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ABSTRACT

Graph neural networks (GNNs) have achieved great success in a wide variety of
graph-based learning applications. While distributed GNN training with sampling-
based mini-batches expedites learning on large graphs, it is not applicable to
geo-distributed data that must remain on-site to preserve privacy. On the other
hand, federated learning (FL) has been widely used to enable privacy-preserving
training under data parallelism. However, applying FL directly to GNNs either
results in cross-client neighbor information loss or incurs expensive cross-client
neighbor sampling and communication costs due to the large graph size and the
dependencies between nodes among different clients. To overcome these chal-
lenges, we propose a new federated graph learning (FGL) algorithmic framework
called Swift-FedGNN that primarily performs efficient parallel local training and
periodically conducts cross-client training. Specifically, in Swift-FedGNN, each
client primarily trains a local GNN model using only its local graph data, and
some randomly sampled clients periodically learn the local GNN models based
on their local graph data and the dependent nodes across clients. We theoretically
establish the convergence performance of Swift-FedGNN and show that it enjoys
a convergence rate of O

(
T−1/2

)
, matching the state-of-the-art (SOTA) rate of

sampling-based GNN methods, despite operating in the challenging FL setting. Ex-
tensive experiments on real-world datasets show that Swift-FedGNN significantly
outperforms the SOTA FGL approaches in terms of efficiency, while achieving
comparable accuracy.

1 INTRODUCTION

1) Background and Motivation: Graph neural networks (GNNs) have received increasing attention
in recent years and have been widely used across various applications, such as social networks Deng
et al. (2019); Qiu et al. (2018), recommendation systems Ying et al. (2018); Wang et al. (2019a), and
drug discovery Wang et al. (2022b); Do et al. (2019). GNN learns high-level graph representations by
iteratively aggregating neighboring features of each node, which is then used for downstream tasks,
such as node classification Kipf & Welling (2017); Hamilton et al. (2017), link prediction Yao et al.
(2023b); Zhang & Chen (2018), and graph classification Zhang et al. (2018); Bacciu et al. (2018).

Real-world graph datasets can be extensive in scale (e.g., Microsoft Academic Graph Wang et al.
(2020) with over 100 million nodes) and often reside across geo-distributed sites where data protection
laws prohibit direct data sharing Yao et al. (2023a). Single devices (e.g., GPUs) often lack the capacity
for training such large-scale datasets, which leads to a compelling need for distributed graph learning
(DGL) Fey & Lenssen (2019); Zheng et al. (2020). However, the common DGL paradigm, consisting
of subgraph sampling Zeng et al. (2020) and mini-batch training Luo et al. (2022), requires direct
data sharing among workers, which conflicts with privacy regulations.

Meanwhile, federated learning (FL) McMahan et al. (2017); Yang et al. (2021); Karimireddy et al.
(2020), which has emerged as a promising learning paradigm, enables collaborative training of a
model using geo-distributed traditional datasets under the coordination of a central server. However,
applying FL to geo-distributed graph data is highly non-trivial due to the dependencies between
the nodes in a graph and the fact that the neighbors of the node may be located on different clients,
which we refer to as “cross-client neighbors” (shown as the dashed links between nodes in Figure 1).
Ignoring the cross-client neighbors as in Wang et al. (2022a) would degrade the performance of
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Figure 3: Federated GNN
model. Dashed lines show com-
munication between clients.

the models and prevent them from reaching the same accuracy as the models trained on a single
device/machine, which is due to the information loss of the cross-client neighbors.

2) Technical Challenges: Despite the appeal of leveraging a trusted server for federated graph
learning (FGL) Zhang et al. (2021), there remain several non-trivial challenges that hinder efficient
and effective cross-client training. Specifically, we highlight the following major technical challenges:

Large Overhead from a Naive Design. A straightforward approach uses a trusted server to gather
graph data and perform subgraph sampling and neighbor aggregation for each client Zhang et al.
(2021). For instance, in a healthcare setting with multiple hospitals and one central authority, patient
data stay locally due to privacy regulation. The central authority acting as the trusted server must
coordinate all subgraph sampling and part of the training operation (i.e., neighbor aggregation) (see
Figure 1). As shown in Figure 2, training a two-layer GNN (with sampling fanout values 15 and 10
for the two layers) on the Amazon product co-purchasing dataset Leskovec et al. (2007) under 1 Gbps
network bandwidth, this approach leads to significant communication overhead: the server exchanges
large amounts of node and edge information with each hospital sequentially, causing cross-client
sampling and communication time to dominate the total training time, making it five times slower
than purely local training.

Communication and Memory Overheads from Cross-Client Neighbors. While some methods
ignore cross-client neighbors He et al. (2021) or assume overlapping nodes Wu et al. (2021), these
assumptions often fail in geo-distributed graphs (e.g., patients visiting multiple hospitals). Alternatives
that preserve cross-client neighbor information Zhang et al. (2021); Du & Wu (2022); Yao et al.
(2023a) require significant data transfers among clients—leading to high communication costs—and
compel each client to store additional graph structure and features for these neighbors. This not only
creates memory-intensive requirements but could also potentially violate data privacy constraints.
Hence, mitigating these cross-client overheads (both communication and storage) is crucial to achieve
efficient, privacy-preserving FGL (see detailed discussions in Section 2).

3) Our Contributions: The key contribution of this paper is that, by addressing the above challenges,
we develop a mini-batch-based and sampling-based FGL framework called Swift-FedGNN. The
main results and technical contributions of this paper are as follows:

• We develop Swift-FedGNN, a communication- and sample-efficient mini-batch FGL algorithm
for geo-distributed graphs. In Swift-FedGNN, clients primarily conduct local training in parallel,
performing cross-client training only occasionally among sampled clients, thereby reducing sam-
pling and communication overhead while preserving minimal information loss. The cross-client
neighbor information is aggregated at remote clients before communicating to the server and
accumulated one more time before transferring to the training client, further minimizing data
transfer cost and enhancing privacy by ensuring only aggregated neighborhood features - never
raw node features - are exchanged.

• We conduct rigorous theoretical convergence analysis for Swift-FedGNN, which is highly non-
trivial due to biased stochastic gradients and structural entanglement (neighbor aggregation
intertwined with non-linear transformations across multiple layers) in GNNs . In stark contrast to
existing works in the literature that made strong assumptions on the biases of stochastic gradients
(e.g., unbiased Chen et al. (2018) or consistent Chen & Luss (2018) gradient), for the first time in
the literature, we are able to bound stochastic gradient approximation errors rather than resorting
to these unrealistic assumptions in practice, offering insights of independent theoretical interest.

• We show that the biased stochastic gradients in GNNs—arising from missing cross-client neighbors
and neighbor sampling—are positively correlated with the network depth, which is unique to FGL.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

By putting the above insights together, we show that Swift-FedGNN achieves a convergence rate
of O

(
T−1/2

)
, which matches the state-of-the-art (SOTA) convergence rate of sampling-based

GNN methods (hence low communication and sample complexities), despite operating in the far
more challenging FL setting with much less frequent information exchanges among clients.

• We conduct extensive experiments on real-world graph datasets to evaluate the performance of
Swift-FedGNN. The results show that Swift-FedGNN outperforms the SOTA FGL algorithms in
terms of efficiency, achieving ×4 speed-up and competitive accuracy.

2 RELATED WORK

In this section, we provide an overview on distributed graph learning and offer a comprehensive
comparison with the most relevant work on federated graph learning.

1) Distributed Graph Learning: Distributed graph learning framework (e.g., DistDGL Wang et al.
(2019b); Zheng et al. (2020), Pytorch Geometric Fey & Lenssen (2019), AliGraph Zhao et al. (2019)
and Dorylus Thorpe et al. (2021)) have been developed to train large-scale graph datasets via cross-
device sampling and direct worker-to-worker communication, and often spend up to 80% of the
total training time on data communication Gandhi & Iyer (2021). Although various optimizations
(graph partitioning Zheng et al. (2020), caching Liu et al. (2023); Zhang et al. (2023), communication
strategies Cai et al. (2021); Luo et al. (2022), parallel training Gandhi & Iyer (2021); Wan et al. (2022);
Du et al. (2024)) have been proposed to expedite DGL, they commonly require direct data sharing
between workers, violating data privacy constraints in geo-distributed settings. To our knowledge,
LLCG Ramezani et al. (2022) is the only DGL framework that avoids transferring node features
between workers, making it potentially applicable to geo-distributed graphs. In LLCG, each worker
trains only on its local graph partition. To address missing cross-device neighbor information, LLCG
employs a central server to periodically perform full-neighbor training with neighbor aggregation
across all workers. However, this approach imposes significant communication overhead on the
server, which needs to communicate with every worker to perform the full-neighbor training.

2) Federated Graph Learning: To date, the research on federated graph learning remains in its
infancy and results in this area are quite limited. In He et al. (2021), it is assumed that graphs
are dispersed across multiple clients and the information of the cross-client neighbors is ignored,
which does not align with the real-world scenarios and would degrade the performance of the trained
model. In Wu et al. (2021), it is assumed that the clients’ local graphs have overlapped nodes and the
edges are distributed, which may not be true in real-world situations. Zhang et al. (2021) mitigates
the information loss of the cross-client neighbors by exchanging such information in each training
round. However, this approach incurs considerable communication overhead and exposes private
node information to other clients. While Yao et al. (2023a) employs a one-time exchange of full
cross-client neighbor information prior to training, this design relies on full-graph training and causes
significant per-client memory overhead, making it impractical for large-scale graphs. Adapting it to
sampling-based FGL would require per-iteration cross-client exchanges (since each mini-batch has a
different training node set and sampled neighbors), further exacerbating communication overhead.

