LINEAR MAPS, CONTRASTIVE OBJECTIVES: A PRINCIPLED STRATEGY FOR FMRI DECODING CONSISTENT ACROSS MODALITIES

Anonymous authorsPaper under double-blind review

ABSTRACT

A prominent theory in cognitive science suggests that concepts in the brain are organized as high-dimensional vectors, with semantic meaning captured by directions and relative angles in this space. Brain decoding is the effort of reconstructing or retrieving stimuli (or their representations) from neural activity and involves finding a function that approximates how the brain represents concepts. This motivates the investigation of contrastive objectives as biologically plausible candidates to reverse the brain loss function. In this work, we study how functional MRI (fMRI) activity can generally be aligned with the embedding spaces of foundation models in vision, language, and audio. Although neural computations are highly non-linear at the microscale, fMRI measurements average signals across space and time, further smoothed by noise, effectively linearizing the observable representation. Consistent with these views, our experiments across multiple datasets demonstrate that linear contrastive decoders consistently outperform ridge regression and non-linear alternatives, and that these results generalize across images, text, and sound. These findings indicate that decoding gains arise more from the choice of training objective than from architectural complexity, pointing to contrastive-linear models as a principled strategy for brain decoding.

1 Introduction

A central challenge in cognitive science is to understand how the brain represents concepts and encodes sensory information. Recent theoretical work argues that human concepts are most plausibly represented as high-dimensional vectors (Piantadosi & et al., 2024). Vector-based representations naturally explain typicality and similarity effects through distances in the representational space, capture relations and analogies via vector arithmetic, support compositionality and theory-like structures, and even allow the flexible formation of ad hoc categories. This framework unifies different theory-based views of concepts under a single representational format. Moreover, it resonates with the success of modern foundation models, which learn rich embedding spaces where meaning is encoded in geometric relations among vectors. If the brain organizes concepts in such vector spaces, then comparison and learning are likely driven by similarity, suggesting that contrastive learning provides a biologically plausible approximation of the brain's own optimization principle.

At the same time, a complementary line of research has challenged the assumption that modeling brain dynamics at the macroscale necessarily requires complex non-linear systems. A recent large-scale study from Nozari et al. (2024) on fMRI data showed that linear models not only match but often outperform a wide range of non-linear approaches across predictive accuracy, residual structure, and computational efficiency. The authors traced this apparent linearity to several factors intrinsic to macroscopic measurements: spatial averaging over millions of neurons, temporal filtering of fast dynamics, observation noise, and the limited sample size relative to dimensionality. Together, these effects act to smooth and linearize the measured signal, such that what fMRI captures is effectively a first-order approximation of the underlying neural computations. This provides a principled explanation for why linear models can be highly effective in fMRI decoding, despite the non-linear nature of the neural processes they ultimately reflect.

Building on these perspectives, this work is motivated by several key questions: What is the most effective way to map brain activity into the embedding spaces of foundation models? Do more complex non-linear models provide an advantage in the context of noisy and high-dimensional data? Is decoding performance driven more by vector alignment in the representational space than by average error minimization?

To address these questions, we systematically study brain decoding from functional Magnetic Resonance Imaging (fMRI) across three distinct modalities (images, music, and text), using embeddings extracted from state-of-the-art foundation models. We evaluate a spectrum of decoding models, ranging from ridge regression to linear mappings trained with contrastive loss, to shallow MLPs.

Our findings reveal three key insights: (i) a simple linear mapping trained with contrastive learning consistently outperforms ridge regression across modalities; (ii) introducing non-linearities via MLPs does not improve decoding performance, and in fact degrades retrieval accuracy; (iii) prioritizing discriminative separation of embeddings is more important than minimizing pointwise error.

