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ABSTRACT

Graph neural networks (GNN5s) have achieved great success in a wide variety of
graph-based learning applications. While distributed GNN training with sampling-
based mini-batches expedites learning on large graphs, it is not applicable to
geo-distributed data that must remain on-site to preserve privacy. On the other
hand, federated learning (FL) has been widely used to enable privacy-preserving
training under data parallelism. However, applying FL directly to GNNs either
results in cross-client neighbor information loss or incurs expensive cross-client
neighbor sampling and communication costs due to the large graph size and the
dependencies between nodes among different clients. To overcome these chal-
lenges, we propose a new federated graph learning (FGL) algorithmic framework
called Swift-FedGNN that primarily performs efficient parallel local training and
periodically conducts cross-client training. Specifically, in Swift-FedGNN, each
client primarily trains a local GNN model using only its local graph data, and
some randomly sampled clients periodically learn the local GNN models based
on their local graph data and the dependent nodes across clients. We theoretically
establish the convergence performance of Swift-FedGNN and show that it enjoys
a convergence rate of O (7~'/?), matching the state-of-the-art (SOTA) rate of
sampling-based GNN methods, despite operating in the challenging FL setting. Ex-
tensive experiments on real-world datasets show that Swift-FedGNN significantly
outperforms the SOTA FGL approaches in terms of efficiency, while achieving
comparable accuracy.

1 INTRODUCTION

1) Background and Motivation: Graph neural networks (GNNs) have received increasing attention
in recent years and have been widely used across various applications, such as social networks Deng
et al.[(2019); Q1u et al.| (2018)), recommendation systems |Ying et al.| (2018)); [Wang et al.|(2019a)), and
drug discovery Wang et al.|(2022b); Do et al.|(2019). GNN learns high-level graph representations by
iteratively aggregating neighboring features of each node, which is then used for downstream tasks,
such as node classification |[Kipf & Welling (2017); Hamilton et al.|(2017), link prediction|Yao et al.
(2023b); [Zhang & Chen| (2018), and graph classification|Zhang et al.|(2018)); [Bacciu et al.|(2018)).

Real-world graph datasets can be extensive in scale (e.g., Microsoft Academic Graph [Wang et al.
(2020) with over 100 million nodes) and often reside across geo-distributed sites where data protection
laws prohibit direct data sharing Yao et al. (2023a). Single devices (e.g., GPUs) often lack the capacity
for training such large-scale datasets, which leads to a compelling need for distributed graph learning
(DGL) [Fey & Lenssen| (2019); Zheng et al.[(2020). However, the common DGL paradigm, consisting
of subgraph sampling Zeng et al.|(2020) and mini-batch training |Luo et al.|(2022), requires direct
data sharing among workers, which conflicts with privacy regulations.

Meanwhile, federated learning (FL) McMahan et al.|(2017);|Yang et al.[(2021)); Karimireddy et al.
(2020), which has emerged as a promising learning paradigm, enables collaborative training of a
model using geo-distributed traditional datasets under the coordination of a central server. However,
applying FL to geo-distributed graph data is highly non-trivial due to the dependencies between
the nodes in a graph and the fact that the neighbors of the node may be located on different clients,
which we refer to as “cross-client neighbors” (shown as the dashed links between nodes in Figure |T)).
Ignoring the cross-client neighbors as in [Wang et al.| (2022a) would degrade the performance of
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the models and prevent them from reaching the same accuracy as the models trained on a single
device/machine, which is due to the information loss of the cross-client neighbors.

2) Technical Challenges: Despite the appeal of leveraging a trusted server for federated graph
learning (FGL) Zhang et al.| (2021), there remain several non-trivial challenges that hinder efficient
and effective cross-client training. Specifically, we highlight the following major technical challenges:

Large Overhead from a Naive Design. A straightforward approach uses a trusted server to gather
graph data and perform subgraph sampling and neighbor aggregation for each clientZhang et al.
(2021). For instance, in a healthcare setting with multiple hospitals and one central authority, patient
data stay locally due to privacy regulation. The central authority acting as the trusted server must
coordinate all subgraph sampling and part of the training operation (i.e., neighbor aggregation) (see
Figure[I)). As shown in Figure[2] training a two-layer GNN (with sampling fanout values 15 and 10
for the two layers) on the Amazon product co-purchasing dataset Leskovec et al.|(2007)) under 1 Gbps
network bandwidth, this approach leads to significant communication overhead: the server exchanges
large amounts of node and edge information with each hospital sequentially, causing cross-client
sampling and communication time to dominate the fofal training time, making it five times slower
than purely local training.

Communication and Memory Overheads from Cross-Client Neighbors. While some methods
ignore cross-client neighbors He et al.|(2021) or assume overlapping nodes |Wu et al.| (2021), these
assumptions often fail in geo-distributed graphs (e.g., patients visiting multiple hospitals). Alternatives
that preserve cross-client neighbor information Zhang et al.| (2021); Du & Wul (2022); |Yao et al.
(2023a)) require significant data transfers among clients—leading to high communication costs—and
compel each client to store additional graph structure and features for these neighbors. This not only
creates memory-intensive requirements but could also potentially violate data privacy constraints.
Hence, mitigating these cross-client overheads (both communication and storage) is crucial to achieve
efficient, privacy-preserving FGL (see detailed discussions in Section [2)).

3) Our Contributions: The key contribution of this paper is that, by addressing the above challenges,
we develop a mini-batch-based and sampling-based FGL framework called Swift-FedGNN. The
main results and technical contributions of this paper are as follows:

* We develop Swift-FedGNN, a communication- and sample-efficient mini-batch FGL algorithm
for geo-distributed graphs. In Swift-FedGNN, clients primarily conduct local training in parallel,
performing cross-client training only occasionally among sampled clients, thereby reducing sam-
pling and communication overhead while preserving minimal information loss. The cross-client
neighbor information is aggregated at remote clients before communicating to the server and
accumulated one more time before transferring to the training client, further minimizing data
transfer cost and enhancing privacy by ensuring only aggregated neighborhood features - never
raw node features - are exchanged.

* We conduct rigorous theoretical convergence analysis for Swift-FedGNN, which is highly non-
trivial due to biased stochastic gradients and structural entanglement (neighbor aggregation
intertwined with non-linear transformations across multiple layers) in GNNs . In stark contrast to
existing works in the literature that made strong assumptions on the biases of stochastic gradients
(e.g., unbiased (Chen et al.[|(2018) or consistent|Chen & Luss|(2018) gradient), for the first time in
the literature, we are able to bound stochastic gradient approximation errors rather than resorting
to these unrealistic assumptions in practice, offering insights of independent theoretical interest.

* We show that the biased stochastic gradients in GNNs—arising from missing cross-client neighbors
and neighbor sampling—are positively correlated with the network depth, which is unique to FGL.
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By putting the above insights together, we show that Swift-FedGNN achieves a convergence rate
of O (T‘l/ 2), which matches the state-of-the-art (SOTA) convergence rate of sampling-based
GNN methods (hence low communication and sample complexities), despite operating in the far
more challenging FL setting with much less frequent information exchanges among clients.

* We conduct extensive experiments on real-world graph datasets to evaluate the performance of
Swift-FedGNN. The results show that Swift-FedGNN outperforms the SOTA FGL algorithms in
terms of efficiency, achieving x4 speed-up and competitive accuracy.

2 RELATED WORK

In this section, we provide an overview on distributed graph learning and offer a comprehensive
comparison with the most relevant work on federated graph learning.

1) Distributed Graph Learning: Distributed graph learning framework (e.g., DistDGL Wang et al.
(2019b); [Zheng et al.| (2020), Pytorch Geometric |Fey & Lenssen|(2019), AliGraph Zhao et al.[(2019)
and Dorylus Thorpe et al.|(2021))) have been developed to train large-scale graph datasets via cross-
device sampling and direct worker-to-worker communication, and often spend up to 80% of the
total training time on data communication |Gandhi & Iyer|(2021). Although various optimizations
(graph partitioning [Zheng et al.|(2020), cachingLiu et al.| (2023); Zhang et al.[(2023)), communication
strategies|Cai et al.|(2021)); Luo et al.|(2022), parallel training|Gandhi & Iyer|(2021);|/Wan et al.| (2022);
Du et al.|(2024)) have been proposed to expedite DGL, they commonly require direct data sharing
between workers, violating data privacy constraints in geo-distributed settings. To our knowledge,
LLCG Ramezani et al.|(2022)) is the only DGL framework that avoids transferring node features
between workers, making it potentially applicable to geo-distributed graphs. In LLCG, each worker
trains only on its local graph partition. To address missing cross-device neighbor information, LLCG
employs a central server to periodically perform full-neighbor training with neighbor aggregation
across all workers. However, this approach imposes significant communication overhead on the
server, which needs to communicate with every worker to perform the full-neighbor training.

2) Federated Graph Learning: To date, the research on federated graph learning remains in its
infancy and results in this area are quite limited. In|He et al.| (2021), it is assumed that graphs
are dispersed across multiple clients and the information of the cross-client neighbors is ignored,
which does not align with the real-world scenarios and would degrade the performance of the trained
model. In|Wu et al.|(2021), it is assumed that the clients’ local graphs have overlapped nodes and the
edges are distributed, which may not be true in real-world situations. [Zhang et al.|(2021) mitigates
the information loss of the cross-client neighbors by exchanging such information in each training
round. However, this approach incurs considerable communication overhead and exposes private
node information to other clients. While |Yao et al.|(2023a)) employs a one-time exchange of full
cross-client neighbor information prior to training, this design relies on full-graph training and causes
significant per-client memory overhead, making it impractical for large-scale graphs. Adapting it to
sampling-based FGL would require per-iteration cross-client exchanges (since each mini-batch has a
different training node set and sampled neighbors), further exacerbating communication overhead.

Du & Wu| (2022) uses sparse cross-client neighbor sampling to supplement the lost information
of the cross-client neighbors and reduce the communication overhead, which is most related to
ours. Each client periodically samples and exchanges these neighbors with other clients, reusing
the most recent sampled neighbors in between exchanges. However, as training progresses, the
frequency of information exchange increases, leading to higher communication costs. Furthermore,
privacy constraints are relaxed by allowing direct client-to-client data transfers and caching, and
repeatedly reusing the same neighbor data introduces bias that degrades performance. In contrast,
our Swift-FedGNN method limits cross-client training to a subset of sampled clients and avoids
direct graph data exchange between clients by offloading certain operations to the central server.
Before communication with the training clients, cross-client neighbor information is aggregated
twice: first at the remote clients and then on the server—helping to preserve data privacy and reduce
communication costs.

3 FEDERATED GRAPH LEARNING: PRELIMINARIES

In this section, we provide the background of the mathematical formulation for training GNN’s
in a federated setting. For convenience, we provide a list of key notations used in this paper in
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Appendix [B] In order for this paper to be self-contained and to facilitate easy comparisons, we
provide the background for training GNNs on a single machine in Appendix

Consider a graph G (V, £), where V is a set of nodes with N = |V| and £ is a set of edges. We
consider a standard federated setting that has a central server and a set of M clients with M = | M.
The graph G is geographically distributed over these clients, and each client m contains a subgraph
represented by G™ (Vm E™). Note that U% 1G™ # G due to the missing cross-client edges
between clients (U 1 €™ # £). In addition, we assume that the nodes are disjointly partitioned

across clients, i.e., U V™ =V and nm:l = (). Each node v € V™ has a feature vector

™ € R%, and each node v € Y}, corresponds to a label y;*, where Vi . C V™.