Du & Wu (2022) uses sparse cross-client neighbor sampling to supplement the lost information
of the cross-client neighbors and reduce the communication overhead, which is most related to
ours. Each client periodically samples and exchanges these neighbors with other clients, reusing
the most recent sampled neighbors in between exchanges. However, as training progresses, the
frequency of information exchange increases, leading to higher communication costs. Furthermore,
privacy constraints are relaxed by allowing direct client-to-client data transfers and caching, and
repeatedly reusing the same neighbor data introduces bias that degrades performance. In contrast,
our Swift-FedGNN method limits cross-client training to a subset of sampled clients and avoids
direct graph data exchange between clients by offloading certain operations to the central server.
Before communication with the training clients, cross-client neighbor information is aggregated
twice: first at the remote clients and then on the server—helping to preserve data privacy and reduce
communication costs.

3 FEDERATED GRAPH LEARNING: PRELIMINARIES

In this section, we provide the background of the mathematical formulation for training GNNs
in a federated setting. For convenience, we provide a list of key notations used in this paper in
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Appendix B. In order for this paper to be self-contained and to facilitate easy comparisons, we
provide the background for training GNNs on a single machine in Appendix C.

Consider a graph G (V, E), where V is a set of nodes with N = |V| and E is a set of edges. We
consider a standard federated setting that has a central server and a set of M clients with M = |M|.
The graph G is geographically distributed over these clients, and each client m contains a subgraph
represented by Gm (Vm, Em). Note that

⋃M
m=1 Gm ̸= G due to the missing cross-client edges

between clients (
⋃M

m=1 Em ̸= E). In addition, we assume that the nodes are disjointly partitioned
across clients, i.e.,

⋃M
m=1 Vm = V and

⋂M
m=1 Vm = ∅. Each node v ∈ Vm has a feature vector

xm
v ∈ Rd, and each node v ∈ Vm

train corresponds to a label ymv , where Vm
train ⊆ Vm.

In FGL, the clients collaboratively learn a model with distributed graph data and under the coordi-
nation of the central server. Typically, the clients receive the model from the server, compute local
model updates iteratively, and then send the updated model to the server. The server periodically
aggregates the models and then sends the aggregated model back to the clients. The goal in FGL is to
solve the following optimization problem:

minL(θ) := 1

|M|
∑

m∈M
Fm (θ) =

1

|M|
∑

m∈M

1

|Vm
B |

∑
v∈Vm

B

ℓm
(
h(L),m
v , ymv

)
, (1)

where ℓm is a loss function (e.g., cross-entropy loss) at client m, Vm
B denotes a mini-batch of training

nodes uniformly sampled from Vm, and θ :=
{
W (l)

}L
l=1

corresponds to all model parameters.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Recall that in FGL, the neighbors of node v may be located
on its local client m(v) or on remote clients m̄(v) ∈ M̄(v), where M̄(v) represents a set of the
remote clients that host the neighbors of node v, and M̄(v) ⊆ M\{m(v)}. As shown in Figure 3,
to compute the embedding of node v at the l-th layer in a GNN with L layers, the client m(v) first
aggregates the neighbor information from both itself and the remote clients m̄(v), and then updates
the embedding of node v, as follows:

h
(l)
N (v)=AGG

({
h(l−1),m(v)
u | u∈Nm(v)(v)

}
︸ ︷︷ ︸

local

∪
{
∪m̄(v)∈M̄(v)

{
h(l−1),m̄(v)
u | u∈N m̄(v)(v)

}}
︸ ︷︷ ︸

remote

)
,

h(l),m(v)
v =σ

(
W (l) · COMB

(
h(l−1),m(v)
v ,h

(l)
N (v)

))
, (2)

where Nm(v) (v) is a set of the neighbors of node v located on its local client m(v), N m̄(v) (v) is a set
of the neighbors of node v located on remote client m̄(v), h(l)

N (v) is the aggregated embedding from

node v’s neighbors, h(l),m(v)
v is the embedding of node v located on client m(v) and is initialized

as h
(0),m(v)
v = x

m(v)
v , W (l) represents the weight matrix at l-th layer, σ (·) corresponds to an

activation function (e.g., ReLU), AGG(·) is an aggregation function (e.g., mean), and COMB(·) is
a combination function (e.g., concatenation). Compared to DGL where clients can directly transfer
node features, the key difference in FGL is that clients cannot do so due to privacy concerns, requiring
additional modifications.

4 THE Swift-FedGNN ALGORITHM

In this section, we propose a new algorithmic framework called Swift-FedGNN , designed to effi-
ciently solve Problem (1) by reducing both sampling and communication costs in FGL. The overall
algorithmic framework of Swift-FedGNN is illustrated in Algorithms 1-3. Rather than each client
performing cross-client training in every round, the clients in Swift-FedGNN primarily conduct the
efficient local training in parallel, and a set of randomly selected clients periodically carry out the
time-consuming cross-client training. By offloading part of the graph operation to the server and
remote clients, Swift-FedGNN eliminates the need for sharing graph features among clients.

Algorithm 1 outlines the main framework of Swift-FedGNN. Specifically, it performs parallel local
training across clients for every I − 1 iterations, followed by one iteration of cross-client training
involving randomly selected clients. In the local training iterations (t), every client m updates the
local GNN model only using its local graph, as presented in Algorithm 3. Client m samples a
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Algorithm 1: Swift-FedGNN Algorithm.
Input: Initial parameters θ0, learning rate α,

and correction frequency I
for t = 0 to T − 1 do

if t mod I = 0 then
Randomly sample |K| clients
for m ∈ M in parallel do

if m ∈ K then
Client update with local

graph and cross-client
neighbors using Algo-
rithm 2

else
Client update with local

graph using Algorithm 3

else
for m ∈ M in parallel do

Client update with local graph
using Algorithm 3

Server:
Aggregate and update global model pa-

rameter as:
θt+1=θt−α 1

|M|
∑

m∈M∇F̃m (θm
t )

Algorithm 2: Client m in the t-th iteration: update
with local graph data and cross-client neighbors.
Receive global parameter θm

t = θt

Construct a mini-batch Bm
v of nodes

Server samples a subset of L-hop neighbors S =
{
S(l)

}L−1

l=0
for

the training nodes in Bm
v

for l = 1 to L do
/* Derive l-th layer embedding of

node v ∈ Bm
v if l = L, otherwise

v ∈ S(l)
*/

for Remote client m̄(v) ∈ M̄(v) in parallel do
Aggregate the neighbor embeddings using Eq. (5)
Send the aggregated embedding h

(l),m̄(v)

N (v) to server

Server:
Aggregate the neighbor embeddings from the remote clients
using Eq. (6)
Send the aggregated cross-client neighbor embedding r

(l)

N (v)

to Client m(v)

Client m(v): Compute node embeddings using Eq. (7) &
(8)

Compute stochastic gradient ∇F̃m (θm
t ) and send to server

Algorithm 3: Client m in the t-th iteration: update with local graph data.
Receive global parameter θm

t = θt

Construct a mini-batch Bm
v of nodes

Sample a subset of L-hop neighbors S =
{
S(l)

}L−1

l=0
for the training nodes in Bm

v

for l = 1 to L do
/* Derive l-th layer embedding of node v ∈ Bm

v if l = L, otherwise

v ∈ S(l)
*/

Compute node embeddings using Eq. (3) and (4)

Compute stochastic gradient ∇F̃m (θm
t ) and send to server

mini-batch of training nodes Bm
v and a subset of L-hop neighbors for the training nodes in Bm

v ,
denote as S =

{
S(l)

}L−1

l=0
, all from the local graph data. To compute the embedding of node v in

the l-th GNN layer (v ∈ Bm
v if l = L, otherwise v ∈ S(l)), client m first conducts the neighbor

aggregation for node v based on the sampled neighbors using:

h
(l)
N (v) = AGG

({
h(l−1),m
u | u ∈ Ñm (v)

})
, (3)

where Ñm (v) denotes a set of the sampled neighbors located on client m for node v, Ñm (v) ⊆
S(l−1), and Ñm (v) ⊆ Nm (v). Then, client m updates the embedding of node v in the l-th GNN
layer based on the aggregated neighbor information and the embedding of node v from the (l−1)-th
layer, as follows:

h(l),m
v = σ

(
W

(l),m
t · COMB

(
h(l−1),m
v ,h

(l)
N (v)

))
. (4)

At every I-th iteration, Swift-FedGNN allows a set of K clients, uniformly sampled from M, to
conduct cross-client training that trains the local GNN models using both their local graph data
and the cross-client neighbors. We use K to denote the set of K clients, where K ⊂ M. The
remaining clients perform local training as shown in Algorithm 3. Algorithm 2 details the cross-
client training process for client m ∈ K. Rather than directly exchanging node features between
clients, Swift-FedGNN partitions GNN training between the clients and the server. We offload1 the
aggregation of node features and intermediate activations at each GNN layer to the server and remote

1The operation offloading in Swift-FedGNN only supports element-wise (e.g., mean, sum, max) operations,
e.g., GCN, GraphSAGE, GIN, and SGCN. For non-element-wise operations (e.g., GAT), which are fundamentally
not a good fit in any communication-efficient FGL algorithm design, see Appendix E for detailed discussion.
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clients corresponding to node v, thus reducing the communication overhead and eliminating the need
for graph data sharing. This procedure helps preserve data privacy because the clients are unaware of
the locations of neighbor nodes, and the embeddings of these neighbor nodes are aggregated before
being transmitted to the clients. Operations performed on the server and the remote clients are colored
using server and remote client respectively.