2 RELATED WORKS

Recent years have witnessed remarkable progress in decoding complex stimuli from neural activity, particularly in non-invasive settings such as fMRI (Gallant et al., 2012; Huth et al., 2016; Ferrante et al., 2024a). In the visual domain, approaches leveraging pre-trained vision—language models such as CLIP, combined with linear regression or contrastive learning, have enabled retrieval-based decoding and even realistic image reconstruction when coupled with diffusion models (Ozcelik & VanRullen, 2023; Lin et al., 2022; Scotti et al., 2023; Chen et al., 2023a; Xia et al., 2024a). Beyond vision, growing evidence shows that fMRI activity can be mapped onto latent spaces of diverse modalities—including video (Chen et al., 2023b), language and music (Denk et al., 2023; Ferrante et al., 2024b). The advent of large pre-trained models has been a key enabler of this progress, providing rich representational spaces that support both retrieval tasks and generative reconstruction from neural data.

Brain decoding approaches have traditionally relied on linear methods such as ridge regression to predict high-dimensional representations of stimuli from non-invasive neural recordings (Ozcelik & VanRullen, 2023; Liu et al., 2023; Denk et al., 2023). While successful in controlled settings, these models are limited in their ability to capture the semantic richness of natural stimuli. More complex neural networks, in contrast, have shown promising results (Scotti et al., 2024; Xia et al., 2024b) but often at the cost of overfitting or reduced interpretability, leaving unclear whether performance gains come from non-linear modeling or from task-specific processing. Furthermore, most studies have focused on a single modality (e.g., vision or language), leaving open the question of whether decoding strategies generalize across different types of cognitive data.

3 MATERIAL & METHODS

An overview of the proposed framework is shown in Figure 1, while the model architecture is described in more detail in Section 3.4. Our approach aims to learn a shared representational space in which neural responses and stimulus embeddings can be directly compared. Once trained, the model enables retrieval of the corresponding stimulus representation (text, image, or audio) from neural activity alone. The experiments are conducted independently for each stimulus modality, using three distinct datasets. Importantly, the same model architecture is employed across all modalities, demonstrating that our framework achieves consistent improvements over baseline methods and more complex non-linear models. The following subsections provide details on the datasets, the decoder design, the training objective, and the evaluation metrics.

3.1 IMAGE PROCESSING

For the visual dataset, we relied on the *Natural Scenes Dataset* (NSD) from Allen et al. (2022), which includes fMRI data acquired while multiple subjects viewed natural images. The dataset provides a large number of fMRI trials (over 24,000) and two distinct subsets: a training set of approximately 8,859 unique images per subject, and (ii) a common set of 982 images viewed by all subjects, used for alignment and testing. In order to reduce dimensionality, the fMRI signals

Figure 1: The same linear contrastive model is employed across three experimental conditions, differing only in the stimulus modality (audio, textual, or visual). For each modality, neural responses from fMRI are aligned through subject-specific linear transformations and mapped into the corresponding stimulus embedding space (obtained from a pretrained foundation model such as CLIP for images, CLAP for audios, or LLaMA for text) via a contrastive learning objective. Training is carried out independently for each modality. At test time, retrieval is performed by comparing brain-predicted embeddings with estimated stimulus embeddings.

were preprocessed by applying NSD General ROI masks and estimating beta coefficients through a general linear model (GLM) (Kay et al., 2013; Prince et al., 2022), which included a fitted hemodynamic response function (HRF) correction and a denoising process. We focused on data from Subj01, Subj02, Subj05, Subj07 then normalized and transformed into the MNI space at 2 mm resolution, reducing computational cost and enabling inter-subject comparison. Each neural sample is represented as a vector of 15,724 voxels, corresponding to the estimated fMRI beta responses within selected visual ROIs.

For each stimulus, the corresponding natural image is fed into CLIP model (Radford et al., 2021) at inference mode, obtaining its high-level semantic representation given by a 512-dimensional embedding (image-text projection layer).

3.2 LANGUAGE PROCESSING

We used the publicly available dataset introduced in LeBel et al. (2023), focusing on three subjects (S1, S2, and S3). In the manuscript, we will refer to this dataset as HUTH Language. Each subject underwent approximately 16 hours of fMRI recordings while listening to 83 naturalistic stories taken from the *The Moth* and *Modern Love* podcasts. fMRI data were acquired with a 3T Siemens Skyra scanner using a repetition time (TR) of 2.00 s and an isotropic voxel size of 2.6 mm. Standard preprocessing included motion correction, cross-run alignment, standardization, and removal of low-frequency drifts. For training, we used the first 70 stories of each subject, reserving 12 for validation. Additionally, the story *wheretheressmoke* was presented 10 times to improve the signal-to-noise ratio in the test set.