In FGL, the clients collaboratively learn a model with distributed graph data and under the coordi-
nation of the central server. Typically, the clients receive the model from the server, compute local
model updates iteratively, and then send the updated model to the server. The server periodically
aggregates the models and then sends the aggregated model back to the clients. The goal in FGL is to
solve the following optimization problem:

minl(0) : \./\/l| Z F™ (0 |M| Z |Vm| Z Em( v ayu)7 (D

meM evp
where /™ is a loss function (e.g., cross-entropy loss) at chent m, VB denotes a mini-batch of training

nodes uniformly sampled from V™, and 0 := {W(” }1L:1 corresponds to all model parameters.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Recall that in FGL, the neighbors of node v may be located
on its local client m(v) or on remote clients m(v) € M(v), where M(v) represents a set of the
remote clients that host the neighbors of node v, and M(v) € M\ {m(v)}. As shown in Figure[3]
to compute the embedding of node v at the I-th layer in a GNN with L layers, the client m(v) first
aggregates the neighbor information from both itself and the remote clients /7 (v), and then updates
the embedding of node v, as follows:

B, _AGG({hu D7) | weA ™0 )} U {Unesico {AED | ueww(v)}}),

local remote
hgl),m('u) =0 (W(l) . COMB (hg]l_l)ﬁm(’“)y hf\l/)(v))) bl (2)

where N'™(¥) (v) is a set of the neighbors of node v located on its local client m(v), N™(*) (v) is a set
of the neighbors of node v located on remote client m(v), hf\[)(v) is the aggregated embedding from

node v’s neighbors, h7(jl)7m(u)

as hg}O),m(v)

is the embedding of node v located on client m(v) and is initialized

= wT(U), W represents the weight matrix at I-th layer, o (+) corresponds to an
activation function (e.g., ReLU), AGG (+) is an aggregation function (e.g., mean), and COMB () is
a combination function (e.g., concatenation). Compared to DGL where clients can directly transfer
node features, the key difference in FGL is that clients cannot do so due to privacy concerns, requiring
additional modifications.

4 THE Swift-FedGNN ALGORITHM

In this section, we propose a new algorithmic framework called Swift-FedGNN , designed to effi-
ciently solve Problem (1)) by reducing both sampling and communication costs in FGL. The overall
algorithmic framework of Swift-FedGNN is illustrated in Algorithms Rather than each client
performing cross-client training in every round, the clients in Swift-FedGNN primarily conduct the
efficient local training in parallel, and a set of randomly selected clients periodically carry out the
time-consuming cross-client training. By offloading part of the graph operation to the server and
remote clients, Swift-FedGNN eliminates the need for sharing graph features among clients.

Algorithm|[T]outlines the main framework of Swift-FedGNN. Specifically, it performs parallel local
training across clients for every I — 1 iterations, followed by one iteration of cross-client training
involving randomly selected clients. In the local training iterations (t), every client m updates the
local GNN model only using its local graph, as presented in Algorithm [3] Client m samples a
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Algorithm 1: Swift-FedGNN Algorithm. Algorithm 2: Client m in the ¢-th iteration: update
with local graph data and cross-client neighbors.

Input: Initial parameters 6o, learning rate «,
and correction frequency [ Receive global parameter 8;" = 0,

fort =0to T — 1do Construct a mini-batch B;* of nodes

if ¢ mod I = 0 then

Randomly sample |K| clients

for m € M in parallel do

Server samples a subset of L-hop neighbors S = {S" }ZL:_OI for
the training nodes in 8"

if m € K then for! =1to L do
Client update with local /* Derive [-th layer embedding of
graph and cross-client node v€ B if =L, otherwise
neighbors using Algo- vesW */
rithm 2] for Remote client m(v) € M(v) in parallel do
else Aggregate the neighbor embeddings using Eq.
Client update with local Send the aggregated embedding hj\lf)’m(v) to server
graph using Algorlthm ®
L - Server:
else Aggregate the neighbor embeddings from the remote clients
for m € M in parallel do using Eq. @
Client update with local graph Send the aggregated cross-client neighbor embedding r/(\l/)(“)
using Algorithm to Client m(v)
Server: Client m(v): Compute node embeddings using Eq. (7) &
Aggregate and update global model pa-
rameter as: —

0.41=6, faﬁzm c MVﬁm (67")  Compute stochastic gradient VF™ (8;") and send to server

Algorithm 3: Client m in the ¢-th iteration: update with local graph data.

Receive global parameter 8" = 6
Construct a mini-batch B;* of nodes
Sample a subset of L-hop neighbors S = {S ® }LL:_ol for the training nodes in B;"
for! =1to L do
/* Derive l-th layer embedding of node wé€ B' if [ =L, otherwise
ves? */
Compute node embeddings using Eq. (3) and

Compute stochastic gradient VE™ (07*) and send to server

mini-batch of training nodes ;" and a subset of L-hop neighbors for the training nodes in B},
denote as S = {S O }lL;Ol, all from the local graph data. To compute the embedding of node v in

the I-th GNN layer (v € B]" if | = L, otherwise v € S 1), client m first conducts the neighbor
aggregation for node v based on the sampled neighbors using:

R = AGG ({RUD™ [ue N () }), 3)

where N'™ (v) denotes a set of the sampled neighbors located on client m for node v, Nm (v) C

SU=1_ and N™ (v) € N'™ (v). Then, client m updates the embedding of node v in the I-th GNN
layer based on the aggregated neighbor information and the embedding of node v from the (I—1)-th
layer, as follows: o o

RO = o (W COMB(RID™, h{),,))) @)

At every [-th iteration, Swift-FedGNN allows a set of K clients, uniformly sampled from M, to
conduct cross-client training that trains the local GNN models using both their local graph data
and the cross-client neighbors. We use K to denote the set of K clients, where L C M. The
remaining clients perform local training as shown in Algorithm [3] Algorithm [2] details the cross-
client training process for client m € . Rather than directly exchanging node features between
clients, Swift-FedGNN partitions GNN training between the clients and the server. We offload] the
aggregation of node features and intermediate activations at each GNN layer to the server and remote

'The operation offloading in Swift-FedGNN only supports element-wise (e.g., mean, sum, max) operations,
e.g., GCN, GraphSAGE, GIN, and SGCN. For non-element-wise operations (e.g., GAT), which are fundamentally
not a good fit in any communication-efficient FGL algorithm design, see Appendixfor detailed discussion.
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clients corresponding to node v, thus reducing the communication overhead and eliminating the need
for graph data sharing. This procedure helps preserve data privacy because the clients are unaware of
the locations of neighbor nodes, and the embeddings of these neighbor nodes are aggregated before
being transmitted to the clients. Operations performed on the server and the remote clients are colored

using server and remote client respectively.

Specifically, client m € K samples a mini-batch of training nodes B]". Then, with the cooperation of
the server, a subset of L-hop neighbors for the training nodes in B;" is sampled and represented as
S = {S(Z) lL:_Ol. The nodes v € BT are on client m, while for v € S with I < L, the nodes may

be on clients other than m, denoting the client storing v as m(v). The set M (v) represents remote
clients with respect to m(v), i.e., M(v) C M\ {m(v)}, where the sampled cross-client neighbors
of the training node v are located. Each remote client m(v) € M (v) may contain multiple sampled
neighbors of the training node v, and the numbers of the sampled neighbors can vary across clients.

Computing the I-th layer embedding of node v consists of four steps. Steps 1 to 3 below are used to
aggregate the neighbor information of node v, and Step 4 is used to update the node v’s embedding at
l-th GNN layer.

Step 1) Each remote client 7 (v) aggregates its sampled neighbors of node v in parallel, using
l El m v m v
R =AGG({RID70) [y e N7 (0)}). )

We send only the aggregated results from each remote client m(v) to the server, which can help
preserve data privacy and reduce communication overhead.

Step 2) Upon receiving the aggregated neighbor information from all the remote clients m(v) €
M (v), the server aggregates this information from different remote clients before sending it to client

m(v) as follows: B
TN () = AGG ({h m(v) | m(v) € M(v)}) . (6)

This approach not only helps maintain data prlvac but also reduces communication costs by
minimizing the amount of data transmitted between clients and the server.

Step 3) Neighbor information of node v for both the sampled local neighbors and the sampled
cross-client neighbors is aggregated as follows:

hw AGG({h(l D) |y e N (v) ju{r{) U)}) )

local remote
The cross-client neighbor information used here helps mitigate the information loss and reduce the
performance degradation caused by connected nodes being distributed across different clients.

Step 4) The embedding of node v in the [-th GNN layer is updated using the aggregated neighbor
information and the embedding of node v from the ({—1)-th layer as:

hE}l),’rn(’u) :O_<Wt(l)am(”) .COMB (h’gl—l),m(v)7 hf\lf)(v))) ) (8)

Using the embeddings of the training nodes in the mini-batch and the model parameters, the local
stochastic gradients VF™ (0;") are computed and used in the update of the global model parameters
shown as 81 = 0y — oy 3o,,en VE™ (67"), Where s the learning rate.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence guarantees for Swift-FedGNN using Graph
Convolutional Network (GCNﬂ Kipf & Welling|(2017) as the GNN architecture to solve Problem
(I). The analysis of GNN convergence is significantly more challenging compared to the existing
literature on deep neural networks (DNNs). The key difficulties stem from the fact that, unlike in
DNNSs, the stochastic gradients in GNNSs are inherently biased. This bias is primarily caused by the

>To further enhance privacy, Swift-FedGNN is compatible with differential privacy techniques and federated
encryptlon protocols, enabling formal privacy guarantees. See Appendix E]for a detailed discussion.

3These convergence guarantees also extend to other element-wise operation-based GNNs, e.g., GraphSAGE
and GIN. See Appendlxmfor guidance on extending the analysis.
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presence of cross-client neighbors and the neighbor sampling process. The errors from missing or
unsampled neighbors propagate across layers, gradually getting amplified from the input layer to the
output layer, complicating the overall convergence behavior.

For a graph G, the structure can be represented by its adjacency matrix A € RV XN where A, = 1
if (v,u) € &, otherwise A, = 0. The propagation matrix can be computed as P = D~1/2AD~1/2,
where A= A+ 1 ,and D € RVxN corresponds to the degree matrix and D, = Zu AW. For
subgraph G™ located on client m, the adjacency matrix A™ can be denoted as A™ = A" . +
ATl where Aj . corresponds to the nodes located on client m, and A} corresponds to

remote’ . ¢ . remote A X
their cross-client neighbors located on the remote clients other than m. Then, the propagation matrix

can be calculated as P™ = D;,,'/? (A™ 1) D;,"/?, and can be represented as P™ = P7 , +
Pm . where P = D (A7 +I™) Dy and P, = DR? (AT, L) DRt

remote> local remote remote

Given GCN as the GNN architecture, for client m training using only the local graph data, Eq.
ﬁ(l),mﬁ’(l—l),m

! . ..
rocal Hivcal Wt( )™ For client m training based on

and (E) are equivalent to fI/t(l)’m =0
both the local graph data and the cross-client neighbors, Eq. H are equivalent to fI/t(l)’m =

O_((ﬁ(l),mﬁ(l—l),m_’_ﬁ(l)nn j—_:l—"(l—l),m)Wt(l),m)'

local **iocal remotetd remote
Before proceeding with the convergence analysis, we make the following standard assumptions.
Assumption 5.1. The loss function ¢ (-, -) is Cj-Lipschitz continuous and L;-smooth with re-
spect to the node embedding h("), i.e., ||€m(h§L), y) — Km(th), Yz < Cl||h§L) - h(QL) |l2 and
Ivem(hi? ) = Ver (B, y) o < Lif| (Y = h$P|.
Assumption 5.2. The activation function o (-) is C,-Lipschitz continuous and L,-smooth, i.e.,
lo(23") = o(25)]l2 < Coll2t” — 2872 and | Vo(2{") — Vo (2{))]l2 < Lo |21 — 2{]J2.
Assumption 5.3. For any [ € [L], the norm of weight matrices, the propagation matrix, and the node

feature matrix are bounded by By, Bp and By, respectively, i.e., HW(Z) lr < Bw, |P||r < Bp,
and || X || < Bx. Note that this assumption is commonly used in the analysis of GNNs, e.g.,|Chen
et al.|(2018);|Liao et al.| (2020); |Garg et al.| (2020); (Cong et al.|(2021); [Wan et al.| (2022).

Different from DNNs with unbiased stochastic gradients, the stochastic gradients in sampling-based
GNNgs are biased due to neighbor sampling of the training nodes. This is one of the key challenges
in the convergence analysis of Swift-FedGNN. Some existing works used strong assumptions to deal
with these biased stochastic gradients in their analysis, e.g.,/Chen et al.|(2018)) adopts the unbiased
stochastic gradient assumption, and (Chen & Luss| (2018)) uses the consistent stochastic gradient
assumption. However, these assumptions may not hold in reality. In this paper, without using the
aforementioned strong assumptions, we are able to bound the errors between the stochastic gradients
and the full gradients in the following lemma.

