
particularly in non-invasive settings such as fMRI (Gallant et al., 2012; Huth et al., 2016; Ferrante
et al., 2024a; Banville et al., 2025). In the visual domain, approaches leveraging pre-trained vi-
sion–language models such as CLIP, combined with linear regression or contrastive learning, have
enabled retrieval-based decoding and even realistic image reconstruction when coupled with diffu-
sion models (Ozcelik & VanRullen, 2023; Lin et al., 2022; Scotti et al., 2023; Chen et al., 2023a; Xia
et al., 2024a). Beyond vision, growing evidence shows that fMRI activity can be mapped onto latent
spaces of diverse modalities—including video (Chen et al., 2023b), language and music (Tang et al.,
2023; Jalouzot et al., 2025; Denk et al., 2023; Ferrante et al., 2024b). The advent of large pre-trained
models has been a key enabler of this progress, providing rich representational spaces that support
both retrieval tasks and generative reconstruction from neural data.

Brain decoding approaches have traditionally relied on linear methods such as ridge regression to
predict high-dimensional representations of stimuli from non-invasive neural recordings (Ozcelik
& VanRullen, 2023; Liu et al., 2023; Denk et al., 2023). While successful in controlled settings,
these models are limited in their ability to capture the semantic richness of natural stimuli. More
complex neural networks, in contrast, have shown promising results (Scotti et al., 2024; Xia et al.,
2024b; Careil et al., 2025) but often at the cost of overfitting or reduced interpretability, leaving
unclear whether performance gains come from non-linear modeling or from task-specific processing.
Furthermore, most studies have focused on a single modality (e.g., vision or language), leaving open
the question of whether decoding strategies generalize across different types of cognitive data.

3 MATERIAL & METHODS

An overview of the proposed framework is shown in Figure 1, while the model architecture is de-
scribed in more detail in Section 3.4. Our approach aims to learn a shared representational space
in which neural responses and stimulus embeddings can be directly compared. Once trained, the
model enables retrieval of the corresponding stimulus representation (text, image, or audio) from
neural activity alone. The experiments are conducted independently for each stimulus modality, us-
ing three distinct datasets. Importantly, the same model architecture is employed across all modal-
ities, demonstrating that our framework achieves consistent improvements over baseline methods
and more complex non-linear models. The following subsections provide details on the datasets, the
decoder design, the training objective, and the evaluation metrics.
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Figure 1: The same linear contrastive model is employed across three experimental conditions, dif-
fering only in the stimulus modality (audio, textual, or visual). For each modality, neural responses
from fMRI are aligned through subject-specific linear transformations and mapped into the corre-
sponding stimulus embedding space (obtained from a pretrained foundation model such as CLIP
for images, CLAP for audios, or LLaMA for text) via a contrastive learning objective. Training
is carried out independently for each modality. At test time, retrieval is performed by comparing
brain-predicted embeddings with estimated stimulus embeddings.

3.1 IMAGE PROCESSING

For the visual dataset, we relied on the Natural Scenes Dataset (NSD) from Allen et al. (2022),
which includes fMRI data acquired while multiple subjects viewed natural images. The dataset
provides a large number of fMRI trials (over 24,000) and two distinct subsets: a training set of
approximately 8,859 unique images per subject, and (ii) a common set of 982 images viewed by
all subjects, used for alignment and testing. In order to reduce dimensionality, the fMRI signals
were preprocessed by applying NSD General ROI masks and estimating beta coefficients through a
general linear model (GLM) (Kay et al., 2013; Prince et al., 2022), which included a fitted hemo-
dynamic response function (HRF) correction and a denoising process. We focused on data from
Subj01, Subj02, Subj05, Subj07 then normalized and transformed into the MNI space at 2 mm res-
olution, reducing computational cost and enabling inter-subject comparison. Following common
practice in all major NSD decoding papers (Takagi & Nishimoto, 2023), we retain the most reliable
voxels in V1–V4. Each neural sample is represented as a vector of 15,724 voxels, corresponding to
the estimated fMRI beta responses within selected visual ROIs.

For each stimulus, the corresponding natural image is fed into CLIP model (Radford et al., 2021)
at inference mode, obtaining its high-level semantic representation given by a 512-dimensional em-
bedding (image-text projection layer).

