

# 000 001 SWIFT-FEDGNN: FEDERATED GRAPH LEARNING WITH 002 LOW COMMUNICATION AND SAMPLE COMPLEXITIES 003 004

005 **Anonymous authors**  
006 Paper under double-blind review

## 007 008 ABSTRACT 009

011 Graph neural networks (GNNs) have achieved great success in a wide variety of  
012 graph-based learning applications. While distributed GNN training with sampling-  
013 based mini-batches expedites learning on large graphs, it is not applicable to  
014 geo-distributed data that must remain on-site to preserve privacy. On the other  
015 hand, federated learning (FL) has been widely used to enable privacy-preserving  
016 training under data parallelism. However, applying FL directly to GNNs either  
017 results in cross-client neighbor information loss or incurs expensive cross-client  
018 neighbor sampling and communication costs due to the large graph size and the  
019 dependencies between nodes among different clients. To overcome these chal-  
020 lenges, we propose a new federated graph learning (FGL) algorithmic framework  
021 called Swift-FedGNN that primarily performs efficient parallel local training and  
022 periodically conducts cross-client training. Specifically, in Swift-FedGNN, each  
023 client *primarily* trains a local GNN model using only its local graph data, and  
024 some randomly sampled clients *periodically* learn the local GNN models based  
025 on their local graph data and the dependent nodes across clients. We theoretically  
026 establish the convergence performance of Swift-FedGNN and show that it enjoys  
027 a convergence rate of  $\mathcal{O}(T^{-1/2})$ , matching the state-of-the-art (SOTA) rate of  
028 sampling-based GNN methods, despite operating in the challenging FL setting. Ex-  
029 tensive experiments on real-world datasets show that Swift-FedGNN significantly  
030 outperforms the SOTA FGL approaches in terms of efficiency, while achieving  
031 comparable accuracy.

## 032 1 INTRODUCTION 033

034 **1) Background and Motivation:** Graph neural networks (GNNs) have received increasing attention  
035 in recent years and have been widely used across various applications, such as social networks Deng  
036 et al. (2019); Qiu et al. (2018), recommendation systems Ying et al. (2018); Wang et al. (2019a), and  
037 drug discovery Wang et al. (2022b); Do et al. (2019). GNN learns high-level graph representations by  
038 iteratively aggregating neighboring features of each node, which is then used for downstream tasks,  
039 such as node classification Kipf & Welling (2017); Hamilton et al. (2017), link prediction Yao et al.  
040 (2023b); Zhang & Chen (2018), and graph classification Zhang et al. (2018); Bacciu et al. (2018).

041 Real-world graph datasets can be extensive in scale (*e.g.*, Microsoft Academic Graph Wang et al.  
042 (2020) with over 100 million nodes) and often reside across geo-distributed sites where data protection  
043 laws prohibit direct data sharing Yao et al. (2023a). Single devices (*e.g.*, GPUs) often lack the capacity  
044 for training such large-scale datasets, which leads to a *compelling need* for distributed graph learning  
045 (DGL) Fey & Lenssen (2019); Zheng et al. (2020). However, the common DGL paradigm, consisting  
046 of subgraph sampling Zeng et al. (2020) and mini-batch training Luo et al. (2022), requires direct  
047 data sharing among workers, which conflicts with privacy regulations.

048 Meanwhile, federated learning (FL) McMahan et al. (2017); Yang et al. (2021); Karimireddy et al.  
049 (2020), which has emerged as a promising learning paradigm, enables collaborative training of a  
050 model using geo-distributed traditional datasets under the coordination of a central server. However,  
051 applying FL to geo-distributed graph data is highly non-trivial due to the dependencies between  
052 the nodes in a graph and the fact that the neighbors of the node may be located on different clients,  
053 which we refer to as “*cross-client neighbors*” (shown as the dashed links between nodes in Figure 1).  
Ignoring the cross-client neighbors as in Wang et al. (2022a) would degrade the performance of



Figure 1: FGL setting. Dashed lines show graph dependency between clients. Figure 2: Per-iteration time breakdown: local vs. cross-client training. Figure 3: Federated GNN model. Dashed lines show communication between clients.

the models and prevent them from reaching the same accuracy as the models trained on a single device/machine, which is due to the information loss of the cross-client neighbors.

**2) Technical Challenges:** Despite the appeal of leveraging a trusted server for federated graph learning (FGL) Zhang et al. (2021), there remain several non-trivial challenges that hinder efficient and effective cross-client training. Specifically, we highlight the following major technical challenges:

**Large Overhead from a Naive Design.** A straightforward approach uses a trusted server to gather graph data and perform subgraph sampling and neighbor aggregation for each client Zhang et al. (2021). For instance, in a healthcare setting with multiple hospitals and one central authority, patient data stay locally due to privacy regulation. The central authority acting as the trusted server must coordinate all subgraph sampling and part of the training operation (*i.e.*, neighbor aggregation) (see Figure 1). As shown in Figure 2, training a two-layer GNN (with sampling fanout values 15 and 10 for the two layers) on the Amazon product co-purchasing dataset Leskovec et al. (2007) under 1 Gbps network bandwidth, this approach leads to significant communication overhead: the server exchanges large amounts of node and edge information with each hospital sequentially, causing cross-client sampling and communication time to dominate the *total* training time, making it *five times* slower than purely local training.

**Communication and Memory Overheads from Cross-Client Neighbors.** While some methods ignore cross-client neighbors He et al. (2021) or assume overlapping nodes Wu et al. (2021), these assumptions often fail in geo-distributed graphs (*e.g.*, patients visiting multiple hospitals). Alternatives that preserve cross-client neighbor information Zhang et al. (2021); Du & Wu (2022); Yao et al. (2023a) require significant data transfers among clients—leading to high communication costs—and compel each client to store additional graph structure and features for these neighbors. This not only creates memory-intensive requirements but could also *potentially violate data privacy constraints*. Hence, mitigating these cross-client overheads (both communication and storage) is crucial to achieve efficient, privacy-preserving FGL (see detailed discussions in Section 2).

**3) Our Contributions:** The key contribution of this paper is that, by addressing the above challenges, we develop a mini-batch-based and sampling-based FGL framework called Swift-FedGNN. The main results and technical contributions of this paper are as follows:

- We develop Swift-FedGNN, a communication- and sample-efficient mini-batch FGL algorithm for geo-distributed graphs. In Swift-FedGNN, clients *primarily* conduct local training in parallel, performing cross-client training *only occasionally* among sampled clients, thereby reducing sampling and communication overhead while preserving minimal information loss. The cross-client neighbor information is aggregated at remote clients before communicating to the server and accumulated one more time before transferring to the training client, further minimizing data transfer cost and enhancing privacy by ensuring only aggregated neighborhood features - never raw node features - are exchanged.
- We conduct rigorous theoretical convergence analysis for Swift-FedGNN, which is highly non-trivial due to *biased* stochastic gradients and *structural entanglement* (neighbor aggregation intertwined with non-linear transformations across multiple layers) in GNNs. In stark contrast to existing works in the literature that made strong assumptions on the biases of stochastic gradients (*e.g.*, unbiased Chen et al. (2018) or consistent Chen & Luss (2018) gradient), for the *first time* in the literature, we are able to *bound* stochastic gradient approximation errors rather than resorting to these unrealistic assumptions in practice, offering insights of independent theoretical interest.
- We show that the *biased* stochastic gradients in GNNs—arising from missing cross-client neighbors and neighbor sampling—are *positively correlated* with the network depth, which is *unique* to FGL.

108 By putting the above insights together, we show that Swift-FedGNN achieves a convergence rate  
 109 of  $\mathcal{O}(T^{-1/2})$ , which *matches* the state-of-the-art (SOTA) convergence rate of sampling-based  
 110 GNN methods (hence low communication and sample complexities), *despite* operating in the far  
 111 more challenging FL setting with much less frequent information exchanges among clients.  
 112

- 113 • We conduct extensive experiments on real-world graph datasets to evaluate the performance of  
 114 Swift-FedGNN. The results show that Swift-FedGNN outperforms the SOTA FGL algorithms in  
 115 terms of *efficiency*, achieving  $\times 4$  speed-up and competitive accuracy.

## 116 2 RELATED WORK

118 In this section, we provide an overview on distributed graph learning and offer a comprehensive  
 119 comparison with the most relevant work on federated graph learning.

120 **1) Distributed Graph Learning:** Distributed graph learning framework (e.g., DistDGL Wang et al.  
 121 (2019b); Zheng et al. (2020), Pytorch Geometric Fey & Lenssen (2019), AliGraph Zhao et al. (2019)  
 122 and Dorylus Thorpe et al. (2021)) have been developed to train large-scale graph datasets via cross-  
 123 device sampling and direct worker-to-worker communication, and often spend up to 80% of the  
 124 total training time on data communication Gandhi & Iyer (2021). Although various optimizations  
 125 (graph partitioning Zheng et al. (2020), caching Liu et al. (2023); Zhang et al. (2023), communication  
 126 strategies Cai et al. (2021); Luo et al. (2022), parallel training Gandhi & Iyer (2021); Wan et al. (2022);  
 127 Du et al. (2024)) have been proposed to expedite DGL, they commonly require direct data sharing  
 128 between workers, violating data privacy constraints in geo-distributed settings. To our knowledge,  
 129 LLCG Ramezani et al. (2022) is the only DGL framework that avoids transferring node features  
 130 between workers, making it potentially applicable to geo-distributed graphs. In LLCG, each worker  
 131 trains only on its local graph partition. To address missing cross-device neighbor information, LLCG  
 132 employs a central server to periodically perform full-neighbor training with neighbor aggregation  
 133 across all workers. However, this approach imposes significant communication overhead on the  
 134 server, which needs to communicate with every worker to perform the full-neighbor training.

135 **2) Federated Graph Learning:** To date, the research on federated graph learning remains in its  
 136 infancy and results in this area are quite limited. In He et al. (2021), it is assumed that graphs  
 137 are dispersed across multiple clients and the information of the cross-client neighbors is ignored,  
 138 which does not align with the real-world scenarios and would degrade the performance of the trained  
 139 model. In Wu et al. (2021), it is assumed that the clients’ local graphs have overlapped nodes and the  
 140 edges are distributed, which may not be true in real-world situations. Zhang et al. (2021) mitigates  
 141 the information loss of the cross-client neighbors by exchanging such information in each training  
 142 round. However, this approach incurs considerable communication overhead and exposes private  
 143 node information to other clients. While Yao et al. (2023a) employs a one-time exchange of full  
 144 cross-client neighbor information prior to training, this design relies on full-graph training and causes  
 145 significant per-client memory overhead, making it impractical for large-scale graphs. Adapting it to  
 146 sampling-based FGL would require per-iteration cross-client exchanges (since each mini-batch has a  
 147 different training node set and sampled neighbors), further exacerbating communication overhead.

148 Du & Wu (2022) uses sparse cross-client neighbor sampling to supplement the lost information  
 149 of the cross-client neighbors and reduce the communication overhead, which is most related to  
 150 ours. Each client periodically samples and exchanges these neighbors with other clients, reusing  
 151 the most recent sampled neighbors in between exchanges. However, as training progresses, the  
 152 frequency of information exchange increases, leading to higher communication costs. Furthermore,  
 153 privacy constraints are relaxed by allowing direct client-to-client data transfers and caching, and  
 154 repeatedly reusing the same neighbor data introduces bias that degrades performance. In contrast,  
 155 our Swift-FedGNN method limits cross-client training to a *subset* of sampled clients and avoids  
 156 direct graph data exchange between clients by offloading certain operations to the central server.  
 157 Before communication with the training clients, cross-client neighbor information is aggregated  
 158 twice: first at the remote clients and then on the server—helping to preserve data privacy and reduce  
 159 communication costs.

## 160 3 FEDERATED GRAPH LEARNING: PRELIMINARIES

161 In this section, we provide the background of the mathematical formulation for training GNNs  
 162 in a federated setting. For convenience, we provide a list of key notations used in this paper in

162 Appendix B. In order for this paper to be self-contained and to facilitate easy comparisons, we  
 163 provide the background for training GNNs on a single machine in Appendix C.  
 164

165 Consider a graph  $\mathcal{G}(\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V}$  is a set of nodes with  $N = |\mathcal{V}|$  and  $\mathcal{E}$  is a set of edges. We  
 166 consider a standard federated setting that has a central server and a set of  $\mathcal{M}$  clients with  $M = |\mathcal{M}|$ .  
 167 The graph  $\mathcal{G}$  is geographically distributed over these clients, and each client  $m$  contains a subgraph  
 168 represented by  $\mathcal{G}^m(\mathcal{V}^m, \mathcal{E}^m)$ . Note that  $\bigcup_{m=1}^M \mathcal{G}^m \neq \mathcal{G}$  due to the missing cross-client edges  
 169 between clients ( $\bigcup_{m=1}^M \mathcal{E}^m \neq \mathcal{E}$ ). In addition, we assume that the nodes are *disjointly* partitioned  
 170 across clients, *i.e.*,  $\bigcup_{m=1}^M \mathcal{V}^m = \mathcal{V}$  and  $\bigcap_{m=1}^M \mathcal{V}^m = \emptyset$ . Each node  $v \in \mathcal{V}^m$  has a feature vector  
 171  $\mathbf{x}_v^m \in \mathbb{R}^d$ , and each node  $v \in \mathcal{V}_{train}^m$  corresponds to a label  $y_v^m$ , where  $\mathcal{V}_{train}^m \subseteq \mathcal{V}^m$ .  
 172

173 In FGL, the clients collaboratively learn a model with distributed graph data and under the coordi-  
 174 nation of the central server. Typically, the clients receive the model from the server, compute local  
 175 model updates iteratively, and then send the updated model to the server. The server periodically  
 176 aggregates the models and then sends the aggregated model back to the clients. The goal in FGL is to  
 177 solve the following optimization problem:  
 178

$$\min \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} F^m(\boldsymbol{\theta}) = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} \frac{1}{|\mathcal{V}_B^m|} \sum_{v \in \mathcal{V}_B^m} \ell^m(\mathbf{h}_v^{(L),m}, y_v^m), \quad (1)$$

179 where  $\ell^m$  is a loss function (*e.g.*, cross-entropy loss) at client  $m$ ,  $\mathcal{V}_B^m$  denotes a mini-batch of training  
 180 nodes uniformly sampled from  $\mathcal{V}^m$ , and  $\boldsymbol{\theta} := \{\mathbf{W}^{(l)}\}_{l=1}^L$  corresponds to all model parameters.  
 181

182 GNNs aim to generate representations (embeddings) for each node in the graph by combining  
 183 information from its neighboring nodes. Recall that in FGL, the neighbors of node  $v$  may be located  
 184 on its local client  $m(v)$  or on remote clients  $\bar{m}(v) \in \bar{\mathcal{M}}(v)$ , where  $\bar{\mathcal{M}}(v)$  represents a set of the  
 185 remote clients that host the neighbors of node  $v$ , and  $\bar{\mathcal{M}}(v) \subseteq \mathcal{M} \setminus \{m(v)\}$ . As shown in Figure 3,  
 186 to compute the embedding of node  $v$  at the  $l$ -th layer in a GNN with  $L$  layers, the client  $m(v)$  first  
 187 aggregates the neighbor information from both itself and the remote clients  $\bar{m}(v)$ , and then updates  
 188 the embedding of node  $v$ , as follows:  
 189

$$\mathbf{h}_{\mathcal{N}(v)}^{(l)} = \text{AGG} \left( \underbrace{\left\{ \mathbf{h}_u^{(l-1),m(v)} \mid u \in \mathcal{N}^{m(v)}(v) \right\}}_{\text{local}} \cup \underbrace{\left\{ \bigcup_{\bar{m}(v) \in \bar{\mathcal{M}}(v)} \left\{ \mathbf{h}_u^{(l-1),\bar{m}(v)} \mid u \in \mathcal{N}^{\bar{m}(v)}(v) \right\} \right\}}_{\text{remote}} \right),$$

$$\mathbf{h}_v^{(l),m(v)} = \sigma \left( \mathbf{W}^{(l)} \cdot \text{COMB} \left( \mathbf{h}_v^{(l-1),m(v)}, \mathbf{h}_{\mathcal{N}(v)}^{(l)} \right) \right), \quad (2)$$

190 where  $\mathcal{N}^{m(v)}(v)$  is a set of the neighbors of node  $v$  located on its local client  $m(v)$ ,  $\mathcal{N}^{\bar{m}(v)}(v)$  is a set  
 191 of the neighbors of node  $v$  located on remote client  $\bar{m}(v)$ ,  $\mathbf{h}_{\mathcal{N}(v)}^{(l)}$  is the aggregated embedding from  
 192 node  $v$ 's neighbors,  $\mathbf{h}_v^{(l),m(v)}$  is the embedding of node  $v$  located on client  $m(v)$  and is initialized  
 193 as  $\mathbf{h}_v^{(0),m(v)} = \mathbf{x}_v^{m(v)}$ ,  $\mathbf{W}^{(l)}$  represents the weight matrix at  $l$ -th layer,  $\sigma(\cdot)$  corresponds to an  
 194 activation function (*e.g.*, ReLU),  $\text{AGG}(\cdot)$  is an aggregation function (*e.g.*, mean), and  $\text{COMB}(\cdot)$  is  
 195 a combination function (*e.g.*, concatenation). Compared to DGL where clients can directly transfer  
 196 node features, the *key difference* in FGL is that clients *cannot* do so due to privacy concerns, requiring  
 197 additional modifications.  
 198

## 204 4 THE Swift-FedGNN ALGORITHM

205 In this section, we propose a new algorithmic framework called Swift-FedGNN, designed to effi-  
 206 ciently solve Problem (1) by reducing both sampling and communication costs in FGL. The overall  
 207 algorithmic framework of Swift-FedGNN is illustrated in Algorithms 1-3. Rather than each client  
 208 performing cross-client training in every round, the clients in Swift-FedGNN primarily conduct the  
 209 *efficient* local training in parallel, and a set of randomly selected clients periodically carry out the  
 210 time-consuming cross-client training. By offloading part of the graph operation to the server and  
 211 remote clients, Swift-FedGNN eliminates the need for sharing graph features among clients.  
 212