Lemma 5.4. Under Assumptions the errors between the stochastic gradients and the
full gradients are bounded as |V E™ , (™) — VE™ . (6™)||r < LB and IVE, (0™) —

VF}ZH @ |lr < LBﬁG, where VE". . (0™) and Vﬁ[ycal (™) correspond to the full and
stochastic gradients computed with only local graph data, respectively. VF{, (0™) and

Vﬁ}’&” (™) include both local graph data and cross-client neighbors of the training nodes. Bl .,

and BgG are defined in Eq. and in Appendix@

Furthermore, the dependencies of the nodes located on different clients can lead to additional errors
in the gradient computations when client m is updated only with its local graph data, since the cross-
client neighbors are missed. This becomes another key challenge in the analysis of the convergence
of Swift-FedGNN. We prove that such an error is upper-bounded as shown in the following lemma.

Lemma 5.5. Under Assumptions the error between the full gradient computed with both
the local graph data and the cross-client neighbors of the training nodes (VE'p,, (6™)) and

the full gradient computed with only the local graph data (VE]". ., (™)) is upper-bounded as
VEL, (0™) = VET., (0™) |r < LBpg, where By, is defined in Eq. in Appendix

We note that all the errors mentioned in Lemmas [3.4] and are correlated with the structure of
GNN s, specifically showing a positive correlation with the number of layers in the networks. This
finding is unique to GNNs, where each layer involves both neighbor aggregation and non-linear
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Figure 4: Convergence performance in terms of validation accuracy of communication cost per
different algorithms. step.

transformation. As these two operations are interleaved across multiple layers, they create a structural
entanglement that complicates the analysis.

Using Lemmas [5.4] and [5.3] we state the main convergence result of Swift-FedGNN solving an
L-layer GNN in the following theorem:

Theorem 5.6. Under Assumptions choose step-size o= min{%, ﬁ} where L is the

smoothness constant in Lemmal|H.2] The output of Swift-FedGNN solving an L-layer GNN satisfies:

T-1

7 v @o < HECRLCD 2 (o i)+ T (o)~ (Bho+ 1))

The detailed proof of Theorem [5.6|can be found in Appendix [Hl We can see from Theorem [5.6] that
the convergence rate of Swift-FedGNN is O (T‘l/ 2) to a neighborhood of the exact solution, which
matches the SOTA convergence rate of sampling-based GNN algorithms, e.g.,|Chen et al.| (2018));
Cong et al.|(2021)); Ramezani et al.| (2022);|Du & Wu|(2022)), even though Swift-FedGNN operates
in the far more challenging federated setting.

Three important remarks on Theorem [5.6] are in order: (1) When choosing I =1 and K = M,
Swift-FedGNN performs fully cross-client training, ensuring no information loss in the graph data.
In this scenario, Swift-FedGNN experiences minimal residual error. Such error is caused by sampling
and is inevitable. However, Swift-FedGNN suffers from maximum sampling and communication
overhead; (2) When choosing K = 0, Swift-FedGNN conducts fully local training, resulting in
the information loss of all the cross-client neighbors. Consequently, Swift-FedGNN encounters
maximum residual error. Nonetheless, the sampling and communication overhead is minimized;
and (3) It can be shown that the last term of the convergence rate bound in Theorem [5.6]is negative.
Hence, increasing I or decreasing K would increase the residual error due to more information loss
of the cross-client neighbors. However, this would reduce the sampling and communication overhead.
Thus, there is a trade-off between the information loss and the sampling and communication overhead.
See Appendix [G.1.1]for empirical evidence supporting our theoretical findings.

Communication Complexity: Assume each GNN layer uses a uniform neighbor sampling fan-out
of F, with F! representing the worst-case number of neighbors sampled per training node at layer
I € [1, L]. Let p;y € (0, 1) be the fraction of neighbors at layer [ located on remote clients. If the
p(l)Fl cross-client neighbors at layer [ are distributed across C';) < M remote clients, then the total
communication cost per cross-client training round in Swift-FedGNN for exchanging the aggregated

cross-client neighbor embeddings is O (KB Y1, Cyd(™})), where B is the batch size per client,

and df}‘;b is the embedding dimension at layer [. Since C(;) < p(l)Fl due to Swift-FedGNN’s
aggregation mechanism, this result highlights the communication efficiency of Swift-FedGNN. For

further discussion on both communication and computation complexity, see Appendix [D]

6 NUMERICAL RESULTS

In this section, we conduct experiments to evaluate the performance of Swift-FedGNN. Due to space
limitations, additional experimental details and results are provided in Appendix [G]

1) Experiment Settings: We train a representative GNN model, GraphSAGE |Hamilton et al.[(2017),
in the FL settings on five real-world node classification datasets: 1) ogbn-products Hu et al.| (2020);
2) Reddit Hamilton et al.|(2017); 3) ogbn-arxiv |Hu et al.[(2020); 4) flickr Zeng et al.| (2020); and
5) citeseer |Giles et al.| (1998). The key statistics of the datasets are summarized in Table @ in
Appendix (G| Note that ogbn-products dataset is the largest dataset one can find in the FGL literature,
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Table 1: Total communication cost (GB) when achieving a target validation accuracy for each dataset.

OGBN-PRODUCTS REDDIT OGBN-ARXIV FLICKR CITESEER
SWIFT-FEDGNN 0.66 5.89 0.95 1.07 35.32
FEDGNN-G 8.40 70.72 7.91 17.22 43.43
LLCG 4.47 23.89 1.46 1.30 25.80
FEDGNN-PNS 0.97 8.96 1.41 1.27 36.11

while the Reddit dataset is known for its density. In our FL simulations, we use 20 clients for the
experiments with ogbn-products dataset and 10 clients for the experiments with the other datasets.
All graphs are partitioned with METIS algorithm Karypis & Kumar (1998). In addition, we evaluate
Swift-FedGNN on randomly partitioned graph data and on another widely used GNN model, GIN Xu
et al| (2019). The corresponding results are provided in Appendix [G|

2) Baselines: Since the goal of Swift-FedGNN is to reduce the sampling and communication time, we
compare Swift-FedGNN with the algorithms most closely related to Swift-FedGNN, which mitigates
the information loss of cross-client neighbors through periodical (sampling-based) full-neighbor
training: 1) LLCG |Ramezani et al.[(2022): A DGL framework that performs local training on each
client independently, with periodic full-neighbor training conducted on a central server; 2) FedGNN-
PNS Du & Wul (2022): A FGL framework where each client periodically samples cross-client
neighbors with an increasing sampling frequency. In the remaining iterations, clients reuse the
most recently sampled cross-client neighbors; and 3) FedGNN-G: A naive FGL algorithm where
cross-client training is performed on each client in every iteration.

3) Convergence Performance Comparisons: In Figuresdaand[Ab] we can see that for both the ogbn-
products dataset and the Reddit dataset, Swift-FedGNN achieves substantially faster convergence
than all baseline algorithms, which verifies the effectiveness of Swift-FedGNN in handling large
or dense graphs. In addition, despite less frequent cross-client training, the validation accuracy
of Swift-FedGNN is comparable to that of FedGNN-G, which trains a GNN model on the dataset
without any information loss. Although LLCG performs periodic cross-client training on the server, it
requires training over the full set of neighbors of the training nodes, leading to significant sampling
and communication overhead. For instance, when training the ogbn-products dataset, LLCG takes
over 5000 ms to perform cross-client training on the server, whereas Swift-FedGNN completes cross-
client training within 200 ms due to neighbor sampling. FedGNN-PNS employs a dynamic cross-
client sampling interval throughout training, gradually reducing the interval as training progresses.
Consequently, FedGNN-PNS incurs extensive sampling and communication overhead during the
later stages of training, slowing down the convergence process. As shown in Figure[dc| on the smaller
ogbn-arxiv dataset the benefit of Swift-FedGNN is less pronounced. The dataset’s limited size and
sparsity reduce both neighbor sampling and communication overhead for all methods, narrowing the
performance gap. This is also reflected in the following communication cost analysis. Nevertheless,
Swift-FedGNN still delivers the best overall performance.

4) Communication Cost Analysis: Figure [5]shows the average communication cost per step for
Swift-FedGNN and the baselines across five datasets, demonstrating that Swift-FedGNN consistently
incurs the lowest communication cost on all of them. Specifically, our algorithm
Swift-FedGNN incurs a communication cost that is 7x to 21 x lower than that of FedGNN-G on
four out of the five datasets (Reddit, ogbn-products, ogbn-arxiv, and flickr). On the smallest graph,
citeseer, the gap narrows because the size of the cross-client neighbor information becomes negligible
compared with the model size, yet Swift-FedGNN still maintains the lowest communication cost. For
the largest dataset ogbn-products and the most dense dataset Reddit, Swift-FedGNN achieves commu-
nication costs that are 2x and 5x lower compared to FedGNN-PNS and LLCG, respectively. On the
small datasets, ogbn-arxiv and flickr, the communication cost advantage of Swift-FedGNN remains
evident, though closer to approximately 1x lower than FedGNN-PNS and LLCG. These findings
validate the superior communication efficiency of our proposed Swift-FedGNN algorithm.

Table [T|reports the total communication cost required to reach the same target validation accuracy
on each dataset. The results demonstrate that our proposed Swift-FedGNN algorithm consistently
incurs the lowest communication cost across all datasets except Citeseer. For example, to reach
a target accuracy of 87% on the ogbn-products dataset, Swift-FedGNN achieves at least a 31.9%
reduction in total communication cost compared to all baselines. Similarly, to reach a target accuracy
of 55% on the smaller and sparser ogbn-arxiv dataset, Swift-FedGNN still delivers at least 32.2%
communication savings, highlighting its robustness and efficiency across diverse graph structures.
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Table 2: Validation accuracy of Swift-FedGNN with different correction frequencies (/) and client
sampling sizes (K') on the ogbn-products dataset.

# OF SAMPLED CLIENTS (K) 10 1 5 10 15
CORRECTION FREQUENCY (/) 5 10 20 40 10
VALIDATION ACCURACY (%) | 88.91 88.88 88.60 88.44|88.47 88.72 88.88 89.22

Table 3: Total communication cost (MB) of Swift-FedGNN with different I and K on the ogbn-
products dataset when achieving a target validation accuracy of 87%.

# OF SAMPLED CLIENTS (K) 10 1 5 10 15
CORRECTION FREQUENCY (1) 5 10 20 40 10
COMMUNICATION COST (MB) | 1344.0 675.5 324.5 275.0|57.8 342.2 675.5 1027.4

Table 4: Total communication cost (GB) on the ogbn-products dataset for two large-scale settings
with 80 clients and 100 clients when achieving a target validation accuracy for each setting.

SWIFT-FEDGNN SWIFT-FEDGNN
(FIXED K = 10) (FIXED K/M = 1/2) FEDGNN-G LLCG FEDGNN-PNS

M =80 0.69 2.42 37.26 3.90 4.49
M =100 1.17 5.24 59.00 6.82 8.67

5) Hyperparameter sensitivity analysis: We explore the impact of different choices for key pa-
rameters in Swift-FedGNN (i.e., the correction frequency [ and the client sampling size K) in
Swift-FedGNN. Table[2]report the validation accuracy of Swift-FedGNN on ogbn-products dataset
under various / and K. The results show that: i) Increasing I from 5 to 40 leads to only a minor
accuracy degradation (0.47%), demonstrating that less frequent cross-client training still preserves
model quality; and ii) Decreasing K from 15 to 1 also results in a minor accuracy drop (0.75%),
indicating that a small number of sampled clients is sufficient to maintain strong performance. These
findings are consistent with our theoretical conclusion in Remark (3) of Theorem([5.6] Complementary
to the these findings, Table[3|presents the total communication cost needed to achieve a target accuracy
of 87% under the same parameter variations. These results show that increasing / and decreasing
K substantially reduce communication cost. For example, increasing I from 5 to 40 saves approxi-
mately 80% of the communication overhead, while reducing K from 10 to 1 saves approximately
94%. Collectively, these results validate Swift-FedGNN’s ability to reduce communication without
incurring major information loss and demonstrate that Swift-FedGNN provides a tunable balance
between communication efficiency and accuracy, and the trade-off can be controlled via I and K.