Specifically, client m ∈ K samples a mini-batch of training nodes Bm
v . Then, with the cooperation of

the server, a subset of L-hop neighbors for the training nodes in Bm
v is sampled and represented as

S =
{
S(l)

}L−1

l=0
. The nodes v ∈ Bm

v are on client m, while for v ∈ S(l) with l < L, the nodes may
be on clients other than m, denoting the client storing v as m(v). The set M̄(v) represents remote
clients with respect to m(v), i.e., M̄(v) ⊆ M\{m(v)}, where the sampled cross-client neighbors
of the training node v are located. Each remote client m̄(v) ∈ M̄(v) may contain multiple sampled
neighbors of the training node v, and the numbers of the sampled neighbors can vary across clients.

Computing the l-th layer embedding of node v consists of four steps. Steps 1 to 3 below are used to
aggregate the neighbor information of node v, and Step 4 is used to update the node v’s embedding at
l-th GNN layer.

Step 1) Each remote client m̄(v) aggregates its sampled neighbors of node v in parallel, using

h
(l),m̄(v)
N (v) =AGG

({
h(l−1),m̄(v)
u | u ∈ Ñ m̄(v) (v)

})
. (5)

We send only the aggregated results from each remote client m̄(v) to the server, which can help
preserve data privacy and reduce communication overhead.

Step 2) Upon receiving the aggregated neighbor information from all the remote clients m̄(v) ∈
M̄(v), the server aggregates this information from different remote clients before sending it to client
m(v) as follows:

r
(l)
N (v) = AGG

({
h
(l),m̄(v)
N (v) | m̄(v) ∈ M̄(v)

})
. (6)

This approach not only helps maintain data privacy2 but also reduces communication costs by
minimizing the amount of data transmitted between clients and the server.

Step 3) Neighbor information of node v for both the sampled local neighbors and the sampled
cross-client neighbors is aggregated as follows:

h
(l)
N (v)=AGG

({
h(l−1),m(v)
u | u ∈ Ñm(v) (v)

}︸ ︷︷ ︸
local

∪
{
r
(l)
N (v)

}︸ ︷︷ ︸
remote

)
. (7)

The cross-client neighbor information used here helps mitigate the information loss and reduce the
performance degradation caused by connected nodes being distributed across different clients.

Step 4) The embedding of node v in the l-th GNN layer is updated using the aggregated neighbor
information and the embedding of node v from the (l−1)-th layer as:

h(l),m(v)
v =σ

(
W

(l),m(v)
t · COMB

(
h(l−1),m(v)
v ,h

(l)
N (v)

))
. (8)

Using the embeddings of the training nodes in the mini-batch and the model parameters, the local
stochastic gradients ∇F̃m (θm

t ) are computed and used in the update of the global model parameters
shown as θt+1 = θt − α 1

|M|
∑

m∈M ∇F̃m (θm
t ), where α is the learning rate.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence guarantees for Swift-FedGNN using Graph
Convolutional Network (GCN)3 Kipf & Welling (2017) as the GNN architecture to solve Problem
(1). The analysis of GNN convergence is significantly more challenging compared to the existing
literature on deep neural networks (DNNs). The key difficulties stem from the fact that, unlike in
DNNs, the stochastic gradients in GNNs are inherently biased. This bias is primarily caused by the

2To further enhance privacy, Swift-FedGNN is compatible with differential privacy techniques and federated
encryption protocols, enabling formal privacy guarantees. See Appendix F for a detailed discussion.

3These convergence guarantees also extend to other element-wise operation-based GNNs, e.g., GraphSAGE
and GIN. See Appendix I for guidance on extending the analysis.
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presence of cross-client neighbors and the neighbor sampling process. The errors from missing or
unsampled neighbors propagate across layers, gradually getting amplified from the input layer to the
output layer, complicating the overall convergence behavior.

For a graph G, the structure can be represented by its adjacency matrix A ∈ RN×N , where Avu = 1

if (v, u) ∈ E , otherwise Avu = 0. The propagation matrix can be computed as P = D−1/2ÂD−1/2,
where Â = A + I , and D ∈ RN×N corresponds to the degree matrix and Dvv =

∑
u Âvu. For

subgraph Gm located on client m, the adjacency matrix Am can be denoted as Am = Am
local +

Am
remote, where Am

local corresponds to the nodes located on client m, and Am
remote corresponds to

their cross-client neighbors located on the remote clients other than m. Then, the propagation matrix
can be calculated as Pm = D

−1/2
m (Am+Im)D

−1/2
m , and can be represented as Pm = Pm

local +

Pm
remote, where Pm

local = D
−1/2
m (Am

local+Im)D
−1/2
m and Pm

remote = D
−1/2
m (Am

remote)D
−1/2
m .

Given GCN as the GNN architecture, for client m training using only the local graph data, Eq. (3)
and (4) are equivalent to H̃

(l),m
t = σ

(
P̃

(l),m
local H̃

(l−1),m
local W

(l),m
t

)
. For client m training based on

both the local graph data and the cross-client neighbors, Eq. (5)–(8) are equivalent to H̃
(l),m
t =

σ
((
P̃

(l),m
local H̃

(l−1),m
local +P̃

(l),m
remoteH̃

(l−1),m
remote

)
W

(l),m
t

)
.

Before proceeding with the convergence analysis, we make the following standard assumptions.
Assumption 5.1. The loss function ℓm (·, ·) is Cl-Lipschitz continuous and Ll-smooth with re-
spect to the node embedding h(L), i.e., ∥ℓm(h

(L)
1 , y) − ℓm(h

(L)
2 , y)∥2 ≤ Cl∥h(L)

1 − h
(L)
2 ∥2 and

∥∇ℓm(h
(L)
1 , y)−∇ℓm(h

(L)
2 , y)∥2 ≤ Ll∥h(L)

1 − h
(L)
2 ∥2.

Assumption 5.2. The activation function σ (·) is Cσ-Lipschitz continuous and Lσ-smooth, i.e.,
∥σ(z(l)

1 )− σ(z
(l)
2 )∥2 ≤ Cσ∥z(l)

1 − z
(l)
2 ∥2 and ∥∇σ(z

(l)
1 )−∇σ(z

(l)
2 )∥2 ≤ Lσ∥z(l)

1 − z
(l)
2 ∥2.

Assumption 5.3. For any l ∈ [L], the norm of weight matrices, the propagation matrix, and the node
feature matrix are bounded by BW , BP and BX , respectively, i.e., ∥W (l)∥F ≤ BW , ∥P ∥F ≤ BP ,
and ∥X∥F ≤ BX . Note that this assumption is commonly used in the analysis of GNNs, e.g., Chen
et al. (2018); Liao et al. (2020); Garg et al. (2020); Cong et al. (2021); Wan et al. (2022).

Different from DNNs with unbiased stochastic gradients, the stochastic gradients in sampling-based
GNNs are biased due to neighbor sampling of the training nodes. This is one of the key challenges
in the convergence analysis of Swift-FedGNN. Some existing works used strong assumptions to deal
with these biased stochastic gradients in their analysis, e.g., Chen et al. (2018) adopts the unbiased
stochastic gradient assumption, and Chen & Luss (2018) uses the consistent stochastic gradient
assumption. However, these assumptions may not hold in reality. In this paper, without using the
aforementioned strong assumptions, we are able to bound the errors between the stochastic gradients
and the full gradients in the following lemma.
Lemma 5.4. Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the
full gradients are bounded as ∥∇Fm

local (θ
m) − ∇F̃m

local (θ
m) ∥F ≤ LBl

∆G and ∥∇Fm
full (θ

m) −
∇F̃m

full (θ
m) ∥F ≤ LBf

∆G, where ∇Fm
local (θ

m) and ∇F̃m
local (θ

m) correspond to the full and
stochastic gradients computed with only local graph data, respectively. ∇Fm

full (θ
m) and

∇F̃m
full (θ

m) include both local graph data and cross-client neighbors of the training nodes. Bl
∆G

and Bf
∆G are defined in Eq. (12) and (13) in Appendix H.

Furthermore, the dependencies of the nodes located on different clients can lead to additional errors
in the gradient computations when client m is updated only with its local graph data, since the cross-
client neighbors are missed. This becomes another key challenge in the analysis of the convergence
of Swift-FedGNN. We prove that such an error is upper-bounded as shown in the following lemma.
Lemma 5.5. Under Assumptions 5.1–5.3, the error between the full gradient computed with both
the local graph data and the cross-client neighbors of the training nodes (∇Fm

full (θ
m)) and

the full gradient computed with only the local graph data (∇Fm
local (θ

m)) is upper-bounded as
∥∇Fm

full (θ
m)−∇Fm

local (θ
m) ∥F ≤ LBr

∆G, where Br
∆G is defined in Eq. (14) in Appendix H.

We note that all the errors mentioned in Lemmas 5.4 and 5.5 are correlated with the structure of
GNNs, specifically showing a positive correlation with the number of layers in the networks. This
finding is unique to GNNs, where each layer involves both neighbor aggregation and non-linear
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Figure 4: Convergence performance in terms of validation accuracy of
different algorithms.
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communication cost per
step.

transformation. As these two operations are interleaved across multiple layers, they create a structural
entanglement that complicates the analysis.

Using Lemmas 5.4 and 5.5, we state the main convergence result of Swift-FedGNN solving an
L-layer GNN in the following theorem:

Theorem 5.6. Under Assumptions 5.1–5.3, choose step-size α=min
{√

M√
T
, 1
LF

}
, where LF is the

smoothness constant in Lemma H.2. The output of Swift-FedGNN solving an L-layer GNN satisfies:

1

T

T−1∑
t=0

∥∇L (θt)∥2≤
2 (L (θ0)−L (θ∗))√

MT
+ L2

(
Bl

∆G+Br
∆G

)2

+
KL2

IM

((
Bf

∆G

)2

−
(
Bl

∆G+Br
∆G

)2
)
.