3.2 LANGUAGE PROCESSING

We used the publicly available dataset introduced in LeBel et al. (2023), focusing on three subjects
(S1, S2, and S3). In the manuscript, we will refer to this dataset as HUTH Language. Each subject
underwent approximately 16 hours of fMRI recordings while listening to 83 naturalistic stories
taken from the The Moth and Modern Love podcasts. fMRI data were acquired with a 3T Siemens
Skyra scanner using a repetition time (TR) of 2.00 s and an isotropic voxel size of 2.6 mm. Standard
preprocessing included motion correction, cross-run alignment, standardization, and removal of low-
frequency drifts. For training, we used the first 70 stories of each subject, reserving 12 for validation.
Additionally, the story wheretheressmoke (consisting of 250 sentences) was presented 10 times to
improve the signal-to-noise ratio in the test set.

To reduce complexity and restrict our analysis to language-sensitive regions, we used an encoding
model that mapped word embeddings from a large language model (Dubey et al., 2024) (LLaMA3-
8B, layer 13) to fMRI responses. Word embeddings were computed in context windows of five
preceding words and then downsampled with a Lanczos filter to match the temporal resolution of the
fMRI signal. We follow prior work on voxel filtering in language decoding (Tang et al., 2023; Toneva
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& Wehbe, 2019): we select voxels with an encoding model mapping from stimulus embeddings to
fMRI responses and keep the ones with higher predictive correlation on held-out data. Pearson
correlation between predicted and observed activity was calculated, and the top 10,000 cortical
voxels showing the highest predictability were selected as target regions for decoding.

3.3 MUSIC PROCESSING

We employed the GTZan fMRI dataset Nakai et al. (2022), which consists of recordings from five
participants (sub-001 to sub-005) who each listened to 540 music excerpts evenly distributed across
ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock). Each stimu-
lus lasted 15 seconds with a 2-second fade-in and fade-out, sampled at 22.05 kHz. The experimental
design included 18 runs per subject (12 for training, 6 for testing), each composed of 40 clips. fMRI
data were acquired with a 3.0T scanner at TR = 1.5 s (400 volumes per run). Preprocessing in-
cluded motion correction, co-registration to the MNI template using FSL, detrending with Nilearn
to remove low-frequency drifts, run-wise standardization, and a hemodynamic delay correction (dis-
carding the first 3 TRs, i.e., 4.5 s). Neural responses for each stimulus were then averaged over the
following 10 TRs (15 s), yielding one fMRI representation per excerpt. The resulting dataset com-
prised 480 training pairs and 60 test pairs per subject.

For the data-driven voxel selection, we constructed voxel-wise regression models to predict brain
activity from CLAP (Elizalde et al., 2023) latent music embeddings (512-dimension from audio-
text projection layer). Each voxel was modeled independently, with regularization hyperparameter
α optimized through nested cross-validation. Prediction quality was assessed by the Pearson cor-
relation between predicted and observed responses on held-out training data. Voxels surpassing a
correlation threshold were retained (above 3,000), yielding masks of music-responsive regions of
interest. These voxels served as the input space for subsequent alignment and decoding analyses.
See Ferrante et al. (2024b) for details.

3.4 NEURAL-TO-EMBEDDING DECODER

We designed a neural architecture to learn a mapping between neural activity and the target embed-
ding space using a contrastive learning framework. The best architecture is simple: the decoder is
composed of a sequence of linear layers, so that the transformation is essentially a stack of affine
projections.

Formally, given an input vector x ∈ Rd and a subject index k, the model first applies a subject-
specific alignment layer Ak, followed by hidden projections and an output layer: z = Wo Wh Akx,
where Ak ∈ Rd×dc aligns the subject-specific input to a shared dimensionality dc, Wh ∈ Rdc×h

projects to hidden dimension h, and Wo ∈ Rh×do maps to the output embedding space of foundation
model do. See Appendix for details about subject alignment.

In order to align neural representations with target embeddings y ∈ Rdo , we employ a contrastive
loss inspired by the NT-Xent formulation. For a batch of predicted embeddings {zi}Ni=1 and targets

{yi}Ni=1, the cosine similarity is computed as Sij =
z⊤
i yj

∥zi∥∥yj∥ . The loss encourages each zi to be
most similar to its paired yi:

Lcontrastive = − 1

N

N∑
i=1

log
exp(Sii/τ)∑N
j=1 exp(Sij/τ)

,

where τ > 0 is a temperature hyperparameter.