6) Evaluations of large-scale settings: To evaluate the scalability of Swift-FedGNN, we extend our
experiments to two large-scale settings with 80 clients and 100 clients on the ogbn-products dataset.
Table ] reports the total communication cost when achieving a target validation accuracy (i.e., 83%
for the 80-client setting and 84.3% for the 100-client setting). These results show that: i) With fixed
K =10, Swift-FedGNN reduces total communication cost by at least 82% in the 80-client setting
and at least 83% in the 100-client setting compared to all baselines; and ii) with a client sampling
ratio of K/M = 50%, Swift-FedGNN still achieves at least 38% communication savings in the
80-client setting and at least 23% communication savings in the 100-client setting over all baselines.
These findings highlight Swift-FedGNN’s effectiveness and scalability, validating its communication
efficiency even in large-scale FGL settings. Moreover, server-side aggregation in Swift-FedGNN will
not be a bottleneck in large-scale settings as long as K is adjusted appropriately (e.g., K < M).

7 CONCLUSION

In this paper, we proposed the Swift-FedGNN algorithm, which is a mini-batch-based and
sampling-based federated graph learning framework, for efficient federated GNN training.
Swift-FedGNN reduces the cross-client neighbor sampling and communication overhead by pe-
riodically sampling a set of clients to conduct the local GNN training on local graph data and
cross-client neighbors, which is time-consuming. The rest clients in these periodical iterations and
all the clients in the remaining iterations perform efficient parallel local GNN training using only
local graph data. We theoretically proved that the convergence rate of Swift-FedGNN is O (T‘l/ 2),
matching the SOTA rate of sampling-based GNN methods, even in more challenging federated
settings. We conducted extensive numerical experiments on real-world graph datasets and verified
the effectiveness of Swift-FedGNN.

10
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for grammar correction and language polishing during the writing
process. They did not contribute to research ideation or any substantive aspects of the work.

B LIST OF NOTATIONS

gV, &) Graph

1% Set of nodes

& Set of edges

N =1V Number of nodes

M Set of clients

M = |M]| Number of clients

gmuym.Eem Subgraph at client m

ym Set of nodes at client m

en Set of edges at client m

z € R Feature vector of node v at client m
Yy Label of node v at client m

e Loss function (e.g., cross-entropy loss) at client m
VE Mini-batch of training nodes

0= {W(l) }lel Set of trainable model parameters

m(v) Local client of node v

m(v) Remote client of node v

M(v) Set of the remote clients that host the neighbors of node v
N™E) (v) Set of the neighbors of node v located on local client m(v)
N () Set of the neighbors of node v located on remote client 7m(v)
RO ) Embedding of node v located on client m(v)

hj(\l,)(v) Aggregated embedding from node v’s neighbors

w® Weight matrix at [-th layer

o) Activation function (e.g., ReLU)

AGG (") Aggregation function (e.g., mean)

COMB () Combination function (e.g., concatenation)

B Mini-batch of training nodes at client m

S={s® }ZL:_Ol Subset of L-hop neighbors for the training nodes in B
N™ (v) Set of the sampled neighbors located on client m for node v
K Set of sampled clients for cross-client training

K = |K| Number of sampled clients for cross-client training

VE™ (6;") Stochastic gradient

o Learning rate

A € RVN Adjacency matrix of graph G

P Propagation matrix

D Degree matrix
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A™ Adjacency matrix of subgraph G™

Al Adjacency matrix corresponds to the nodes located on client m

AT te Adjacency matrix corresponds to the cross-client neighbors located on the
remote clients other than m

D™ Degree matrix of client m

pm Propagation matrix of client m

P Propagation matrix corresponds to the nodes located on client m

P o Propagation matrix corresponds to the cross-client neighbors located on the

remote clients other than m

C SINGLE-MACHINE GRAPH NEURAL NETWORKS TRAINING

We consider a graph G (V, £), where V is a set of nodes with N = |V| and € is a set of edges. Each
node v € V is associated with a feature vector z, € R%, where d is the dimension of the feature
vector. Each node v € V,.4iy, has a corresponding label y,,, where Viqin C V.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Consider a GNN that consists of L layers. The embedding

of node v at [-th layer, which is represented by th) , can be obtained through neighbor aggregation
and node update, which are formulated as follows:

., = AGG ({hgj—” lueN (v) }) . A =g (W(l) - COMB(R{™, hf\l,)(v))> :

where hq(,o) is initialized as the feature vector x,,, N’ (v) denotes the set of neighbors of node v, h/(\l/)(v)

is the aggregated embedding from node v’s neighbors aggregated neighbor embedding for node v,
WO represents the weight matrix at I-th layer, o (+) corresponds to an activation function (e.g.,
ReLU), AGG () is an aggregation function (e.g., mean), and COMB (-) is a combination function
(e.g., concatenation).

D COMMUNICATION AND COMPUTATION COMPLEXITY OF Swift-FedGNN

In this section, we provide asymptotic characterizations of the communication and computation
complexities of our proposed Swift-FedGNN algorithm. Due to the complications in precisely
analyzing the communication and computation costs, we provide a high-level asymptotic analysis
based on the several key system parameters.

Throughout the analysis, we assume an L-layer GNN and the following parameters:

e M: The total number of clients;

e F': The same number of neighbor sampling fan-out used at each layer;

s F!: The worst-case number of neighbors at each training node at each GNN layer [ € [1, L] using
F-fan-out;

* p@y € (0, 1): The fraction of the neighbors that are located on other clients.

D.1 COMMUNICATION COMPLEXITY OF Swift-FedGNN

1) Communication cost per iteration for exchanging cross-client neighbor information: In
Swift-FedGNN, every [ iterations, each of the K sampled clients performs cross-client training and
exchanges aggregated embeddings for its cross-client neighbors. The total communication cost per
cross-client training iteration for exchanging these embeddings is on the order of:

L

o <KB > p(l)Fldfl”jbl)) :
=1

where B is the batch size per client, d??)‘b is the embedding (hidden) dimension at layer [, and F"

reflects the exponential expansion in sampled neighborhoods as the layer depth increases.
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Note that this estimate does not account for the two-stage aggregation in Swift-FedGNN, which will
significantly reduce the size of transferred embeddings. Therefore, this expression only represents a
conservative (worst-case) upper bound, and the actual communication overhead is likely to be much
lower.

If the p(l)Fl cross-client neighbors at layer [ are distributed across C(;y < M remote clients, then
after aggregation, the communication cost becomes:

L
1) <KB Z qu{ﬁ%) ,

1=1
where C(y < p)F' ! due to the aggregation mechanism in Swift-FedGNN.

For comparison, consider FedGNN-PNS (2022), the most closely related prior work, which
reduces communication by reusing the same sampled training nodes and their sampled neighbors
across multiple training iterations, but directly transmits raw input features for those cross-client
neighbors. The total communication cost of FedGNN-PNS per cross-client neighbor update is

approximately:
L
o (MB > pay Flde()’)’b> 7

=1
where d?g)b is the input feature dimension, typically larger than hidden dimensions in deeper layers.

When communication of cross-client neighbors occurs, Swift-FedGNN is more efficient than
FedGNN-PNS due to three key reasons: i) It involves only K < M clients per iteration; ii) It

transmits lower-dimensional hidden embeddings (i.e., d‘z;n_bl) < d‘zgl)b for [ > 2); and iii) It leverages

two-stage aggregation to compress information prior to transmission (i.e., C;) < p(l)F ).

Moreover, as training progresses, FedGNN-PNS increases the frequency of graph data communica-
tion, which can lead to significant cumulative overhead. In contrast, Swift-FedGNN maintains a fixed
periodic communication schedule and reduces transferred data per iteration, resulting in substantially
lower overall communication cost.

2) Total communication cost over 7 training iterations: Given the per-iteration communication cost
for exchanging cross-client neighbor embeddings, the total communication cost of Swift-FedGNN for
exchanging these embeddings across 7' training iterations is on the order of:

( KBZC iy )

In addition, gradients and global model parameters are transmitted in every iteration. Let the model

emb emb
parameters at layer [ be W(;) € R4~ *40) | Then the total communication cost for gradients and
model updates is on the order of:

<2TM > dgrhdiy ) :
Combining both, the overall communication complexity of Swift-FedGNN is on the order of:

<2TM > dirhdirt + KB Z Caydi™, )

D.2 COMPUTATION COMPLEXITY OF Swift-FedGNN

At each GNN layer [, the per-node computational cost includes:
* Neighbor aggregation (e.g., mean/sum/max): O(F dflmbl))

* Linear transformation: O(d{"} i)
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With a total of F'~! sampled nodes at layer [ (due to recursive fan-out), the total per-batch cost per
client is on the order of:

O (BF'=* (Pdg™h) + di™,di ) )

Across 7' training iterations and M clients, the total computation complexity (including both forward
and backward passes) of Swift-FedGNN can be expressed as:

L
o <2TM > BF (P + df{ﬁl’l)dfl’;lb)) .
=1

E DISCUSSION ON NON-ELEMENT-WISE OPERATIONS

In the design of our communication-efficient Swift-FedGNN, we do not consider non-element-wise
operations (e.g., GAT [Velickovi€ et al.|(2017)), as such operations are fundamentally not a good fit in
any communication-efficient FGL algorithm design.

Taking GAT as an example, GAT requires direct access to raw neighbor features/embeddings to
compute attention weights based on nonlinear pairwise interactions (see Eq. (1) in[Veli¢kovi¢ et al |
(2018)). This requirement necessitates transmitting raw neighbor features/embeddings across clients,
which leads to significantly high communication overhead. In other words, it is impossible for GAT
to leverage the same communication-efficient aggregated transmissions as in those GNN models
based on element-wise operations (e.g., GCN [Kipf & Welling| (2017), GraphSAGE [Hamilton et al/|
(2017), GIN | Xu et al.|(2019), and SGCN |Wu et al.|(2019)). As a result, GAT is not an ideal GNN
model choice in those FGL algorithm design settings, where communication efficiency is of utmost
importance.

To further quantitatively understand GAT’s communication efficiency limitation in FGL algorithm
design, we analyze the communication cost of incorporating GAT into Swift-FedGNN (denoted
as GAT-Swift-FedGNN) and compare it with our original Swift-FedGNN design. Throughout the
analysis, we assume an L-layer GNN and the following parameters:

e M: The total number of clients;
e F': The same number of neighbor sampling fan-out used at each layer;

s F!: The worst-case number of neighbors at each training node at each GNN layer [ € [1, L] using
F-fan-out;

* pay € (0,1): The fraction of the neighbors that are located on other clients.

1) GAT-Swift-FedGNN: Every [ iterations, each of the K sampled clients performs cross-client train-
ing and exchanges raw features/embeddings for its cross-client neighbors. The total communication
cost per cross-client training round for exchanging these embeddings is on the order of:

L
o <KB Zp(z)Fld?m)) :

=1
where B is the batch size per client, d??;b is the embedding (hidden) dimension at layer [, and F"
reflects the exponential expansion in sampled neighborhoods as the layer depth increases.

2) Swift-FedGNN: In contrast, Swift-FedGNN avoids transferring raw features/embeddings by
sharing aggregated neighbor features/embeddings. If the p(l)Fl cross-client neighbors at layer [ are
distributed across C(;y < M remote clients, then after aggregation, the communication cost is on the

order of:
L
@ (KB > C’(l)df[ﬁbl)> .

=1

Since C(jy < py F !, Swift-FedGNN achieves significantly lower communication overhead than the
GAT variant.
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From the above analysis, we can see that GAT-Swift-FedGNN incurs a communication cost that is
not only F times higher than Swift-FedGNN, but the gap between them also grows exponentially as
the number of layers increases.

Although non-element-wise operations (e.g., GAT) are highly popular GNN models in both the
literature and practice, how to reduce the communication cost and avoid raw neighbor feature
transmission for non-element-wise operations in the federated setting is a fundamentally hard problem,
which would require major architectural design changes in non-element-wise operations rather than
straightforward adaptation. Therefore, exploring attention-based extensions is a valuable direction
for future research.

F DISCUSSION ON PRIVACY IN Swift-FedGNN

In this work, our primary privacy motivation is to avoid the direct transmission of raw node features,
which are often privacy-sensitive in real-world graph applications (e.g., user attributes in social net-
works). Our “aggregate-then-transfer”” design ensures that: i) Only aggregated neighbor embeddings
(not raw features) are shared across clients; and ii) No raw node information is directly exposed to
other clients or the server.