The detailed proof of Theorem 5.6 can be found in Appendix H. We can see from Theorem 5.6 that
the convergence rate of Swift-FedGNN is O

(
T−1/2

)
to a neighborhood of the exact solution, which

matches the SOTA convergence rate of sampling-based GNN algorithms, e.g., Chen et al. (2018);
Cong et al. (2021); Ramezani et al. (2022); Du & Wu (2022), even though Swift-FedGNN operates
in the far more challenging federated setting.

Three important remarks on Theorem 5.6 are in order: (1) When choosing I = 1 and K = M ,
Swift-FedGNN performs fully cross-client training, ensuring no information loss in the graph data.
In this scenario, Swift-FedGNN experiences minimal residual error. Such error is caused by sampling
and is inevitable. However, Swift-FedGNN suffers from maximum sampling and communication
overhead; (2) When choosing K = 0, Swift-FedGNN conducts fully local training, resulting in
the information loss of all the cross-client neighbors. Consequently, Swift-FedGNN encounters
maximum residual error. Nonetheless, the sampling and communication overhead is minimized;
and (3) It can be shown that the last term of the convergence rate bound in Theorem 5.6 is negative.
Hence, increasing I or decreasing K would increase the residual error due to more information loss
of the cross-client neighbors. However, this would reduce the sampling and communication overhead.
Thus, there is a trade-off between the information loss and the sampling and communication overhead.
See Appendix G.1.1 for empirical evidence supporting our theoretical findings.

Communication Complexity: Assume each GNN layer uses a uniform neighbor sampling fan-out
of F , with F l representing the worst-case number of neighbors sampled per training node at layer
l ∈ [1, L]. Let p(l) ∈ (0, 1) be the fraction of neighbors at layer l located on remote clients. If the
p(l)F

l cross-client neighbors at layer l are distributed across C(l) < M remote clients, then the total
communication cost per cross-client training round in Swift-FedGNN for exchanging the aggregated
cross-client neighbor embeddings is O

(
KB

∑L
l=1 C(l)d

emb
(l−1)

)
, where B is the batch size per client,

and demb
(l) is the embedding dimension at layer l. Since C(l) ≪ p(l)F

l due to Swift-FedGNN’s
aggregation mechanism, this result highlights the communication efficiency of Swift-FedGNN. For
further discussion on both communication and computation complexity, see Appendix D.

6 NUMERICAL RESULTS

In this section, we conduct experiments to evaluate the performance of Swift-FedGNN. Due to space
limitations, additional experimental details and results are provided in Appendix G.

1) Experiment Settings: We train a representative GNN model, GraphSAGE Hamilton et al. (2017),
in the FL settings on five real-world node classification datasets: 1) ogbn-products Hu et al. (2020);
2) Reddit Hamilton et al. (2017); 3) ogbn-arxiv Hu et al. (2020); 4) flickr Zeng et al. (2020); and
5) citeseer Giles et al. (1998). The key statistics of the datasets are summarized in Table 14 in
Appendix G. Note that ogbn-products dataset is the largest dataset one can find in the FGL literature,
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Table 1: Total communication cost (GB) when achieving a target validation accuracy for each dataset.

OGBN-PRODUCTS REDDIT OGBN-ARXIV FLICKR CITESEER
SWIFT-FEDGNN 0.66 5.89 0.95 1.07 35.32

FEDGNN-G 8.40 70.72 7.91 17.22 43.43
LLCG 4.47 23.89 1.46 1.30 25.80

FEDGNN-PNS 0.97 8.96 1.41 1.27 36.11

while the Reddit dataset is known for its density. In our FL simulations, we use 20 clients for the
experiments with ogbn-products dataset and 10 clients for the experiments with the other datasets.
All graphs are partitioned with METIS algorithm Karypis & Kumar (1998). In addition, we evaluate
Swift-FedGNN on randomly partitioned graph data and on another widely used GNN model, GIN Xu
et al. (2019). The corresponding results are provided in Appendix G.

2) Baselines: Since the goal of Swift-FedGNN is to reduce the sampling and communication time, we
compare Swift-FedGNN with the algorithms most closely related to Swift-FedGNN, which mitigates
the information loss of cross-client neighbors through periodical (sampling-based) full-neighbor
training: 1) LLCG Ramezani et al. (2022): A DGL framework that performs local training on each
client independently, with periodic full-neighbor training conducted on a central server; 2) FedGNN-
PNS Du & Wu (2022): A FGL framework where each client periodically samples cross-client
neighbors with an increasing sampling frequency. In the remaining iterations, clients reuse the
most recently sampled cross-client neighbors; and 3) FedGNN-G: A naive FGL algorithm where
cross-client training is performed on each client in every iteration.

3) Convergence Performance Comparisons: In Figures 4a and 4b, we can see that for both the ogbn-
products dataset and the Reddit dataset, Swift-FedGNN achieves substantially faster convergence
than all baseline algorithms, which verifies the effectiveness of Swift-FedGNN in handling large
or dense graphs. In addition, despite less frequent cross-client training, the validation accuracy
of Swift-FedGNN is comparable to that of FedGNN-G, which trains a GNN model on the dataset
without any information loss. Although LLCG performs periodic cross-client training on the server, it
requires training over the full set of neighbors of the training nodes, leading to significant sampling
and communication overhead. For instance, when training the ogbn-products dataset, LLCG takes
over 5000 ms to perform cross-client training on the server, whereas Swift-FedGNN completes cross-
client training within 200 ms due to neighbor sampling. FedGNN-PNS employs a dynamic cross-
client sampling interval throughout training, gradually reducing the interval as training progresses.
Consequently, FedGNN-PNS incurs extensive sampling and communication overhead during the
later stages of training, slowing down the convergence process. As shown in Figure 4c, on the smaller
ogbn-arxiv dataset the benefit of Swift-FedGNN is less pronounced. The dataset’s limited size and
sparsity reduce both neighbor sampling and communication overhead for all methods, narrowing the
performance gap. This is also reflected in the following communication cost analysis. Nevertheless,
Swift-FedGNN still delivers the best overall performance.

4) Communication Cost Analysis: Figure 5 shows the average communication cost per step for
Swift-FedGNN and the baselines across five datasets, demonstrating that Swift-FedGNN consistently
incurs the lowest communication cost on all of them. Specifically, our algorithm
Swift-FedGNN incurs a communication cost that is 7× to 21× lower than that of FedGNN-G on
four out of the five datasets (Reddit, ogbn-products, ogbn-arxiv, and flickr). On the smallest graph,
citeseer, the gap narrows because the size of the cross-client neighbor information becomes negligible
compared with the model size, yet Swift-FedGNN still maintains the lowest communication cost. For
the largest dataset ogbn-products and the most dense dataset Reddit, Swift-FedGNN achieves commu-
nication costs that are 2× and 5× lower compared to FedGNN-PNS and LLCG, respectively. On the
small datasets, ogbn-arxiv and flickr, the communication cost advantage of Swift-FedGNN remains
evident, though closer to approximately 1× lower than FedGNN-PNS and LLCG. These findings
validate the superior communication efficiency of our proposed Swift-FedGNN algorithm.

Table 1 reports the total communication cost required to reach the same target validation accuracy
on each dataset. The results demonstrate that our proposed Swift-FedGNN algorithm consistently
incurs the lowest communication cost across all datasets except Citeseer. For example, to reach
a target accuracy of 87% on the ogbn-products dataset, Swift-FedGNN achieves at least a 31.9%
reduction in total communication cost compared to all baselines. Similarly, to reach a target accuracy
of 55% on the smaller and sparser ogbn-arxiv dataset, Swift-FedGNN still delivers at least 32.2%
communication savings, highlighting its robustness and efficiency across diverse graph structures.
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Table 2: Validation accuracy of Swift-FedGNN with different correction frequencies (I) and client
sampling sizes (K) on the ogbn-products dataset.

# OF SAMPLED CLIENTS (K) 10 1 5 10 15
CORRECTION FREQUENCY (I ) 5 10 20 40 10
VALIDATION ACCURACY (%) 88.91 88.88 88.60 88.44 88.47 88.72 88.88 89.22

Table 3: Total communication cost (MB) of Swift-FedGNN with different I and K on the ogbn-
products dataset when achieving a target validation accuracy of 87%.

# OF SAMPLED CLIENTS (K) 10 1 5 10 15
CORRECTION FREQUENCY (I ) 5 10 20 40 10
COMMUNICATION COST (MB) 1344.0 675.5 324.5 275.0 57.8 342.2 675.5 1027.4

Table 4: Total communication cost (GB) on the ogbn-products dataset for two large-scale settings
with 80 clients and 100 clients when achieving a target validation accuracy for each setting.

SWIFT-FEDGNN
(FIXED K = 10)

SWIFT-FEDGNN
(FIXED K/M = 1/2) FEDGNN-G LLCG FEDGNN-PNS

M = 80 0.69 2.42 37.26 3.90 4.49
M = 100 1.17 5.24 59.00 6.82 8.67

5) Hyperparameter sensitivity analysis: We explore the impact of different choices for key pa-
rameters in Swift-FedGNN (i.e., the correction frequency I and the client sampling size K) in
Swift-FedGNN. Table 2 report the validation accuracy of Swift-FedGNN on ogbn-products dataset
under various I and K. The results show that: i) Increasing I from 5 to 40 leads to only a minor
accuracy degradation (0.47%), demonstrating that less frequent cross-client training still preserves
model quality; and ii) Decreasing K from 15 to 1 also results in a minor accuracy drop (0.75%),
indicating that a small number of sampled clients is sufficient to maintain strong performance. These
findings are consistent with our theoretical conclusion in Remark (3) of Theorem 5.6. Complementary
to the these findings, Table 3 presents the total communication cost needed to achieve a target accuracy
of 87% under the same parameter variations. These results show that increasing I and decreasing
K substantially reduce communication cost. For example, increasing I from 5 to 40 saves approxi-
mately 80% of the communication overhead, while reducing K from 10 to 1 saves approximately
94%. Collectively, these results validate Swift-FedGNN’s ability to reduce communication without
incurring major information loss and demonstrate that Swift-FedGNN provides a tunable balance
between communication efficiency and accuracy, and the trade-off can be controlled via I and K.