The decoder is trained end-to-end with AdamW optimization, using early stopping based on vali-
dation loss. As references, we tested (i) a ridge regression model mapping neural representations
directly to the embedding space, and (ii) an MLP decoder with non-linear activations between layers.

3.5 EVALUATION

At test time, we run the decoder in inference mode to obtain predicted embeddings. Given a batch
{(xi,yi, ki)}Ni=1, where ki is the subject index, we compute ŷi = fθ(xi; ki), and collect all predic-
tions {ŷi} and corresponding ground-truth targets {yi} for retrieval-based evaluation.
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Evaluation is performed within subject to factor out inter-subject variability. For each subject s,
we have a query set Qs = {ŷ(s)

i }ns
i=1 (predicted embeddings) and a reference set Rs = {y(s)

j }ns
j=1

(ground-truth embeddings). Each query ŷ
(s)
i has a unique paired target y(s)

i in the reference set.
Correlation is measured with the cosine similarity, and the corresponding cosine distance (to be
minimized) is dcos(ŷ,y) = 1− cos(ŷ,y).

For each subject s, we perform a nearest-neighbor search within Rs using cosine distance. Con-
cretely, for each query ŷ

(s)
i we compute all pairwise distances d(s)ij = dcos

(
ŷ
(s)
i , y

(s)
j

)
, j =

1, . . . , ns, rank reference embeddings by ascending distance, and select the k closest matches:
Π

(s)
i (k) =

{
j1, . . . , jk

}
with d

(s)
ij1

≤ · · · ≤ d
(s)
ijk

.

Let j⋆ = i denote the index of the correct target for query i. The Top-k accuracy for subject s is
defined as

Top-k(s) =
1

ns

ns∑
i=1

1[ j⋆ ∈ Π
(s)
i (k)

]
,

i.e., the fraction of queries for which the true target appears among the k nearest neighbors. Overall
performance is reported as the micro-average across all subjects:

Top-k =

∑
s

∑ns

i=1 1[ j
⋆ ∈ Π

(s)
i (k)

]∑
s ns

.

In particular, we report Top-1 and Top-3 accuracies for each stimulus modality. Given the sample
size of the test set the chance level is Top-1: 1/250=0.40% and Top-3: 3/250=1.20% for HUTH
dataset, Top-1: 1/980=0.10% and Top-3: 3/980=0.31% for NSD, Top-1: 1/60=1.67% and Top-3:
3/60=5.00% for GTZAN.

4 RESULTS

Table 1: Retrieval accuracies (mean ± std) per dataset/metric.

Dataset Metric Method Accuracy (%)

NSD (Image) Top-1
Ridge Reg. 15.79± 0.89
Linear CL 21.80± 0.76
Non-Linear CL 17.76± 1.71

Top-3
Ridge Reg. 29.53± 1.57
Linear CL 39.66± 0.91
Non-Linear CL 35.20± 1.33

HUTH (Language) Top-1
Ridge Reg. 29.11± 3.23
Linear CL 42.04± 2.19
Non-Linear CL 38.23± 2.68

Top-3
Ridge Reg. 51.33± 2.24
Linear CL 66.25± 2.87
Non-Linear CL 61.70± 1.83

GTZAN (Music) Top-1
Ridge Reg. 22.67± 1.56
Linear CL 33.13± 1.47
Non-Linear CL 25.39± 1.11

Top-3
Ridge Reg. 49.10± 2.00
Linear CL 57.97± 1.12
Non-Linear CL 52.30± 1.60

Across all three modalities, decoding performance shows a consistent advantage for the linear con-
trastive model (Table 1 & Figure 3). In the visual domain, linear contrastive learning achieved the
highest retrieval accuracies, clearly outperforming both ridge regression and the non-linear variant.

5
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Figure 2: (a) Each heatmap represents the cosine similarity between predicted and ground-truth
stimulus embeddings, computed per pair of features. Results are shown for three datasets (NSD,
HUTH, GTZAN) and two models: a linear Ridge regression (left column) and the best contrastive
learning model (the linear one, right column). The diagonal reflects correct predictions with high
similarity between corresponding stimuli, while off-diagonal values indicate confusion between dif-
ferent candidates. All similarity matrices are normalized using a row-wise softmax to emphasize
alignment between prediction and target embeddings. The CL model produces more concentrated
diagonal patterns, indicating superior matching accuracy compared to Ridge approach. (b) Each
plot displays the distribution of Pearson correlation coefficients computed between model predic-
tions (Linear in blue, Non-Linear in orange) and the ground truth stimulus embeddings, evaluated
separately for each embedding feature. Dashed vertical lines indicate the mean correlation for each
model. A t-test was performed for each comparison, testing the alternative hypothesis that the lin-
ear model yields higher correlations than the non-linear model. The resulting p-value and effect
size (Cohen’s d) are reported in the legend. Results demonstrate that the linear model consistently
achieves significantly higher correlations, with effect sizes ranging from moderate (Cohen’s d =
0.50) to large (Cohen’s d > 1), depending on the dataset.