213 Algorithm 1 outlines the main framework of Swift-FedGNN. Specifically, it performs parallel local  
 214 training across clients for every  $I - 1$  iterations, followed by one iteration of cross-client training  
 215 involving randomly selected clients. In the local training iterations ( $t$ ), every client  $m$  updates the  
 216 local GNN model only using its local graph, as presented in Algorithm 3. Client  $m$  samples a

|     |                                                                                                                    |                                                                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 216 | <b>Algorithm 1:</b> Swift-FedGNN Algorithm.                                                                        | <b>Algorithm 2:</b> Client $m$ in the $t$ -th iteration: update with local graph data and cross-client neighbors.                           |
| 217 | <b>Input:</b> Initial parameters $\theta_0$ , learning rate $\alpha$ , and correction frequency $I$                | Receive global parameter $\theta_t^m = \theta_t$                                                                                            |
| 218 | <b>for</b> $t = 0$ <b>to</b> $T - 1$ <b>do</b>                                                                     | Construct a mini-batch $\mathcal{B}_v^m$ of nodes                                                                                           |
| 219 | <b>if</b> $t \bmod I = 0$ <b>then</b>                                                                              | Server samples a subset of $L$ -hop neighbors $\mathcal{S} = \{\mathcal{S}^{(l)}\}_{l=0}^{L-1}$ for the training nodes in $\mathcal{B}_v^m$ |
| 220 | Randomly sample $ \mathcal{K} $ clients                                                                            | <b>for</b> $l = 1$ <b>to</b> $L$ <b>do</b>                                                                                                  |
| 221 | <b>for</b> $m \in \mathcal{M}$ <b>in parallel do</b>                                                               | /* Derive $l$ -th layer embedding of node $v \in \mathcal{B}_v^m$ if $l = L$ , otherwise $v \in \mathcal{S}^{(l)}$ */                       |
| 222 | <b>if</b> $m \in \mathcal{K}$ <b>then</b>                                                                          | <b>for</b> Remote client $\bar{m}(v) \in \bar{\mathcal{M}}(v)$ <b>in parallel do</b>                                                        |
| 223 | Client update with local graph and cross-client neighbors using Algorithm 2                                        | Aggregate the neighbor embeddings using Eq. (5)                                                                                             |
| 224 | <b>else</b>                                                                                                        | Send the aggregated embedding $\mathbf{h}_{\mathcal{N}(v)}^{(l), \bar{m}(v)}$ to server                                                     |
| 225 | Client update with local graph using Algorithm 3                                                                   |                                                                                                                                             |
| 226 |                                                                                                                    |                                                                                                                                             |
| 227 |                                                                                                                    | <b>Server:</b>                                                                                                                              |
| 228 |                                                                                                                    | Aggregate the neighbor embeddings from the remote clients using Eq. (6)                                                                     |
| 229 |                                                                                                                    | Send the aggregated cross-client neighbor embedding $\mathbf{r}_{\mathcal{N}(v)}^{(l)}$ to Client $m(v)$                                    |
| 230 |                                                                                                                    | <b>Client</b> $m(v)$ : Compute node embeddings using Eq. (7) & (8)                                                                          |
| 231 |                                                                                                                    |                                                                                                                                             |
| 232 | <b>else</b>                                                                                                        |                                                                                                                                             |
| 233 | <b>for</b> $m \in \mathcal{M}$ <b>in parallel do</b>                                                               |                                                                                                                                             |
| 234 | Client update with local graph using Algorithm 3                                                                   |                                                                                                                                             |
| 235 | <b>Server:</b>                                                                                                     |                                                                                                                                             |
| 236 | Aggregate and update global model parameter as:                                                                    |                                                                                                                                             |
| 237 | $\theta_{t+1} = \theta_t - \alpha \frac{1}{ \mathcal{M} } \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\theta_t^m)$ | Compute stochastic gradient $\nabla \tilde{F}^m(\theta_t^m)$ and send to server                                                             |
| 238 |                                                                                                                    |                                                                                                                                             |

**Algorithm 3:** Client  $m$  in the  $t$ -th iteration: update with local graph data.

|     |                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 239 | Receive global parameter $\theta_t^m = \theta_t$                                                                                    |
| 240 | Construct a mini-batch $\mathcal{B}_v^m$ of nodes                                                                                   |
| 241 | Sample a subset of $L$ -hop neighbors $\mathcal{S} = \{\mathcal{S}^{(l)}\}_{l=0}^{L-1}$ for the training nodes in $\mathcal{B}_v^m$ |
| 242 | <b>for</b> $l = 1$ <b>to</b> $L$ <b>do</b>                                                                                          |
| 243 | /* Derive $l$ -th layer embedding of node $v \in \mathcal{B}_v^m$ if $l = L$ , otherwise $v \in \mathcal{S}^{(l)}$ */               |
| 244 | Compute node embeddings using Eq. (3) and (4)                                                                                       |
| 245 | Compute stochastic gradient $\nabla \tilde{F}^m(\theta_t^m)$ and send to server                                                     |
| 246 |                                                                                                                                     |

247 mini-batch of training nodes  $\mathcal{B}_v^m$  and a subset of  $L$ -hop neighbors for the training nodes in  $\mathcal{B}_v^m$ ,  
248 denote as  $\mathcal{S} = \{\mathcal{S}^{(l)}\}_{l=0}^{L-1}$ , all from the local graph data. To compute the embedding of node  $v$  in  
249 the  $l$ -th GNN layer ( $v \in \mathcal{B}_v^m$  if  $l = L$ , otherwise  $v \in \mathcal{S}^{(l)}$ ), client  $m$  first conducts the neighbor  
250 aggregation for node  $v$  based on the sampled neighbors using:

$$251 \quad \mathbf{h}_{\mathcal{N}(v)}^{(l)} = \text{AGG} \left( \{ \mathbf{h}_u^{(l-1),m} \mid u \in \tilde{\mathcal{N}}^m(v) \} \right), \quad (3)$$

252 where  $\tilde{\mathcal{N}}^m(v)$  denotes a set of the sampled neighbors located on client  $m$  for node  $v$ ,  $\tilde{\mathcal{N}}^m(v) \subseteq$   
253  $\mathcal{S}^{(l-1)}$ , and  $\tilde{\mathcal{N}}^m(v) \subseteq \mathcal{N}^m(v)$ . Then, client  $m$  updates the embedding of node  $v$  in the  $l$ -th GNN  
254 layer based on the aggregated neighbor information and the embedding of node  $v$  from the  $(l-1)$ -th  
255 layer, as follows:

$$256 \quad \mathbf{h}_v^{(l),m} = \sigma \left( \mathbf{W}_t^{(l),m} \cdot \text{COMB}(\mathbf{h}_v^{(l-1),m}, \mathbf{h}_{\mathcal{N}(v)}^{(l)}) \right). \quad (4)$$

257 At every  $I$ -th iteration, Swift-FedGNN allows a set of  $K$  clients, uniformly sampled from  $\mathcal{M}$ , to  
258 conduct cross-client training that trains the local GNN models using both their local graph data  
259 and the cross-client neighbors. We use  $\mathcal{K}$  to denote the set of  $K$  clients, where  $\mathcal{K} \subset \mathcal{M}$ . The  
260 remaining clients perform local training as shown in Algorithm 3. Algorithm 2 details the cross-  
261 client training process for client  $m \in \mathcal{K}$ . Rather than directly exchanging node features between  
262 clients, Swift-FedGNN partitions GNN training between the clients and the server. We offload<sup>1</sup> the  
263 aggregation of node features and intermediate activations at each GNN layer to the server and remote

264 <sup>1</sup>The operation offloading in Swift-FedGNN only supports element-wise (e.g., mean, sum, max) operations,  
265 e.g., GCN, GraphSAGE, GIN, and SGCN. For non-element-wise operations (e.g., GAT), which are fundamentally  
266 not a good fit in any communication-efficient FGL algorithm design, see Appendix E for detailed discussion.

clients corresponding to node  $v$ , thus reducing the communication overhead and eliminating the need for graph data sharing. This procedure helps preserve data privacy because the clients are unaware of the locations of neighbor nodes, and the embeddings of these neighbor nodes are aggregated before being transmitted to the clients. Operations performed on the server and the remote clients are colored using `server` and `remote client` respectively.

Specifically, client  $m \in \mathcal{K}$  samples a mini-batch of training nodes  $\mathcal{B}_v^m$ . Then, with the cooperation of the server, a subset of  $L$ -hop neighbors for the training nodes in  $\mathcal{B}_v^m$  is sampled and represented as  $\mathcal{S} = \{\mathcal{S}^{(l)}\}_{l=0}^{L-1}$ . The nodes  $v \in \mathcal{B}_v^m$  are on client  $m$ , while for  $v \in \mathcal{S}^{(l)}$  with  $l < L$ , the nodes may be on clients other than  $m$ , denoting the client storing  $v$  as  $m(v)$ . The set  $\bar{\mathcal{M}}(v)$  represents remote clients with respect to  $m(v)$ , *i.e.*,  $\bar{\mathcal{M}}(v) \subseteq \mathcal{M} \setminus \{m(v)\}$ , where the sampled cross-client neighbors of the training node  $v$  are located. Each remote client  $\bar{m}(v) \in \bar{\mathcal{M}}(v)$  may contain multiple sampled neighbors of the training node  $v$ , and the numbers of the sampled neighbors can vary across clients.

Computing the  $l$ -th layer embedding of node  $v$  consists of four steps. Steps 1 to 3 below are used to aggregate the neighbor information of node  $v$ , and Step 4 is used to update the node  $v$ 's embedding at  $l$ -th GNN layer.

**Step 1)** Each remote client  $\bar{m}(v)$  aggregates its sampled neighbors of node  $v$  in *parallel*, using

$$\mathbf{h}_{\mathcal{N}(v)}^{(l),\bar{m}(v)} = \text{AGG} \left( \{ \mathbf{h}_u^{(l-1),\bar{m}(v)} \mid u \in \tilde{\mathcal{N}}^{\bar{m}(v)}(v) \} \right). \quad (5)$$

We send only the aggregated results from each remote client  $\bar{m}(v)$  to the server, which can help preserve data privacy and reduce communication overhead.

**Step 2)** Upon receiving the aggregated neighbor information from all the remote clients  $\bar{m}(v) \in \bar{\mathcal{M}}(v)$ , the server aggregates this information from different remote clients before sending it to client  $m(v)$  as follows:

$$\mathbf{r}_{\mathcal{N}(v)}^{(l)} = \text{AGG} \left( \{ \mathbf{h}_{\mathcal{N}(v)}^{(l),\bar{m}(v)} \mid \bar{m}(v) \in \bar{\mathcal{M}}(v) \} \right). \quad (6)$$

This approach not only helps maintain data privacy<sup>2</sup> but also reduces communication costs by minimizing the amount of data transmitted between clients and the server.

**Step 3)** Neighbor information of node  $v$  for both the sampled local neighbors and the sampled cross-client neighbors is aggregated as follows:

$$\mathbf{h}_{\mathcal{N}(v)}^{(l)} = \text{AGG} \left( \underbrace{\{ \mathbf{h}_u^{(l-1),m(v)} \mid u \in \tilde{\mathcal{N}}^{m(v)}(v) \}}_{\text{local}} \cup \underbrace{\{ \mathbf{r}_{\mathcal{N}(v)}^{(l)} \}}_{\text{remote}} \right). \quad (7)$$

The cross-client neighbor information used here helps mitigate the information loss and reduce the performance degradation caused by connected nodes being distributed across different clients.

**Step 4)** The embedding of node  $v$  in the  $l$ -th GNN layer is updated using the aggregated neighbor information and the embedding of node  $v$  from the  $(l-1)$ -th layer as:

$$\mathbf{h}_v^{(l),m(v)} = \sigma \left( \mathbf{W}_t^{(l),m(v)} \cdot \text{COMB}(\mathbf{h}_v^{(l-1),m(v)}, \mathbf{h}_{\mathcal{N}(v)}^{(l)}) \right). \quad (8)$$

Using the embeddings of the training nodes in the mini-batch and the model parameters, the local stochastic gradients  $\nabla \tilde{F}^m(\theta_t^m)$  are computed and used in the update of the global model parameters shown as  $\theta_{t+1} = \theta_t - \alpha \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\theta_t^m)$ , where  $\alpha$  is the learning rate.

## 5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence guarantees for Swift-FedGNN using Graph Convolutional Network (GCN)<sup>3</sup> Kipf & Welling (2017) as the GNN architecture to solve Problem (1). The analysis of GNN convergence is significantly more challenging compared to the existing literature on deep neural networks (DNNs). The key difficulties stem from the fact that, unlike in DNNs, the stochastic gradients in GNNs are inherently *biased*. This bias is primarily caused by the

<sup>2</sup>To further enhance privacy, Swift-FedGNN is compatible with differential privacy techniques and federated encryption protocols, enabling formal privacy guarantees. See Appendix F for a detailed discussion.

<sup>3</sup>These convergence guarantees also extend to other element-wise operation-based GNNs, *e.g.*, GraphSAGE and GIN. See Appendix I for guidance on extending the analysis.

presence of cross-client neighbors and the neighbor sampling process. The errors from missing or unsampled neighbors propagate across layers, gradually getting amplified from the input layer to the output layer, complicating the overall convergence behavior.

For a graph  $\mathcal{G}$ , the structure can be represented by its adjacency matrix  $\mathbf{A} \in \mathbb{R}^{N \times N}$ , where  $\mathbf{A}_{vu} = 1$  if  $(v, u) \in \mathcal{E}$ , otherwise  $\mathbf{A}_{vu} = 0$ . The propagation matrix can be computed as  $\mathbf{P} = \mathbf{D}^{-1/2} \hat{\mathbf{A}} \mathbf{D}^{-1/2}$ , where  $\hat{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ , and  $\mathbf{D} \in \mathbb{R}^{N \times N}$  corresponds to the degree matrix and  $\mathbf{D}_{vv} = \sum_u \hat{\mathbf{A}}_{vu}$ . For subgraph  $\mathcal{G}^m$  located on client  $m$ , the adjacency matrix  $\mathbf{A}^m$  can be denoted as  $\mathbf{A}^m = \mathbf{A}_{local}^m + \mathbf{A}_{remote}^m$ , where  $\mathbf{A}_{local}^m$  corresponds to the nodes located on client  $m$ , and  $\mathbf{A}_{remote}^m$  corresponds to their cross-client neighbors located on the remote clients other than  $m$ . Then, the propagation matrix can be calculated as  $\mathbf{P}^m = \mathbf{D}_m^{-1/2} (\mathbf{A}^m + \mathbf{I}^m) \mathbf{D}_m^{-1/2}$ , and can be represented as  $\mathbf{P}^m = \mathbf{P}_{local}^m + \mathbf{P}_{remote}^m$ , where  $\mathbf{P}_{local}^m = \mathbf{D}_m^{-1/2} (\mathbf{A}_{local}^m + \mathbf{I}^m) \mathbf{D}_m^{-1/2}$  and  $\mathbf{P}_{remote}^m = \mathbf{D}_m^{-1/2} (\mathbf{A}_{remote}^m) \mathbf{D}_m^{-1/2}$ .

Given GCN as the GNN architecture, for client  $m$  training using only the local graph data, Eq. (3) and (4) are equivalent to  $\tilde{\mathbf{H}}_t^{(l),m} = \sigma(\tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} \mathbf{W}_t^{(l),m})$ . For client  $m$  training based on both the local graph data and the cross-client neighbors, Eq. (5)–(8) are equivalent to  $\tilde{\mathbf{H}}_t^{(l),m} = \sigma((\tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} + \tilde{\mathbf{P}}_{remote}^{(l),m} \tilde{\mathbf{H}}_{remote}^{(l-1),m}) \mathbf{W}_t^{(l),m})$ .

Before proceeding with the convergence analysis, we make the following standard assumptions.

**Assumption 5.1.** The loss function  $\ell^m(\cdot, \cdot)$  is  $C_l$ -Lipschitz continuous and  $L_l$ -smooth with respect to the node embedding  $\mathbf{h}^{(L)}$ , i.e.,  $\|\ell^m(\mathbf{h}_1^{(L)}, y) - \ell^m(\mathbf{h}_2^{(L)}, y)\|_2 \leq C_l \|\mathbf{h}_1^{(L)} - \mathbf{h}_2^{(L)}\|_2$  and  $\|\nabla \ell^m(\mathbf{h}_1^{(L)}, y) - \nabla \ell^m(\mathbf{h}_2^{(L)}, y)\|_2 \leq L_l \|\mathbf{h}_1^{(L)} - \mathbf{h}_2^{(L)}\|_2$ .

**Assumption 5.2.** The activation function  $\sigma(\cdot)$  is  $C_\sigma$ -Lipschitz continuous and  $L_\sigma$ -smooth, i.e.,  $\|\sigma(\mathbf{z}_1^{(l)}) - \sigma(\mathbf{z}_2^{(l)})\|_2 \leq C_\sigma \|\mathbf{z}_1^{(l)} - \mathbf{z}_2^{(l)}\|_2$  and  $\|\nabla \sigma(\mathbf{z}_1^{(l)}) - \nabla \sigma(\mathbf{z}_2^{(l)})\|_2 \leq L_\sigma \|\mathbf{z}_1^{(l)} - \mathbf{z}_2^{(l)}\|_2$ .

**Assumption 5.3.** For any  $l \in [L]$ , the norm of weight matrices, the propagation matrix, and the node feature matrix are bounded by  $B_W$ ,  $B_P$  and  $B_X$ , respectively, i.e.,  $\|\mathbf{W}^{(l)}\|_F \leq B_W$ ,  $\|\mathbf{P}\|_F \leq B_P$ , and  $\|\mathbf{X}\|_F \leq B_X$ . Note that this assumption is commonly used in the analysis of GNNs, e.g., Chen et al. (2018); Liao et al. (2020); Garg et al. (2020); Cong et al. (2021); Wan et al. (2022).

Different from DNNs with unbiased stochastic gradients, the stochastic gradients in sampling-based GNNs are *biased* due to neighbor sampling of the training nodes. This is one of the **key challenges** in the convergence analysis of Swift-FedGNN. Some existing works used strong assumptions to deal with these biased stochastic gradients in their analysis, e.g., Chen et al. (2018) adopts the unbiased stochastic gradient assumption, and Chen & Luss (2018) uses the consistent stochastic gradient assumption. However, these assumptions may not hold in reality. In this paper, without using the aforementioned strong assumptions, we are able to bound the errors between the stochastic gradients and the full gradients in the following lemma.

**Lemma 5.4.** *Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full gradients are bounded as  $\|\nabla F_{local}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{local}^m(\boldsymbol{\theta}^m)\|_F \leq LB_{\Delta G}^l$  and  $\|\nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{full}^m(\boldsymbol{\theta}^m)\|_F \leq LB_{\Delta G}^f$ , where  $\nabla F_{local}^m(\boldsymbol{\theta}^m)$  and  $\nabla \tilde{F}_{local}^m(\boldsymbol{\theta}^m)$  correspond to the full and stochastic gradients computed with only local graph data, respectively.  $\nabla F_{full}^m(\boldsymbol{\theta}^m)$  and  $\nabla \tilde{F}_{full}^m(\boldsymbol{\theta}^m)$  include both local graph data and cross-client neighbors of the training nodes.  $B_{\Delta G}^l$  and  $B_{\Delta G}^f$  are defined in Eq. (12) and (13) in Appendix H.*

Furthermore, the dependencies of the nodes located on different clients can lead to additional errors in the gradient computations when client  $m$  is updated only with its local graph data, since the cross-client neighbors are missed. This becomes another **key challenge** in the analysis of the convergence of Swift-FedGNN. We prove that such an error is upper-bounded as shown in the following lemma.