6) Evaluations of large-scale settings: To evaluate the scalability of Swift-FedGNN, we extend our
experiments to two large-scale settings with 80 clients and 100 clients on the ogbn-products dataset.
Table 4 reports the total communication cost when achieving a target validation accuracy (i.e., 83%
for the 80-client setting and 84.3% for the 100-client setting). These results show that: i) With fixed
K = 10, Swift-FedGNN reduces total communication cost by at least 82% in the 80-client setting
and at least 83% in the 100-client setting compared to all baselines; and ii) with a client sampling
ratio of K/M = 50%, Swift-FedGNN still achieves at least 38% communication savings in the
80-client setting and at least 23% communication savings in the 100-client setting over all baselines.
These findings highlight Swift-FedGNN’s effectiveness and scalability, validating its communication
efficiency even in large-scale FGL settings. Moreover, server-side aggregation in Swift-FedGNN will
not be a bottleneck in large-scale settings as long as K is adjusted appropriately (e.g., K ≪ M ).

7 CONCLUSION

In this paper, we proposed the Swift-FedGNN algorithm, which is a mini-batch-based and
sampling-based federated graph learning framework, for efficient federated GNN training.
Swift-FedGNN reduces the cross-client neighbor sampling and communication overhead by pe-
riodically sampling a set of clients to conduct the local GNN training on local graph data and
cross-client neighbors, which is time-consuming. The rest clients in these periodical iterations and
all the clients in the remaining iterations perform efficient parallel local GNN training using only
local graph data. We theoretically proved that the convergence rate of Swift-FedGNN is O

(
T−1/2

)
,

matching the SOTA rate of sampling-based GNN methods, even in more challenging federated
settings. We conducted extensive numerical experiments on real-world graph datasets and verified
the effectiveness of Swift-FedGNN.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that the ICLR Code of Ethics has been thoroughly reviewed and that this work fully
adheres to it. The study does not involve human subjects, sensitive data, or any foreseeable risks, and
it raises no ethical, legal, or conflict-of-interest concerns.

REPRODUCIBILITY STATEMENT

We confirm the reproducibility of this work. Specifically, for the theoretical results, we state the
assumptions in Section 5 and provide detailed proofs in Appendix H. For the experimental results,
we submit the source code as a supplementary material and describe the implementation details in
Appendix G.

REFERENCES

Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model: A deep and
generative approach to graph processing. In International conference on machine learning, pp.
294–303. PMLR, 2018.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. DGCL: An Efficient
Communication Library for Distributed GNN Training. In Proc. of EuroSys, pp. 130–144, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950. PMLR, 2018.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.
arXiv preprint arXiv:1807.11880, 2018.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang
Wang. Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):2769–2781, 2022.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in training
gcns: Tighter analysis and variance reduction. arXiv preprint arXiv:2103.02696, 2021.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting
social events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1007–1016, 2019.

Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 750–760, 2019.

Bingqian Du and Chuan Wu. Federated graph learning with periodic neighbour sampling. In 2022
IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE, 2022.

Bingqian Du, Jun Liu, Ziyue Luo, Chuan Wu, Qiankun Zhang, and Hai Jin. Expediting Distributed
GNN Training with Feature-only Partition and Optimized Communication Planning. In Proc. of
IEEE INFOCOM, 2024.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. In
Proc. of ICLR, 2019.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed Deep Graph Learning at Scale. In
Proc. of OSDI, pp. 551–568, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR,
2020.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, pp. 89–98, 1998.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The Dynamics of Viral Marketing.
ACM Transactions on the Web (TWEB), 1(1):5–es, 2007.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng
Chen, Hongzhi Chen, and Chuanxiong Guo. BGL: GPU-Efficient GNN Training by Optimizing
Graph Data I/O and Preprocessing. In Proc. of NSDI, pp. 103–118, 2023.

Ziyue Luo, Yixin Bao, and Chuan Wu. Optimizing Task Placement and Online Scheduling for
Distributed GNN Training Acceleration. In Proc. of IEEE INFOCOM, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Proc. of NeurIPS, 2019.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Modeling
influence locality in large social networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’18), 2018.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, and Anand Sivasubrama-
niam. Learn locally, correct globally: A distributed algorithm for training graph neural networks.
In International Conference on Learning Representations, 2022.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,
Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable, Scalable, and Accurate
GNN Training with Distributed CPU Servers and Serverless Threads. In Proc. of USENIX OSDI,
2021.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for grammar correction and language polishing during the writing
process. They did not contribute to research ideation or any substantive aspects of the work.

B LIST OF NOTATIONS

G (V, E) Graph

V Set of nodes

E Set of edges

N = |V| Number of nodes

M Set of clients

M = |M| Number of clients

Gm (Vm, Em) Subgraph at client m

Vm Set of nodes at client m

Em Set of edges at client m

xm
v ∈ Rd Feature vector of node v at client m

ymv Label of node v at client m

ℓm Loss function (e.g., cross-entropy loss) at client m

Vm
B Mini-batch of training nodes

θ =
{
W (l)

}L
l=1

Set of trainable model parameters

m(v) Local client of node v

m̄(v) Remote client of node v

M̄(v) Set of the remote clients that host the neighbors of node v

Nm(v) (v) Set of the neighbors of node v located on local client m(v)

N m̄(v) (v) Set of the neighbors of node v located on remote client m̄(v)

h(l),m(v)
v Embedding of node v located on client m(v)

h
(l)
N (v) Aggregated embedding from node v’s neighbors

W (l) Weight matrix at l-th layer

σ (·) Activation function (e.g., ReLU)

AGG(·) Aggregation function (e.g., mean)

COMB(·) Combination function (e.g., concatenation)

Bm
v Mini-batch of training nodes at client m

S =
{
S(l)

}L−1

l=0
Subset of L-hop neighbors for the training nodes in Bm

v

Ñm (v) Set of the sampled neighbors located on client m for node v

K Set of sampled clients for cross-client training

K = |K| Number of sampled clients for cross-client training

∇F̃m (θm
t ) Stochastic gradient

α Learning rate

A ∈ RN×N Adjacency matrix of graph G
P Propagation matrix

D Degree matrix
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Am Adjacency matrix of subgraph Gm

Am
local Adjacency matrix corresponds to the nodes located on client m

Am
remote Adjacency matrix corresponds to the cross-client neighbors located on the

remote clients other than m

Dm Degree matrix of client m

Pm Propagation matrix of client m

Pm
local Propagation matrix corresponds to the nodes located on client m

Pm
remote Propagation matrix corresponds to the cross-client neighbors located on the

remote clients other than m

C SINGLE-MACHINE GRAPH NEURAL NETWORKS TRAINING

We consider a graph G (V, E), where V is a set of nodes with N = |V| and E is a set of edges. Each
node v ∈ V is associated with a feature vector xv ∈ Rd, where d is the dimension of the feature
vector. Each node v ∈ Vtrain has a corresponding label yv , where Vtrain ⊆ V .

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Consider a GNN that consists of L layers. The embedding
of node v at l-th layer, which is represented by h

(l)
v , can be obtained through neighbor aggregation

and node update, which are formulated as follows:

h
(l)
N (v) = AGG

({
h(l−1)
u | u ∈ N (v)

})
, h(l)

v = σ
(
W (l) · COMB

(
h(l−1)
v ,h

(l)
N (v)

))
,

where h(0)
v is initialized as the feature vector xv , N (v) denotes the set of neighbors of node v, h(l)

N (v)

is the aggregated embedding from node v’s neighbors aggregated neighbor embedding for node v,
W (l) represents the weight matrix at l-th layer, σ (·) corresponds to an activation function (e.g.,
ReLU), AGG(·) is an aggregation function (e.g., mean), and COMB(·) is a combination function
(e.g., concatenation).

D COMMUNICATION AND COMPUTATION COMPLEXITY OF Swift-FedGNN

In this section, we provide asymptotic characterizations of the communication and computation
complexities of our proposed Swift-FedGNN algorithm. Due to the complications in precisely
analyzing the communication and computation costs, we provide a high-level asymptotic analysis
based on the several key system parameters.

Throughout the analysis, we assume an L-layer GNN and the following parameters:
• M : The total number of clients;
• F : The same number of neighbor sampling fan-out used at each layer;
• F l: The worst-case number of neighbors at each training node at each GNN layer l ∈ [1, L] using
F -fan-out;

• p(l) ∈ (0, 1): The fraction of the neighbors that are located on other clients.

D.1 COMMUNICATION COMPLEXITY OF Swift-FedGNN

1) Communication cost per iteration for exchanging cross-client neighbor information: In
Swift-FedGNN, every I iterations, each of the K sampled clients performs cross-client training and
exchanges aggregated embeddings for its cross-client neighbors. The total communication cost per
cross-client training iteration for exchanging these embeddings is on the order of:

O

(
KB

L∑
l=1

p(l)F
ldemb

(l−1)

)
,

where B is the batch size per client, demb
(l) is the embedding (hidden) dimension at layer l, and F l

reflects the exponential expansion in sampled neighborhoods as the layer depth increases.
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Note that this estimate does not account for the two-stage aggregation in Swift-FedGNN, which will
significantly reduce the size of transferred embeddings. Therefore, this expression only represents a
conservative (worst-case) upper bound, and the actual communication overhead is likely to be much
lower.