That said, we do not claim formal privacy guarantees (e.g., differential privacy bounds) in this
work, since simply using aggregation without Gaussian/Laplacian-type noise injection is unlikely
to offer (e, d)-type differential privacy guarantee. Instead, our focus is on reducing communication
overhead in federated graph learning while improving practical privacy-preserving behavior through
communication-efficient design.

Importantly, the Swift-FedGNN framework is compatible with standard differential privacy techniques
and federated encryption protocols, which can be integrated Gaussian/Laplacian-type noise injection
to provide formal privacy guarantees.

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

G.1 ADDITIONAL EXPERIMENTAL RESULTS
G.1.1 EXPERIMENTAL SUPPORT FOR THEORETICAL FINDINGS

Table 5: Gradient bias under varying GNN depths on the ogbn-arxiv dataset.

GNN DEPTH 2 14 16
GRADIENT BiAs | 0.46 17.56 30.11

Table 6: Validation accuracy (%) under varying GNN depths on the ogbn-arxiv dataset.

GNN DEPTH 2 14 16
VALIDATION ACCURACY (%) | 57.17 54.60 48.46

To empirically validate our theoretical findings, we use the gradient bias between the full gradient
and the stochastic gradient as an empirical proxy. This quantity has a theoretical upper bound of
LBIAG (see Lemma, making it a suitable example for analysis.

Table [5 presents the measured gradient bias on the ogbn-arxiv dataset across different GNN depths.
These results clearly show that the gradient bias increases with the GNN depth, consistent with our
theoretical result that deeper GNNs incur larger bias due to amplified sampling and cross-client
neighbor errors.

Table [6] shows the validation accuracy on the ogbn-arxiv dataset under varying GNN depths. We
observe that the validation accuracy degrades as the GNN depth increases. This behavior is consistent
with our theoretical insight that deeper GNNs introduce larger gradient bias terms, which in turn lead
to greater approximation error and reduced performance.

In summary, the empirical trends above corroborate the theoretical predictions in Theorem [5.6}
confirming both the validity and practical relevance of the error bounds in Theorem [5.6]
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It is worth emphasizing that the performance degradation observed with increasing GNN depth
is a fundamental limitation of GNN architectures themselves, rather than a limitation our
Swift-FedGNN algorithm design. This phenomenon is well-known to occur across GNNs regardless
of the specific graph learning algorithm in use. Addressing it typically requires architecture-level
enhancements, and many existing solutions (e.g.,|Chen et al.|(2022))) are fully compatible with our
Swift-FedGNN design and can be integrated to mitigate depth-related degradation in practice.

G.1.2 COMMUNICATION OVERHEAD

100 EEE Computation 100 EEE Computation
901 22% Sampling & Communication 90 Sampling & Communication

33% 34%
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Ratios
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0
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(a) ogbn-products (b) Reddit
Figure 6: Ratio of computation time to sampling and communication time for different algorithms.

Communication and sample costs analysis: Figure [6]illustrates the comparison between the ratios
of the computation time and the sampling and communication time for Swift-FedGNN and the base-
line algorithms. It can be seen that Swift-FedGNN significantly reduces the computation-(sampling &
communication) ratio on the ogbn-products dataset. On the Reddit dataset, Swift-FedGNN also signif-
icantly reduces this ratio compared to FedGNN-PNS and FedGNN-G. While Swift-FedGNN achieves
a comparable ratio to LLCG, it converges much faster and achieves higher validation accuracy than
LLCG.
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Figure 7: Ratio of computation time to sampling and communication time for Swift-FedGNN on
ogbn-products dataset.

Hyperparameter sensitivity analysis: We explore the impact of the important hyperparameters in
Swift-FedGNN. Figure [7a] shows that when the correction frequency I increases, the computation-
(sampling & communication) ratio increases. Figure [7b] and [7c| indicate that as the number of
cross-client training clients K, and the number of sampled neighbors increase, the computation-
(sampling & communication) ratio decreases. Figure [7d] evaluates Swift-FedGNN with different
numbers of clients. In this experiment, 50% of clients periodically conduct cross-client training
on both local and cross-client neighbors. We can see that as the number of clients increases, the
computation-(sampling & communication) ratio decreases. These findings align with our expectations
since sampling and communication overhead is significantly greater than computation overhead in
GNN training.

Table 7: Communication overhead per iteration when communication occurs.

Swift-FedGNN LLCG FedGNN-PNS FedGNN-G
OGBN-PRODUCTS 19.5 MB 378.3 MB 78.0 MB 78.0 MB
REDDIT 90.4 MB 619.6 MB 180.7 MB 180.7 MB
Communication overhead when communication occurs: Table [/l shows the communication
overhead per iteration when cross-client sampling and communication occur for different algorithms.
We can see that Swift-FedGNN significantly reduces the communication overhead compared to all
baselines across both datasets. Specifically, on the ogbn-products dataset, Swift-FedGNN incurs 19.5
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MB of overhead per iteration, which is approximately 20 times less than LLCG and 4 times less than
both FedGNN-PNS and FedGNN-G. Similarly, for the Reddit dataset, due to its dense inter-node
connections and larger feature size, Swift-FedGNN’s overhead is 90.4 MB, which is still about 7
times less than LLCG and 2 times less than both FedGNN-PNS and FedGNN-G. This highlights the
efficiency of Swift-FedGNN in reducing communication costs during cross-client training.

G.1.3 VALIDATION ACCURACY

Table 8: Validation accuracy (%) of different algorithms using the GraphSAGE model.

OGBN-PRODUCTS REDDIT OGBN-ARXIV ~ FLICKR CITESEER
SWIFT-FEDGNN 88.88 95.47 57.17 50.19 66.00
LLCG 87.66 95.27 56.78 50.12 68.40
FEDGNN-PNS 87.89 95.46 55.86 51.47 66.27
FEDSAGE 88.15 95.30 56.55 49.75 64.39
FEDGNN-G 88.71 95.96 56.78 51.57 66.08

Validation accuracy comparisons: Table [§|shows the validation accuracy of different algorithms.
To assess the impact of cross-client neighbors, we include an additional baseline FedSage [Zhang
et al.| (2021), an FGL algorithm that entirely ignores cross-client neighbors and performs purely
local training in all iterations. The results demonstrate that despite incurring lower sampling and
communication overhead, our Swift-FedGNN achieves validation accuracy comparable to that of
the baseline algorithms. Moreover, compared to FedSage, which completely ignores cross-client
neighbors, Swift-FedGNN achieves a higher validation accuracy, highlighting the importance of
incorporating cross-client neighbor information. By minimizing sampling and communication
overhead, Swift-FedGNN offers the highest efficiency in practical implementation.

It is worth noting that ogbn-arxiv, flickr, and citeseer are small datasets (Table [I4), where graph
partitioning leads to greater information loss. As a result, baselines that frequently exchange graph
data can achieve slightly higher accuracy. However, these small datasets do not require federated
graph learning in practice. Federated graph learning is primarily motivated by large-scale datasets
like ogbn-products, where our method achieves the best performance.

Table 9: Validation accuracy (%) on the ogbn-products dataset for two large-scale settings with 80
clients and 100 clients.

SWIFT-FEDGNN  SWIFT-FEDGNN LLCG FEDGNN- FEDSAGE FEDGNN-
(K =10) (K/M =1/2) PNS G
M =80 85.74 86.12 83.54 85.67 85.35 86.52
M =100 85.07 85.53 84.35 85.15 84.41 85.63

Evaluations of large-scale settings: Table [0 presents the validation accuracy on the ogbn-products
dataset for two large-scale settings with 80 clients and 100 clients. These results show that
Swift-FedGNN maintains comparable or better validation accuracy in both settings, with larger
K yielding slightly improved performance. These findings confirm that even with a small sub-
set of sampled clients, Swift-FedGNN ensures stable convergence, while significantly lowering
communication overhead.

G.1.4 EVALUATION ACROSS DIFFERENT GNN MODELS

Table 10: Validation accuracy (%) of different algorithms using the GIN model.

OGBN-PRODUCTS OGBN-ARXIV CITESEER
SWIFT-FEDGNN 81.93 56.69 47.34
LLCG 80.72 57.32 46.60
FEDGNN-PNS 78.70 56.54 47.99
FEDGNN-G 83.76 57.01 50.76

Evaluations using the GIN model: To assess the adaptivity of Swift-FedGNN to different GNN
models, we conduct experiments using the GIN [Xu et al.| (2019) model across multiple datasets.
Table shows that, similar to the results with the GraphSAGE model, Swift-FedGNN achieves
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Table 11: Performance comparison using the GIN model when achieving a target validation accuracy
for each dataset.

OGBN-PRODUCTS OGBN-ARXIV
ToTtaL CoMM. WALL-CLOCK | TOTAL COMM. WALL-CLOCK
CosT (GB) TIME (S) CosT (GB) TIME (S)
SWIFT-FEDGNN 0.74 65.18 2.29 75.80
LLCG 3.74 223.77 3.81 103.98
FEDGNN-PNS 5.75 113.46 3.62 131.92
FEDGNN-G 38.12 767.53 19.36 575.26

comparable validation accuracy to the baseline algorithms while significantly reducing sampling and
communication overhead.

Table [[T]reports the total communication cost and wall-clock time on the ogbn-products and ogbn-
arxiv datasets when reaching a target validation accuracy of 80% and 56%, respectively. In both cases,
Swift-FedGNN achieves the lowest wall-clock time to reach the target accuracy. Moreover, it reduces
the total communication cost by at least 80% on ogbn-products and 37% on ogbn-arxiv compared to
all baselines. These results demonstrate the effectiveness of Swift-FedGNN in significantly reducing
communication overhead when using the GIN model.

G.1.5 EVALUATION UNDER MORE HETEROGENEOUS SETTINGS

Table 12: Total communication cost (GB) using randomly partitioned ogbn-products dataset when
achieving a target validation accuracy of 89.5%.

SWIFT-FEDGNN FEDGNN-G LLCG FEDGNN-PNS
COMMUNICATION COST (GB) 1.44 15.03 6.26 2.60

Table 13: Comparison of validation accuracy (%) using randomly partitioned ogbn-products dataset.

SWIFT-FEDGNN FEDGNN-G LLCG FEDGNN-PNS
VALIDATION ACCURACY (%) 89.94 91.23 89.92 89.91

Evaluations using randomly partitioned ogbn-products dataset: To evaluate the robustness of
Swift-FedGNN under less structured scenarios, we conduct additional experiments using random
partitioning instead of METIS on the ogbn-products dataset. Random partitioning introduces hetero-
geneity by randomly assigning nodes to different subgraphs, thereby implicitly inducing non-identical
and structurally unbalanced local subgraphs. Table [I2] shows the total communication cost when
achieving a target validation accuracy of 89.5%. Swift-FedGNN reduces total communication cost
by at least 45% compared to all baselines. Table[I3|reports the validation accuracy, demonstrating
that Swift-FedGNN achieves the highest accuracy among methods that do not rely on full graph
training. These results confirm that Swift-FedGNN maintains both communication efficiency and
competitive performance even when the data is randomly partitioned, validating its applicability
beyond well-partitioned settings.

G.2 ADDITIONAL EXPERIMENTAL DETAILS

Dataset. Table [14| summarizes the key statistics of the datasets used in our experiments, includ-
ing: 1) ogbn-products|Hu et al.|(2020), which is an Amazon product co-purchasing graph derived
from |Leskovec et al.| (2007); 2) Reddit [Hamilton et al.| (2017), which consists of online forum
posts within a month, where posts commented on by the same user are connected by an edge; 3)
ogbn-arxiv Hu et al.|(2020), which is a citation network between arXiv papers in the field of computer
science, where nodes represent papers and directed edges indicate citation links; 4) flickr Zeng et al.
(2020), which is an image network where each node represents an image and edges connect images
that share common properties such as tags or visual similarity; and 5) citeseer Giles et al.| (1998)),
which is a citation graph of research papers, where each node denotes a document and edges represent
citation relationships between them.

Implementation and testbed. We implement Swift-FedGNN using Python on DGL 2.0.0 Wang et al.
(2019b) and PyTorch 2.2.1 |Paszke et al.| (2019). Our implementation includes a custom GPU-based
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Table 14: Benchmark datasets and key parameters.