To reduce complexity and restrict our analysis to language-sensitive regions, we used an encoding model that mapped word embeddings from a large language model (Dubey et al., 2024) (LLaMA3-8B, layer 13) to fMRI responses. Word embeddings were computed in context windows of five preceding words and then downsampled with a Lanczos filter to match the temporal resolution of the fMRI signal. Pearson correlation between predicted and observed activity was calculated on held-out validation data, and the top 10,000 cortical voxels showing the highest predictability were selected as target regions for decoding.

3.3 MUSIC PROCESSING

We employed the GTZan fMRI dataset Nakai et al. (2022), which consists of recordings from five participants (sub-001 to sub-005) who each listened to 540 music excerpts evenly distributed across ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock). Each stimu-

lus lasted 15 seconds with a 2-second fade-in and fade-out, sampled at 22.05 kHz. The experimental design included 18 runs per subject (12 for training, 6 for testing), each composed of 40 clips. fMRI data were acquired with a 3.0T scanner at TR = 1.5 s (400 volumes per run). Preprocessing included motion correction, co-registration to the MNI template using FSL, detrending with Nilearn to remove low-frequency drifts, run-wise standardization, and a hemodynamic delay correction (discarding the first 3 TRs, i.e., 4.5 s). Neural responses for each stimulus were then averaged over the following 10 TRs (15 s), yielding one fMRI representation per excerpt. The resulting dataset comprised 480 training pairs and 60 test pairs per subject.

For the data-driven voxel selection, we constructed voxel-wise regression models to predict brain activity from CLAP (Elizalde et al., 2023) latent music embeddings (512-dimension from audiotext projection layer). Each voxel was modeled independently, with regularization hyperparameter α optimized through nested cross-validation. Prediction quality was assessed by the Pearson correlation between predicted and observed responses on held-out training data. Voxels surpassing a correlation threshold were retained (above 3,000), yielding masks of music-responsive regions of interest. These voxels served as the input space for subsequent alignment and decoding analyses.

3.4 Neural-to-Embedding Decoder

We designed a neural architecture to learn a mapping between neural activity and the target embedding space using a contrastive learning framework. The best architecture is simple: the decoder is composed of a sequence of linear layers, so that the transformation is essentially a stack of affine projections.

Formally, given an input vector $\mathbf{x} \in \mathbb{R}^d$ and a subject index k, the model first applies a subject-specific alignment layer A_k , followed by hidden projections and an output layer:

$$\mathbf{z} = W_o W_h A_k \mathbf{x},$$

where $A_k \in \mathbb{R}^{d \times d_c}$ aligns the subject-specific input to a shared dimensionality d_c , $W_h \in \mathbb{R}^{d_c \times h}$ projects to hidden dimension h, and $W_o \in \mathbb{R}^{h \times d_o}$ maps to the output embedding space of dimension d_o .

In order to align neural representations with target embeddings $\mathbf{y} \in \mathbb{R}^{d_o}$, we employ a contrastive loss inspired by the NT-Xent formulation. For a batch of predicted embeddings $\{\mathbf{z}_i\}_{i=1}^N$ and targets $\{\mathbf{y}_i\}_{i=1}^N$, the cosine similarity is computed as

$$S_{ij} = \frac{\mathbf{z}_i^{\top} \mathbf{y}_j}{\|\mathbf{z}_i\| \|\mathbf{y}_j\|}.$$

The loss encourages each z_i to be most similar to its paired y_i :

$$\mathcal{L}_{\text{contrastive}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(S_{ii}/\tau)}{\sum_{j=1}^{N} \exp(S_{ij}/\tau)},$$

where $\tau > 0$ is a temperature hyperparameter.