If the p(l)F
l cross-client neighbors at layer l are distributed across C(l) < M remote clients, then

after aggregation, the communication cost becomes:

O

(
KB

L∑
l=1

C(l)d
emb
(l−1)

)
,

where C(l) ≪ p(l)F
l due to the aggregation mechanism in Swift-FedGNN.

For comparison, consider FedGNN-PNS Du & Wu (2022), the most closely related prior work, which
reduces communication by reusing the same sampled training nodes and their sampled neighbors
across multiple training iterations, but directly transmits raw input features for those cross-client
neighbors. The total communication cost of FedGNN-PNS per cross-client neighbor update is
approximately:

O

(
MB

L∑
l=1

p(l)F
ldemb

(0)

)
,

where demb
(0) is the input feature dimension, typically larger than hidden dimensions in deeper layers.

When communication of cross-client neighbors occurs, Swift-FedGNN is more efficient than
FedGNN-PNS due to three key reasons: i) It involves only K < M clients per iteration; ii) It
transmits lower-dimensional hidden embeddings (i.e., demb

(l−1) < demb
(0) for l ≥ 2); and iii) It leverages

two-stage aggregation to compress information prior to transmission (i.e., C(l) ≪ p(l)F
l).

Moreover, as training progresses, FedGNN-PNS increases the frequency of graph data communica-
tion, which can lead to significant cumulative overhead. In contrast, Swift-FedGNN maintains a fixed
periodic communication schedule and reduces transferred data per iteration, resulting in substantially
lower overall communication cost.

2) Total communication cost over T training iterations: Given the per-iteration communication cost
for exchanging cross-client neighbor embeddings, the total communication cost of Swift-FedGNN for
exchanging these embeddings across T training iterations is on the order of:

O

(
T

I
KB

L∑
l=1

C(l)d
emb
(l−1)

)
.

In addition, gradients and global model parameters are transmitted in every iteration. Let the model
parameters at layer l be W(l) ∈ Rdemb

(l−1)×demb
(l) . Then the total communication cost for gradients and

model updates is on the order of:

O

(
2TM

L∑
l=1

demb
(l−1)d

emb
(l)

)
.

Combining both, the overall communication complexity of Swift-FedGNN is on the order of:

O

(
2TM

L∑
l=1

demb
(l−1)d

emb
(l) +

T

I
KB

L∑
l=1

C(l)d
emb
(l−1)

)
.

D.2 COMPUTATION COMPLEXITY OF Swift-FedGNN

At each GNN layer l, the per-node computational cost includes:

• Neighbor aggregation (e.g., mean/sum/max): O(Fdemb
(l−1)).

• Linear transformation: O(demb
(l−1)d

emb
(l) ).
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With a total of F l−1 sampled nodes at layer l (due to recursive fan-out), the total per-batch cost per
client is on the order of:

O
(
BF l−1

(
Fdemb

(l−1) + demb
(l−1)d

emb
(l)

))
.

Across T training iterations and M clients, the total computation complexity (including both forward
and backward passes) of Swift-FedGNN can be expressed as:

O

(
2TM

L∑
l=1

BF l−1
(
Fdemb

(l−1) + demb
(l−1)d

emb
(l)

))
.

E DISCUSSION ON NON-ELEMENT-WISE OPERATIONS

In the design of our communication-efficient Swift-FedGNN, we do not consider non-element-wise
operations (e.g., GAT Veličković et al. (2017)), as such operations are fundamentally not a good fit in
any communication-efficient FGL algorithm design.

Taking GAT as an example, GAT requires direct access to raw neighbor features/embeddings to
compute attention weights based on nonlinear pairwise interactions (see Eq. (1) in Veličković et al.
(2018)). This requirement necessitates transmitting raw neighbor features/embeddings across clients,
which leads to significantly high communication overhead. In other words, it is impossible for GAT
to leverage the same communication-efficient aggregated transmissions as in those GNN models
based on element-wise operations (e.g., GCN Kipf & Welling (2017), GraphSAGE Hamilton et al.
(2017), GIN Xu et al. (2019), and SGCN Wu et al. (2019)). As a result, GAT is not an ideal GNN
model choice in those FGL algorithm design settings, where communication efficiency is of utmost
importance.

To further quantitatively understand GAT’s communication efficiency limitation in FGL algorithm
design, we analyze the communication cost of incorporating GAT into Swift-FedGNN (denoted
as GAT-Swift-FedGNN) and compare it with our original Swift-FedGNN design. Throughout the
analysis, we assume an L-layer GNN and the following parameters:
• M : The total number of clients;
• F : The same number of neighbor sampling fan-out used at each layer;
• F l: The worst-case number of neighbors at each training node at each GNN layer l ∈ [1, L] using
F -fan-out;

• p(l) ∈ (0, 1): The fraction of the neighbors that are located on other clients.

1) GAT-Swift-FedGNN: Every I iterations, each of the K sampled clients performs cross-client train-
ing and exchanges raw features/embeddings for its cross-client neighbors. The total communication
cost per cross-client training round for exchanging these embeddings is on the order of:

O

(
KB

L∑
l=1

p(l)F
ldemb

(l−1)

)
,

where B is the batch size per client, demb
(l) is the embedding (hidden) dimension at layer l, and F l

reflects the exponential expansion in sampled neighborhoods as the layer depth increases.

2) Swift-FedGNN: In contrast, Swift-FedGNN avoids transferring raw features/embeddings by
sharing aggregated neighbor features/embeddings. If the p(l)F

l cross-client neighbors at layer l are
distributed across C(l) < M remote clients, then after aggregation, the communication cost is on the
order of:

O

(
KB

L∑
l=1

C(l)d
emb
(l−1)

)
.

Since C(l) ≪ p(l)F
l, Swift-FedGNN achieves significantly lower communication overhead than the

GAT variant.
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From the above analysis, we can see that GAT-Swift-FedGNN incurs a communication cost that is
not only F l times higher than Swift-FedGNN, but the gap between them also grows exponentially as
the number of layers increases.

Although non-element-wise operations (e.g., GAT) are highly popular GNN models in both the
literature and practice, how to reduce the communication cost and avoid raw neighbor feature
transmission for non-element-wise operations in the federated setting is a fundamentally hard problem,
which would require major architectural design changes in non-element-wise operations rather than
straightforward adaptation. Therefore, exploring attention-based extensions is a valuable direction
for future research.

F DISCUSSION ON PRIVACY IN Swift-FedGNN

In this work, our primary privacy motivation is to avoid the direct transmission of raw node features,
which are often privacy-sensitive in real-world graph applications (e.g., user attributes in social net-
works). Our “aggregate-then-transfer” design ensures that: i) Only aggregated neighbor embeddings
(not raw features) are shared across clients; and ii) No raw node information is directly exposed to
other clients or the server.

That said, we do not claim formal privacy guarantees (e.g., differential privacy bounds) in this
work, since simply using aggregation without Gaussian/Laplacian-type noise injection is unlikely
to offer (ϵ, δ)-type differential privacy guarantee. Instead, our focus is on reducing communication
overhead in federated graph learning while improving practical privacy-preserving behavior through
communication-efficient design.

Importantly, the Swift-FedGNN framework is compatible with standard differential privacy techniques
and federated encryption protocols, which can be integrated Gaussian/Laplacian-type noise injection
to provide formal privacy guarantees.

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

G.1 ADDITIONAL EXPERIMENTAL RESULTS

G.1.1 EXPERIMENTAL SUPPORT FOR THEORETICAL FINDINGS

Table 5: Gradient bias under varying GNN depths on the ogbn-arxiv dataset.

GNN DEPTH 2 14 16
GRADIENT BIAS 0.46 17.56 30.11

Table 6: Validation accuracy (%) under varying GNN depths on the ogbn-arxiv dataset.

GNN DEPTH 2 14 16
VALIDATION ACCURACY (%) 57.17 54.60 48.46

To empirically validate our theoretical findings, we use the gradient bias between the full gradient
and the stochastic gradient as an empirical proxy. This quantity has a theoretical upper bound of
LBl

∆G (see Lemma 5.4), making it a suitable example for analysis.

Table 5 presents the measured gradient bias on the ogbn-arxiv dataset across different GNN depths.
These results clearly show that the gradient bias increases with the GNN depth, consistent with our
theoretical result that deeper GNNs incur larger bias due to amplified sampling and cross-client
neighbor errors.

Table 6 shows the validation accuracy on the ogbn-arxiv dataset under varying GNN depths. We
observe that the validation accuracy degrades as the GNN depth increases. This behavior is consistent
with our theoretical insight that deeper GNNs introduce larger gradient bias terms, which in turn lead
to greater approximation error and reduced performance.

In summary, the empirical trends above corroborate the theoretical predictions in Theorem 5.6,
confirming both the validity and practical relevance of the error bounds in Theorem 5.6.
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It is worth emphasizing that the performance degradation observed with increasing GNN depth
is a fundamental limitation of GNN architectures themselves, rather than a limitation our
Swift-FedGNN algorithm design. This phenomenon is well-known to occur across GNNs regardless
of the specific graph learning algorithm in use. Addressing it typically requires architecture-level
enhancements, and many existing solutions (e.g., Chen et al. (2022)) are fully compatible with our
Swift-FedGNN design and can be integrated to mitigate depth-related degradation in practice.

G.1.2 COMMUNICATION OVERHEAD
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Figure 6: Ratio of computation time to sampling and communication time for different algorithms.

Communication and sample costs analysis: Figure 6 illustrates the comparison between the ratios
of the computation time and the sampling and communication time for Swift-FedGNN and the base-
line algorithms. It can be seen that Swift-FedGNN significantly reduces the computation-(sampling &
communication) ratio on the ogbn-products dataset. On the Reddit dataset, Swift-FedGNN also signif-
icantly reduces this ratio compared to FedGNN-PNS and FedGNN-G. While Swift-FedGNN achieves
a comparable ratio to LLCG, it converges much faster and achieves higher validation accuracy than
LLCG.
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Figure 7: Ratio of computation time to sampling and communication time for Swift-FedGNN on
ogbn-products dataset.