A similar trend was observed in the language domain, where the linear contrastive model provided
the largest gains, with improvements particularly pronounced at the Top-3 level. In the musical do-
main, the same model again yielded superior accuracies, indicating that the benefits of contrastive
learning extend beyond a single modality. This improvement is also qualitatively evident in Fig-
ure 2 (left panel), where correct embedding pairs (real and brain-predicted) are marked by sharper
diagonal activations in the similarity matrices.

Comparisons between linear and non-linear mappings further demonstrate that architectural com-
plexity does not translate into performance gains. Despite introducing additional parameters and
activation functions (Table A5 in Appendix) between subject aligner and mapping layer, non-linear
models consistently underperformed compared to the linear contrastive approach. Feature-wise eval-
uation (Figure 2, right panel) confirmed that linear mappings lead to stronger correlations between
predicted and ground-truth embeddings, suggesting that the critical factor is the contrastive objective
itself rather than model complexity.

6
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Figure 3: Quantitative bar charts to visualize decoding results. Stars above the bars reveal signifi-
cance, according to the table in the Appendix. Double stars indicate pvalue lower than 1e-10.

Target Sentence Neighbor 1 Neighbor 2 Neighbor 3

 

 

 

Target Image Neighbor 1 Neighbor 2 Neighbor 3

Classical

Jazz

Metal

Pop

Target Music Track Neighbor 1 Neighbor 2 Neighbor 3Target Music Track Neighbor 1 Neighbor 2 Neighbor 3

(a) (b)

(c)

Figure 4: Random samples of brain decoding results. For each panel, the target column shows
the ground-truth stimulus (music track, image, or sentence, depending on the modality), while the
neighbor columns display the top retrieved candidates from the model’s latent space based on cosine
similarity. (a) Retrieval of images viewed by participants. (b) Retrieval of text/sentences corre-
sponding to the neural response. (c) Retrieval of music tracks from brain activity. These qualitative
examples illustrate that the predicted neural embeddings often retrieve semantically related stimuli,
highlighting the model’s ability to capture meaningful structure in brain representations.

In Figure 4, we present qualitative decoding results from the test sets of the three datasets. In
all cases, the retrieved samples show clear conceptual similarity with the target stimulus. For the
NSD dataset, the retrieved images capture semantic content consistent with the reference, such as
animals, food, or sports. A similar trend is observed in the textual modality, where the retrieved
sentences convey the same high-level meaning as the ground-truth sentences. Finally, for the music
dataset, the comparison of spectrograms highlights modality-specific correspondences: for instance,
in the jazz genre case, the retrieved samples share distinctive frequency patterns visible in the target
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spectrogram; in contrast, for the metal sample, the retrieved spectrograms display higher energy
across frequencies, reflecting the different acoustic structure of the genre.

5 DISCUSSION

Our results indicate that a linear mapping trained with a contrastive objective is a robust and gen-
eral strategy for fMRI decoding across modalities. Below we discuss two central findings — the
superiority of contrastive learning over ridge regression, and the consistent advantage of linear over
shallow non-linear mappings — and offer mechanistic explanations consistent with prior literature.