The decoder is trained end-to-end with AdamW optimization, using early stopping based on validation loss. As references, we tested (i) a ridge regression model mapping neural representations directly to the embedding space, and (ii) an MLP decoder with non-linear activations between layers.

3.5 EVALUATION

At test time, we run the decoder in inference mode to obtain predicted embeddings. Given a batch $\{(\mathbf{x}_i,\mathbf{y}_i,k_i)\}_{i=1}^N$, where k_i is the subject index, we compute $\hat{\mathbf{y}}_i=f_{\theta}(\mathbf{x}_i;k_i)$, and collect all predictions $\{\hat{\mathbf{y}}_i\}$ and corresponding ground-truth targets $\{\mathbf{y}_i\}$ for retrieval-based evaluation.

Evaluation is performed within subject to factor out inter-subject variability. For each subject s, we have a *query set* $Q_s = \{\hat{\mathbf{y}}_i^{(s)}\}_{i=1}^{n_s}$ (predicted embeddings) and a *reference set* $\mathcal{R}_s = \{\mathbf{y}_j^{(s)}\}_{j=1}^{n_s}$ (ground-truth embeddings). Each query $\hat{\mathbf{y}}_i^{(s)}$ has a unique paired target $\mathbf{y}_i^{(s)}$ in the reference set. Correlation is measured with the cosine similarity, and the corresponding cosine distance (to be minimized) is $d_{\cos}(\hat{\mathbf{y}}, \mathbf{y}) = 1 - \cos(\hat{\mathbf{y}}, \mathbf{y})$.

For each subject s, we perform a nearest-neighbor search within \mathcal{R}_s using cosine distance. Concretely, for each query $\hat{\mathbf{y}}_i^{(s)}$ we compute all pairwise distances

$$d_{ij}^{(s)} = d_{\cos}(\hat{\mathbf{y}}_i^{(s)}, \, \mathbf{y}_j^{(s)}), \qquad j = 1, \dots, n_s,$$

rank reference embeddings by ascending distance, and select the k closest matches:

$$\Pi_i^{(s)}(k) = \{j_1, \dots, j_k\} \text{ with } d_{ij_1}^{(s)} \leq \dots \leq d_{ij_k}^{(s)}.$$

Let $j^* = i$ denote the index of the correct target for query i. The Top-k accuracy for subject s is defined as

$$\text{Top-}k(s) \; = \; \frac{1}{n_s} \sum_{i=1}^{n_s} 1 \big[\, j^\star \in \Pi_i^{(s)}(k) \, \big],$$

i.e., the fraction of queries for which the true target appears among the k nearest neighbors. Overall performance is reported as the micro-average across all subjects:

Top-
$$k = \frac{\sum_{s} \sum_{i=1}^{n_s} 1[j^* \in \Pi_i^{(s)}(k)]}{\sum_{s} n_s}.$$

In particular, we report Top-1 and Top-3 accuracies for each stimulus modality.

4 RESULTS

Table 1: Retrieval accuracies (mean \pm std) per dataset/metric.

Dataset	Metric	Method	Accuracy (%)	
NSD (Image)	Top-1	Ridge Reg. Linear CL Non-Linear CL	15.79 ± 0.89 21.80 ± 0.76 17.76 ± 1.71	
	Top-3	Ridge Reg. Linear CL Non-Linear CL	29.53 ± 1.57 39.66 ± 0.91 35.20 ± 1.33	
HUTH (Language)	Top-1	Ridge Reg. Linear CL Non-Linear CL	29.11 ± 3.23 42.04 ± 2.19 38.23 ± 2.68	
	Top-3	Ridge Reg. Linear CL Non-Linear CL	51.33 ± 2.24 66.25 ± 2.87 61.70 ± 1.83	
GTZAN (Music)	Top-1	Ridge Reg. Linear CL Non-Linear CL	22.67 ± 1.56 33.13 ± 1.47 25.39 ± 1.11	
	Top-3	Ridge Reg. Linear CL Non-Linear CL	49.10 ± 2.00 57.97 ± 1.12 52.30 ± 1.60	