EDGES
DATASET # OF NODES # OF EDGES PER NODE
OGBN-PRODUCTS 24M 61.9M 25.8
REDDIT 233 K 114.6 M 491.4
OGBN-ARXIV 169 K 1.2M 7.1
FLICKR 89 K 900 K 10.1
CITESEER 3327 9228 2.8

sampler built on top of DGL’s native sampler, which is designed to sequentially sample local and
remote neighbors for each client at every layer. Additionally, we customized the GraphSAGE layer
and GIN layer to facilitate model-parallel training within Swift-FedGNN . In this setup, the server
handles the sampling and aggregation of node features and intermediate activations, while the clients
are responsible for executing the nonlinear computations associated with the GraphSAGE layer.

We simulate a real-world federated learning scenario using a single machine equipped with NVIDIA
Tesla V100 GPUs and 64GB memory. In our setup, both the clients and the server operate on the
GPU, and data communication between them is simulated using shared memory. We monitor the
data transfer size between the server and clients and set a simulated cross-client network bandwidth
at 1Gbps, aligning with real-world measurements reported in|Yuan et al.[(2022]).

GNN model. We train a two-layer GraphSAGE model and a two-layer GIN model with a hidden
dimension of 256. Uniform sampling is employed for neighbor sampling, with fan-outs—i.e., the
number of sampled neighbors—set according to the official training script provided by the DGL team.
The fan-out values are set to [20, 15] for the ogbn-products dataset, and [15, 10] for all other datasets.

Hyperparameters. The training mini-batch size is set at 256. For optimization, we use the Adam
optimizer with a weight decay of 5 x 10~#. We use a learning rate of 0.01 for the ogbn-products
dataset, 0.0001 for the flickr dataset, 0.00001 for the citeseer dataset, and 0.001 for both the ogbn-
arxiv and Reddit datasets. In Swift-FedGNN, we set K = 10 for the ogbn-products dataset and
K = 5 for all other datasets. We choose I = 5 for the citeseer dataset and / = 10 for the remaining
datasets.

H PROOF OF THEOREM [3.6]

H.1 GRADIENT COMPUTATIONS IN Swift-FedGNN

Recall that Swift-FedGNN uses GCN Kipf & Welling| (2017) as the architecture of GNN to prove the
convergence performance. When client m performs local training that updates the local GNN model
using only the local graph data, Each sampling-based GCN layer executes one feature propagation
step, defined as:
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Similarly, when client m conducts cross-client training that updates the local GNN model based on
the local graph data and the cross-client neighbors, each sampling-based GNN layer can be defined
as:

1), m{zr(l—1),m m —1),m 1), —1),m m
HJ(CU),ll = [f(l)) (H)(“ull) ’W(l)) ) £ g ((I:)l(ogal Hl(ocal) PseznoteH?Eemo)te )W(l% >:| .

Using the chain rule, the stochastic gradient can be calculated as VE™ (™) {G (flilzn }zL:y where
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H.2 USEFUL PROPOSITIONS AND LEMMAS
Proposition H.1. Under Assumption[5.3] the inequalities in Table[I3|and Table[I6 are hold.

Table 15: Upper-bound for the norms of the propagation matrix and the node feature matrix.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH ”Pfu”HF S Bp ”XfullHF S BX
LocAL GRAPH ||-F)local||p S Bé’ S BP ||Xlocal||F S BlX S BX
CROSS-CLIENT NEIGHBORS || Premotel|lp < Bp < Bp [ Xremotel]lp < Bx < Bx

Table 16: Relationships for the norms of the propagation matrix and the node feature matrix before
and after sampling.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH HPfull — Pfu” ’ < BAP HXfu” — Xfull l < ng
LocAL GRAPH H-F)local - Hocal < BAP HXlocal - Xlocal S BZAX

P S BAP HXremote - Xremote

CROSS-CLIENT NEIGHBORS ‘ Prcmote — Premote

< BAx
Jai

Lemma H.2. [Lemma 1 in|Cong et al|(2021)] An L-later GCN is Lp-Lipschitz smooth, i.e.,
IVL(61) = VL(62)|p < Lr 61 — 0] 5.

Lemma H.3. Under Assumptions and for any | € [L), the Frobenius norm of node embedding
matrices, gradient passing from the I-th layer node embeddings to the (I — 1)-th are bounded, i.e.,

mw| L E| < B || | =< Bl
e - = =0 W -
where
BY,Bf, = max; (C,BpBw) Bx, B, Bf = Jnax; (BpBwC,)* " Cy.
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(? (BpBwC,)" ' C; < max (BpBwC,)""' ¢,
= o = 1<I<L 7 ’

where (a) and (b) use Assumptions[5.TH5.3]

T
~(1),m (I+1),m | pl+1),m]  HU+1),m (14+1),m I+1).m
’ Dfull HF H [‘Plocal P’remote ] Dfu” oVo <qu” ) {W( +1) ]

F

H Bt B v (250 [wsv]

F

full

pDUHD.m H < (BpBwC,) L lHDfullmH

®) L L1
< (BpBwC,)" (1 < nax. (BpBwCs)" " Cy,

where (a) and (b) utilize Assumptions [5.1H5.3]
O]

Lemma H.4. Under Assumptions and for any | € [L), the errors caused by sampling are
bounded, i.e.,

gbom _ gb.m l (1),m 1),m f

H local — **local ‘ < BAH’ HHfull - Hfull H < BAH’
(1),m l),m 1 ( 0),m ¥

HDlocal Dlocal ‘ < BAD’ HDfull Dfull H < BAD’

where

Bhy = A ((O BWBHBAP) +(CyBwBp)' BlAX) ;

l
B, = [ ((CUBWB};BQP) + (CoBw Bp) B£X> ;

L—-1
BLp = max. ( (BwBY,CyBh\p + By, BpBY, L, By B p + By, Bp BL L, Bl 1)

+ (BwBpCy)"™ LzBlAH) :

f fopf > fr plpf 2 popfr pf \o
Blp = max ( (BwBLC B p + Biy BrBY Lo Bl BLp + By BRBL Lo BL )

+ (BwBpC,)*™ LZBQH) .
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Proof.
70 @
HHlocaT HlocoT ‘F

H (‘F)l(czlgt;THl((ical)) W(l)7 ) - (‘Pl(olzal Hl(olcall)’m) W(l mH
F

(a) l),m l l l m
< C BW H‘l)l(oc:zl I_Il(ocall)7 - IDl(ogal Hl(ocall), H

(l
< C BW H‘ljlogal

F-Dm _ p.m

local local

R [P —

Ye By Bl HPI)’ _plm

local local

local local

‘ —I—CUBWBP’H(Z 1),m_H(z 1) mH

(e)
S CG'BWB;[BIAP + CO'BWBP ’ H(l 1)’m _ H(l 1 mH

local local

!
< (C,BwBYBLp) + (C,BwBp)'

Y m m
Xlocal - Xlocal F

< max ((CoBwB}yBhp) +(CoBwBp) Bix). ©
where (a) uses Assumptions[5.2]and[5.3] (b) is because of Assumption [5.3]and Lemma[H.3] and (c)
and (d) follow from Proposition [H.1]

@, @,
HHful;n - Hful;nH

! =1 l —1),m 1 -1
= H ((ljl(ozal Hl(oca) + Pr(e)moteHr(emo)te ) W(l)’m) - (P;u)” H}(c ”) ) W(l)’mHF

O),my(l—1),m 1),m (I-1),m
< CoBw HPfull Hfull - Pfull Hfull H

0,mzrl-1),m O),mr-1),m 0),mr-1),m 0),m gr(l-1),m
<Cs BWHPfull Hfull _Pfull Hfull H +CUBWHPfull Hfull _Pfull Hfull H

~(1), 1),m -1 l—1),m
S CUBWBIJ; HP;“)” - P}u)” H + CyBw Bp HHJ(v u) - H}ull) HF
(c) —1),m
< C,BwB};Bp + CoBwBp HHJ(cluul) - H;'luzll)’ H
.

< (CUBWBIJ;BAP) +(CoBwBp)' HXV}ZU = XF

(d) l
< (CUBWBI{IBL,) +(CoBw Bp) BL
! I
< max, <(CUBWB};B£P) +(CoBwBp) BLy ), (10)

where (a) follows from Assumptions[5.2]and[5.3] (b) is due to Assumption[5.3]and Lemma[H.3] and
(c) and (d) are because of Proposition

HD Hm D(l)7

local local

F
H ‘Pl(l+}),m D(l+1)m Vo (Z(H—l)m) |:W(l+1),mi|—r
oca

local local

local local

|:13l(l+}),m:| plhm o (Z(l+1),m> {W(lﬂ),mr

F
< | [B] Bl ewe (Znp ) - [P ] Dl eve (70007)

local local local local

F
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-
< B | [BUDT] DL 0w (Z0107) - [PUD ™) B 0va (2010
F
(+1),m] " = +1),m S(+1),m (1+1),m] " m(1+1),m S(+1),m
+ BW ['F)local :| Dlocal o VJ (Zlocal ) - |: local } Dlor’al VU (Zlocal )
F
.
B | [PULD™] D™ 0 o (2L < [PUD7] DU 0 %o (200
F
®) ~(1+1), (1+1),m (1+1), I+1),m
S BWB%)CU P’l(ocal) - ‘Plocal) H local) - Dl(ocal HF
+ BWBPBD ’ VU (Zl((l;j_all) ) ( l(l):_all) )H
(c) m = .m
2 b B, [ B s By Bac, B D
+ Biy BrBh Lo | P Higeud ™ — LT Higod ™|
< BWBB 151(;:3) Iz)lol;%)mH + Bw BpCo ‘ ﬁz(éjall)’m - zijalz)’mH
2 l »(0),mzr(-1),m 1),mzy-1),m
+ BWBPBDL ‘F)local Hlocal - ‘F)local Hlocal I
+ Biy BrBh Ly | Pl Higeud ™ = PLLT Hipo ™|
‘Pl(oljp Pl(ol:zj)mH + BwBpCs ﬁz(ijalz)m - lijalz)mH
+ BWBPBDL BH Hf)l(olctfln - P)l(olzal ’ + B‘Z/VBIQDBlDLU ﬁ-l(éciall% - Hl(zicall) mH
(e) l ! 2 l I pl 2 2 pl l
< BwB4Y'C,Bhp + B2 BpBYL,BY Bh p + B, B2BL L, Bh
l+1),m _ l+1),mH
local local
< (BWBIDOUBZAP + B BpBhL,BYy B\ p + B BABYLL,Bhy)
+ (BwBpC,)"™ HDz(chz - zfc’;ﬂ(
(f) _
< (BwBLC,Bhp + By BpBl LBy B p + B BRBLL, By )™
+(BwBpCy)" ' Ly HHz(OLL)JL H p
(9) -1
+ (BWBPCO') LzBAH
< max ((BWBZDC’UBIAP + B BpBYy LBy Bh p + B2 BLBLL,Bhy)

+ (BwBpC,)-! LIBZAH) :

where (a) uses Assumption (b) is because of Assumptio
follows from Assumptions[5.2and [5.3] (d) utilizes Assumption
Eq. (9) and Proposition[H.1} (f) is because of Assumption[5.1] and (g) is due to Eq. (9).

ns and [5.3 and Lemma [H.3] (c)
and Lemma[H:3] (e) results from

l),m H,m
HDfull _Dfull H
T
I+1), I+1),m I+1 I+1), m
= H ‘Pl(ocal) Pr(emo)te ] D;ull) oVo (Z](‘ull) ) {W(hq) ]

-

(I4+1),m
Pfull

| Dl eve

Z(141),

o) [ssom]