5.1 CONTRASTIVE LEARNING FOR VECTORIAL REPRESENTATION OF CONCEPTS

If concepts in the brain are organized as vectors in high-dimensional spaces (Piantadosi & et al.,
2024), then meaning is carried primarily by their relative geometry: distances, angles, and direc-
tions capture similarity, typicality, and relational structure. This view suggests that learning and
comparison are fundamentally geometric operations (Ferrante et al., 2025). Contrastive objectives
(Chen et al., 2020) directly operationalize this principle by maximizing angular similarity between
matched pairs while enforcing separation from distractors, effectively aligning the training loss with
the retrieval metric. In practice, the negative set acts as a data-driven regularizer: it suppresses di-
rections that reflect nuisance variance in fMRI but are not discriminative in the target space, while
amplifying those aligned with semantic information. Our findings that contrastive mappings system-
atically outperform ridge regression support this interpretation. Whereas ridge minimizes point-wise
ℓ2 error—implicitly prioritizing magnitude alignment—contrastive learning preserves and sharpens
the relational structure of the embedding manifold. This can be seen as a form of “reverse engineer-
ing” of the brain’s representational optimization, consistent with contemporary accounts of concepts
as vectors whose relations, rather than absolute values, encode meaning.

Notably, the same advantage holds when mapping into embedding spaces that are not trained con-
trastively, such as LLaMA3 language embeddings. This indicates that the benefit is not merely
‘contrastive-to-contrastive alignment’, but a more general advantage of geometry-aware objectives
in aligning fMRI to vector spaces.

5.2 LINEAR VS NON-LINEAR MAPPING

A second central finding is the consistent superiority of linear over shallow non-linear mappings.
While this may appear counterintuitive, given the assumption that non-linear networks are needed
to capture neural complexity, large-scale analyses of fMRI show that linear models perform better
at the macroscale (Nozari et al., 2024; Schulz et al., 2020). This apparent linearity has a principled
explanation: although neurons are individually non-linear, fMRI signals reflect averages over mil-
lions of units, filtered in time and further smoothed by observation noise. These operations suppress
higher-order dynamics and yield an effective signal that approximates a first-order (Taylor-linear)
expansion of the underlying neural processes. In this setting, linear mappings are not just a simpli-
fying choice but may be the most explainable and faithful representation of the observable data. Our
experiments are consistent with this view: non-linear layers, while increasing expressivity, also relax
the inductive bias that preserves embedding geometry. In the small-to-moderate data regime typical
of fMRI, this flexibility can rotate or distort informative directions, amplify noise-driven variance,
and disrupt calibration of vector norms, ultimately degrading retrieval accuracy. Of course, the space
of possible non-linear architectures is vast, and we cannot exclude that specific designs or training
regimes may close this gap.

Taken together, these perspectives highlight a broader principle: when decoding with rich, pre-
trained representations, most of the relevant non-linear structure is already embedded upstream in
the foundation models. The decoder’s role is not to discover new features but to align noisy brain
measurements with an existing embedding geometry. Linear contrastive mappings are therefore well
suited: they provide stable optimization, suppress nuisance variance, and maximize discriminative
alignment. Conceptually, they instantiate two converging ideas — that semantic information in the
brain is organized in vector spaces, and that fMRI provides a linearized view of these representations.

8
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5.3 LIMITATIONS

Several limitations of this work should be acknowledged. First, while our analyses systematically
compared linear, ridge, and shallow non-linear decoders, the space of non-linear architectures is
large. It remains possible that alternative designs or more extensive hyperparameter sweeps could
get better performance. However, this consideration also reinforces our main claim: in practice, the
computational cost of exhaustively searching for an optimal non-linear configuration may not be jus-
tified, since strong performance can already be achieved with simple linear contrastive approaches.
Additionally, we did not evaluate time-aware architectures (e.g., LSTMs, Transformers) since tem-
poral structure has been removed by design (GLM betas and HRF-averaged): exploring these direc-
tions—particularly in minimally averaged fMRI—is an important avenue for future work. Second,
our study does not directly address generalization across datasets. Decoding models were trained
and evaluated within individual modalities, leaving open the question of how well such mappings
transfer across datasets. Finally, decoding brain activity into rich semantic spaces raises concerns
about potential misuse, especially if applied to unconstrained settings or without informed consent.
Future work should be guided not only by scientific objectives but also by principled discussions of
data governance, individual rights, and ethical safeguards (Yuste et al., 2017).

6 CONCLUSIONS

We presented a unified framework for fMRI decoding that maps neural responses into the embedding
spaces of large foundation models and we evaluated it across three distinct modalities (vision, lan-
guage, and music) using the same pipeline. Empirically, a very simple strategy—a subject-aligned
linear mapping trained with a standard contrastive objective (NT-Xent)—consistently outperforms
both ridge regression and non-linear MLP decoders, yielding clear improvements of roughly 10–
15% in Top-1 and Top-3 retrieval accuracy across datasets. The core contribution of this work
therefore lies less in algorithmic novelty and more in the strength of the evidence and the method-
ological message it supports: “do not overcomplicate—contrastive alignment with a linear decoder
often suffices”. While our study focuses on retrieval-based decoding, the results provide a strong,
motivated and reproducible approach for future work that may extend contrastive-linear alignment
to generative reconstruction, cross-modality transfer, and integration with higher-resolution neural
measurements.