Across all three modalities, decoding performance shows a consistent advantage for the linear contrastive model (Table 1). In the visual domain, linear contrastive learning achieved the highest retrieval accuracies, clearly outperforming both ridge regression and the non-linear variant. A similar trend was observed in the language domain, where the linear contrastive model provided the largest gains, with improvements particularly pronounced at the Top-3 level. In the musical domain, the same model again yielded superior accuracies, indicating that the benefits of contrastive learning extend beyond a single modality. This improvement is also qualitatively evident in Figure 3 (left panel), where correct embedding pairs (real and brain-predicted) are marked by sharper diagonal activations in the similarity matrices.

Table 2: Hyperparameter search space (top) and best values per dataset (bottom).

Hyperparameter	Values explored		
Hidden dim.	{4096, 2048, 1024}		
Activation func.	{Identity, ReLU, GELU}		
Num. Layers	{1, 2, 5}		
Learning Rate	{1e-3, 1e-4, 1e-5}		
Temperature τ	$\{0.02, 0.05, 0.10, 0.50\}$		
Weight Decay	{1e-3, 1e-4}		

Dataset	Activation	Hidden	Layers	LR	au	WD
NSD (Image)	Identity	1024	2	1e-4	0.02	1e-3
HUTH (Lang.)	Identity	2048	2	1e-3	0.05	1e-4
GTZAN (Music)	Identity	1024	1	1e-3	0.10	1e-4

Figure 2: Random samples of brain decoding results. For each panel, the target column shows the ground-truth stimulus (music track, image, or sentence, depending on the modality), while the neighbor columns display the top retrieved candidates from the model's latent space based on cosine similarity. (a) Retrieval of images viewed by participants. (b) Retrieval of text/sentences corresponding to the neural response. (c) Retrieval of music tracks from brain activity. These qualitative examples illustrate that the predicted neural embeddings often retrieve semantically related stimuli, highlighting the model's ability to capture meaningful structure in brain representations.

Figure 3: (a) Each heatmap represents the cosine similarity between predicted and ground-truth stimulus embeddings, computed per pair of features. Results are shown for three datasets (NSD, HUTH, GTZAN) and two models: a linear Ridge regression (left column) and the best contrastive learning model (the linear one, right column). The diagonal reflects correct predictions with high similarity between corresponding stimuli, while off-diagonal values indicate confusion between different candidates. All similarity matrices are normalized using a row-wise softmax to emphasize alignment between prediction and target embeddings. The CL model produces more concentrated diagonal patterns, indicating superior matching accuracy compared to Ridge approach. (b) Each plot displays the distribution of Pearson correlation coefficients computed between model predictions (Linear in blue, Non-Linear in orange) and the ground truth stimulus embeddings, evaluated separately for each embedding feature. Dashed vertical lines indicate the mean correlation for each model. A t-test was performed for each comparison, testing the alternative hypothesis that the linear model yields higher correlations than the non-linear model. The resulting p-value and effect size (Cohen's d) are reported in the legend. Results demonstrate that the linear model consistently achieves significantly higher correlations, with effect sizes ranging from moderate (Cohen's d = 0.50) to large (Cohen's d > 1), depending on the dataset.

Comparisons between linear and non-linear mappings further demonstrate that architectural complexity does not translate into performance gains. Despite introducing additional parameters and activation functions (Table 2) between subject aligner and mapping layer, non-linear models consistently underperformed compared to the linear contrastive approach. Feature-wise evaluation (Figure 3, right panel) confirmed that linear mappings lead to stronger correlations between predicted and ground-truth embeddings, suggesting that the critical factor is the contrastive objective itself rather than model complexity.

In Figure 2, we present qualitative decoding results from the test sets of the three datasets. In all cases, the retrieved samples show clear conceptual similarity with the target stimulus. For the NSD dataset, the retrieved images capture semantic content consistent with the reference, such as animals, food, or sports. A similar trend is observed in the textual modality, where the retrieved sentences convey the same high-level meaning as the ground-truth sentences. Finally, for the music dataset, the comparison of spectrograms highlights modality-specific correspondences: for instance, in the jazz genre case, the retrieved samples share distinctive frequency patterns visible in the target

spectrogram; in contrast, for the metal sample, the retrieved spectrograms display higher energy across frequencies, reflecting the different acoustic structure of the genre.