Hyperparameter sensitivity analysis: We explore the impact of the important hyperparameters in
Swift-FedGNN. Figure 7a shows that when the correction frequency I increases, the computation-
(sampling & communication) ratio increases. Figure 7b and 7c indicate that as the number of
cross-client training clients K, and the number of sampled neighbors increase, the computation-
(sampling & communication) ratio decreases. Figure 7d evaluates Swift-FedGNN with different
numbers of clients. In this experiment, 50% of clients periodically conduct cross-client training
on both local and cross-client neighbors. We can see that as the number of clients increases, the
computation-(sampling & communication) ratio decreases. These findings align with our expectations
since sampling and communication overhead is significantly greater than computation overhead in
GNN training.

Table 7: Communication overhead per iteration when communication occurs.

Swift-FedGNN LLCG FedGNN-PNS FedGNN-G
OGBN-PRODUCTS 19.5 MB 378.3 MB 78.0 MB 78.0 MB

REDDIT 90.4 MB 619.6 MB 180.7 MB 180.7 MB
Communication overhead when communication occurs: Table 7 shows the communication
overhead per iteration when cross-client sampling and communication occur for different algorithms.
We can see that Swift-FedGNN significantly reduces the communication overhead compared to all
baselines across both datasets. Specifically, on the ogbn-products dataset, Swift-FedGNN incurs 19.5
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MB of overhead per iteration, which is approximately 20 times less than LLCG and 4 times less than
both FedGNN-PNS and FedGNN-G. Similarly, for the Reddit dataset, due to its dense inter-node
connections and larger feature size, Swift-FedGNN’s overhead is 90.4 MB, which is still about 7
times less than LLCG and 2 times less than both FedGNN-PNS and FedGNN-G. This highlights the
efficiency of Swift-FedGNN in reducing communication costs during cross-client training.

G.1.3 VALIDATION ACCURACY

Table 8: Validation accuracy (%) of different algorithms using the GraphSAGE model.

OGBN-PRODUCTS REDDIT OGBN-ARXIV FLICKR CITESEER
SWIFT-FEDGNN 88.88 95.47 57.17 50.19 66.00

LLCG 87.66 95.27 56.78 50.12 68.40
FEDGNN-PNS 87.89 95.46 55.86 51.47 66.27

FEDSAGE 88.15 95.30 56.55 49.75 64.39
FEDGNN-G 88.71 95.96 56.78 51.57 66.08

Validation accuracy comparisons: Table 8 shows the validation accuracy of different algorithms.
To assess the impact of cross-client neighbors, we include an additional baseline FedSage Zhang
et al. (2021), an FGL algorithm that entirely ignores cross-client neighbors and performs purely
local training in all iterations. The results demonstrate that despite incurring lower sampling and
communication overhead, our Swift-FedGNN achieves validation accuracy comparable to that of
the baseline algorithms. Moreover, compared to FedSage, which completely ignores cross-client
neighbors, Swift-FedGNN achieves a higher validation accuracy, highlighting the importance of
incorporating cross-client neighbor information. By minimizing sampling and communication
overhead, Swift-FedGNN offers the highest efficiency in practical implementation.

It is worth noting that ogbn-arxiv, flickr, and citeseer are small datasets (Table 14), where graph
partitioning leads to greater information loss. As a result, baselines that frequently exchange graph
data can achieve slightly higher accuracy. However, these small datasets do not require federated
graph learning in practice. Federated graph learning is primarily motivated by large-scale datasets
like ogbn-products, where our method achieves the best performance.

Table 9: Validation accuracy (%) on the ogbn-products dataset for two large-scale settings with 80
clients and 100 clients.

SWIFT-FEDGNN
(K = 10)

SWIFT-FEDGNN
(K/M = 1/2) LLCG FEDGNN-

PNS FEDSAGE
FEDGNN-

G
M = 80 85.74 86.12 83.54 85.67 85.35 86.52
M = 100 85.07 85.53 84.35 85.15 84.41 85.63

Evaluations of large-scale settings: Table 9 presents the validation accuracy on the ogbn-products
dataset for two large-scale settings with 80 clients and 100 clients. These results show that
Swift-FedGNN maintains comparable or better validation accuracy in both settings, with larger
K yielding slightly improved performance. These findings confirm that even with a small sub-
set of sampled clients, Swift-FedGNN ensures stable convergence, while significantly lowering
communication overhead.

G.1.4 EVALUATION ACROSS DIFFERENT GNN MODELS

Table 10: Validation accuracy (%) of different algorithms using the GIN model.

OGBN-PRODUCTS OGBN-ARXIV CITESEER
SWIFT-FEDGNN 81.93 56.69 47.34

LLCG 80.72 57.32 46.60
FEDGNN-PNS 78.70 56.54 47.99

FEDGNN-G 83.76 57.01 50.76

Evaluations using the GIN model: To assess the adaptivity of Swift-FedGNN to different GNN
models, we conduct experiments using the GIN Xu et al. (2019) model across multiple datasets.
Table 10 shows that, similar to the results with the GraphSAGE model, Swift-FedGNN achieves
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Table 11: Performance comparison using the GIN model when achieving a target validation accuracy
for each dataset.

OGBN-PRODUCTS OGBN-ARXIV
TOTAL COMM.

COST (GB)
WALL-CLOCK

TIME (S)
TOTAL COMM.

COST (GB)
WALL-CLOCK

TIME (S)
SWIFT-FEDGNN 0.74 65.18 2.29 75.80

LLCG 3.74 223.77 3.81 103.98
FEDGNN-PNS 5.75 113.46 3.62 131.92

FEDGNN-G 38.12 767.53 19.36 575.26

comparable validation accuracy to the baseline algorithms while significantly reducing sampling and
communication overhead.

Table 11 reports the total communication cost and wall-clock time on the ogbn-products and ogbn-
arxiv datasets when reaching a target validation accuracy of 80% and 56%, respectively. In both cases,
Swift-FedGNN achieves the lowest wall-clock time to reach the target accuracy. Moreover, it reduces
the total communication cost by at least 80% on ogbn-products and 37% on ogbn-arxiv compared to
all baselines. These results demonstrate the effectiveness of Swift-FedGNN in significantly reducing
communication overhead when using the GIN model.

G.1.5 EVALUATION UNDER MORE HETEROGENEOUS SETTINGS

Table 12: Total communication cost (GB) using randomly partitioned ogbn-products dataset when
achieving a target validation accuracy of 89.5%.

SWIFT-FEDGNN FEDGNN-G LLCG FEDGNN-PNS
COMMUNICATION COST (GB) 1.44 15.03 6.26 2.60

Table 13: Comparison of validation accuracy (%) using randomly partitioned ogbn-products dataset.

SWIFT-FEDGNN FEDGNN-G LLCG FEDGNN-PNS
VALIDATION ACCURACY (%) 89.94 91.23 89.92 89.91

Evaluations using randomly partitioned ogbn-products dataset: To evaluate the robustness of
Swift-FedGNN under less structured scenarios, we conduct additional experiments using random
partitioning instead of METIS on the ogbn-products dataset. Random partitioning introduces hetero-
geneity by randomly assigning nodes to different subgraphs, thereby implicitly inducing non-identical
and structurally unbalanced local subgraphs. Table 12 shows the total communication cost when
achieving a target validation accuracy of 89.5%. Swift-FedGNN reduces total communication cost
by at least 45% compared to all baselines. Table 13 reports the validation accuracy, demonstrating
that Swift-FedGNN achieves the highest accuracy among methods that do not rely on full graph
training. These results confirm that Swift-FedGNN maintains both communication efficiency and
competitive performance even when the data is randomly partitioned, validating its applicability
beyond well-partitioned settings.

G.2 ADDITIONAL EXPERIMENTAL DETAILS

Dataset. Table 14 summarizes the key statistics of the datasets used in our experiments, includ-
ing: 1) ogbn-products Hu et al. (2020), which is an Amazon product co-purchasing graph derived
from Leskovec et al. (2007); 2) Reddit Hamilton et al. (2017), which consists of online forum
posts within a month, where posts commented on by the same user are connected by an edge; 3)
ogbn-arxiv Hu et al. (2020), which is a citation network between arXiv papers in the field of computer
science, where nodes represent papers and directed edges indicate citation links; 4) flickr Zeng et al.
(2020), which is an image network where each node represents an image and edges connect images
that share common properties such as tags or visual similarity; and 5) citeseer Giles et al. (1998),
which is a citation graph of research papers, where each node denotes a document and edges represent
citation relationships between them.

Implementation and testbed. We implement Swift-FedGNN using Python on DGL 2.0.0 Wang et al.
(2019b) and PyTorch 2.2.1 Paszke et al. (2019). Our implementation includes a custom GPU-based
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Table 14: Benchmark datasets and key parameters.

DATASET # OF NODES # OF EDGES
EDGES

PER NODE
OGBN-PRODUCTS 2.4 M 61.9 M 25.8

REDDIT 233 K 114.6 M 491.4
OGBN-ARXIV 169 K 1.2 M 7.1

FLICKR 89 K 900 K 10.1
CITESEER 3327 9228 2.8

sampler built on top of DGL’s native sampler, which is designed to sequentially sample local and
remote neighbors for each client at every layer. Additionally, we customized the GraphSAGE layer
and GIN layer to facilitate model-parallel training within Swift-FedGNN . In this setup, the server
handles the sampling and aggregation of node features and intermediate activations, while the clients
are responsible for executing the nonlinear computations associated with the GraphSAGE layer.