**Lemma 5.5.** *Under Assumptions 5.1–5.3, the error between the full gradient computed with both the local graph data and the cross-client neighbors of the training nodes ( $\nabla F_{full}^m(\boldsymbol{\theta}^m)$ ) and the full gradient computed with only the local graph data ( $\nabla F_{local}^m(\boldsymbol{\theta}^m)$ ) is upper-bounded as  $\|\nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla F_{local}^m(\boldsymbol{\theta}^m)\|_F \leq LB_{\Delta G}^r$ , where  $B_{\Delta G}^r$  is defined in Eq. (14) in Appendix H.*

We note that all the errors mentioned in Lemmas 5.4 and 5.5 are correlated with the structure of GNNs, specifically showing a positive correlation with the number of layers in the networks. This finding is unique to GNNs, where each layer involves both neighbor aggregation and non-linear



Figure 4: Convergence performance in terms of validation accuracy of different algorithms.

transformation. As these two operations are interleaved across multiple layers, they create a structural entanglement that complicates the analysis.

Using Lemmas 5.4 and 5.5, we state the main convergence result of Swift-FedGNN solving an  $L$ -layer GNN in the following theorem:

**Theorem 5.6.** *Under Assumptions 5.1–5.3, choose step-size  $\alpha = \min\left\{\frac{\sqrt{M}}{\sqrt{T}}, \frac{1}{L_F}\right\}$ , where  $L_F$  is the smoothness constant in Lemma H.2. The output of Swift-FedGNN solving an  $L$ -layer GNN satisfies:*

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla \mathcal{L}(\theta_t)\|^2 \leq \frac{2(\mathcal{L}(\theta_0) - \mathcal{L}(\theta^*))}{\sqrt{MT}} + L^2 \left( B_{\Delta G}^l + B_{\Delta G}^r \right)^2 + \frac{KL^2}{IM} \left( \left( B_{\Delta G}^f \right)^2 - \left( B_{\Delta G}^l + B_{\Delta G}^r \right)^2 \right).$$

The detailed proof of Theorem 5.6 can be found in Appendix H. We can see from Theorem 5.6 that the convergence rate of Swift-FedGNN is  $\mathcal{O}(T^{-1/2})$  to a neighborhood of the exact solution, which matches the SOTA convergence rate of sampling-based GNN algorithms, e.g., Chen et al. (2018); Cong et al. (2021); Ramezani et al. (2022); Du & Wu (2022), even though Swift-FedGNN operates in the far more challenging federated setting.

Three important remarks on Theorem 5.6 are in order: (1) When choosing  $I = 1$  and  $K = M$ , Swift-FedGNN performs fully cross-client training, ensuring no information loss in the graph data. In this scenario, Swift-FedGNN experiences minimal residual error. Such error is caused by sampling and is inevitable. However, Swift-FedGNN suffers from maximum sampling and communication overhead; (2) When choosing  $K = 0$ , Swift-FedGNN conducts fully local training, resulting in the information loss of all the cross-client neighbors. Consequently, Swift-FedGNN encounters maximum residual error. Nonetheless, the sampling and communication overhead is minimized; and (3) It can be shown that the last term of the convergence rate bound in Theorem 5.6 is negative. Hence, increasing  $I$  or decreasing  $K$  would increase the residual error due to more information loss of the cross-client neighbors. However, this would reduce the sampling and communication overhead. Thus, there is a trade-off between the information loss and the sampling and communication overhead. See Appendix G.1.1 for empirical evidence supporting our theoretical findings.

**Communication Complexity:** Assume each GNN layer uses a uniform neighbor sampling fan-out of  $F$ , with  $F^l$  representing the worst-case number of neighbors sampled per training node at layer  $l \in [1, L]$ . Let  $p_{(l)} \in (0, 1)$  be the fraction of neighbors at layer  $l$  located on remote clients. If the  $p_{(l)}F^l$  cross-client neighbors at layer  $l$  are distributed across  $C_{(l)} < M$  remote clients, then the total communication cost per cross-client training round in Swift-FedGNN for exchanging the aggregated cross-client neighbor embeddings is  $\mathcal{O}(KB \sum_{l=1}^L C_{(l)} d_{(l-1)}^{\text{emb}})$ , where  $B$  is the batch size per client, and  $d_{(l)}^{\text{emb}}$  is the embedding dimension at layer  $l$ . Since  $C_{(l)} \ll p_{(l)}F^l$  due to Swift-FedGNN’s aggregation mechanism, this result highlights the communication efficiency of Swift-FedGNN. For further discussion on both communication and computation complexity, see Appendix D.

## 6 NUMERICAL RESULTS

In this section, we conduct experiments to evaluate the performance of Swift-FedGNN. Due to space limitations, additional experimental details and results are provided in Appendix G.

**1) Experiment Settings:** We train a representative GNN model, GraphSAGE Hamilton et al. (2017), in the FL settings on five real-world node classification datasets: 1) ogbn-products Hu et al. (2020); 2) Reddit Hamilton et al. (2017); 3) ogbn-arxiv Hu et al. (2020); 4) flickr Zeng et al. (2020); and 5) citeseer Giles et al. (1998). The key statistics of the datasets are summarized in Table 14 in Appendix G. Note that ogbn-products dataset is the *largest* dataset one can find in the FGL literature,

Figure 5: Average communication cost per step.

432 Table 1: Total communication cost (GB) when achieving a target validation accuracy for each dataset.  
433

|                     | OGBN-PRODUCTS | REDDIT      | OGBN-ARXIV  | FLICKR      | CITESEER     |
|---------------------|---------------|-------------|-------------|-------------|--------------|
| <b>SWIFT-FEDGNN</b> | <b>0.66</b>   | <b>5.89</b> | <b>0.95</b> | <b>1.07</b> | <b>35.32</b> |
| FEDGNN-G            | 8.40          | 70.72       | 7.91        | 17.22       | 43.43        |
| LLCG                | 4.47          | 23.89       | 1.46        | 1.30        | 25.80        |
| FEDGNN-PNS          | 0.97          | 8.96        | 1.41        | 1.27        | 36.11        |

438 while the Reddit dataset is known for its *density*. In our FL simulations, we use 20 clients for the  
439 experiments with ogbn-products dataset and 10 clients for the experiments with the other datasets.  
440 All graphs are partitioned with METIS algorithm Karypis & Kumar (1998). In addition, we evaluate  
441 Swift-FedGNN on randomly partitioned graph data and on another widely used GNN model, GIN Xu  
442 et al. (2019). The corresponding results are provided in Appendix G.  
443

444 **2) Baselines:** Since the goal of Swift-FedGNN is to reduce the sampling and communication time, we  
445 compare Swift-FedGNN with the algorithms most closely related to Swift-FedGNN, which mitigates  
446 the information loss of cross-client neighbors through periodical (sampling-based) full-neighbor  
447 training: **1) LLCG** Ramezani et al. (2022): A DGL framework that performs local training on each  
448 client independently, with periodic full-neighbor training conducted on a central server; **2) FedGNN-  
449 PNS** Du & Wu (2022): A FGL framework where each client periodically samples cross-client  
450 neighbors with an increasing sampling frequency. In the remaining iterations, clients reuse the  
451 most recently sampled cross-client neighbors; and **3) FedGNN-G**: A naive FGL algorithm where  
452 cross-client training is performed on each client in every iteration.  
453

454 **3) Convergence Performance Comparisons:** In Figures 4a and 4b, we can see that for both the ogbn-  
455 products dataset and the Reddit dataset, Swift-FedGNN achieves substantially faster convergence  
456 than all baseline algorithms, which verifies the effectiveness of Swift-FedGNN in handling large  
457 or dense graphs. In addition, despite less frequent cross-client training, the validation accuracy  
458 of Swift-FedGNN is comparable to that of FedGNN-G, which trains a GNN model on the dataset  
459 without any information loss. Although LLCG performs periodic cross-client training on the server, it  
460 requires training over the full set of neighbors of the training nodes, leading to significant sampling  
461 and communication overhead. For instance, when training the ogbn-products dataset, LLCG takes  
462 over 5000 ms to perform cross-client training on the server, whereas Swift-FedGNN completes cross-  
463 client training within 200 ms due to neighbor sampling. FedGNN-PNS employs a dynamic cross-  
464 client sampling interval throughout training, gradually reducing the interval as training progresses.  
465 Consequently, FedGNN-PNS incurs extensive sampling and communication overhead during the  
466 later stages of training, slowing down the convergence process. As shown in Figure 4c, on the smaller  
467 ogbn-arxiv dataset the benefit of Swift-FedGNN is less pronounced. The dataset’s limited size and  
468 sparsity reduce both neighbor sampling and communication overhead for all methods, narrowing the  
469 performance gap. This is also reflected in the following communication cost analysis. Nevertheless,  
470 Swift-FedGNN still delivers the best overall performance.  
471

472 **4) Communication Cost Analysis:** Figure 5 shows the average communication cost per step for  
473 Swift-FedGNN and the baselines across five datasets, demonstrating that Swift-FedGNN consistently  
474 incurs the lowest communication cost on all of them. Specifically, our algorithm  
475 Swift-FedGNN incurs a communication cost that is  $7\times$  to  $21\times$  lower than that of FedGNN-G on  
476 four out of the five datasets (Reddit, ogbn-products, ogbn-arxiv, and flickr). On the smallest graph,  
477 citeseer, the gap narrows because the size of the cross-client neighbor information becomes negligible  
478 compared with the model size, yet Swift-FedGNN still maintains the lowest communication cost. For  
479 the largest dataset ogbn-products and the most dense dataset Reddit, Swift-FedGNN achieves communication  
480 costs that are  $2\times$  and  $5\times$  lower compared to FedGNN-PNS and LLCG, respectively. On the  
481 small datasets, ogbn-arxiv and flickr, the communication cost advantage of Swift-FedGNN remains  
482 evident, though closer to approximately  $1\times$  lower than FedGNN-PNS and LLCG. These findings  
483 validate the superior communication efficiency of our proposed Swift-FedGNN algorithm.  
484

485 Table 1 reports the total communication cost required to reach the same target validation accuracy  
486 on each dataset. The results demonstrate that our proposed Swift-FedGNN algorithm consistently  
487 incurs the lowest communication cost across all datasets except Citeseer. For example, to reach  
488 a target accuracy of 87% on the ogbn-products dataset, Swift-FedGNN achieves at least a 31.9%  
489 reduction in total communication cost compared to all baselines. Similarly, to reach a target accuracy  
490 of 55% on the smaller and sparser ogbn-arxiv dataset, Swift-FedGNN still delivers at least 32.2%  
491 communication savings, highlighting its robustness and efficiency across diverse graph structures.  
492

486 Table 2: Validation accuracy of Swift-FedGNN with different correction frequencies ( $I$ ) and client  
 487 sampling sizes ( $K$ ) on the ogbn-products dataset.

| # OF SAMPLED CLIENTS ( $K$ ) | 10    |       |       |       | 1     | 5     | 10    | 15    |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CORRECTION FREQUENCY ( $I$ ) | 5     | 10    | 20    | 40    | 10    |       |       |       |
| VALIDATION ACCURACY (%)      | 88.91 | 88.88 | 88.60 | 88.44 | 88.47 | 88.72 | 88.88 | 89.22 |

492 Table 3: Total communication cost (MB) of Swift-FedGNN with different  $I$  and  $K$  on the ogbn-  
 493 products dataset when achieving a target validation accuracy of 87%.

| # OF SAMPLED CLIENTS ( $K$ ) | 10     |       |       |       | 1    | 5     | 10    | 15     |
|------------------------------|--------|-------|-------|-------|------|-------|-------|--------|
| CORRECTION FREQUENCY ( $I$ ) | 5      | 10    | 20    | 40    | 10   |       |       |        |
| COMMUNICATION COST (MB)      | 1344.0 | 675.5 | 324.5 | 275.0 | 57.8 | 342.2 | 675.5 | 1027.4 |

494 Table 4: Total communication cost (GB) on the ogbn-products dataset for two large-scale settings  
 495 with 80 clients and 100 clients when achieving a target validation accuracy for each setting.

|           | SWIFT-FEDGNN<br>(FIXED $K = 10$ ) | SWIFT-FEDGNN<br>(FIXED $K/M = 1/2$ ) | FEDGNN-G | LLCG | FEDGNN-PNS |
|-----------|-----------------------------------|--------------------------------------|----------|------|------------|
| $M = 80$  | 0.69                              | 2.42                                 | 37.26    | 3.90 | 4.49       |
| $M = 100$ | 1.17                              | 5.24                                 | 59.00    | 6.82 | 8.67       |

500 **5) Hyperparameter sensitivity analysis:** We explore the impact of different choices for key pa-  
 501 rameters in Swift-FedGNN (*i.e.*, the correction frequency  $I$  and the client sampling size  $K$ ) in  
 502 Swift-FedGNN. Table 2 report the validation accuracy of Swift-FedGNN on ogbn-products dataset  
 503 under various  $I$  and  $K$ . The results show that: i) Increasing  $I$  from 5 to 40 leads to only a minor  
 504 accuracy degradation (0.47%), demonstrating that less frequent cross-client training still preserves  
 505 model quality; and ii) Decreasing  $K$  from 15 to 1 also results in a minor accuracy drop (0.75%),  
 506 indicating that a small number of sampled clients is sufficient to maintain strong performance. These  
 507 findings are consistent with our theoretical conclusion in Remark (3) of Theorem 5.6. Complementary  
 508 to the these findings, Table 3 presents the total communication cost needed to achieve a target accuracy  
 509 of 87% under the same parameter variations. These results show that increasing  $I$  and decreasing  
 510  $K$  substantially reduce communication cost. For example, increasing  $I$  from 5 to 40 saves approxi-  
 511 mately 80% of the communication overhead, while reducing  $K$  from 10 to 1 saves approximately  
 512 94%. Collectively, these results validate Swift-FedGNN’s ability to reduce communication without  
 513 incurring major information loss and demonstrate that Swift-FedGNN provides a tunable balance  
 514 between communication efficiency and accuracy, and the trade-off can be controlled via  $I$  and  $K$ .

515 **6) Evaluations of large-scale settings:** To evaluate the scalability of Swift-FedGNN, we extend our  
 516 experiments to two large-scale settings with 80 clients and 100 clients on the ogbn-products dataset.  
 517 Table 4 reports the total communication cost when achieving a target validation accuracy (*i.e.*, 83%  
 518 for the 80-client setting and 84.3% for the 100-client setting). These results show that: i) With fixed  
 519  $K = 10$ , Swift-FedGNN reduces total communication cost by at least 82% in the 80-client setting  
 520 and at least 83% in the 100-client setting compared to all baselines; and ii) with a client sampling  
 521 ratio of  $K/M = 50\%$ , Swift-FedGNN still achieves at least 38% communication savings in the  
 522 80-client setting and at least 23% communication savings in the 100-client setting over all baselines.  
 523 These findings highlight Swift-FedGNN’s effectiveness and scalability, validating its communication  
 524 efficiency even in large-scale FGL settings. Moreover, server-side aggregation in Swift-FedGNN will  
 525 not be a bottleneck in large-scale settings as long as  $K$  is adjusted appropriately (*e.g.*,  $K \ll M$ ).  
 526

## 527 7 CONCLUSION

528 In this paper, we proposed the Swift-FedGNN algorithm, which is a mini-batch-based and  
 529 sampling-based federated graph learning framework, for efficient federated GNN training.  
 530 Swift-FedGNN reduces the cross-client neighbor sampling and communication overhead by *pe-*  
 531 *riodically* sampling a set of clients to conduct the local GNN training on local graph data and  
 532 cross-client neighbors, which is time-consuming. The rest clients in these periodical iterations and  
 533 all the clients in the remaining iterations perform efficient parallel local GNN training using only  
 534 local graph data. We theoretically proved that the convergence rate of Swift-FedGNN is  $\mathcal{O}(T^{-1/2})$ ,  
 535 matching the SOTA rate of sampling-based GNN methods, even in more challenging federated  
 536 settings. We conducted extensive numerical experiments on real-world graph datasets and verified  
 537 the effectiveness of Swift-FedGNN.  
 538

540  
541 ETHICS STATEMENT542  
543 We confirm that the ICLR Code of Ethics has been thoroughly reviewed and that this work fully  
544 adheres to it. The study does not involve human subjects, sensitive data, or any foreseeable risks, and  
545 it raises no ethical, legal, or conflict-of-interest concerns.546  
547 REPRODUCIBILITY STATEMENT548  
549 We confirm the reproducibility of this work. Specifically, for the theoretical results, we state the  
550 assumptions in Section 5 and provide detailed proofs in Appendix H. For the experimental results,  
551 we submit the source code as a supplementary material and describe the implementation details in  
552 Appendix G.553  
554 REFERENCES555  
556 Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model: A deep and  
557 generative approach to graph processing. In *International conference on machine learning*, pp.  
294–303. PMLR, 2018.558  
559 Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. DGCL: An Efficient  
560 Communication Library for Distributed GNN Training. In *Proc. of EuroSys*, pp. 130–144, 2021.561  
562 Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with  
563 variance reduction. In *International Conference on Machine Learning*, pp. 942–950. PMLR, 2018.563  
564 Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.  
565 *arXiv preprint arXiv:1807.11880*, 2018.566  
567 Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang  
568 Wang. Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study.  
*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):2769–2781, 2022.569  
570 Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in training  
571 gcns: Tighter analysis and variance reduction. *arXiv preprint arXiv:2103.02696*, 2021.572  
573 Songgaojun Deng, Huzeфа Rangwala, and Yue Ning. Learning dynamic context graphs for predicting  
574 social events. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge  
Discovery & Data Mining*, pp. 1007–1016, 2019.575  
576 Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical  
577 reaction prediction. In *Proceedings of the 25th ACM SIGKDD international conference on  
knowledge discovery & data mining*, pp. 750–760, 2019.578  
579 Bingqian Du and Chuan Wu. Federated graph learning with periodic neighbour sampling. In *2022  
IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)*, pp. 1–10. IEEE, 2022.581  
582 Bingqian Du, Jun Liu, Ziyue Luo, Chuan Wu, Qiankun Zhang, and Hai Jin. Expediting Distributed  
583 GNN Training with Feature-only Partition and Optimized Communication Planning. In *Proc. of  
IEEE INFOCOM*, 2024.584  
585 Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. In  
586 *Proc. of ICLR*, 2019.587  
588 Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed Deep Graph Learning at Scale. In  
*Proc. of OSDI*, pp. 551–568, 2021.589  
590 Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of  
591 graph neural networks. In *International Conference on Machine Learning*, pp. 3419–3430. PMLR,  
2020.592  
593 C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system.  
In *Proceedings of the third ACM conference on Digital libraries*, pp. 89–98, 1998.

594 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.  
 595 *Advances in neural information processing systems*, 30, 2017.  
 596

597 Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang  
 598 He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and  
 599 benchmark for graph neural networks. *arXiv preprint arXiv:2104.07145*, 2021.

600 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,  
 601 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in  
 602 neural information processing systems*, 33:22118–22133, 2020.

603 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and  
 604 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In  
 605 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

606

607 George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning  
 608 Irregular Graphs. *SIAM Journal on Scientific Computing*, 20(1):359–392, 1998.

609 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.  
 610 In *International Conference on Learning Representations*, 2017.

611

612 Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The Dynamics of Viral Marketing.  
 613 *ACM Transactions on the Web (TWEB)*, 1(1):5–es, 2007.