Our central claim is not that linear models are universally optimal, but that—under standard fMRI
preprocessing and matched data budgets—the choice of loss function (contrastive vs MSE) has a far
greater impact on decoding performance than architectural depth.

ETHICS STATEMENT

This study makes exclusive use of publicly available fMRI datasets (Allen et al., 2022; LeBel et al.,
2023; Nakai et al., 2022), which were collected with informed consent under protocols approved
by the respective institutional review boards. No new human data were collected. Potential risks
of brain decoding research, such as privacy concerns and possible misuse, are acknowledged. The
work is intended solely to advance scientific understanding and should not be used for individual-
level prediction or surveillance.

REPRODUCIBILITY STATEMENT

Preprocessing pipelines, model architecture, training objectives, and hyperparameters are detailed
in the manuscript (Section 3 & 4). All experiments can be reproduced with the scripts provided as
a zipped repository in Supplementary Materials. We highlight that large language models (LLMs)
were used exclusively for textual editing and polish writing.
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A APPENDIX

A1. STATISTICAL SIGNIFICANCE AND EFFECT SIZES

We quantified the statistical significance of the improvements reported in Table 1 of the main paper.
For each dataset and metric, we performed paired t-tests across subjects and random seeds, compar-
ing the Linear-CL decoder against both Ridge regression and the non-linear MLP. Effect sizes are
reported as paired Cohen’s d. See table A1.

Table A1: t-tests (Linear-CL vs. Ridge, Linear-CL vs. Non-Linear MLP) on Top-1 and Top-3.

Dataset Metric Comparison t p d

NSD (Image) Top-1 Linear vs Ridge 14.25 1.3× 10−11 2.59
Top-3 Linear vs Ridge 17.78 2.6× 10−13 2.98
Top-1 Linear vs Non-Linear 19.03 7.8× 10−14 3.26
Top-3 Linear vs Non-Linear 17.97 2.2× 10−13 3.02

HUTH (Language) Top-1 Linear vs Ridge 5.110 4.4× 10−4 1.23
Top-3 Linear vs Ridge 6.780 2.6× 10−5 1.40
Top-1 Linear vs Non-Linear 2.210 4.4× 10−2 0.59
Top-3 Linear vs Non-Linear 3.702 2.3× 10−3 0.92

GTZAN (Music) Top-1 Linear vs Ridge 7.740 5.2× 10−8 1.55
Top-3 Linear vs Ridge 12.96 5.1× 10−13 2.79
Top-1 Linear vs Non-Linear 8.358 1.4× 10−8 1.67
Top-3 Linear vs Non-Linear 6.425 1.2× 10−6 1.28

A2. RECONSTRUCTION ERROR (MSE) ACROSS MODELS

We also report (in Table A2) the Mean Squared Error (MSE) between predicted and ground-truth
embeddings for all datasets. As expected, Ridge regression (explicitly optimized for MSE) achieves
the lowest reconstruction error, while contrastive models exhibit higher MSE despite superior re-
trieval performance.
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Table A2: Mean Squared Error (MSE; mean ± std. across subjects) for Ridge, Non-Linear MLP,
and Linear-CL decoders.

Dataset Model MSE (mean ± std.)

HUTH (Language) Ridge 1.02± 0.02
Non-Linear 8.28± 0.97
Linear-CL 33.17± 1.62

NSD (Image) Ridge 0.188± 0.003
Non-Linear 0.216± 0.002
Linear-CL 0.262± 0.003

GTZAN (Music) Ridge 0.00141± 0.00013
Non-Linear 0.219± 0.020
Linear-CL 0.779± 0.090

Table A3: Ablation of the subject-alignment layer Ak. “Anatomical-CL” denotes a model trained
separately per subject without the alignment layer; Linear-CL is the full multi-subject model with
learned Ak.