5 DISCUSSION

Our results indicate that a linear mapping trained with a contrastive objective is a robust and general strategy for fMRI decoding across modalities. Below we discuss two central findings — the superiority of contrastive learning over ridge regression, and the consistent advantage of linear over shallow non-linear mappings — and offer mechanistic explanations consistent with prior literature.

5.1 CONTRASTIVE LEARNING FOR VECTORIAL REPRESENTATION OF CONCEPTS

If concepts in the brain are organized as vectors in high-dimensional spaces (Piantadosi & et al., 2024), then meaning is carried primarily by their relative geometry: distances, angles, and directions capture similarity, typicality, and relational structure. This view suggests that learning and comparison are fundamentally geometric operations (Ferrante et al., 2025). Contrastive objectives (Chen et al., 2020) directly operationalize this principle by maximizing angular similarity between matched pairs while enforcing separation from distractors, effectively aligning the training loss with the retrieval metric. In practice, the negative set acts as a data-driven regularizer: it suppresses directions that reflect nuisance variance in fMRI but are not discriminative in the target space, while amplifying those aligned with semantic information. Our findings that contrastive mappings systematically outperform ridge regression support this interpretation. Whereas ridge minimizes point-wise ℓ_2 error—implicitly prioritizing magnitude alignment—contrastive learning preserves and sharpens the relational structure of the embedding manifold. This can be seen as a form of "reverse engineering" of the brain's representational optimization, consistent with contemporary accounts of concepts as vectors whose relations, rather than absolute values, encode meaning.

5.2 LINEAR VS NON-LINEAR MAPPING

A second central finding is the consistent superiority of linear over shallow non-linear mappings. While this may appear counterintuitive, given the assumption that non-linear networks are needed to capture neural complexity, large-scale analyses of fMRI show that linear models perform better at the macroscale (Nozari et al., 2024; Schulz et al., 2020). This apparent linearity has a principled explanation: although neurons are individually non-linear, fMRI signals reflect averages over millions of units, filtered in time and further smoothed by observation noise. These operations suppress higher-order dynamics and yield an effective signal that approximates a first-order (Taylor-linear) expansion of the underlying neural processes. In this setting, linear mappings are not just a simplifying choice but may be the most explainable and faithful representation of the observable data. Our experiments are consistent with this view: non-linear layers, while increasing expressivity, also relax the inductive bias that preserves embedding geometry. In the small-to-moderate data regime typical of fMRI, this flexibility can rotate or distort informative directions, amplify noise-driven variance, and disrupt calibration of vector norms, ultimately degrading retrieval accuracy. By contrast, linear mappings act as stable, geometry-preserving transforms: they maintain angles up to a global affine transformation, making cosine similarity optimization well conditioned.

Taken together, these perspectives highlight a broader principle: when decoding with rich, pretrained representations, most of the relevant non-linear structure is already embedded upstream in the foundation models. The decoder's role is not to discover new features but to align noisy brain measurements with an existing embedding geometry. Linear contrastive mappings are therefore well suited: they provide stable optimization, suppress nuisance variance, and maximize discriminative alignment. Conceptually, they instantiate two converging ideas — that semantic information in the brain is organized in vector spaces, and that fMRI provides a linearized view of these representations.

5.3 LIMITATIONS

Several limitations of this work should be acknowledged. First, while our analyses systematically compared linear, ridge, and shallow non-linear decoders, the space of non-linear architectures is large. It remains possible that alternative designs or more extensive hyperparameter sweeps could

get better performance. However, this consideration also reinforces our main claim: in practice, the computational cost of exhaustively searching for an optimal non-linear configuration may not be justified, since strong performance can already be achieved with simple linear contrastive approaches. Second, our study does not directly address generalization across datasets. Decoding models were trained and evaluated within individual modalities, leaving open the question of how well such mappings transfer across datasets. Finally, decoding brain activity into rich semantic spaces raises concerns about potential misuse, especially if applied to unconstrained settings or without informed consent. Future work should be guided not only by scientific objectives but also by principled discussions of data governance, individual rights, and ethical safeguards (Yuste et al., 2017).