614 Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds  
 615 for graph neural networks. *arXiv preprint arXiv:2012.07690*, 2020.

616

617 Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng  
 618 Chen, Hongzhi Chen, and Chuanxiong Guo. BGL: GPU-Efficient GNN Training by Optimizing  
 619 Graph Data I/O and Preprocessing. In *Proc. of NSDI*, pp. 103–118, 2023.

620 Ziyue Luo, Yixin Bao, and Chuan Wu. Optimizing Task Placement and Online Scheduling for  
 621 Distributed GNN Training Acceleration. In *Proc. of IEEE INFOCOM*, 2022.

622 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.  
 623 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence  
 624 and statistics*, pp. 1273–1282. PMLR, 2017.

625

626 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 627 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style,  
 628 High-Performance Deep Learning Library. In *Proc. of NeurIPS*, 2019.

629

630 Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Modeling  
 631 influence locality in large social networks. In *Proceedings of the 24th ACM SIGKDD International  
 632 Conference on Knowledge Discovery and Data Mining (KDD’18)*, 2018.

633

634 Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, and Anand Sivasubramanian.  
 635 Learn locally, correct globally: A distributed algorithm for training graph neural networks.  
 In *International Conference on Learning Representations*, 2022.

636

637 John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,  
 638 Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable, Scalable, and Accurate  
 639 GNN Training with Distributed CPU Servers and Serverless Threads. In *Proc. of USENIX OSDI*,  
 2021.

640

641 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua  
 642 Bengio. Graph Attention Networks. *arXiv preprint arXiv:1710.10903*, 2017.

643

644 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua  
 645 Bengio. Graph attention networks. In *International Conference on Learning Representations*,  
 2018.

646

647 Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyriolidis, Nam Sung Kim, and Yingyan Lin.  
 PipeGCN: Efficient full-graph training of graph convolutional networks with pipelined feature  
 648 communication. In *International Conference on Learning Representations*, 2022.

648 Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. Graphfl: A federated learning framework  
 649 for semi-supervised node classification on graphs. In *2022 IEEE International Conference on Data*  
 650 *Mining (ICDM)*, pp. 498–507. IEEE, 2022a.

651

652 Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and  
 653 Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regularization  
 654 for recommender systems. In *Proceedings of the 25th ACM SIGKDD international conference on*  
 655 *knowledge discovery & data mining*, pp. 968–977, 2019a.

656

657 Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.  
 Microsoft Academic Graph: When Experts Are Not Enough. *Quantitative Science Studies*, 1(1):  
 658 396–413, 2020.

659

660 Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,  
 661 Chao Ma, et al. Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. In  
 662 *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019b.

663

664 Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive  
 665 learning of representations via graph neural networks. *Nature Machine Intelligence*, 4(3):279–287,  
 666 2022b.

667

668 Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedggn: Federated graph  
 669 neural network for privacy-preserving recommendation. *arXiv preprint arXiv:2102.04925*, 2021.

670

671 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-  
 672 plifying graph convolutional networks. In *International conference on machine learning*, pp.  
 6861–6871. PMLR, 2019.

673

674 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural  
 675 networks? In *International Conference on Learning Representations*, 2019.

676

677 Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation  
 678 in non-IID federated learning. In *International Conference on Learning Representations*, 2021.

679

680 Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. Fedgcn: Convergence-  
 681 communication tradeoffs in federated training of graph convolutional networks. *Advances in*  
 682 *Neural Information Processing Systems*, 36, 2023a.

683

684 Yuhang Yao, Mohammad Mahdi Kamani, Zhongwei Cheng, Lin Chen, Carlee Joe-Wong, and  
 685 Tianqiang Liu. Fedrule: Federated rule recommendation system with graph neural networks. In  
 686 *Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation*,  
 687 pp. 197–208, 2023b.

688

689 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.  
 690 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the*  
 691 *24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983,  
 692 2018.

693

694 Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,  
 695 Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous  
 696 environments. volume 35, pp. 25464–25477, 2022.

697

698 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-  
 699 SAINT: Graph Sampling Based Inductive Learning Method. In *Proc. of ICLR*, 2020.

700

701 Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning with  
 702 missing neighbor generation. *Advances in Neural Information Processing Systems*, 34:6671–6682,  
 703 2021.

704

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. *Advances in neural*  
 705 *information processing systems*, 31, 2018.

702 Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning  
703 architecture for graph classification. In *Proceedings of the AAAI conference on artificial intelligence*,  
704 volume 32, 2018.

705

706 Zhe Zhang, Ziyue Luo, and Chuan Wu. Two-Level Graph Caching for Expediting Distributed GNN  
707 Training. In *Proc. of INFOCOM*, pp. 1–10. IEEE, 2023.

708

709 Kun Zhao, Wencong Xiao, Baole Ai, Wenting Shen, Xiaolin Zhang, Yong Li, and Wei Lin. AliGraph:  
710 An Industrial Graph Neural Network Platform. In *Proc. of SOSP Workshop on AI Systems*, 2019.

711

712 Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,  
713 and George Karypis. DistDGL: Distributed Graph Neural Network Training for Billion-Scale  
714 Graphs. In *IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms*, 2020.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)  
757758  
759 LLMs were used exclusively for grammar correction and language polishing during the writing  
760 process. They did not contribute to research ideation or any substantive aspects of the work.  
761  
762763 B LIST OF NOTATIONS  
764

|                                                       |                                                                          |
|-------------------------------------------------------|--------------------------------------------------------------------------|
| 766 $\mathcal{G}(\mathcal{V}, \mathcal{E})$           | Graph                                                                    |
| 767 $\mathcal{V}$                                     | Set of nodes                                                             |
| 768 $\mathcal{E}$                                     | Set of edges                                                             |
| 769 $N =  \mathcal{V} $                               | Number of nodes                                                          |
| 770 $\mathcal{M}$                                     | Set of clients                                                           |
| 771 $M =  \mathcal{M} $                               | Number of clients                                                        |
| 772 $\mathcal{G}^m(\mathcal{V}^m, \mathcal{E}^m)$     | Subgraph at client $m$                                                   |
| 773 $\mathcal{V}^m$                                   | Set of nodes at client $m$                                               |
| 774 $\mathcal{E}^m$                                   | Set of edges at client $m$                                               |
| 775 $\mathbf{x}_v^m \in \mathbb{R}^d$                 | Feature vector of node $v$ at client $m$                                 |
| 776 $y_v^m$                                           | Label of node $v$ at client $m$                                          |
| 777 $\ell^m$                                          | Loss function (e.g., cross-entropy loss) at client $m$                   |
| 778 $\mathcal{V}_B^m$                                 | Mini-batch of training nodes                                             |
| 779 $\theta = \{\mathbf{W}^{(l)}\}_{l=1}^L$           | Set of trainable model parameters                                        |
| 780 $m(v)$                                            | Local client of node $v$                                                 |
| 781 $\bar{m}(v)$                                      | Remote client of node $v$                                                |
| 782 $\bar{\mathcal{M}}(v)$                            | Set of the remote clients that host the neighbors of node $v$            |
| 783 $\mathcal{N}^{m(v)}(v)$                           | Set of the neighbors of node $v$ located on local client $m(v)$          |
| 784 $\mathcal{N}^{\bar{m}(v)}(v)$                     | Set of the neighbors of node $v$ located on remote client $\bar{m}(v)$   |
| 785 $\mathbf{h}_v^{(l), m(v)}$                        | Embedding of node $v$ located on client $m(v)$                           |
| 786 $\mathbf{h}_{\mathcal{N}(v)}^{(l)}$               | Aggregated embedding from node $v$ 's neighbors                          |
| 787 $\mathbf{W}^{(l)}$                                | Weight matrix at $l$ -th layer                                           |
| 788 $\sigma(\cdot)$                                   | Activation function (e.g., ReLU)                                         |
| 789 $\text{AGG}(\cdot)$                               | Aggregation function (e.g., mean)                                        |
| 790 $\text{COMB}(\cdot)$                              | Combination function (e.g., concatenation)                               |
| 791 $\mathcal{B}_v^m$                                 | Mini-batch of training nodes at client $m$                               |
| 792 $\mathcal{S} = \{\mathcal{S}^{(l)}\}_{l=0}^{L-1}$ | Subset of $L$ -hop neighbors for the training nodes in $\mathcal{B}_v^m$ |
| 793 $\tilde{\mathcal{N}}^m(v)$                        | Set of the sampled neighbors located on client $m$ for node $v$          |
| 794 $\mathcal{K}$                                     | Set of sampled clients for cross-client training                         |
| 795 $K =  \mathcal{K} $                               | Number of sampled clients for cross-client training                      |
| 796 $\nabla \tilde{F}^m(\theta_t^m)$                  | Stochastic gradient                                                      |
| 797 $\alpha$                                          | Learning rate                                                            |
| 798 $\mathbf{A} \in \mathbb{R}^{N \times N}$          | Adjacency matrix of graph $\mathcal{G}$                                  |
| 799 $\mathbf{P}$                                      | Propagation matrix                                                       |
| 800 $\mathbf{D}$                                      | Degree matrix                                                            |

|     |                         |                                                                                                           |
|-----|-------------------------|-----------------------------------------------------------------------------------------------------------|
| 810 | $\mathbf{A}^m$          | Adjacency matrix of subgraph $\mathcal{G}^m$                                                              |
| 811 | $\mathbf{A}_{local}^m$  | Adjacency matrix corresponds to the nodes located on client $m$                                           |
| 812 | $\mathbf{A}_{remote}^m$ | Adjacency matrix corresponds to the cross-client neighbors located on the remote clients other than $m$   |
| 813 | $\mathbf{D}^m$          | Degree matrix of client $m$                                                                               |
| 814 | $\mathbf{P}^m$          | Propagation matrix of client $m$                                                                          |
| 815 | $\mathbf{P}_{local}^m$  | Propagation matrix corresponds to the nodes located on client $m$                                         |
| 816 | $\mathbf{P}_{remote}^m$ | Propagation matrix corresponds to the cross-client neighbors located on the remote clients other than $m$ |
| 817 |                         |                                                                                                           |
| 818 |                         |                                                                                                           |
| 819 |                         |                                                                                                           |
| 820 |                         |                                                                                                           |
| 821 |                         |                                                                                                           |

## C SINGLE-MACHINE GRAPH NEURAL NETWORKS TRAINING

We consider a graph  $\mathcal{G}(\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V}$  is a set of nodes with  $N = |\mathcal{V}|$  and  $\mathcal{E}$  is a set of edges. Each node  $v \in \mathcal{V}$  is associated with a feature vector  $\mathbf{x}_v \in \mathbb{R}^d$ , where  $d$  is the dimension of the feature vector. Each node  $v \in \mathcal{V}_{train}$  has a corresponding label  $y_v$ , where  $\mathcal{V}_{train} \subseteq \mathcal{V}$ .

GNNs aim to generate representations (embeddings) for each node in the graph by combining information from its neighboring nodes. Consider a GNN that consists of  $L$  layers. The embedding of node  $v$  at  $l$ -th layer, which is represented by  $\mathbf{h}_v^{(l)}$ , can be obtained through neighbor aggregation and node update, which are formulated as follows:

$$\mathbf{h}_{\mathcal{N}(v)}^{(l)} = \text{AGG} \left( \{ \mathbf{h}_u^{(l-1)} \mid u \in \mathcal{N}(v) \} \right), \quad \mathbf{h}_v^{(l)} = \sigma \left( \mathbf{W}^{(l)} \cdot \text{COMB}(\mathbf{h}_v^{(l-1)}, \mathbf{h}_{\mathcal{N}(v)}^{(l)}) \right),$$

where  $\mathbf{h}_v^{(0)}$  is initialized as the feature vector  $\mathbf{x}_v$ ,  $\mathcal{N}(v)$  denotes the set of neighbors of node  $v$ ,  $\mathbf{h}_{\mathcal{N}(v)}^{(l)}$  is the aggregated embedding from node  $v$ 's neighbors aggregated neighbor embedding for node  $v$ ,  $\mathbf{W}^{(l)}$  represents the weight matrix at  $l$ -th layer,  $\sigma(\cdot)$  corresponds to an activation function (e.g., ReLU),  $\text{AGG}(\cdot)$  is an aggregation function (e.g., mean), and  $\text{COMB}(\cdot)$  is a combination function (e.g., concatenation).

## D COMMUNICATION AND COMPUTATION COMPLEXITY OF Swift-FedGNN

In this section, we provide asymptotic characterizations of the communication and computation complexities of our proposed Swift-FedGNN algorithm. Due to the complications in precisely analyzing the communication and computation costs, we provide a high-level asymptotic analysis based on the several key system parameters.

Throughout the analysis, we assume an  $L$ -layer GNN and the following parameters:

- $M$ : The total number of clients;
- $F$ : The same number of neighbor sampling fan-out used at each layer;
- $F^l$ : The worst-case number of neighbors at each training node at each GNN layer  $l \in [1, L]$  using  $F$ -fan-out;
- $p_{(l)} \in (0, 1)$ : The fraction of the neighbors that are located on other clients.

### D.1 COMMUNICATION COMPLEXITY OF Swift-FedGNN

**1) Communication cost per iteration for exchanging cross-client neighbor information:** In Swift-FedGNN, every  $I$  iterations, each of the  $K$  sampled clients performs cross-client training and exchanges aggregated embeddings for its cross-client neighbors. The total communication cost per cross-client training iteration for exchanging these embeddings is on the order of:

$$\mathcal{O} \left( KB \sum_{l=1}^L p_{(l)} F^l d_{(l-1)}^{\text{emb}} \right),$$

where  $B$  is the batch size per client,  $d_{(l)}^{\text{emb}}$  is the embedding (hidden) dimension at layer  $l$ , and  $F^l$  reflects the exponential expansion in sampled neighborhoods as the layer depth increases.

864 Note that this estimate does not account for the two-stage aggregation in Swift-FedGNN, which will  
 865 significantly reduce the size of transferred embeddings. Therefore, this expression only represents a  
 866 conservative (worst-case) upper bound, and the actual communication overhead is likely to be much  
 867 lower.

868 If the  $p_{(l)}F^l$  cross-client neighbors at layer  $l$  are distributed across  $C_{(l)} < M$  remote clients, then  
 869 after aggregation, the communication cost becomes:  
 870

$$871 \mathcal{O}\left(KB \sum_{l=1}^L C_{(l)} d_{(l-1)}^{\text{emb}}\right),$$

874 where  $C_{(l)} \ll p_{(l)}F^l$  due to the aggregation mechanism in Swift-FedGNN.  
 875

876 For comparison, consider FedGNN-PNS Du & Wu (2022), the most closely related prior work, which  
 877 reduces communication by reusing the same sampled training nodes and their sampled neighbors  
 878 across multiple training iterations, but directly transmits raw input features for those cross-client  
 879 neighbors. The total communication cost of FedGNN-PNS per cross-client neighbor update is  
 880 approximately:  
 881

$$882 \mathcal{O}\left(MB \sum_{l=1}^L p_{(l)}F^l d_{(0)}^{\text{emb}}\right),$$

883 where  $d_{(0)}^{\text{emb}}$  is the input feature dimension, typically larger than hidden dimensions in deeper layers.  
 884

885 When communication of cross-client neighbors occurs, Swift-FedGNN is more efficient than  
 886 FedGNN-PNS due to three key reasons: i) It involves only  $K < M$  clients per iteration; ii) It  
 887 transmits lower-dimensional hidden embeddings (i.e.,  $d_{(l-1)}^{\text{emb}} < d_{(0)}^{\text{emb}}$  for  $l \geq 2$ ); and iii) It leverages  
 888 two-stage aggregation to compress information prior to transmission (i.e.,  $C_{(l)} \ll p_{(l)}F^l$ ).  
 889

890 Moreover, as training progresses, FedGNN-PNS increases the frequency of graph data communica-  
 891 tion, which can lead to significant cumulative overhead. In contrast, Swift-FedGNN maintains a fixed  
 892 periodic communication schedule and reduces transferred data per iteration, resulting in substantially  
 893 lower overall communication cost.

894 **2) Total communication cost over  $T$  training iterations:** Given the per-iteration communication cost  
 895 for exchanging cross-client neighbor embeddings, the total communication cost of Swift-FedGNN for  
 896 exchanging these embeddings across  $T$  training iterations is on the order of:  
 897

$$898 \mathcal{O}\left(\frac{T}{I}KB \sum_{l=1}^L C_{(l)} d_{(l-1)}^{\text{emb}}\right).$$

900 In addition, gradients and global model parameters are transmitted in every iteration. Let the model  
 901 parameters at layer  $l$  be  $W_{(l)} \in \mathbb{R}^{d_{(l-1)}^{\text{emb}} \times d_{(l)}^{\text{emb}}}$ . Then the total communication cost for gradients and  
 902 model updates is on the order of:  
 903

$$904 \mathcal{O}\left(2TM \sum_{l=1}^L d_{(l-1)}^{\text{emb}} d_{(l)}^{\text{emb}}\right).$$

905 Combining both, the overall communication complexity of Swift-FedGNN is on the order of:  
 906

$$907 \mathcal{O}\left(2TM \sum_{l=1}^L d_{(l-1)}^{\text{emb}} d_{(l)}^{\text{emb}} + \frac{T}{I}KB \sum_{l=1}^L C_{(l)} d_{(l-1)}^{\text{emb}}\right).$$

## 913 D.2 COMPUTATION COMPLEXITY OF Swift-FedGNN

914 At each GNN layer  $l$ , the per-node computational cost includes:  
 915

- 916 • Neighbor aggregation (e.g., mean/sum/max):  $\mathcal{O}(F d_{(l-1)}^{\text{emb}})$ .  
 917 • Linear transformation:  $\mathcal{O}(d_{(l-1)}^{\text{emb}} d_{(l)}^{\text{emb}})$ .

918 With a total of  $F^{l-1}$  sampled nodes at layer  $l$  (due to recursive fan-out), the total per-batch cost per  
 919 client is on the order of:

$$920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad \mathcal{O} \left( BF^{l-1} \left( F d_{(l-1)}^{\text{emb}} + d_{(l-1)}^{\text{emb}} d_{(l)}^{\text{emb}} \right) \right).$$

Across  $T$  training iterations and  $M$  clients, the total computation complexity (including both forward and backward passes) of Swift-FedGNN can be expressed as:

$$\mathcal{O} \left( 2TM \sum_{l=1}^L BF^{l-1} \left( F d_{(l-1)}^{\text{emb}} + d_{(l-1)}^{\text{emb}} d_{(l)}^{\text{emb}} \right) \right).$$

## E DISCUSSION ON NON-ELEMENT-WISE OPERATIONS

In the design of our communication-efficient Swift-FedGNN, we do not consider non-element-wise operations (e.g., GAT Veličković et al. (2017)), as such operations are fundamentally not a good fit in any communication-efficient FGL algorithm design.

Taking GAT as an example, GAT requires direct access to raw neighbor features/embeddings to compute attention weights based on nonlinear pairwise interactions (see Eq. (1) in Veličković et al. (2018)). This requirement necessitates transmitting raw neighbor features/embeddings across clients, which leads to significantly high communication overhead. In other words, it is impossible for GAT to leverage the same communication-efficient aggregated transmissions as in those GNN models based on element-wise operations (e.g., GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2017), GIN Xu et al. (2019), and SGCN Wu et al. (2019)). As a result, GAT is not an ideal GNN model choice in those FGL algorithm design settings, where communication efficiency is of utmost importance.