F
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(@) +1)m] T 1) m S(+1),m (+1),m] | (+1)m (1+1),m
< Bw ‘ [Pfuu } full Vo (qull )_ [Pfull } Dfull oVa (quu )
F
T T
(I+1),m A (+1),m (I+1),m (I4+1),m 7 (1+1),n (I4+1),m
< Bw H [Pfuu } D, < Full ) [Pfull } Dfull (qull )
r
T T
(I+1),m ~(+1),m (I+1),m (I+1),m (l+1),7n (I+1),m
n BW\ [Pl Dl o va (Z00™) — [Pl ] D™ o ve (210
F
-
(+).m] " p+m ZU+).m (+),m] " pU+)m Z+1).m
+ Bw ’ [Pfull } full © VU( Full ) { Full } Full ( Full )
F
(b) ~
),m (I+1),m (I+1),m (I4+1),m
full - Pfull ’ + Bw BpCo ‘Dfull Dfull ‘F
+ Bw BB} Vo (2850 - vo (250m)|
)
< BwBhC, [Pl = PO+ BwBeC, DA™ - DD
f (+1),m 77 (l),m (+1),m ¢z (1),m
+ BjyBpB}, L, Py, Hpy — Py Hfull »
S5(+1),m (I4+1),m ~(+1),m (I+1),m
Py — Py ‘ Di" — Dy ‘ "
I+1),m 75 (),m (I+1),m 7y (1),m
"‘B%/BPB/};L Pf(ull ) H}Jzz — Py H](fuu »
f (I+1),m 7y (),m (I4+1),m ¢y (1),m
+ BIQ/VBPBDLU Pry " Hpy —Pry” Hpy, r
pl+)m (141),m ~(1+1),m (1+1),m
Pry " —Pry H + BwBpCo | Dy — Dy ’F
I4+1),m (I+1),m 1), 1),
+ BiQ/VBPB{)LaBJfLI HP}uu b Pfull ) H + BWBPBf Lo H,(%Zu - H}Ju HF
(e)
< BwB}LC,BLp + B4 BpBf L, B, B, + B3, B:BL L, BL,
BEDm _ pnm
Dy — Dy HF
L1

< (BWB};CUBLD + BiyBpBl,Lo Bl By + Bl BRBLL, By )

+ (BwBpC,)"~

)
<

+ (BwBpC,)*

(9)
< (BwBhCoBAp + By BrBLLoBY B + BY BRBLL, B )

+ (BwBpC,)" ™

|

fu

DiL)m

uo- Dfull

L),mH

L)m
Ll HHfull _Hj("ugl HF

LiBL,

+ (BwBpCo)"™! LzB£H>,

(BwBLC B p + Biy BrBY Lo Bl BL p + By BRBL L, BL )

L—1

L—-1

( (BwBLC B + Bl Br Bl Lo Bl BL p + Bl BRBL Lo BL )

L—1

where (a) is because of Assumption[5.3] (b) results from Assumptions [5.2]and [5.3|and Lemma [H.3]

(c) uses Assumptions

(I0) and Proposition

and[5.3] (d) is due to Assumption[5.3and Lemma[H.3] (e) follows from Eq.

(f) utilizes Assumption[5.1] and (g) is because of Eq. (I0).
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Lemma H.S. Under Assumptions and for any | € [L), the errors caused by the information
loss of the cross-client neighbors are bounded, i.e.,

HH RO - l)’mH < Ban: HD R _Dflq)d;nH < Bap;

local full local

where

l
Biy = max <(c BwBp) B + (CUBWB;}BP) ) :

L—-1

Bap = max ( (BWBECUBP + B2, BLBL L, B} + B%VB,%B};LUBZH)

+ (BwBpCo)=™! LlBgH).

Proof.
l)y,m l)y,m l l—1),m m l)y,m —1),m ,
() o ()

local local local P

{ (1-1),m O),m gy(l—1),m
< C BW H‘Plocal Hlocal - Pfull Hfull H

mpp=Dm _ p)m

local

(I-1),m
Hfull H

local local

< C,Bw HP”

(1),m gr=1),m (O),m gyp=1),m
+ CsBw HP o0 Hy " = Pry Hyy H

local

m _ p),
+CBwB}, P Pfu”’”H

local

)
< CoBwBp |H{ ™ - HY "

local

< C,BwBp || H{)™ - HID ”’H + Oy By Bl préjgte

local

Y ¢ BBy HHZ P Oy 7’”HF +C,Bw Bl Bp

local

l
< (CUBWBP HXlocal X]T”);LLZIHF + (CUBWBI{IBP)

—~

) !
< (C,BwBp) B + (CUBWBLBP)

l
< max ((CUBWBp)l B + (C’UBWBI’;BP) ) , (11)

where (a) uses Assumptions [5.2] and [5.3] (b) is because of Assumption [5.3]and Lemma [H.3] (c)

follows from Assumption[5.3] and (d) is due to Proposition

l),m
ot - ],

local

local local local

H P(l+1)m D(l+1)mov (Z(l+1),m> [W(lﬂ)’m}T

-] Dﬁf;}) oVa (2550) [wesnm]

F
(“) (I1+1 1+1),m 1+1),m 1+1 1+1),m 1+1),m
H local) l(ocal) oVo (Zl(ocal) ) |:Pjgull b i| D;’ull) oVo (Z)(‘ull) ) »
(I+1),m (I+1),m (I+1),m (I+1),m (I+1),m (I+1),m
< BW H [‘Plocal ] Dlocal oVo (Zlocal ) [Pfull ] Dlocal oVo (Zlocal ) »
I+1),m I+1), (I+1),m (I+1),m +1),m +1),
+ BW H |:P]£ull ) :| Dl(ocal) oVo (Zlocal ) |:Pfull i| D;ull) oVo (Zl(ocal) ) »

full local

o [ef ) oo ()~ i | pfi o v (243
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(b)
< B BhCo|PULY ™ = P ™|+ BwBeCo | DL = DIGP™ |
F F
+ Bw BB} Vo (20)™) = vo (2050m)|
(C) m m m m
< BuBypCo|PUL) " =Pl | +BwBrCo| DL -DD™|
I+1),m l),m I+1),m l),m
+Bx2/VBPB£Ln Pl(ocaz) Hl(o)cal _Pf(ull) H}Ju P
< B B C, | P ™ PO+ B BeCal| DL D3|
F F
2 ! (1+1), ), (I+1), ),
+BWBPBDLU ‘ljlocal mHloctzrlninull mHlocaT r
+1),m l),m I+1),m l),m
+BIQ/VBPB£LU P;uu ) Hl(oz):al - P;ull) H](“’Lzll P
(d)
< BuBLCo| PULY ™ = PRiD™ | +Bw BeCo| DL =D
+ B BrBL LBy |PUL)™ — P+ B BRBLL, B - HE|
(e)
< BwBY“'C,Bp + B4, B:BJ L, BY; + B%, BABf L,Bry
+ BwBpCo HDz(ijalz)ym - D](tlljlll)ymHF
L1
< (BWBZDCUBP + B2, BLBLL,BY + B%VB%B{)LC,BTAH)
+ (BwBpCo)"™ HDI(OLC)J - D;i)zimHF
) l 2 p2 pf l 2 p2 nf r \ET
< (BwBYC,Bp + B, BLB} L, B, + B2, B2B L, B,
+ (BwBpCo) ™ 1| — ™|
9) ! 2 p2 of ! 2 P2 nf r \ET
< (BwBYLYC,Bp + BY, B:BL L, B, + B2, B2BS L, By
+ (BwBpCo) ' LBy
L—1
< max ( (BWBIDCUBP + B%, BB} L,BY + B%VB}%B};LUBZH)
+ (BwBpCo)™ LZBZH)
where (a) follows from Assumption[5.3] (b) uses Assumptions nd[5.3]and Lemma[H.3] (c) is

because of Assumptions
Assumption [5.3]and Eq.

a
and[5.3] (d) results from Assumptio%

, () utilizes Assumption[5.1] and (g) uses Eq. (T1).

H.3 ERRORS OF STOCHASTIC GRADIENTS

Lemma H.6. Under Assumptions the errors between the stochastic gradients and the full

gradients are bounded as follows:

|V i (07) = Vi 0™)| < LBhG, | VFfin (07) = Vi (6™

where

BL .~ = max
AG T ZT

+(BLCy + BpBYyBY L, By) BPBlAH)
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Bf, = max ( (BLCo + BeBYBLL,Bw) BB + BrBf,C. B,

1<i<L
f f nf f
+(BLCs + BrBL Bl L, B ) BpBAH> (13)
Proof.
@),m ),m
HGlocal - Glocal P
~(),mri-1),m] " =(),m (1),m O)ym gp(l=1)m] | ~(O)m (1),m
= ‘Plocal Hlocal ] Dlocal oVao (Zlocal ) |:‘Plocal Hlocal ] Dlocal oVa (Zlocal )
F
T T
@, l—1)m l),m (OF -1),m
H loZal Hl(ocal) ] Dl(ocal Vo ( local ) |:‘PloZal l(ocal) ] local Vo (Zlocal )
F
T T
0),m gy(1—1),m ( (I-1),m
H I)local local :| Dlocal Vo (Zlocal ) |:I)local Hlocal :| local Vo (Zlocal )
F
T
H [POmal )™ Dl ova (200 - [zaszavlﬂ;zw? m} D oo (20
F
< BD local Hlocal - Plocal Hlocal H local - Dlocal ‘F
+ Bp By Bp ‘ Vo (Zl(ol('al ) Vo (Zl(ol('al ) H
(®) -1 l -1 ~(1),m l
S BlD logal Hl(ocal) - ’F)l(ozal Hl(ocal) ‘ + BPBZH a l(o)cal - Dl(o)cal F
+ BPBl'—IBl)LUBW ‘ ‘ljl(olza”lnHl(licall) . ‘l)l(olza”lnHl(olcall) " H
< (B Co + BBl ) | B HD ™ B HLD™]
Tri-Dm _ pO)mppi-1)m
(BDC + BPBHBDL BW H‘Plocal Hlocal - ‘Plocal Hlor'al HF
r(),m 0),m
Dlocal Dlocal ‘F
) m
2 (8o + BBl LB By | B — PO B o]

+ (BLC, + BpBlYyBhL,By) BPHH“ Dom _ g1

local local mH
(d)

< (BLCy + BpBYy Bl Ly Bw) By Bip + BpBl;Cy Bi
+ (BLCy + BpBYy By, Ly Bw) BpBhyy

< max < (BL,C, + BpBY B, L, Bw) By BAp + BpBYLC, By

+ (BL,Cy + BpBYy B, Ly Bw) BPBIAH> .= B\,

where (a) follows from Assumptions[5.2]and [5.3} and Lemma[H.3] (b) is because of Assumptions[5.2]
and (¢) uses Assumption [5.3]and Lemm H.3] and (d) results from Lemma [H.4] and Proposi-
tion

When client m performs local training with only its local data, the error between the stochastic
gradient and the full-gradient can be bounded as:

= LBjg-

m 1, 1)
Hv‘Flocal ( ) v‘Flocal H Z HGl(o)cal - Gl(ocal
~(), (0,
HGfulln - GfullnHF
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_ { pOmgt-1m  ph.m pri-1)m

local local remote” " remote :|

) ),
D;ull OVU( fizll )

[ 5(),m gy(1—1),m 1)
- _P}Eu)ll Hj(fuzz) } Df‘ull oVo full H

T
l I—1),m 1),m l l I—1),m l l
< [Pf(u)llmH](‘ ll) L] D;)un oVo (Z](f)um) |:Pjgu)ll7nH](cull) L] D( ) m oVo (Z)(%L;n) -
1) ,m (I-1),m 1), l),m 1),m -1),m l),m ~(1),m
H P]Sull full } D(q)t OV"’( ](f)u ) |:P]Su)ll Hj(fuu } D}q)uz oVo (chiu ) -
) (1—1 « l -1 «
H Pjgull full) } quill oVo (qu)u ) |:Pf(u)ll H}(‘ull) } vaill oVo (quiu )HF
7(-1), 0),m gr(-1), (OF
Full Hfull " *Pfull Hfull mH + Bp Full *Dful;nH
l),m l),m
- HW (i) = vo (20|,
(®) I—1),m l),m 1-1),m ),m ),m
= Full Hj(f ll) P,Eu)u Hj(fuu H fq)ul _quilz H

+ Bpr BfL +Bw HPJSL” H}(clulll) i P;Qiz IT[}(‘lull1 mH
! -1 1 -1
< (500 5oty ) [P R B,

(B C, +BPBf BfL BW) HPf(iu H](flulll)’ _Pjglull H)(‘lulll)’mH

1),m
full — Do H

(¢) ~
< (Bf Co + BrBY B L, Bw ) B || P - P}Q;{”H

~(),m 1),m
full _Dfull HF

+ (BOC, + BpBl B Lo By ) Be [Hy ™ = HY ™

F
(d)

< (BYCo + BB BLLoBw ) B BLy + BrBiCoBL,,
+ (BLCo + BpBlBLL,Bw ) BrBL

< max < (B{)Ca + BPB};B{)L(,BW) Bl BL, + BpBLC,BL,

+ (BYCo + BBl B L, By ) BpBgH) = B,

where (a) results from Assumptions[5.2]and[5.3|and Lemma[H.3] (b) uses Assumptions[5.2and
(c) is due to Assumption[5.3]and Lemma and (d) is because of Lemma[H.4]and Proposition
When client 7 conducts cross-client training using its local data and the cross-client neighbors, the
error between the stochastic gradient and the full-gradient can be bounded as:

|V Fp 6m) = VFp 67| = HGfiZ;l - G|, < oBLe.