6 CONCLUSIONS

We presented a unified framework for fMRI decoding that maps neural responses into the embedding spaces of large foundation models and we evaluated it across three distinct modalities (vision, language, and music) using the same pipeline. Empirically, a very simple strategy—a subject-aligned linear mapping trained with a standard contrastive objective (NT-Xent)—consistently outperforms both ridge regression and non-linear MLP decoders, yielding clear improvements of roughly 10–15% in Top-1 and Top-3 retrieval accuracy across datasets. The core contribution of this work therefore lies less in algorithmic novelty and more in the strength of the evidence and the methodological message it supports: "do not overcomplicate—contrastive alignment with a linear decoder often suffices". While our study focuses on retrieval-based decoding, the results provide a strong, motivated and reproducible approach for future work that may extend contrastive-linear alignment to generative reconstruction, cross-modality transfer, alternative negative-sampling strategies, and integration with higher-resolution neural measurements. In summary, our findings recommend a shift in emphasis: prioritize training objectives that directly shape the similarity structure between brain-predicted and stimulus embeddings, keep the decoder simple, and leverage widely available foundation-model representations to obtain robust, efficient, and broadly applicable fMRI decoding.

ETHICS STATEMENT

This study makes exclusive use of publicly available fMRI datasets (Allen et al., 2022; LeBel et al., 2023; Nakai et al., 2022), which were collected with informed consent under protocols approved by the respective institutional review boards. No new human data were collected. Potential risks of brain decoding research, such as privacy concerns and possible misuse, are acknowledged. The work is intended solely to advance scientific understanding and should not be used for individual-level prediction or surveillance.

REPRODUCIBILITY STATEMENT

Preprocessing pipelines, model architecture, training objectives, and hyperparameters are detailed in the manuscript (Section 3 & 4). All experiments can be reproduced with the scripts provided as a zipped repository in Supplementary Materials. We highlight that large language models (LLMs) were used exclusively for textual editing and polish writing.

REFERENCES

- Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle, Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126, 2022.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PmLR, 2020.
- Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the brain: Conditional diffusion model with sparse masked modeling for vision decoding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22710–22720, 2023a.