To further quantitatively understand GAT’s communication efficiency limitation in FGL algorithm design, we analyze the communication cost of incorporating GAT into Swift-FedGNN (denoted as GAT-Swift-FedGNN) and compare it with our original Swift-FedGNN design. Throughout the analysis, we assume an  $L$ -layer GNN and the following parameters:

- $M$ : The total number of clients;
- $F$ : The same number of neighbor sampling fan-out used at each layer;
- $F^l$ : The worst-case number of neighbors at each training node at each GNN layer  $l \in [1, L]$  using  $F$ -fan-out;
- $p_{(l)} \in (0, 1)$ : The fraction of the neighbors that are located on other clients.

**1) GAT-Swift-FedGNN:** Every  $I$  iterations, each of the  $K$  sampled clients performs cross-client training and exchanges raw features/embeddings for its cross-client neighbors. The total communication cost per cross-client training round for exchanging these embeddings is on the order of:

$$957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad \mathcal{O} \left( KB \sum_{l=1}^L p_{(l)} F^l d_{(l-1)}^{\text{emb}} \right),$$

where  $B$  is the batch size per client,  $d_{(l)}^{\text{emb}}$  is the embedding (hidden) dimension at layer  $l$ , and  $F^l$  reflects the exponential expansion in sampled neighborhoods as the layer depth increases.

**2) Swift-FedGNN:** In contrast, Swift-FedGNN avoids transferring raw features/embeddings by sharing aggregated neighbor features/embeddings. If the  $p_{(l)} F^l$  cross-client neighbors at layer  $l$  are distributed across  $C_{(l)} < M$  remote clients, then after aggregation, the communication cost is on the order of:

$$968 \quad 969 \quad 970 \quad \mathcal{O} \left( KB \sum_{l=1}^L C_{(l)} d_{(l-1)}^{\text{emb}} \right).$$

Since  $C_{(l)} \ll p_{(l)} F^l$ , Swift-FedGNN achieves significantly lower communication overhead than the GAT variant.

972 From the above analysis, we can see that GAT-Swift-FedGNN incurs a communication cost that is  
 973 not only  $F^l$  times higher than Swift-FedGNN, but the gap between them also grows exponentially as  
 974 the number of layers increases.

975 Although non-element-wise operations (e.g., GAT) are highly popular GNN models in both the  
 976 literature and practice, how to reduce the communication cost and avoid raw neighbor feature  
 977 transmission for non-element-wise operations in the federated setting is a fundamentally hard problem,  
 978 which would require major architectural design changes in non-element-wise operations rather than  
 979 straightforward adaptation. Therefore, exploring attention-based extensions is a valuable direction  
 980 for future research.

## 982 F DISCUSSION ON PRIVACY IN Swift-FedGNN

983 In this work, our primary privacy motivation is to avoid the direct transmission of raw node features,  
 984 which are often privacy-sensitive in real-world graph applications (e.g., user attributes in social net-  
 985 works). Our “aggregate-then-transfer” design ensures that: i) Only aggregated neighbor embeddings  
 986 (not raw features) are shared across clients; and ii) No raw node information is directly exposed to  
 987 other clients or the server.

988 That said, we do not claim formal privacy guarantees (e.g., differential privacy bounds) in this  
 989 work, since simply using aggregation without Gaussian/Laplacian-type noise injection is unlikely  
 990 to offer  $(\epsilon, \delta)$ -type differential privacy guarantee. Instead, our focus is on reducing communication  
 991 overhead in federated graph learning while improving practical privacy-preserving behavior through  
 992 communication-efficient design.

993 Importantly, the Swift-FedGNN framework is compatible with standard differential privacy techniques  
 994 and federated encryption protocols, which can be integrated Gaussian/Laplacian-type noise injection  
 995 to provide formal privacy guarantees.

## 996 G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

### 1001 G.1 ADDITIONAL EXPERIMENTAL RESULTS

#### 1003 G.1.1 EXPERIMENTAL SUPPORT FOR THEORETICAL FINDINGS

1005 Table 5: Gradient bias under varying GNN depths on the ogbn-arxiv dataset.

| GNN DEPTH     | 2    | 14    | 16    |
|---------------|------|-------|-------|
| GRADIENT BIAS | 0.46 | 17.56 | 30.11 |

1009 Table 6: Validation accuracy (%) under varying GNN depths on the ogbn-arxiv dataset.

| GNN DEPTH               | 2     | 14    | 16    |
|-------------------------|-------|-------|-------|
| VALIDATION ACCURACY (%) | 57.17 | 54.60 | 48.46 |

1013 To empirically validate our theoretical findings, we use the gradient bias between the full gradient  
 1014 and the stochastic gradient as an empirical proxy. This quantity has a theoretical upper bound of  
 1015  $LB_{\Delta G}^l$  (see Lemma 5.4), making it a suitable example for analysis.

1016 Table 5 presents the measured gradient bias on the ogbn-arxiv dataset across different GNN depths.  
 1017 These results clearly show that the gradient bias increases with the GNN depth, consistent with our  
 1018 theoretical result that deeper GNNs incur larger bias due to amplified sampling and cross-client  
 1019 neighbor errors.

1020 Table 6 shows the validation accuracy on the ogbn-arxiv dataset under varying GNN depths. We  
 1021 observe that the validation accuracy degrades as the GNN depth increases. This behavior is consistent  
 1022 with our theoretical insight that deeper GNNs introduce larger gradient bias terms, which in turn lead  
 1023 to greater approximation error and reduced performance.

1024 In summary, the empirical trends above corroborate the theoretical predictions in Theorem 5.6,  
 1025 confirming both the validity and practical relevance of the error bounds in Theorem 5.6.

1026 It is worth emphasizing that the performance degradation observed with increasing GNN depth  
 1027 is a fundamental limitation of GNN architectures themselves, rather than a limitation of our  
 1028 Swift-FedGNN algorithm design. This phenomenon is well-known to occur across GNNs regardless  
 1029 of the specific graph learning algorithm in use. Addressing it typically requires architecture-level  
 1030 enhancements, and many existing solutions (e.g., Chen et al. (2022)) are fully compatible with our  
 1031 Swift-FedGNN design and can be integrated to mitigate depth-related degradation in practice.

### 1032 G.1.2 COMMUNICATION OVERHEAD



1043 Figure 6: Ratio of computation time to sampling and communication time for different algorithms.

1044 **Communication and sample costs analysis:** Figure 6 illustrates the comparison between the ratios  
 1045 of the computation time and the sampling and communication time for Swift-FedGNN and the base-  
 1046 line algorithms. It can be seen that Swift-FedGNN significantly reduces the computation-(sampling &  
 1047 communication) ratio on the ogbn-products dataset. On the Reddit dataset, Swift-FedGNN also signif-  
 1048 icantly reduces this ratio compared to FedGNN-PNS and FedGNN-G. While Swift-FedGNN achieves  
 1049 a comparable ratio to LLCG, it converges much faster and achieves higher validation accuracy than  
 1050 LLCG.



1051 Figure 7: Ratio of computation time to sampling and communication time for Swift-FedGNN on  
 1052 ogbn-products dataset.

1053 **Hyperparameter sensitivity analysis:** We explore the impact of the important hyperparameters in  
 1054 Swift-FedGNN. Figure 7a shows that when the correction frequency  $I$  increases, the computation-  
 1055 (sampling & communication) ratio increases. Figure 7b and 7c indicate that as the number of  
 1056 cross-client training clients  $K$ , and the number of sampled neighbors increase, the computation-  
 1057 (sampling & communication) ratio decreases. Figure 7d evaluates Swift-FedGNN with different  
 1058 numbers of clients. In this experiment, 50% of clients periodically conduct cross-client training  
 1059 on both local and cross-client neighbors. We can see that as the number of clients increases, the  
 1060 computation-(sampling & communication) ratio decreases. These findings align with our expectations  
 1061 since sampling and communication overhead is significantly greater than computation overhead in  
 1062 GNN training.

1063 Table 7: Communication overhead per iteration when communication occurs.

|                    | Swift-FedGNN | LLCG     | FedGNN-PNS | FedGNN-G |
|--------------------|--------------|----------|------------|----------|
| 1075 OGBN-PRODUCTS | 19.5 MB      | 378.3 MB | 78.0 MB    | 78.0 MB  |
| 1076 REDDIT        | 90.4 MB      | 619.6 MB | 180.7 MB   | 180.7 MB |

1077 **Communication overhead when communication occurs:** Table 7 shows the communication  
 1078 overhead per iteration when cross-client sampling and communication occur for different algorithms.  
 1079 We can see that Swift-FedGNN significantly reduces the communication overhead compared to all  
 1080 baselines across both datasets. Specifically, on the ogbn-products dataset, Swift-FedGNN incurs 19.5

1080 MB of overhead per iteration, which is approximately 20 times less than LLCG and 4 times less than  
 1081 both FedGNN-PNS and FedGNN-G. Similarly, for the Reddit dataset, due to its dense inter-node  
 1082 connections and larger feature size, Swift-FedGNN’s overhead is 90.4 MB, which is still about 7  
 1083 times less than LLCG and 2 times less than both FedGNN-PNS and FedGNN-G. This highlights the  
 1084 efficiency of Swift-FedGNN in reducing communication costs during cross-client training.  
 1085

### 1086 G.1.3 VALIDATION ACCURACY

1087 Table 8: Validation accuracy (%) of different algorithms using the GraphSAGE model.

|                     | OGBN-PRODUCTS | REDDIT       | OGBN-ARXIV   | FLICKR       | CITESEER     |
|---------------------|---------------|--------------|--------------|--------------|--------------|
| <b>SWIFT-FEDGNN</b> | <b>88.88</b>  | <b>95.47</b> | <b>57.17</b> | <b>50.19</b> | <b>66.00</b> |
| LLCG                | 87.66         | 95.27        | 56.78        | 50.12        | 68.40        |
| FEDGNN-PNS          | 87.89         | 95.46        | 55.86        | 51.47        | 66.27        |
| FEDSAGE             | 88.15         | 95.30        | 56.55        | 49.75        | 64.39        |
| FEDGNN-G            | 88.71         | 95.96        | 56.78        | 51.57        | 66.08        |

1095 **Validation accuracy comparisons:** Table 8 shows the validation accuracy of different algorithms.  
 1096 To assess the impact of cross-client neighbors, we include an additional baseline FedSage Zhang  
 1097 et al. (2021), an FGL algorithm that entirely ignores cross-client neighbors and performs purely  
 1098 local training in all iterations. The results demonstrate that despite incurring lower sampling and  
 1099 communication overhead, our Swift-FedGNN achieves validation accuracy comparable to that of  
 1100 the baseline algorithms. Moreover, compared to FedSage, which completely ignores cross-client  
 1101 neighbors, Swift-FedGNN achieves a higher validation accuracy, highlighting the importance of  
 1102 incorporating cross-client neighbor information. By minimizing sampling and communication  
 1103 overhead, Swift-FedGNN offers the highest efficiency in practical implementation.

1104 It is worth noting that ogbn-arxiv, flickr, and citeseer are small datasets (Table 14), where graph  
 1105 partitioning leads to greater information loss. As a result, baselines that frequently exchange graph  
 1106 data can achieve slightly higher accuracy. However, these small datasets do not require federated  
 1107 graph learning in practice. Federated graph learning is primarily motivated by large-scale datasets  
 1108 like ogbn-products, where our method achieves the best performance.

1109 Table 9: Validation accuracy (%) on the ogbn-products dataset for two large-scale settings with 80  
 1110 clients and 100 clients.

|           | SWIFT-FEDGNN<br>( $K = 10$ ) | SWIFT-FEDGNN<br>( $K/M = 1/2$ ) | LLCG  | FEDGNN-<br>PNS | FEDSAGE | FEDGNN-<br>G |
|-----------|------------------------------|---------------------------------|-------|----------------|---------|--------------|
| $M = 80$  | 85.74                        | 86.12                           | 83.54 | 85.67          | 85.35   | 86.52        |
| $M = 100$ | 85.07                        | 85.53                           | 84.35 | 85.15          | 84.41   | 85.63        |

1116 **Evaluations of large-scale settings:** Table 9 presents the validation accuracy on the ogbn-products  
 1117 dataset for two large-scale settings with 80 clients and 100 clients. These results show that  
 1118 Swift-FedGNN maintains comparable or better validation accuracy in both settings, with larger  
 1119  $K$  yielding slightly improved performance. These findings confirm that even with a small sub-  
 1120 set of sampled clients, Swift-FedGNN ensures stable convergence, while significantly lowering  
 1121 communication overhead.

### 1122 G.1.4 EVALUATION ACROSS DIFFERENT GNN MODELS

1125 Table 10: Validation accuracy (%) of different algorithms using the GIN model.

|                     | OGBN-PRODUCTS | OGBN-ARXIV   | CITESEER     |
|---------------------|---------------|--------------|--------------|
| <b>SWIFT-FEDGNN</b> | <b>81.93</b>  | <b>56.69</b> | <b>47.34</b> |
| LLCG                | 80.72         | 57.32        | 46.60        |
| FEDGNN-PNS          | 78.70         | 56.54        | 47.99        |
| FEDGNN-G            | 83.76         | 57.01        | 50.76        |

1131 **Evaluations using the GIN model:** To assess the adaptivity of Swift-FedGNN to different GNN  
 1132 models, we conduct experiments using the GIN Xu et al. (2019) model across multiple datasets.  
 1133 Table 10 shows that, similar to the results with the GraphSAGE model, Swift-FedGNN achieves

1134

1135 Table 11: Performance comparison using the GIN model when achieving a target validation accuracy  
1136 for each dataset.

1137

|                     | OGBN-PRODUCTS            |                        | OGBN-ARXIV               |                        |
|---------------------|--------------------------|------------------------|--------------------------|------------------------|
|                     | TOTAL COMM.<br>COST (GB) | WALL-CLOCK<br>TIME (s) | TOTAL COMM.<br>COST (GB) | WALL-CLOCK<br>TIME (s) |
| <b>SWIFT-FEDGNN</b> | <b>0.74</b>              | <b>65.18</b>           | <b>2.29</b>              | <b>75.80</b>           |
| LLCG                | 3.74                     | 223.77                 | 3.81                     | 103.98                 |
| FEDGNN-PNS          | 5.75                     | 113.46                 | 3.62                     | 131.92                 |
| FEDGNN-G            | 38.12                    | 767.53                 | 19.36                    | 575.26                 |

1144 comparable validation accuracy to the baseline algorithms while significantly reducing sampling and  
1145 communication overhead.1146 Table 11 reports the total communication cost and wall-clock time on the ogbn-products and ogbn-  
1147 arxiv datasets when reaching a target validation accuracy of 80% and 56%, respectively. In both cases,  
1148 Swift-FedGNN achieves the lowest wall-clock time to reach the target accuracy. Moreover, it reduces  
1149 the total communication cost by at least 80% on ogbn-products and 37% on ogbn-axriv compared to  
1150 all baselines. These results demonstrate the effectiveness of Swift-FedGNN in significantly reducing  
1151 communication overhead when using the GIN model.

1152

## 1153 G.1.5 EVALUATION UNDER MORE HETEROGENEOUS SETTINGS

1154

1155 Table 12: Total communication cost (GB) using randomly partitioned ogbn-products dataset when  
1156 achieving a target validation accuracy of 89.5%.

|                         | SWIFT-FEDGNN | FEDGNN-G | LLCG | FEDGNN-PNS |
|-------------------------|--------------|----------|------|------------|
| COMMUNICATION COST (GB) | <b>1.44</b>  | 15.03    | 6.26 | 2.60       |

1157

1158 Table 13: Comparison of validation accuracy (%) using randomly partitioned ogbn-products dataset.

1159

|                         | SWIFT-FEDGNN | FEDGNN-G | LLCG  | FEDGNN-PNS |
|-------------------------|--------------|----------|-------|------------|
| VALIDATION ACCURACY (%) | <b>89.94</b> | 91.23    | 89.92 | 89.91      |

1160

1161 **Evaluations using randomly partitioned ogbn-products dataset:** To evaluate the robustness of  
1162 Swift-FedGNN under less structured scenarios, we conduct additional experiments using random  
1163 partitioning instead of METIS on the ogbn-products dataset. Random partitioning introduces hetero-  
1164 geneity by randomly assigning nodes to different subgraphs, thereby implicitly inducing non-identical  
1165 and structurally unbalanced local subgraphs. Table 12 shows the total communication cost when  
1166 achieving a target validation accuracy of 89.5%. Swift-FedGNN reduces total communication cost  
1167 by at least 45% compared to all baselines. Table 13 reports the validation accuracy, demonstrating  
1168 that Swift-FedGNN achieves the highest accuracy among methods that do not rely on full graph  
1169 training. These results confirm that Swift-FedGNN maintains both communication efficiency and  
1170 competitive performance even when the data is randomly partitioned, validating its applicability  
1171 beyond well-partitioned settings.

1172

1173

## 1174 G.2 ADDITIONAL EXPERIMENTAL DETAILS

1175

1176 **Dataset.** Table 14 summarizes the key statistics of the datasets used in our experiments, includ-  
1177 ing: 1) ogbn-products Hu et al. (2020), which is an Amazon product co-purchasing graph derived  
1178 from Leskovec et al. (2007); 2) Reddit Hamilton et al. (2017), which consists of online forum  
1179 posts within a month, where posts commented on by the same user are connected by an edge; 3)  
1180 ogbn-axriv Hu et al. (2020), which is a citation network between arXiv papers in the field of computer  
1181 science, where nodes represent papers and directed edges indicate citation links; 4) flickr Zeng et al.  
1182 (2020), which is an image network where each node represents an image and edges connect images  
1183 that share common properties such as tags or visual similarity; and 5) citeseer Giles et al. (1998),  
1184 which is a citation graph of research papers, where each node denotes a document and edges represent  
1185 citation relationships between them.

1186

1187 **Implementation and testbed.** We implement Swift-FedGNN using Python on DGL 2.0.0 Wang et al.  
1188 (2019b) and PyTorch 2.2.1 Paszke et al. (2019). Our implementation includes a custom GPU-based

1188

1189

1190

Table 14: Benchmark datasets and key parameters.

1191

1192

1193

1194

1195

1196

1197

| DATASET       | # OF NODES | # OF EDGES | EDGES PER NODE |
|---------------|------------|------------|----------------|
| OGBN-PRODUCTS | 2.4 M      | 61.9 M     | 25.8           |
| REDDIT        | 233 K      | 114.6 M    | 491.4          |
| OGBN-ARXIV    | 169 K      | 1.2 M      | 7.1            |
| FLICKR        | 89 K       | 900 K      | 10.1           |
| CITESEER      | 3327       | 9228       | 2.8            |

1198

sampler built on top of DGL’s native sampler, which is designed to sequentially sample local and remote neighbors for each client at every layer. Additionally, we customized the GraphSAGE layer and GIN layer to facilitate model-parallel training within Swift-FedGNN. In this setup, the server handles the sampling and aggregation of node features and intermediate activations, while the clients are responsible for executing the nonlinear computations associated with the GraphSAGE layer.