Dataset Metric Linear-CL (%) Anatomical-CL (%)

NSD (Image) Top-1 21.80± 0.76 17.8± 1.11
Top-3 39.66± 0.91 34.5± 1.49

HUTH (Language) Top-1 42.04± 2.19 37.2± 2.55
Top-3 66.25± 2.87 61.9± 2.81

GTZAN (Music) Top-1 33.13± 1.47 27.4± 1.69
Top-3 57.97± 1.12 50.5± 1.92

These results highlight that lower MSE does not necessarily translate into better retrieval, since
the contrastive objective is invariant under global rescaling of embeddings and optimizes relative
similarity rather than absolute reconstruction error.

A3. ABLATION OF THE SUBJECT-ALIGNMENT LAYER

Generally, fMRI responses exhibit strong inter-subject variability in both anatomical organization
and functional topography. As shown in recent cross-subject decoding frameworks (Tang & Huth,
2025; Ferrante et al., 2024a; d’Ascoli et al., 2025; Aggarwal et al., 2024; Thual et al., 2023), anatom-
ical alignment alone is insufficient for high-level semantic decoding; a subject-specific functional
alignment is typically required to map different brains into a shared representational space. Our
alignment layer Ak plays exactly this role. Rather than being applied as a separate preprocess-
ing step, it is jointly optimized inside the contrastive objective, allowing the model to learn linear
subject-specific transformations (matrix) that project each subject’s fMRI activity into a common
functional space in which stimulus representations are comparable.

We evaluated the contribution of the subject-specific alignment matrices Ak. Removing the align-
ment layer corresponds to training a separate anatomical-only model per subject. This ablation
reduces performance across all datasets (Table A3), confirming the benefit of learning a shared
functional space.

A4. IMAGE-LEVEL SIMILARITY METRICS

To facilitate comparison with recent generative non-linear decoders for vision stimuli (Mind-
Eye2/UMBRAE from Xia et al. (2024b) and Scotti et al. (2024)), we computed low- and high-level
similarity metrics between the ground-truth NSD test images and the images retrieved by our Linear-
CL model. Although our method is retrieval-based rather than generative, the scores are competitive
relative to the ranges reported in MindEye2/UMBRAE.
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Table A4: Similarity metrics between ground-truth NSD test images and images retrieved by the
Linear-CL decoder (mean ± std. across test samples).

Metric Value (mean ± std.)

AlexNet (layer 2) 0.9408± 0.0649
AlexNet (layer 5) 0.8926± 0.0869
CLIP similarity 0.9163± 0.1244
SSIM 0.4993± 0.3340
Pixel-wise correlation (PixCorr) 0.3540± 0.2369
EfficientNet-B1 distance 0.6682± 0.2397

A5. HYPERPARAMETER EXPLORATION

For completeness, we report the additional hyperparameter analyses (Table A5). We use the stan-
dard NT-Xent sampling scheme, with one positive pair per anchor and all other items in the batch
acting as negatives, as in SimCLR and CLIP. The temperature parameter τ was tuned separately for
each dataset. The values reported correspond to the best temperature per dataset and were stable
across random seeds. We also tested multiple batch sizes, observing that performance consistently
improved for larger batches, consistent with the behavior of contrastive losses where a larger number
of in-batch negatives improves the estimation of the objective and stabilizes optimization.

The best model with “Identity” as activation function is not intended to represent a separate non-
linear architecture. It is in fact the same architecture used in our Linear-CL model: a stack of
linear layers with Identity activations, which collapses to a linear transformation. This is precisely
our model that achieves the best performance. Importantly, this ”multi-layer linear network” cor-
responds to a low-rank factorization of the full linear weight matrix. In practice, this acts as an
additional form of regularization: the transformation is still linear, but decomposed into smaller
matrices.

Table A5: Hyperparameter search space (top) and best values per dataset (bottom).

Hyperparameter Values explored
Hidden dim. {4096, 2048, 1024}
Activation func. {Identity, ReLU, GELU}
Num. Layers {1, 2, 5}
Learning Rate {1e-3, 1e-4, 1e-5}
Temperature τ {0.02, 0.05, 0.10, 0.50}
Weight Decay {1e-3, 1e-4}
Batch Size {128, 512, 1024, 2048}

Dataset Activation Hidden Layers LR τ WD BS
NSD (Image) Identity 1024 2 1e-4 0.02 1e-3 2048
HUTH (Lang.) Identity 2048 2 1e-3 0.05 1e-4 1024
GTZAN (Music) Identity 1024 1 1e-3 0.10 1e-4 2048
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