- Zijiao Chen, Jiaxin Qing, and Juan Helen Zhou. Cinematic mindscapes: High-quality video reconstruction from brain activity. *Advances in Neural Information Processing Systems*, 36:24841–24858, 2023b.
 - Timo I. Denk, Yu Takagi, Takuya Matsuyama, Andrea Agostinelli, Tomoya Nakai, Christian Frank, and Shinji Nishimoto. Brain2music: Reconstructing music from human brain activity, 2023. URL https://arxiv.org/abs/2307.11078.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
 - Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning audio concepts from natural language supervision. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
 - Matteo Ferrante, Tommaso Boccato, Furkan Ozcelik, Rufin VanRullen, and Nicola Toschi. Through their eyes: Multi-subject brain decoding with simple alignment techniques. *Imaging Neuroscience*, 2:1–21, 05 2024a. ISSN 2837-6056. doi: 10.1162/imag_a_00170. URL https://doi.org/10.1162/imag_a_00170.
 - Matteo Ferrante, Matteo Ciferri, and Nicola Toschi. R&b rhythm and brain: Cross-subject decoding of music from human brain activity, 2024b. URL https://arxiv.org/abs/2406.15537.
 - Matteo Ferrante, Tommaso Boccato, Nicola Toschi, and Rufin VanRullen. Evidence for compositionality in fmri visual representations via brain algebra. *Communications Biology*, 8(1):1263, 2025.
 - Jack L. Gallant, Shinji Nishimoto, and Thomas Naselaris. The brain's eye: Decoding mental images from the human brain. Frontiers in Human Neuroscience, 6:68, 2012. doi: 10.3389/fnhum.2012. 00068.
 - Alexander G. Huth, Willem A. de Heer, Thomas L. Griffiths, et al. Natural speech reveals the semantic maps that tile human cerebral cortex. *Nature*, 532(7600):453–458, 2016. doi: 10.1038/nature17637. URL https://doi.org/10.1038/nature17637.
 - Kendrick Kay, Ariel Rokem, Jonathan Winawer, Robert Dougherty, and Brian Wandell. Glm-denoise: a fast, automated technique for denoising task-based fmri data. *Frontiers in Neuroscience*, 7, 2013. ISSN 1662-453X. doi: 10.3389/fnins.2013.00247. URL https://www.frontiersin.org/articles/10.3389/fnins.2013.00247.
 - A. LeBel, L. Wagner, S. Jain, et al. A natural language fmri dataset for voxelwise encoding models. *Scientific Data*, 10:555, 2023. doi: 10.1038/s41597-023-02437-z.
 - Sikun Lin, Thomas Sprague, and Ambuj K Singh. Mind reader: Reconstructing complex images from brain activities. *Advances in Neural Information Processing Systems*, 35:29624–29636, 2022.
 - Yulong Liu, Yongqiang Ma, Wei Zhou, Guibo Zhu, and Nanning Zheng. Brainclip: Bridging brain and visual-linguistic representation via clip for generic natural visual stimulus decoding. *arXiv* preprint arXiv:2302.12971, 2023.
- Tomoya Nakai, Naoko Koide-Majima, and Shinji Nishimoto. Music genre neuroimaging dataset.

 Data in Brief, 40:107675, 2022. ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.
 2021.107675. URL https://www.sciencedirect.com/science/article/pii/
 S2352340921009501.
 - Erfan Nozari, Dani S. Bassett, et al. Macroscopic resting-state brain dynamics are best described by linear models. *Nature Biomedical Engineering*, 8:7–8, 2024. doi: 10.1038/s41551-023-01117-y.
 - Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using generative latent diffusion. *Scientific Reports*, 13(1):15666, 2023.

- Steven T. Piantadosi and et al. Why concepts are (probably) vectors. *Trends in Cognitive Sciences*, 28(9):844–856, 2024. doi: 10.1016/j.tics.2024.07.004. Trends in Cognitive Sciences, Volume 28, Issue 9.
 - Jacob S Prince, Ian Charest, Jan W Kurzawski, John A Pyles, Michael J Tarr, and Kendrick N Kay. Improving the accuracy of single-trial fmri response estimates using glmsingle. *eLife*, 11: e77599, nov 2022. ISSN 2050-084X. doi: 10.7554/eLife.77599. URL https://doi.org/10.7554/eLife.77599.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Marc-Andre Schulz, BT Thomas Yeo, Joshua T Vogelstein, Janaina Mourao-Miranada, Jakob N Kather, Konrad Kording, Blake Richards, and Danilo Bzdok. Different scaling of linear models and deep learning in ukbiobank brain images versus machine-learning datasets. *Nature communications*, 11(1):4238, 2020.
 - Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the mind's eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural Information Processing Systems*, 36:24705–24728, 2023.
 - Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen, Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman, et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. arXiv preprint arXiv:2403.11207, 2024.
 - Weihao Xia, Raoul De Charette, Cengiz Oztireli, and Jing-Hao Xue. Dream: Visual decoding from reversing human visual system. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 8226–8235, 2024a.
 - Weihao Xia, Raoul de Charette, Cengiz Oztireli, and Jing-Hao Xue. Umbrae: Unified multimodal brain decoding. In *European Conference on Computer Vision*, pp. 242–259. Springer, 2024b.
 - Rafael Yuste, Sara Goering, Blaise Agüera Y Arcas, Guoqiang Bi, Jose M Carmena, Adrian Carter, Joseph J Fins, Phoebe Friesen, Jack Gallant, Jane E Huggins, et al. Four ethical priorities for neurotechnologies and ai. *Nature*, 551(7679):159–163, 2017.