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

We simulate a real-world federated learning scenario using a single machine equipped with NVIDIA Tesla V100 GPUs and 64GB memory. In our setup, both the clients and the server operate on the GPU, and data communication between them is simulated using shared memory. We monitor the data transfer size between the server and clients and set a simulated cross-client network bandwidth at 1Gbps, aligning with real-world measurements reported in Yuan et al. (2022).

**GNN model.** We train a two-layer GraphSAGE model and a two-layer GIN model with a hidden dimension of 256. Uniform sampling is employed for neighbor sampling, with fan-outs—*i.e.*, the number of sampled neighbors—set according to the official training script provided by the DGL team. The fan-out values are set to [20, 15] for the ogbn-products dataset, and [15, 10] for all other datasets.

**Hyperparameters.** The training mini-batch size is set at 256. For optimization, we use the Adam optimizer with a weight decay of  $5 \times 10^{-4}$ . We use a learning rate of 0.01 for the ogbn-products dataset, 0.0001 for the flickr dataset, 0.00001 for the citeseer dataset, and 0.001 for both the ogbn-arxiv and Reddit datasets. In Swift-FedGNN, we set  $K = 10$  for the ogbn-products dataset and  $K = 5$  for all other datasets. We choose  $I = 5$  for the citeseer dataset and  $I = 10$  for the remaining datasets.

## H PROOF OF THEOREM 5.6

### H.1 GRADIENT COMPUTATIONS IN Swift-FedGNN

Recall that Swift-FedGNN uses GCN Kipf & Welling (2017) as the architecture of GNN to prove the convergence performance. When client  $m$  performs local training that updates the local GNN model using only the local graph data, Each sampling-based GCN layer executes one feature propagation step, defined as:

$$\widetilde{\mathbf{H}}_{local}^{(l),m} = \left[ \widetilde{f}^{(l),m} \left( \widetilde{\mathbf{H}}_{local}^{(l-1),m}, \mathbf{W}^{(l),m} \right) \triangleq \sigma \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \mathbf{W}^{(l),m} \right) \right].$$

Using the chain rule, the stochastic gradient can be computed as  $\nabla \widetilde{F}^m(\boldsymbol{\theta}^m) = \{\widetilde{\mathbf{G}}_{local}^{(l),m}\}_{l=1}^L$ , where

$$\begin{aligned} \widetilde{\mathbf{G}}_{local}^{(l),m} &= \left[ \nabla_{\mathbf{W}} \widetilde{f}^{(l),m} \left( \widetilde{\mathbf{D}}_{local}^{(l),m}, \widetilde{\mathbf{H}}_{local}^{(l-1),m}, \mathbf{W}^{(l),m} \right) \right. \\ &\quad \left. \triangleq \left[ \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right]^{\top} \widetilde{\mathbf{D}}_{local}^{(l),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{local}^{(l),m} \right) \right], \end{aligned}$$

$$\begin{aligned} \widetilde{\mathbf{D}}_{local}^{(l),m} &= \left[ \nabla_{\mathbf{H}} \widetilde{f}^{(l+1),m} \left( \widetilde{\mathbf{D}}_{local}^{(l+1),m}, \widetilde{\mathbf{H}}_{local}^{(l),m}, \mathbf{W}^{(l+1),m} \right) \right. \\ &\quad \left. \triangleq \left[ \widetilde{\mathbf{P}}_{local}^{(l+1),m} \right]^{\top} \widetilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^{\top} \right], \end{aligned}$$

in which  $\widetilde{\mathbf{Z}}_{local}^{(l),m} = \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \mathbf{W}^{(l),m}$ ,  $\widetilde{\mathbf{D}}_{local}^{(L),m} = \partial \ell^m \left( \widetilde{\mathbf{H}}_{local}^{(L),m}, \mathbf{Y}_{local}^m \right) / \partial \widetilde{\mathbf{H}}_{local}^{(L),m}$ , and  $\circ$  represents Hadamard product.

1242 Similarly, when client  $m$  conducts cross-client training that updates the local GNN model based on  
 1243 the local graph data and the cross-client neighbors, each sampling-based GNN layer can be defined  
 1244 as:

$$1245 \quad \widetilde{\mathbf{H}}_{full}^{(l),m} = \left[ \widetilde{f}^{(l),m} \left( \widetilde{\mathbf{H}}_{full}^{(l-1),m}, \mathbf{W}^{(l),m} \right) \triangleq \sigma \left( \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right) \right].$$

1246 Using the chain rule, the stochastic gradient can be calculated as  $\nabla \widetilde{F}^m(\boldsymbol{\theta}^m) = \{\widetilde{\mathbf{G}}_{full}^{(l),m}\}_{l=1}^L$ , where

$$1247 \quad \widetilde{\mathbf{G}}_{full}^{(l),m} = \left[ \nabla_{\mathbf{W}} \widetilde{f}^{(l),m} \left( \widetilde{\mathbf{D}}_{full}^{(l),m}, \widetilde{\mathbf{H}}_{full}^{(l-1),m}, \mathbf{W}^{(l),m} \right) \right. \\ 1248 \quad \triangleq \left. \left[ \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right]^{\top} \widetilde{\mathbf{D}}_{full}^{(l),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{full}^{(l),m} \right) \right],$$

$$1249 \quad \widetilde{\mathbf{D}}_{full}^{(l),m} = \left[ \nabla_{\mathbf{H}} \widetilde{f}^{(l+1),m} \left( \widetilde{\mathbf{D}}_{full}^{(l+1),m}, \widetilde{\mathbf{H}}_{full}^{(l),m}, \mathbf{W}^{(l+1),m} \right) \right. \\ 1250 \quad \triangleq \left. \left[ \widetilde{\mathbf{P}}_{local}^{(l+1),m} + \widetilde{\mathbf{P}}_{remote}^{(l+1),m} \right]^{\top} \widetilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^{\top} \right],$$

1251 in which  $\widetilde{\mathbf{Z}}_{full}^{(l),m} = \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right) \mathbf{W}^{(l),m}$ , and  $\widetilde{\mathbf{D}}_{full}^{(L),m} =$   
 1252  $\partial \ell^m \left( \widetilde{\mathbf{H}}_{full}^{(L),m}, \mathbf{Y}_{full}^m \right) / \partial \widetilde{\mathbf{H}}_{full}^{(L),m}$ .

## 1253 H.2 USEFUL PROPOSITIONS AND LEMMAS

1254 **Proposition H.1.** *Under Assumption 5.3, the inequalities in Table 15 and Table 16 are hold.*

1255 Table 15: Upper-bound for the norms of the propagation matrix and the node feature matrix.

|                        | PROPAGATION MATRIX                              | NODE FEATURE MATRIX                             |
|------------------------|-------------------------------------------------|-------------------------------------------------|
| FULL GRAPH             | $\ \mathbf{P}_{full}\ _F \leq B_P$              | $\ \mathbf{X}_{full}\ _F \leq B_X$              |
| LOCAL GRAPH            | $\ \mathbf{P}_{local}\ _F \leq B_P^l \leq B_P$  | $\ \mathbf{X}_{local}\ _F \leq B_X^l \leq B_X$  |
| CROSS-CLIENT NEIGHBORS | $\ \mathbf{P}_{remote}\ _F \leq B_P^r \leq B_P$ | $\ \mathbf{X}_{remote}\ _F \leq B_X^r \leq B_X$ |

1256 Table 16: Relationships for the norms of the propagation matrix and the node feature matrix before  
 1257 and after sampling.

|                        | PROPAGATION MATRIX                                                                | NODE FEATURE MATRIX                                                               |
|------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| FULL GRAPH             | $\ \widetilde{\mathbf{P}}_{full} - \mathbf{P}_{full}\ _F \leq B_{\Delta P}^f$     | $\ \widetilde{\mathbf{X}}_{full} - \mathbf{X}_{full}\ _F \leq B_{\Delta X}^f$     |
| LOCAL GRAPH            | $\ \widetilde{\mathbf{P}}_{local} - \mathbf{P}_{local}\ _F \leq B_{\Delta P}^l$   | $\ \widetilde{\mathbf{X}}_{local} - \mathbf{X}_{local}\ _F \leq B_{\Delta X}^l$   |
| CROSS-CLIENT NEIGHBORS | $\ \widetilde{\mathbf{P}}_{remote} - \mathbf{P}_{remote}\ _F \leq B_{\Delta P}^r$ | $\ \widetilde{\mathbf{X}}_{remote} - \mathbf{X}_{remote}\ _F \leq B_{\Delta X}^r$ |

1258 **Lemma H.2.** [Lemma 1 in Cong et al. (2021)] An  $L$ -later GCN is  $L_F$ -Lipschitz smooth, i.e.,  
 1259  $\|\nabla \mathcal{L}(\boldsymbol{\theta}_1) - \nabla \mathcal{L}(\boldsymbol{\theta}_2)\|_F \leq L_F \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_F$ .

1260 **Lemma H.3.** Under Assumptions 5.1–5.3, and for any  $l \in [L]$ , the Frobenius norm of node embedding  
 1261 matrices, gradient passing from the  $l$ -th layer node embeddings to the  $(l-1)$ -th are bounded, i.e.,

$$1262 \quad \left\| \mathbf{H}_{local}^{(l),m} \right\|_F, \left\| \widetilde{\mathbf{H}}_{local}^{(l),m} \right\|_F \leq B_H^l, \quad \left\| \mathbf{H}_{full}^{(l),m} \right\|_F, \left\| \widetilde{\mathbf{H}}_{full}^{(l),m} \right\|_F \leq B_H^f,$$

$$1263 \quad \left\| \mathbf{D}_{local}^{(l),m} \right\|_F, \left\| \widetilde{\mathbf{D}}_{local}^{(l),m} \right\|_F \leq B_D^l, \quad \left\| \mathbf{D}_{full}^{(l),m} \right\|_F, \left\| \widetilde{\mathbf{D}}_{full}^{(l),m} \right\|_F \leq B_D^f,$$

1264 where

$$1265 \quad B_H^l, B_H^f = \max_{1 \leq l \leq L} (C_\sigma B_P B_W)^l B_X, \quad B_D^l, B_D^f = \max_{1 \leq l \leq L} (B_P B_W C_\sigma)^{L-l} C_l.$$

1266 *Proof.*

$$1267 \quad \left\| \mathbf{H}_{local}^{(l),m} \right\|_F = \left\| \sigma \left( \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \mathbf{W}^{(l),m} \right) \right\|_F$$

$$\begin{aligned}
& \stackrel{(a)}{\leq} C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F \leq C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \right\| \left\| \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
& \stackrel{(b)}{\leq} C_\sigma B_W B_P \left\| \mathbf{H}_{local}^{(l-1),m} \right\|_F \leq (C_\sigma B_W B_P)^l \left\| \mathbf{X}^m \right\|_F \\
& \stackrel{(c)}{\leq} (C_\sigma B_W B_P)^l B_X \leq \max_{1 \leq l \leq L} (C_\sigma B_W B_P)^l B_X,
\end{aligned}$$

where (a)–(c) results from Assumptions 5.2 and 5.3.

$$\begin{aligned}
\left\| \widetilde{\mathbf{H}}_{local}^{(l),m} \right\|_F &= \left\| \sigma \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \mathbf{W}^{(l),m} \right) \right\|_F \\
&\stackrel{(a)}{\leq} C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F \leq C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} \right\| \left\| \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F \\
&\stackrel{(b)}{\leq} C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F \leq (C_\sigma B_W B_P)^l \left\| \mathbf{X}^m \right\|_F \\
&\stackrel{(c)}{\leq} (C_\sigma B_W B_P)^l B_X \leq \max_{1 \leq l \leq L} (C_\sigma B_W B_P)^l B_X,
\end{aligned}$$

where (a)–(c) follow from Assumptions 5.2 and 5.3.

$$\begin{aligned}
\left\| \mathbf{H}_{full}^{(l),m} \right\|_F &= \left\| \sigma \left( \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \mathbf{W}^{(l),m} \right) \right\|_F \\
&\stackrel{(a)}{\leq} C_\sigma B_P B_W \left\| \mathbf{H}_{full}^{(l-1),m} \right\|_F \leq (C_\sigma B_P B_W)^l \left\| \mathbf{X}^m \right\|_F \\
&\stackrel{(b)}{\leq} (C_\sigma B_P B_W)^l B_X \leq \max_{1 \leq l \leq L} (C_\sigma B_P B_W)^l B_X,
\end{aligned}$$

where (a) and (b) are because of Assumptions 5.2 and 5.3.

$$\begin{aligned}
\left\| \widetilde{\mathbf{H}}_{full}^{(l),m} \right\|_F &= \left\| \sigma \left( \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right) \right\|_F \\
&\stackrel{(a)}{\leq} C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right\|_F = C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{full}^{(l),m} \widetilde{\mathbf{H}}_{full}^{(l-1),m} \right\|_F \\
&\stackrel{(b)}{\leq} C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{full}^{(l-1),m} \right\|_F \leq (C_\sigma B_W B_P)^l \left\| \mathbf{X}^m \right\|_F \\
&\stackrel{(c)}{\leq} (C_\sigma B_W B_P)^l B_X \leq \max_{1 \leq l \leq L} (C_\sigma B_W B_P)^l B_X,
\end{aligned}$$

where (a)–(c) follow from Assumptions 5.2 and 5.3.

$$\begin{aligned}
\left\| \mathbf{D}_{local}^{(l),m} \right\|_F &= \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F \\
&\stackrel{(a)}{\leq} B_W C_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} \right\|_F \left\| \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
&\stackrel{(b)}{\leq} B_P B_W C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} \right\|_F \leq (B_P B_W C_\sigma)^{L-l} \left\| \mathbf{D}_{local}^{(L),m} \right\|_F \\
&\stackrel{(c)}{\leq} (B_P B_W C_\sigma)^{L-l} C_l \leq \max_{1 \leq l \leq L} (B_P B_W C_\sigma)^{L-l} C_l,
\end{aligned}$$

where (a)–(c) are because of Assumptions 5.1–5.3.

$$\left\| \widetilde{\mathbf{D}}_{local}^{(l),m} \right\|_F = \left\| \left[ \widetilde{\mathbf{P}}_{local}^{(l+1),m} \right]^\top \widetilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F$$

$$\begin{aligned}
& \stackrel{(a)}{\leq} B_W C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l+1),m} \right\|_F \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} \right\|_F \\
& \stackrel{(b)}{\leq} B_P B_W C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} \right\|_F \leq (B_P B_W C_\sigma)^{L-l} \left\| \tilde{\mathbf{D}}_{local}^{(L),m} \right\|_F \\
& \stackrel{(c)}{\leq} (B_P B_W C_\sigma)^{L-l} C_l \leq \max_{1 \leq l \leq L} (B_P B_W C_\sigma)^{L-l} C_l,
\end{aligned}$$

where (a)–(c) follow from Assumptions 5.1–5.3.

$$\begin{aligned}
\left\| \mathbf{D}_{full}^{(l),m} \right\|_F &= \left\| \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F \\
&\stackrel{(a)}{\leq} B_P B_W C_\sigma \left\| \mathbf{D}_{full}^{(l+1),m} \right\|_F \leq (B_P B_W C_\sigma)^{L-l} \left\| \mathbf{D}_{full}^{(L),m} \right\|_F \\
&\stackrel{(b)}{\leq} (B_P B_W C_\sigma)^{L-l} C_l \leq \max_{1 \leq l \leq L} (B_P B_W C_\sigma)^{L-l} C_l,
\end{aligned}$$

where (a) and (b) use Assumptions 5.1–5.3.

$$\begin{aligned}
\left\| \tilde{\mathbf{D}}_{full}^{(l),m} \right\|_F &= \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l+1),m} + \tilde{\mathbf{P}}_{remote}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F \\
&= \left\| \left[ \tilde{\mathbf{P}}_{full}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F \\
&\stackrel{(a)}{\leq} B_P B_W C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} \right\|_F \leq (B_P B_W C_\sigma)^{L-l} \left\| \tilde{\mathbf{D}}_{full}^{(L),m} \right\|_F \\
&\stackrel{(b)}{\leq} (B_P B_W C_\sigma)^{L-l} C_l \leq \max_{1 \leq l \leq L} (B_P B_W C_\sigma)^{L-l} C_l,
\end{aligned}$$

where (a) and (b) utilize Assumptions 5.1–5.3.

□

**Lemma H.4.** *Under Assumptions 5.1–5.3, and for any  $l \in [L]$ , the errors caused by sampling are bounded, i.e.,*

$$\begin{aligned}
\left\| \tilde{\mathbf{H}}_{local}^{(l),m} - \mathbf{H}_{local}^{(l),m} \right\|_F &\leq B_{\Delta H}^l, & \left\| \tilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F &\leq B_{\Delta H}^f, \\
\left\| \tilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F &\leq B_{\Delta D}^l, & \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F &\leq B_{\Delta D}^f,
\end{aligned}$$

where

$$\begin{aligned}
B_{\Delta H}^l &= \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_H^l B_{\Delta P}^l)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^l \right), \\
B_{\Delta H}^f &= \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_H^f B_{\Delta P}^f)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^f \right), \\
B_{\Delta D}^l &= \max_{1 \leq l \leq L} \left( (B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l)^{L-l} \right. \\
&\quad \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^l \right), \\
B_{\Delta D}^f &= \max_{1 \leq l \leq L} \left( (B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f)^{L-l} \right. \\
&\quad \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^f \right).
\end{aligned}$$

1404 *Proof.*

1405

1406  $\left\| \widetilde{\mathbf{H}}_{local}^{(l),m} - \mathbf{H}_{local}^{(l),m} \right\|_F$

1407

1408  $= \left\| \sigma \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \mathbf{W}^{(l),m} \right) - \sigma \left( \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right\|_F$

1409

1410  $\stackrel{(a)}{\leq} C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F$

1411

1412  $\leq C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F + C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F$

1413

1414  $\stackrel{(b)}{\leq} C_\sigma B_W B_H^l \left\| \widetilde{\mathbf{P}}_{local}^{(l),m} - \mathbf{P}_{local}^{(l),m} \right\|_F + C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{H}_{local}^{(l-1),m} \right\|_F$

1415

1416  $\stackrel{(c)}{\leq} C_\sigma B_W B_H^l B_{\Delta P}^l + C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{H}_{local}^{(l-1),m} \right\|_F$

1417

1418  $\leq (C_\sigma B_W B_H^l B_{\Delta P}^l)^l + (C_\sigma B_W B_P)^l \left\| \widetilde{\mathbf{X}}_{local}^m - \mathbf{X}_{local}^m \right\|_F$

1419

1420  $\stackrel{(d)}{\leq} (C_\sigma B_W B_H^l B_{\Delta P}^l)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^l$

1421

1422  $\leq \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_H^l B_{\Delta P}^l)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^l \right), \quad (9)$

1423

1424 where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma H.3, and (c)  
 1425 and (d) follow from Proposition H.1.