O

Lemma H.7. Under Assumptions the error between the full gradient computed with both
the local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:

HVF}ZH (Gm) - v‘Fl”(-;Lcal (em)HF < LBZGﬂ

where

Big = max, ( (BlDC(, n BPB{IB{,L(,BW) BpBiy + BpBLC, B,
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+ (BZDC[, n BPBLB};L[,BW) B{IBP) (14)
Proof.
1) (H,m
HGl(ocal - Gfull H
T T
l), I-1),m l),m 1) ),m yr(1—1),m @) m 1),m
H local Hl(ocal) ] Dl(ocal (Zl(ocal> |:Pfull Hfull ] Dfull (qull ) »
T T
-1 (1-1),m 0),m
H local Hl(ocal) ] Dlocal Vo (Zlocal ) |:Pjull Hfull ] Dlocal Vo (Zlocal ) »
T T
0, (1=1), o, o, 0, (1-1), (0, @,
+ H Pfullmeull m} Dloc:; oVo (ch;?) [Pfullmeull m} DfullL Vo (ch;?) -
T
B)ym pr(—1),m 0),m (1),m (O),m pr-1)m 0),m 0),m
H P]Sull full } f)ll OV"’( lo)cal) [Pfuu full } Dfull oVo (quu ) -
1),m 1 ,m (1),m
S BlD l(ogal Hl(ocal) - P}Eu)ll Hfull H + Bp local - Dfull HF
+BeB}B) | Vo (2000) = Vo (2050
(b)
(I-1),m O),m gp(l=1),m (0,m
= local Hlocal - Pfull Hfull H local - Dfull H
+ BPBf Bf LoBw ‘ Pz(olcaz Hl(ti;a:ll)) - P]Sijl’ZnH](‘lz:lll))mH
< (BYCo + BrB B Lo Bw ) [P H ™ — PO H{D™|
+ (BbCﬁBpBiIB{)Lan) | PO HG D = PR HET|
1),m
local - Dfull H
2 (e, i i
pCo + BpBy B L BW) Bp Hlocal —H,,,
+ (BDCU + BPBIJ;BéLUBW) BIf{ H‘Pl(olg;zl P}l)llnL + B l()(‘al D;ZZQTHF

< (BbCo + BrBYiBLL, Bw ) BpBay + BpBl;C,B:

=S | Bples POy bp Lo DWW POAH PPgYePAD

+ (BbCo + BpBYBLL, Bu ) Bl Br

< max ( (Bgca + BPB;”,B{,LUBW) BpBiy + BpBLC, B,

+ (BbCo + BpBY B L, By ) B,{,Bp> = Bie,

where (a) is because of Assumptions@an@ and Lemmal[H.3] (b) uses Assumptions[5.2] and%

follow from Assumption [5.3]and Lemma and (d) results from Assumption[5.3]and Lemma

The error between the full gradient computed with both the local graph data and the cross-client
neighbors and the full gradient computed with only the local graph data is bounded as follows:

[V (0™) = VL, (0™)]|, = Z HGlocal - G%”HF < LBjg-
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H.4 MAIN PROOF OF THEOREM[5.6]

Theorem H.8. Under Assumptions choose step-size . = min {\/ M/\/T, 1/Lp }, where

L is the smoothness constant given in Lemma The output of Swift-FedGNN with a L-layer
GNN satisfies:

T
1 2 2 * K 2 l r 2 K 2/nf 2
T; IVL(0)|" < m(ﬁ(eo)—ﬁ(a ))+<1_IM> L? (Bag+Bac) +IML (Bag)™

Proof.
L(6:11) — L(6)

(a) L
<A(VL(6:),0i11 —0;) + l 181 — 64

Z VE™(6)

@a<vc 6,), Z VE™ (67 > Lr 2
mEM

meM

1 mm (gm
a7 2 VET(6)

meM

2

—
3}
~

2
o 1 ~
= 0, — — E Fm(or

2
@]
0 _¢
5 VL (6:)

1 _ 2
Lr 2| L s~ gim gm)
Mme./\/l
1 mm (gm ?
= 3 vy

2
«
’ 2
meM

1 " 2
2 m (gm
Lega| Ly wrm o)

1 2

77 mg (VE™ () - VE™ (07"))

«
4+ —

(0%
-3 [vE©) 5

meM
G 2 a1 ~ P el " (om) = o ||
< —5||VE@) | -3 MZVF ) *5@2 VE™ (") — VE™(0")
meM em
1 2
Sl Do VET (6
Mme./\/t
©) 2 1 ~ 2
<—f VL (8)) +%M HVF’”(B:”)—VFm(ar) (15)
meM

where (a) follows from Lemma (b) is because of the update rule in Swift-FedGNN, (c) uses

o n 2 n :
(@) =5 x>+ 3 lyl* = 3 = -yl (@ utilizes |7, @]” < n 37, (||, and (o) is due
to the choice of &« < 1/Lp.

When t € [(n —1)I +1,n,] — 1] N Z, where n; = {1,2,---}, Swift-FedGNN conducts local
training for all clients m € M. Thus,

VET (07) - VE™ (8]") H - HW}” (67) — VL. (6]) H
< HVF}ZH (O;n)*vﬂ?)lcal (Oln) H HVFZOCal (0 ) vF‘local (em) H

(@)
< LBjg + LBig: (16)
where (a) follows from Lemmas[H.6and [H.7]

When ¢t = n,I, where n, = {1,2,--- }, Swift-FedGNN performs local training for clients m € M\K,
and thus the inequality (T6) holds for these clients. The randomly sampled clients m € K conduct
cross-client training, and thus

|

(a)

vE (6 -V (@:”)] val ) - vE, <9@“>H £ LBl
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where (a) uses Lemma [H.6]
Telescoping (15) from i = (n; — 1) I + 1 to n.I, we have
ngl
Z (L£(0i+1) — L£(65))
i=(ny—1)I+1
a nel 2 o 5 o 5
-5 X |VE®)|| +50-DE (Big+ Bhe) + 5y KL (Ble)
i=(ny—1)I+1
+ -2 (M — K)L? (Bhg + Bhg)

Choosing T' = n.I yields

T-1
ST (L(8ie1) — £(6)))
t=0
o T-1 2 a 2 «
<=3 2| VL@ | + 5T L (Bhg + Bic) '+ migp KL (BLc)
+ i (M = K)L? (Bhg + Bag)
oM aa T rae

Rearranging the terms and multiplying both sides by 2/«, we get

T-—1 2
> ||VL(6)
t=0
9 T-1 2 n 2
< 23 (L0 ~ £O) + (T =)L (Bhg + Bag)” + 1ok 12 (BLg)
t=0
n o2
+ Mt(M — K)L? (Bag + Bag) -

Dividing both sides by T and choosing o = v/M /+/T completes the proof of Theorem

I THEORETICAL ANALYSIS EXTENSIONS FOR GRAPHSAGE AND GIN

While our theoretical analysis is presented under the GCN architecture for mathematical tractability,
the core convergence results of Swift-FedGNN extend naturally to a broader class of element-wise
operation-based GNNs, including GraphSAGE and GIN. In particular, our convergence bounds
remain applicable to these models under similar assumptions.

The main challenge in extending the theoretical analysis to GraphSAGE and GIN lies in handling
non-linear and heterogeneous aggregation functions, which are more prominent in GraphSAGE
(e.g., max-pooling, LSTM) and GIN (e.g., MLP-based injective updates). These functions introduce
additional sources of nonlinearity and variance in the layer-wise error propagation, making it harder
to tightly bound the bias and variance of the resulting stochastic gradients.

Below, we describe the respective update rules and outline the required modifications to adapt our
proof strategy for GraphSAGE and GIN.

1.1 UPDATE RULES FOR GRAPHSAGE AND GIN

1) GraphSAGE: The propagation matrices for GraphSAGE are given by K", = D,! Am

local
m _ —1 ",,n . . . . .
and K} .. = D A" ... Similar to GCN, when client m trains using only the
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local graph data, the update rule for GraphSAGE (i.e., Eq. and (EI)) is: I?t(l)’m =
o ([f@(l*l)’m [ I?(Z)’mﬁ(lfl)’m} Wt(l)’m). When client m trains based on both the local graph

local local

data and the cross-client neighbors, the update rule for GraphSAGE (i.e., Eq. (3)—(8)) becomes
0 o ([0 | (R RO L) W),
2) GIN: The propagation matrices for GIN are defined as S (Dm - gm

local local
@m A™m
Sremote - remote

for GIN (i.e., Eq. and ) is: ﬁt(l)’m =MLP(®™ <§l(i)c’$?Il(ic_all)’m) . When client m trains using
both the local graph data and the cross-client neighbors, the update rule for GIN (i.e., Eq. (5)-(8))

becomes: ﬁt(l)’m:MLP(l)’m <§l(l)’mﬁ(l_1)’m+§(l)’m ﬁ(l_l)’m).

ocal local remote® " remote

+ (1+€D™) I and
+ (14 €:™) I. When client m trains on local graph data only, the update rule

1.2 PROOF SKETCH: EXTENDING THEORETICAL ANALYSIS TO GRAPHSAGE AND GIN

Extending the convergence analysis in Theorem 5.6]to GraphSAGE and GIN follows a similar proof
strategy as that for GCN, with the GCN-specific lemmas replaced by their respective counterparts for
GraphSAGE or GIN.

1) Modified Bias Bounding Strategy: The original convergence proof (Theorem [5.6) relies on
bounding the gradient bias introduced by (i) stochastic neighbor sampling and (ii) the absence
of cross-client neighbors. These bounds are formalized in Lemmas [5.4] and [5.3] supported by
Lemmas[H.3HH.3] all of which are based on GCN-specific updates.

To generalize the analysis, we replace the GCN-specific update rules with the corresponding rules for
GraphSAGE or GIN, and re-derive the associated bounds in Lemmas[5.4]and [5.5]and their supporting
lemmas (Lemmas [H.3HH.5). This yields modified upper bounds on the gradient bias, where the
constants depend on the respective GNN architectures.

Lemma L1. Under Assumptions[5.IH3.3} the errors between the stochastic gradients and the full
gradients are bounded as follows:

|V i (07) = Vi (0™)|| < Chae | VFfun (07) = VS (0™)] < e

where C’lAG and CgG are constants that depend on the respective GNN architectures (e.g., Graph-
SAGE or GIN) and are positively correlated with the GNN depth.

Lemma 1.2. Under Assumptions the error between the full gradient computed with both the
local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:

HVF}ZZZ (em) - v‘Fl’r(-')’bcal (em)HF < CZG;

where C') ., is a constant that depends on the respective GNN architectures (e.g., GraphSAGE or
GIN) and is positively correlated with the GNN depth.

2) Generalized Convergence Result: By substituting the updated gradient bias bounds (Lemmas [[.]
and [[.2) into the main convergence proof (Theorem [5.6), we obtain the following generalized
convergence result for Swift-FedGNN with GraphSAGE or GIN:

K

EO)LED 4 (ch+ne)+ o ((Che) - (ChoCha)")

VMT

where the residual error terms depend on the specific GNN architecture used.

1 = 9
2
7 S IVL ()] <
t=0

This extension demonstrates that Swift-FedGNN ’s convergence guarantees are not limited to GCN,
but remain valid for other element-wise operation-based GNNs such as GraphSAGE and GIN under
similar assumptions. Importantly, the key theoretical insights (e.g., the residual error scaling with the
correction frequency I and the client sampling size K) persist across architectures, supporting the
broad applicability of our framework.
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