1426

1427

1428  $\left\| \widetilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F$

1429

1430  $= \left\| \sigma \left( \left( \widetilde{\mathbf{P}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{P}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right) - \sigma \left( \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right\|_F$

1431

1432  $\stackrel{(a)}{\leq} C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{full}^{(l),m} \widetilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$

1433

1434  $\leq C_\sigma B_W \left\| \widetilde{\mathbf{P}}_{full}^{(l),m} \widetilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \widetilde{\mathbf{H}}_{full}^{(l-1),m} \right\|_F + C_\sigma B_W \left\| \mathbf{P}_{full}^{(l),m} \widetilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$

1435

1436  $\stackrel{(b)}{\leq} C_\sigma B_W B_H^f \left\| \widetilde{\mathbf{P}}_{full}^{(l),m} - \mathbf{P}_{full}^{(l),m} \right\|_F + C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F$

1437

1438  $\stackrel{(c)}{\leq} C_\sigma B_W B_H^f B_{\Delta P}^f + C_\sigma B_W B_P \left\| \widetilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F$

1439

1440  $\leq (C_\sigma B_W B_H^f B_{\Delta P}^f)^l + (C_\sigma B_W B_P)^l \left\| \widetilde{\mathbf{X}}_{full}^m - \mathbf{X}_{full}^m \right\|_F$

1441

1442  $\stackrel{(d)}{\leq} (C_\sigma B_W B_H^f B_{\Delta P}^f)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^f$

1443

1444  $\leq \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_H^f B_{\Delta P}^f)^l + (C_\sigma B_W B_P)^l B_{\Delta X}^f \right), \quad (10)$

1445

1446 where (a) follows from Assumptions 5.2 and 5.3, (b) is due to Assumption 5.3 and Lemma H.3, and  
 1447 (c) and (d) are because of Proposition H.1.

1448

1449

1450  $\left\| \widetilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F$

1451

1452  $= \left\| \left[ \widetilde{\mathbf{P}}_{local}^{(l+1),m} \right]^\top \widetilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right.$

1453

1454  $\quad \left. - \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F$

1455

1456

1457  $\stackrel{(a)}{\leq} B_W \left\| \left[ \widetilde{\mathbf{P}}_{local}^{(l+1),m} \right]^\top \widetilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \widetilde{\mathbf{Z}}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \right\|_F$

$$\begin{aligned}
& \leq B_W \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) \right\|_F \\
& + B_W \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) \right\|_F \\
& + B_W \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \right\|_F \\
& \stackrel{(b)}{\leq} B_W B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l+1),m} - \mathbf{P}_{local}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} - \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
& + B_W B_P B_D^l \left\| \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l+1),m} \right) - \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \right\|_F \\
& \stackrel{(c)}{\leq} B_W B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l+1),m} - \mathbf{P}_{local}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} - \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^l L_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
& \leq B_W B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l+1),m} - \mathbf{P}_{local}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} - \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^l L_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F \\
& + B_W^2 B_P B_D^l L_\sigma \left\| \mathbf{P}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
& \stackrel{(d)}{\leq} B_W B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l+1),m} - \mathbf{P}_{local}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} - \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^l L_\sigma B_H^l \left\| \tilde{\mathbf{P}}_{local}^{(l),m} - \mathbf{P}_{local}^{(l),m} \right\|_F + B_W^2 B_P^2 B_D^l L_\sigma \left\| \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
& \stackrel{(e)}{\leq} B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l \\
& + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l+1),m} - \mathbf{D}_{local}^{(l+1),m} \right\|_F \\
& \leq (B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} \left\| \tilde{\mathbf{D}}_{local}^{(L),m} - \mathbf{D}_{local}^{(L),m} \right\|_F \\
& \stackrel{(f)}{\leq} (B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l \left\| \tilde{\mathbf{H}}_{local}^{(L),m} - \mathbf{H}_{local}^{(L),m} \right\|_F \\
& \stackrel{(g)}{\leq} (B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^l \\
& \leq \max_{1 \leq l \leq L} \left( (B_W B_D^l C_\sigma B_{\Delta P}^l + B_W^2 B_P B_D^l L_\sigma B_H^l B_{\Delta P}^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^l)^{L-l} \right. \\
& \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^l \right),
\end{aligned}$$

where (a) uses Assumption 5.3, (b) is because of Assumptions 5.2 and 5.3 and Lemma H.3, (c) follows from Assumptions 5.2 and 5.3, (d) utilizes Assumption 5.3 and Lemma H.3, (e) results from Eq. (9) and Proposition H.1, (f) is because of Assumption 5.1, and (g) is due to Eq. (9).

1505

1506

1507

1508

1509

1510

1511

$$\begin{aligned}
& \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \\
& = \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l+1),m} + \tilde{\mathbf{P}}_{remote}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right. \\
& \left. - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F
\end{aligned}$$

$$\begin{aligned}
& \stackrel{(a)}{\leq} B_W \left\| \left[ \tilde{\mathbf{P}}_{full}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F \\
& \leq B_W \left\| \left[ \tilde{\mathbf{P}}_{full}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \right\|_F \\
& + B_W \left\| \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) \right\|_F \\
& + B_W \left\| \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F \\
& \stackrel{(b)}{\leq} B_W B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W B_P B_D^f \left\| \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l+1),m} \right) - \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F \\
& \stackrel{(c)}{\leq} B_W B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} \tilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \leq B_W B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} \tilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \tilde{\mathbf{H}}_{full}^{(l),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \mathbf{P}_{full}^{(l+1),m} \tilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \stackrel{(d)}{\leq} B_W B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma B_H^f \left\| \tilde{\mathbf{P}}_{full}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W^2 B_P^2 B_D^f L_\sigma \left\| \tilde{\mathbf{H}}_{full}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \stackrel{(e)}{\leq} B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f \\
& + B_W B_P C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& \leq \left( B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} \left\| \tilde{\mathbf{D}}_{full}^{(L),m} - \mathbf{D}_{full}^{(L),m} \right\|_F \\
& \stackrel{(f)}{\leq} \left( B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l \left\| \tilde{\mathbf{H}}_{full}^{(L),m} - \mathbf{H}_{full}^{(L),m} \right\|_F \\
& \stackrel{(g)}{\leq} \left( B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^f \\
& \leq \max_{1 \leq l \leq L} \left( \left( B_W B_D^f C_\sigma B_{\Delta P}^f + B_W^2 B_P B_D^f L_\sigma B_H^f B_{\Delta P}^f + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^f \right)^{L-l} \right. \\
& \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^f \right),
\end{aligned}$$

where (a) is because of Assumption 5.3, (b) results from Assumptions 5.2 and 5.3 and Lemma H.3, (c) uses Assumptions 5.2 and 5.3, (d) is due to Assumption 5.3 and Lemma H.3, (e) follows from Eq. (10) and Proposition H.1, (f) utilizes Assumption 5.1, and (g) is because of Eq. (10).

□

1566  
 1567 **Lemma H.5.** *Under Assumptions 5.1–5.3, and for any  $l \in [L]$ , the errors caused by the information  
 1568 loss of the cross-client neighbors are bounded, i.e.,*

1569 
$$\left\| \mathbf{H}_{local}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F \leq B_{\Delta H}^r, \quad \left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \leq B_{\Delta D}^r,$$
  
 1570

1571 where

1572 
$$B_{\Delta H}^r = \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_P)^l B_X^r + \left( C_\sigma B_W B_H^f B_P \right)^l \right),$$
  
 1573  
 1574 
$$B_{\Delta D}^r = \max_{1 \leq l \leq L} \left( \left( B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^l L_\sigma B_H^l + B_W^2 B_P^2 B_D^l L_\sigma B_{\Delta H}^r \right)^{L-l} \right. \\ 1575 \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^r \right).$$
  
 1576  
 1577  
 1578

1579 *Proof.*

1580  
 1581 
$$\left\| \mathbf{H}_{local}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F = \left\| \sigma \left( \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right) \mathbf{W}^{(l),m} - \sigma \left( \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right) \mathbf{W}^{(l),m} \right\|_F$$
  
 1582  
 1583 
$$\stackrel{(a)}{\leq} C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$
  
 1584  
 1585 
$$\leq C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$
  
 1586  
 1587 
$$+ C_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$
  
 1588  
 1589 
$$\stackrel{(b)}{\leq} C_\sigma B_W B_P \left\| \mathbf{H}_{local}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F + C_\sigma B_W B_H^f \left\| \mathbf{P}_{local}^{(l),m} - \mathbf{P}_{full}^{(l),m} \right\|_F$$
  
 1590  
 1591 
$$\leq C_\sigma B_W B_P \left\| \mathbf{H}_{local}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F + C_\sigma B_W B_H^f \left\| \mathbf{P}_{remote}^{(l),m} \right\|_F$$
  
 1592  
 1593 
$$\stackrel{(c)}{\leq} C_\sigma B_W B_P \left\| \mathbf{H}_{local}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F + C_\sigma B_W B_H^f B_P$$
  
 1594  
 1595 
$$\leq (C_\sigma B_W B_P)^l \left\| \mathbf{X}_{local}^m - \mathbf{X}_{full}^m \right\|_F + \left( C_\sigma B_W B_H^f B_P \right)^l$$
  
 1596  
 1597 
$$\stackrel{(d)}{\leq} (C_\sigma B_W B_P)^l B_X^r + \left( C_\sigma B_W B_H^f B_P \right)^l$$
  
 1598  
 1599 
$$\leq \max_{1 \leq l \leq L} \left( (C_\sigma B_W B_P)^l B_X^r + \left( C_\sigma B_W B_H^f B_P \right)^l \right), \quad (11)$$
  
 1600

1601 where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma H.3, (c)  
 1602 follows from Assumption 5.3, and (d) is due to Proposition H.1.

1603  
 1604  
 1605 
$$\left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F$$
  
 1606  
 1607 
$$= \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right. \\ 1608 \left. - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \left[ \mathbf{W}^{(l+1),m} \right]^\top \right\|_F$$
  
 1609  
 1610 
$$\stackrel{(a)}{\leq} B_W \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F$$
  
 1611  
 1612 
$$\leq B_W \left\| \left[ \mathbf{P}_{local}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \right\|_F$$
  
 1613  
 1614 
$$+ B_W \left\| \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{local}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) \right\|_F$$
  
 1615  
 1616 
$$+ B_W \left\| \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) - \left[ \mathbf{P}_{full}^{(l+1),m} \right]^\top \mathbf{D}_{full}^{(l+1),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F$$
  
 1617  
 1618  
 1619

$$\begin{aligned}
& \stackrel{(b)}{\leq} B_W B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W B_P B_D^f \left\| \nabla \sigma \left( \mathbf{Z}_{local}^{(l+1),m} \right) - \nabla \sigma \left( \mathbf{Z}_{full}^{(l+1),m} \right) \right\|_F \\
& \stackrel{(c)}{\leq} B_W B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} \mathbf{H}_{local}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \leq B_W B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} \mathbf{H}_{local}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{local}^{(l),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma \left\| \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{local}^{(l),m} - \mathbf{P}_{full}^{(l+1),m} \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \stackrel{(d)}{\leq} B_W B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W B_P C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& + B_W^2 B_P B_D^f L_\sigma B_H^l \left\| \mathbf{P}_{local}^{(l+1),m} - \mathbf{P}_{full}^{(l+1),m} \right\|_F + B_W^2 B_P^2 B_D^f L_\sigma \left\| \mathbf{H}_{local}^{(l),m} - \mathbf{H}_{full}^{(l),m} \right\|_F \\
& \stackrel{(e)}{\leq} B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^f L_\sigma B_H^l + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^r \\
& + B_W B_P C_\sigma \left\| \mathbf{D}_{local}^{(l+1),m} - \mathbf{D}_{full}^{(l+1),m} \right\|_F \\
& \leq \left( B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^f L_\sigma B_H^l + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^r \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} \left\| \mathbf{D}_{local}^{(L),m} - \mathbf{D}_{full}^{(L),m} \right\|_F \\
& \stackrel{(f)}{\leq} \left( B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^f L_\sigma B_H^l + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^r \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l \left\| \mathbf{H}_{local}^{(L),m} - \mathbf{H}_{full}^{(L),m} \right\|_F \\
& \stackrel{(g)}{\leq} \left( B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^f L_\sigma B_H^l + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^r \right)^{L-l} \\
& + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^r \\
& \leq \max_{1 \leq l \leq L} \left( \left( B_W B_D^l C_\sigma B_P + B_W^2 B_P^2 B_D^f L_\sigma B_H^l + B_W^2 B_P^2 B_D^f L_\sigma B_{\Delta H}^r \right)^{L-l} \right. \\
& \left. + (B_W B_P C_\sigma)^{L-l} L_l B_{\Delta H}^r \right),
\end{aligned}$$

where (a) follows from Assumption 5.3, (b) uses Assumptions 5.2 and 5.3 and Lemma H.3, (c) is because of Assumptions 5.2 and 5.3, (d) results from Assumption 5.3 and Lemma H.3, (e) is due to Assumption 5.3 and Eq. (11), (f) utilizes Assumption 5.1, and (g) uses Eq. (11).

□

### H.3 ERRORS OF STOCHASTIC GRADIENTS

**Lemma H.6.** *Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full gradients are bounded as follows:*

$$\left\| \nabla F_{local}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{local}^m(\boldsymbol{\theta}^m) \right\|_F \leq L B_{\Delta G}^l, \quad \left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{full}^m(\boldsymbol{\theta}^m) \right\|_F \leq L B_{\Delta G}^f,$$

where

$$\begin{aligned}
B_{\Delta G}^l &= \max_{1 \leq l \leq L} \left( (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_H^l B_{\Delta P}^l + B_P B_H^l C_\sigma B_{\Delta D}^l \right. \\
&\quad \left. + (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_P B_{\Delta H}^l \right), \tag{12}
\end{aligned}$$

$$\begin{aligned}
1674 \quad B_{\Delta G}^f &= \max_{1 \leq l \leq L} \left( \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_{\Delta P}^f + B_P B_H^f C_\sigma B_{\Delta D}^f \right. \\
1675 \quad &\quad \left. + \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P B_{\Delta H}^f \right) \tag{13}
\end{aligned}$$

1679 *Proof.*

$$\begin{aligned}
1681 \quad &\left\| \tilde{\mathbf{G}}_{local}^{(l),m} - \mathbf{G}_{local}^{(l),m} \right\|_F \\
1682 \quad &= \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) \right\|_F \\
1683 \quad &\leq \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) \right\|_F \\
1684 \quad &\quad + \left\| \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) \right\|_F \\
1685 \quad &\quad + \left\| \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) \right\|_F \\
1686 \quad &\stackrel{(a)}{\leq} B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F + B_P B_H^l C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F \\
1687 \quad &\quad + B_P B_H^l B_D^l \left\| \nabla \sigma \left( \tilde{\mathbf{Z}}_{local}^{(l),m} \right) - \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) \right\|_F \\
1688 \quad &\stackrel{(b)}{\leq} B_D^l C_\sigma \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F + B_P B_H^l C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F \\
1689 \quad &\quad + B_P B_H^l B_D^l L_\sigma B_W \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
1690 \quad &\leq (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) \left\| \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} \right\|_F \\
1691 \quad &\quad + (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) \left\| \mathbf{P}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
1692 \quad &\quad + B_P B_H^l C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F \\
1693 \quad &\stackrel{(c)}{\leq} (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_H^l \left\| \tilde{\mathbf{P}}_{local}^{(l),m} - \mathbf{P}_{local}^{(l),m} \right\|_F + B_P B_H^l C_\sigma \left\| \tilde{\mathbf{D}}_{local}^{(l),m} - \mathbf{D}_{local}^{(l),m} \right\|_F \\
1694 \quad &\quad + (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_P \left\| \tilde{\mathbf{H}}_{local}^{(l-1),m} - \mathbf{H}_{local}^{(l-1),m} \right\|_F \\
1695 \quad &\stackrel{(d)}{\leq} (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_H^l B_{\Delta P}^l + B_P B_H^l C_\sigma B_{\Delta D}^l \\
1696 \quad &\quad + (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_P B_{\Delta H}^l \\
1697 \quad &\leq \max_{1 \leq l \leq L} \left( (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_H^l B_{\Delta P}^l + B_P B_H^l C_\sigma B_{\Delta D}^l \right. \\
1698 \quad &\quad \left. + (B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W) B_P B_{\Delta H}^l \right) := B_{\Delta G}^l,
\end{aligned}$$

1718 where (a) follows from Assumptions 5.2 and 5.3 and Lemma H.3, (b) is because of Assumptions 5.2  
1719 and 5.3, (c) uses Assumption 5.3 and Lemma H.3, and (d) results from Lemma H.4 and Proposition  
1720 H.1.

1721 When client  $m$  performs local training with only its local data, the error between the stochastic  
1722 gradient and the full-gradient can be bounded as:

$$1724 \quad \left\| \nabla F_{local}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{local}^m(\boldsymbol{\theta}^m) \right\|_F = \sum_{l=1}^L \left\| \mathbf{G}_{local}^{(l),m} - \tilde{\mathbf{G}}_{local}^{(l),m} \right\|_F \leq L B_{\Delta G}^l.$$

$$1727 \quad \left\| \tilde{\mathbf{G}}_{full}^{(l),m} - \mathbf{G}_{full}^{(l),m} \right\|_F$$

$$\begin{aligned}
&= \left\| \left[ \tilde{\mathbf{P}}_{local}^{(l),m} \tilde{\mathbf{H}}_{local}^{(l-1),m} + \tilde{\mathbf{P}}_{remote}^{(l),m} \tilde{\mathbf{H}}_{remote}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) \right. \\
&\quad \left. - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F \\
&\leq \left\| \left[ \tilde{\mathbf{P}}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) \right\|_F \\
&\quad + \left\| \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \tilde{\mathbf{D}}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) \right\|_F \\
&\quad + \left\| \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F \\
&\stackrel{(a)}{\leq} B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F + B_P B_H^f C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \\
&\quad + B_P B_H^f B_D^f \left\| \nabla \sigma \left( \tilde{\mathbf{Z}}_{full}^{(l),m} \right) - \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F \\
&\stackrel{(b)}{\leq} B_D^f C_\sigma \left\| \tilde{\mathbf{P}}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F + B_P B_H^f C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \\
&\quad + B_P B_H^f B_D^f L_\sigma B_W \left\| \tilde{\mathbf{P}}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F \\
&\leq \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) \left\| \tilde{\mathbf{P}}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} \right\|_F \\
&\quad + \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) \left\| \mathbf{P}_{full}^{(l),m} \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F \\
&\quad + B_P B_H^f C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \\
&\stackrel{(c)}{\leq} \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f \left\| \tilde{\mathbf{P}}_{full}^{(l),m} - \mathbf{P}_{full}^{(l),m} \right\|_F + B_P B_H^f C_\sigma \left\| \tilde{\mathbf{D}}_{full}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F \\
&\quad + \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P \left\| \tilde{\mathbf{H}}_{full}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F \\
&\stackrel{(d)}{\leq} \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_{\Delta P}^f + B_P B_H^f C_\sigma B_{\Delta D}^f \\
&\quad + \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P B_{\Delta H}^f \\
&\leq \max_{1 \leq l \leq L} \left( \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_{\Delta P}^f + B_P B_H^f C_\sigma B_{\Delta D}^f \right. \\
&\quad \left. + \left( B_D^f C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P B_{\Delta H}^f \right) := B_{\Delta G}^f,
\end{aligned}$$

where (a) results from Assumptions 5.2 and 5.3 and Lemma H.3, (b) uses Assumptions 5.2 and 5.3, (c) is due to Assumption 5.3 and Lemma H.3, and (d) is because of Lemma H.4 and Proposition H.1.

When client  $m$  conducts cross-client training using its local data and the cross-client neighbors, the error between the stochastic gradient and the full-gradient can be bounded as:

$$\left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla \tilde{F}_{full}^m(\boldsymbol{\theta}^m) \right\|_F = \sum_{l=1}^L \left\| \mathbf{G}_{full}^{(l),m} - \tilde{\mathbf{G}}_{full}^{(l),m} \right\|_F \leq LB_{\Delta G}^f.$$

□

**Lemma H.7.** *Under Assumptions 5.1–5.3, the error between the full gradient computed with both the local graph data and the cross-client neighbors and the full gradient computed with only the local graph data is upper-bounded as follows:*

$$\left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla F_{local}^m(\boldsymbol{\theta}^m) \right\|_F \leq LB_{\Delta G}^r,$$

where

$$B_{\Delta G}^r = \max_{1 \leq l \leq L} \left( \left( B_D^l C_\sigma + B_P B_H^l B_D^l L_\sigma B_W \right) B_P B_{\Delta H}^r + B_P B_H^l C_\sigma B_{\Delta D}^r \right)$$

$$1782 \quad + \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_P \right) \quad (14)$$

$$1783$$

$$1784$$

$$1785$$

1786 *Proof.*

$$1787$$

$$1788 \quad \left\| \mathbf{G}_{local}^{(l),m} - \mathbf{G}_{full}^{(l),m} \right\|_F$$

$$1789$$

$$1790 \quad = \left\| \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F$$

$$1791$$

$$1792 \quad \leq \left\| \left[ \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) \right\|_F$$

$$1793$$

$$1794 \quad + \left\| \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{local}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) \right\|_F$$

$$1795$$

$$1796 \quad + \left\| \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F$$

$$1797$$

$$1798 \quad + \left\| \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \left[ \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right]^\top \mathbf{D}_{full}^{(l),m} \circ \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F$$

$$1799$$

$$1800 \quad \stackrel{(a)}{\leq} B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F + B_P B_H^f C_\sigma \left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F$$

$$1801$$

$$1802 \quad + B_P B_H^f B_D^f \left\| \nabla \sigma \left( \mathbf{Z}_{local}^{(l),m} \right) - \nabla \sigma \left( \mathbf{Z}_{full}^{(l),m} \right) \right\|_F$$

$$1803$$

$$1804 \quad \stackrel{(b)}{\leq} B_D^l C_\sigma \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F + B_P B_H^f C_\sigma \left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F$$

$$1805$$

$$1806 \quad + B_P B_H^f B_D^f L_\sigma B_W \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$

$$1807$$

$$1808 \quad \leq \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{local}^{(l-1),m} - \mathbf{P}_{local}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$

$$1809$$

$$1810 \quad + \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) \left\| \mathbf{P}_{local}^{(l),m} \mathbf{H}_{full}^{(l-1),m} - \mathbf{P}_{full}^{(l),m} \mathbf{H}_{full}^{(l-1),m} \right\|_F$$

$$1811$$

$$1812 \quad + B_P B_H^f C_\sigma \left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F$$

$$1813$$

$$1814 \quad \stackrel{(c)}{\leq} \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P \left\| \mathbf{H}_{local}^{(l-1),m} - \mathbf{H}_{full}^{(l-1),m} \right\|_F$$

$$1815$$

$$1816 \quad + \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f \left\| \mathbf{P}_{local}^{(l),m} - \mathbf{P}_{full}^{(l),m} \right\|_F + B_P B_H^f C_\sigma \left\| \mathbf{D}_{local}^{(l),m} - \mathbf{D}_{full}^{(l),m} \right\|_F$$

$$1817$$

$$1818 \quad \stackrel{(d)}{\leq} \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P B_{\Delta H}^r + B_P B_H^f C_\sigma B_{\Delta D}^r$$

$$1819$$

$$1820 \quad + \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_P$$

$$1821$$

$$1822 \quad \leq \max_{1 \leq l \leq L} \left( \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_P B_{\Delta H}^r + B_P B_H^f C_\sigma B_{\Delta D}^r \right.$$

$$1823$$

$$1824 \quad \left. + \left( B_D^l C_\sigma + B_P B_H^f B_D^f L_\sigma B_W \right) B_H^f B_P \right) = B_{\Delta G}^r,$$

$$1825$$

1826 where (a) is because of Assumptions 5.2 and 5.3 and Lemma H.3, (b) uses Assumptions 5.2 and 5.3, (c) follows from Assumption 5.3 and Lemma H.3, and (d) results from Assumption 5.3 and Lemma H.5.

1827 The error between the full gradient computed with both the local graph data and the cross-client  
1828 neighbors and the full gradient computed with only the local graph data is bounded as follows:

$$1829 \quad \left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla F_{local}^m(\boldsymbol{\theta}^m) \right\|_F = \sum_{l=1}^L \left\| \mathbf{G}_{local}^{(l),m} - \mathbf{G}_{full}^{(l),m} \right\|_F \leq L B_{\Delta G}^r.$$

$$1830$$

$$1831$$

$$1832$$

$$1833$$

$$1834$$

$$1835$$

□

1836 H.4 MAIN PROOF OF THEOREM 5.6  
1837

1838 **Theorem H.8.** *Under Assumptions 5.1–5.3, choose step-size  $\alpha = \min \left\{ \sqrt{M}/\sqrt{T}, 1/L_F \right\}$ , where*  
1839  *$L_F$  is the smoothness constant given in Lemma H.2. The output of Swift-FedGNN with a  $L$ -layer*  
1840 *GNN satisfies:*

$$1841 \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|^2 \leq \frac{2}{\sqrt{MT}} (\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}(\boldsymbol{\theta}^*)) + \left(1 - \frac{K}{IM}\right) L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2 + \frac{K}{IM} L^2 (B_{\Delta G}^f)^2.$$

1845 *Proof.*

$$1846 \mathcal{L}(\boldsymbol{\theta}_{t+1}) - \mathcal{L}(\boldsymbol{\theta}_t)$$

$$1848 \stackrel{(a)}{\leq} \langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t \rangle + \frac{L_F}{2} \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t\|^2$$

$$1850 \stackrel{(b)}{=} -\alpha \left\langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\rangle + \frac{L_F \alpha^2}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1853 \stackrel{(c)}{=} -\frac{\alpha}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 - \frac{\alpha}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2 + \frac{\alpha}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) - \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1855 + \frac{L_F \alpha^2}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1858 = -\frac{\alpha}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 - \frac{\alpha}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2 + \frac{\alpha}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} (\nabla F^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m)) \right\|^2$$

$$1861 + \frac{L_F \alpha^2}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1864 \stackrel{(d)}{\leq} -\frac{\alpha}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 - \frac{\alpha}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2 + \frac{\alpha}{2} \frac{1}{M} \sum_{m \in \mathcal{M}} \left\| \nabla F^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1867 + \frac{L_F \alpha^2}{2} \left\| \frac{1}{M} \sum_{m \in \mathcal{M}} \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2$$

$$1870 \stackrel{(e)}{\leq} -\frac{\alpha}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 + \frac{\alpha}{2} \frac{1}{M} \sum_{m \in \mathcal{M}} \left\| \nabla F^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\|^2, \quad (15)$$

1872 where (a) follows from Lemma H.2, (b) is because of the update rule in Swift-FedGNN, (c) uses  
1873  $\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{y}\|^2 - \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2$ , (d) utilizes  $\|\sum_{i=1}^n \mathbf{x}_i\|^2 \leq n \sum_{i=1}^n \|\mathbf{x}_i\|^2$ , and (e) is due  
1874 to the choice of  $\alpha \leq 1/L_F$ .

1875 When  $t \in [(n_t - 1)I + 1, n_t I - 1] \cap \mathbb{Z}$ , where  $n_t = \{1, 2, \dots\}$ , Swift-FedGNN conducts local  
1876 training for all clients  $m \in \mathcal{M}$ . Thus,

$$1878 \left\| \nabla F^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\| = \left\| \nabla F_{full}^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}_{local}^m(\boldsymbol{\theta}_t^m) \right\| \\ 1879 \leq \left\| \nabla F_{full}^m(\boldsymbol{\theta}_t^m) - \nabla F_{local}^m(\boldsymbol{\theta}_t^m) \right\| + \left\| \nabla F_{local}^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}_{local}^m(\boldsymbol{\theta}_t^m) \right\| \\ 1880 \stackrel{(a)}{\leq} LB_{\Delta G}^r + LB_{\Delta G}^l, \quad (16)$$

1884 where (a) follows from Lemmas H.6 and H.7.

1885 When  $t = n_t I$ , where  $n_t = \{1, 2, \dots\}$ , Swift-FedGNN performs local training for clients  $m \in \mathcal{M} \setminus \mathcal{K}$ ,  
1886 and thus the inequality (16) holds for these clients. The randomly sampled clients  $m \in \mathcal{K}$  conduct  
1887 cross-client training, and thus

$$1889 \left\| \nabla F^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}^m(\boldsymbol{\theta}_t^m) \right\| = \left\| \nabla F_{full}^m(\boldsymbol{\theta}_t^m) - \nabla \tilde{F}_{full}^m(\boldsymbol{\theta}_t^m) \right\| \stackrel{(a)}{\leq} LB_{\Delta G}^f,$$

1890 where (a) uses Lemma H.6.

1891 Telescoping (15) from  $i = (n_t - 1)I + 1$  to  $n_t I$ , we have

$$\begin{aligned}
& \sum_{i=(n_t-1)I+1}^{n_t I} (\mathcal{L}(\boldsymbol{\theta}_{i+1}) - \mathcal{L}(\boldsymbol{\theta}_i)) \\
& \leq -\frac{\alpha}{2} \sum_{i=(n_t-1)I+1}^{n_t I} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_i) \right\|^2 + \frac{\alpha}{2}(I-1)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2 + \frac{\alpha}{2M}KL^2 (B_{\Delta G}^f)^2 \\
& \quad + \frac{\alpha}{2M}(M-K)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2.
\end{aligned}$$

1901

1902 Choosing  $T = n_t I$  yields

$$\begin{aligned}
& \sum_{t=0}^{T-1} (\mathcal{L}(\boldsymbol{\theta}_{t+1}) - \mathcal{L}(\boldsymbol{\theta}_t)) \\
& \leq -\frac{\alpha}{2} \sum_{t=0}^{T-1} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 + \frac{\alpha}{2}(T-n_t)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2 + n_t \frac{\alpha}{2M}KL^2 (B_{\Delta G}^f)^2 \\
& \quad + n_t \frac{\alpha}{2M}(M-K)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2.
\end{aligned}$$

1912 Rearranging the terms and multiplying both sides by  $2/\alpha$ , we get

$$\begin{aligned}
& \sum_{t=0}^{T-1} \left\| \nabla \mathcal{L}(\boldsymbol{\theta}_t) \right\|^2 \\
& \leq \frac{2}{\alpha} \sum_{t=0}^{T-1} (\mathcal{L}(\boldsymbol{\theta}_t) - \mathcal{L}(\boldsymbol{\theta}_{t+1})) + (T-n_t)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2 + \frac{n_t}{M}KL^2 (B_{\Delta G}^f)^2 \\
& \quad + \frac{n_t}{M}(M-K)L^2 (B_{\Delta G}^l + B_{\Delta G}^r)^2.
\end{aligned}$$

1922 Dividing both sides by  $T$  and choosing  $\alpha = \sqrt{M}/\sqrt{T}$  completes the proof of Theorem 5.6.

1923

□

1924

1925

## I THEORETICAL ANALYSIS EXTENSIONS FOR GraphSAGE AND GIN

1929 While our theoretical analysis is presented under the GCN architecture for mathematical tractability, 1930 the core convergence results of Swift-FedGNN extend naturally to a broader class of element-wise 1931 operation-based GNNs, including GraphSAGE and GIN. In particular, our convergence bounds 1932 remain applicable to these models under similar assumptions.

1933 The main challenge in extending the theoretical analysis to GraphSAGE and GIN lies in handling 1934 non-linear and heterogeneous aggregation functions, which are more prominent in GraphSAGE 1935 (e.g., max-pooling, LSTM) and GIN (e.g., MLP-based injective updates). These functions introduce 1936 additional sources of nonlinearity and variance in the layer-wise error propagation, making it harder 1937 to tightly bound the bias and variance of the resulting stochastic gradients.

1938 Below, we describe the respective update rules and outline the required modifications to adapt our 1939 proof strategy for GraphSAGE and GIN.

1940

### I.1 UPDATE RULES FOR GraphSAGE AND GIN

1941 **1) GraphSAGE:** The propagation matrices for GraphSAGE are given by  $\mathbf{K}_{local}^m = \mathbf{D}_m^{-1} \hat{\mathbf{A}}_{local}^m$  1942 and  $\mathbf{K}_{remote}^m = \mathbf{D}_m^{-1} \hat{\mathbf{A}}_{remote}^m$ . Similar to GCN, when client  $m$  trains using only the 1943

1944 local graph data, the update rule for GraphSAGE (i.e., Eq. (3) and (4)) is:  $\widetilde{\mathbf{H}}_t^{(l),m} =$   
 1945  $\sigma \left( \left[ \widetilde{\mathbf{H}}_t^{(l-1),m} \parallel \widetilde{\mathbf{K}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right] \mathbf{W}_t^{(l),m} \right)$ . When client  $m$  trains based on both the local graph  
 1946 data and the cross-client neighbors, the update rule for GraphSAGE (i.e., Eq. (5)–(8)) becomes  
 1947  $\widetilde{\mathbf{H}}_t^{(l),m} = \sigma \left( \left[ \widetilde{\mathbf{H}}_t^{(l-1),m} \parallel \left( \widetilde{\mathbf{K}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{K}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right) \right] \mathbf{W}_t^{(l),m} \right)$ .  
 1948

1949  
 1950 **2) GIN:** The propagation matrices for GIN are defined as  $\mathbf{S}_{local}^{(l),m} = \mathbf{A}_{local}^m + (1 + \epsilon^{(l),m}) \mathbf{I}$  and  
 1951  $\mathbf{S}_{remote}^{(l),m} = \mathbf{A}_{remote}^m + (1 + \epsilon^{(l),m}) \mathbf{I}$ . When client  $m$  trains on local graph data only, the update rule  
 1952 for GIN (i.e., Eq. (3) and (4)) is:  $\widetilde{\mathbf{H}}_t^{(l),m} = \text{MLP}^{(l),m} \left( \widetilde{\mathbf{S}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} \right)$ . When client  $m$  trains using  
 1953 both the local graph data and the cross-client neighbors, the update rule for GIN (i.e., Eq. (5)–(8))  
 1954 becomes:  $\widetilde{\mathbf{H}}_t^{(l),m} = \text{MLP}^{(l),m} \left( \widetilde{\mathbf{S}}_{local}^{(l),m} \widetilde{\mathbf{H}}_{local}^{(l-1),m} + \widetilde{\mathbf{S}}_{remote}^{(l),m} \widetilde{\mathbf{H}}_{remote}^{(l-1),m} \right)$ .  
 1955

## 1956 I.2 PROOF SKETCH: EXTENDING THEORETICAL ANALYSIS TO GraphSAGE AND GIN

1957 Extending the convergence analysis in Theorem 5.6 to GraphSAGE and GIN follows a similar proof  
 1958 strategy as that for GCN, with the GCN-specific lemmas replaced by their respective counterparts for  
 1959 GraphSAGE or GIN.

1960 **1) Modified Bias Bounding Strategy:** The original convergence proof (Theorem 5.6) relies on  
 1961 bounding the gradient bias introduced by (i) stochastic neighbor sampling and (ii) the absence  
 1962 of cross-client neighbors. These bounds are formalized in Lemmas 5.4 and 5.5, supported by  
 1963 Lemmas H.3–H.5, all of which are based on GCN-specific updates.

1964 To generalize the analysis, we replace the GCN-specific update rules with the corresponding rules for  
 1965 GraphSAGE or GIN, and re-derive the associated bounds in Lemmas 5.4 and 5.5 and their supporting  
 1966 lemmas (Lemmas H.3–H.5). This yields modified upper bounds on the gradient bias, where the  
 1967 constants depend on the respective GNN architectures.

1968 **Lemma I.1.** *Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full  
 1969 gradients are bounded as follows:*

$$1970 \quad \left\| \nabla F_{local}^m(\boldsymbol{\theta}^m) - \nabla \widetilde{F}_{local}^m(\boldsymbol{\theta}^m) \right\|_F \leq C_{\Delta G}^l, \quad \left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla \widetilde{F}_{full}^m(\boldsymbol{\theta}^m) \right\|_F \leq C_{\Delta G}^f,$$

1971 where  $C_{\Delta G}^l$  and  $C_{\Delta G}^f$  are constants that depend on the respective GNN architectures (e.g., Graph-  
 1972 SAGE or GIN) and are positively correlated with the GNN depth.

1973 **Lemma I.2.** *Under Assumptions 5.1–5.3, the error between the full gradient computed with both the  
 1974 local graph data and the cross-client neighbors and the full gradient computed with only the local  
 1975 graph data is upper-bounded as follows:*

$$1976 \quad \left\| \nabla F_{full}^m(\boldsymbol{\theta}^m) - \nabla F_{local}^m(\boldsymbol{\theta}^m) \right\|_F \leq C_{\Delta G}^r,$$

1977 where  $C_{\Delta G}^r$  is a constant that depends on the respective GNN architectures (e.g., GraphSAGE or  
 1978 GIN) and is positively correlated with the GNN depth.

1979 **2) Generalized Convergence Result:** By substituting the updated gradient bias bounds (Lemmas I.1  
 1980 and I.2) into the main convergence proof (Theorem 5.6), we obtain the following generalized  
 1981 convergence result for Swift-FedGNN with GraphSAGE or GIN:

$$1982 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|^2 \leq \frac{2(\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}(\boldsymbol{\theta}^*))}{\sqrt{MT}} + (C_{\Delta G}^l + C_{\Delta G}^r)^2 + \frac{K}{IM} \left( (C_{\Delta G}^f)^2 - (C_{\Delta G}^l + C_{\Delta G}^r)^2 \right),$$

1983 where the residual error terms depend on the specific GNN architecture used.

1984 This extension demonstrates that Swift-FedGNN’s convergence guarantees are not limited to GCN,  
 1985 but remain valid for other element-wise operation-based GNNs such as GraphSAGE and GIN under  
 1986 similar assumptions. Importantly, the key theoretical insights (e.g., the residual error scaling with the  
 1987 correction frequency  $I$  and the client sampling size  $K$ ) persist across architectures, supporting the  
 1988 broad applicability of our framework.