We simulate a real-world federated learning scenario using a single machine equipped with NVIDIA
Tesla V100 GPUs and 64GB memory. In our setup, both the clients and the server operate on the
GPU, and data communication between them is simulated using shared memory. We monitor the
data transfer size between the server and clients and set a simulated cross-client network bandwidth
at 1Gbps, aligning with real-world measurements reported in Yuan et al. (2022).

GNN model. We train a two-layer GraphSAGE model and a two-layer GIN model with a hidden
dimension of 256. Uniform sampling is employed for neighbor sampling, with fan-outs—i.e., the
number of sampled neighbors—set according to the official training script provided by the DGL team.
The fan-out values are set to [20, 15] for the ogbn-products dataset, and [15, 10] for all other datasets.

Hyperparameters. The training mini-batch size is set at 256. For optimization, we use the Adam
optimizer with a weight decay of 5 × 10−4. We use a learning rate of 0.01 for the ogbn-products
dataset, 0.0001 for the flickr dataset, 0.00001 for the citeseer dataset, and 0.001 for both the ogbn-
arxiv and Reddit datasets. In Swift-FedGNN, we set K = 10 for the ogbn-products dataset and
K = 5 for all other datasets. We choose I = 5 for the citeseer dataset and I = 10 for the remaining
datasets.

H PROOF OF THEOREM 5.6

H.1 GRADIENT COMPUTATIONS IN Swift-FedGNN

Recall that Swift-FedGNN uses GCN Kipf & Welling (2017) as the architecture of GNN to prove the
convergence performance. When client m performs local training that updates the local GNN model
using only the local graph data, Each sampling-based GCN layer executes one feature propagation
step, defined as:

H̃
(l),m
local =

[
f̃ (l),m

(
H̃

(l−1),m
local ,W (l),m

)
≜ σ

(
P̃

(l),m
local H̃

(l−1),m
local W (l),m

)]
.

Using the chain rule, the stochastic gradient can be computed as ∇F̃m (θm) =
{
G̃

(l),m
local

}L
l=1

, where

G̃
(l),m
local =

[
∇W f̃ (l),m

(
D̃

(l),m
local , H̃
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represents Hadamard product.
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Similarly, when client m conducts cross-client training that updates the local GNN model based on
the local graph data and the cross-client neighbors, each sampling-based GNN layer can be defined
as:

H̃
(l),m
full =

[
f̃ (l),m

(
H̃

(l−1),m
full ,W (l),m

)
≜ σ

((
P̃

(l),m
local H̃

(l−1),m
local +P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m

)]
.

Using the chain rule, the stochastic gradient can be calculated as ∇F̃m (θm) =
{
G̃

(l),m
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}L
l=1

, where
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H.2 USEFUL PROPOSITIONS AND LEMMAS

Proposition H.1. Under Assumption 5.3, the inequalities in Table 15 and Table 16 are hold.

Table 15: Upper-bound for the norms of the propagation matrix and the node feature matrix.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH ∥Pfull∥F ≤ BP ∥Xfull∥F ≤ BX

LOCAL GRAPH ∥Plocal∥F ≤ Bl
P ≤ BP ∥Xlocal∥F ≤ Bl

X ≤ BX

CROSS-CLIENT NEIGHBORS ∥Premote∥F ≤ Br
P ≤ BP ∥Xremote∥F ≤ Br

X ≤ BX

Table 16: Relationships for the norms of the propagation matrix and the node feature matrix before
and after sampling.

PROPAGATION MATRIX NODE FEATURE MATRIX

FULL GRAPH
∥∥∥P̃full − Pfull

∥∥∥
F
≤ Bf

∆P

∥∥∥X̃full −Xfull

∥∥∥
F
≤ Bf

∆X

LOCAL GRAPH
∥∥∥P̃local − Plocal

∥∥∥
F
≤ Bl

∆P

∥∥∥X̃local −Xlocal

∥∥∥
F
≤ Bl

∆X

CROSS-CLIENT NEIGHBORS
∥∥∥P̃remote − Premote

∥∥∥
F
≤ Br

∆P

∥∥∥X̃remote −Xremote

∥∥∥
F
≤ Br

∆X

Lemma H.2. [Lemma 1 in Cong et al. (2021)] An L-later GCN is LF -Lipschitz smooth, i.e.,
∥∇L (θ1)−∇L (θ2)∥F ≤ LF ∥θ1 − θ2∥F .
Lemma H.3. Under Assumptions 5.1–5.3, and for any l ∈ [L], the Frobenius norm of node embedding
matrices, gradient passing from the l-th layer node embeddings to the (l − 1)-th are bounded, i.e.,∥∥∥H(l),m

local

∥∥∥
F
,
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local
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where
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where (a)–(c) results from Assumptions 5.2 and 5.3.
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where (a)–(c) follow from Assumptions 5.2 and 5.3.

∥∥∥H(l),m
full

∥∥∥
F
=
∥∥∥σ (P (l),m

full H
(l−1),m
full W (l),m

)∥∥∥
F

(a)

≤ CσBPBW

∥∥∥H(l−1),m
full

∥∥∥
F
≤ (CσBPBW )

l ∥Xm∥F
(b)

≤ (CσBPBW )
l
BX ≤ max

1≤l≤L
(CσBPBW )

l
BX ,

where (a) and (b) are because of Assumptions 5.2 and 5.3.
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where (a)–(c) follow from Assumptions 5.2 and 5.3.
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∥∥∥D̃(l+1),m
local

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D̃(L),m

local

∥∥∥
F

(c)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a)–(c) follow from Assumptions 5.1–5.3.

∥∥∥D(l),m
full

∥∥∥
F
=

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BPBWCσ

∥∥∥D(l+1),m
full

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D(L),m

full

∥∥∥
F

(b)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a) and (b) use Assumptions 5.1–5.3.

∥∥∥D̃(l),m
full

∥∥∥
F
=

∥∥∥∥[P̃ (l+1),m
local + P̃

(l+1),m
remote

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

=

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BPBWCσ

∥∥∥D̃(l+1),m
full

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D̃(L),m

full

∥∥∥
F

(b)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a) and (b) utilize Assumptions 5.1–5.3.

Lemma H.4. Under Assumptions 5.1–5.3, and for any l ∈ [L], the errors caused by sampling are
bounded, i.e.,∥∥∥H̃(l),m

local −H
(l),m
local

∥∥∥
F
≤ Bl

∆H ,
∥∥∥H̃(l),m

full −H
(l),m
full

∥∥∥
F
≤ Bf

∆H ,∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F
≤ Bl

∆D,
∥∥∥D̃(l),m

full −D
(l),m
full

∥∥∥
F
≤ Bf

∆D,

where

Bl
∆H = max

1≤l≤L

((
CσBWBl

HBl
∆P

)l
+ (CσBWBP )

l
Bl

∆X

)
,

Bf
∆H = max

1≤l≤L

((
CσBWBf

HBf
∆P

)l
+ (CσBWBP )

l
Bf

∆X

)
,

Bl
∆D = max

1≤l≤L

((
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+(BWBPCσ)
L−l

LlB
l
∆H

)
,

Bf
∆D = max

1≤l≤L

((
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+(BWBPCσ)
L−l

LlB
f
∆H

)
.
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Proof.∥∥∥H̃(l),m
local −H

(l),m
local

∥∥∥
F

=
∥∥∥σ (P̃ (l),m

local H̃
(l−1),m
local W (l),m

)
− σ

(
P

(l),m
local H

(l−1),m
local

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F
+ CσBW

∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

(b)

≤ CσBWBl
H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+ CσBWBP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(c)

≤ CσBWBl
HBl

∆P + CσBWBP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

≤
(
CσBWBl

HBl
∆P

)l
+ (CσBWBP )

l
∥∥∥X̃m

local −Xm
local

∥∥∥
F

(d)

≤
(
CσBWBl

HBl
∆P

)l
+ (CσBWBP )

l
Bl

∆X

≤ max
1≤l≤L

((
CσBWBl

HBl
∆P

)l
+ (CσBWBP )

l
Bl

∆X

)
, (9)

where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma H.3, and (c)
and (d) follow from Proposition H.1.

∥∥∥H̃(l),m
full −H

(l),m
full

∥∥∥
F

=
∥∥∥σ ((P̃ (l),m

local H̃
(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m

)
− σ

(
P

(l),m
full H

(l−1),m
full

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤ CσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full −P

(l),m
full H̃

(l−1),m
full

∥∥∥
F
+ CσBW

∥∥∥P (l),m
full H̃

(l−1),m
full −P

(l),m
full H

(l−1),m
full

∥∥∥
F

(b)

≤ CσBWBf
H

∥∥∥P̃ (l),m
full − P

(l),m
full

∥∥∥
F
+ CσBWBP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

(c)

≤ CσBWBf
HBf

∆P + CσBWBP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

≤
(
CσBWBf

HBf
∆P

)l
+ (CσBWBP )

l
∥∥∥X̃m

full −Xm
full

∥∥∥
F

(d)

≤
(
CσBWBf

HBf
∆P

)l
+ (CσBWBP )

l
Bf

∆X

≤ max
1≤l≤L

((
CσBWBf

HBf
∆P

)l
+ (CσBWBP )

l
Bf

∆X

)
, (10)

where (a) follows from Assumptions 5.2 and 5.3, (b) is due to Assumption 5.3 and Lemma H.3, and
(c) and (d) are because of Proposition H.1.

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

=

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

) [
W (l+1),m

]⊤
−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BW

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦∇σ

(
Z̃

(l+1),m
local

)
−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F
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≤ BW

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−
[
P

(l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

(b)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+BWBPB
l
D

∥∥∥∇σ
(
Z̃

(l+1),m
local

)
−∇σ

(
Z

(l+1),m
local

)∥∥∥
F

(c)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

(d)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσB

l
H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+B2

WB2
PB

l
DLσ

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(e)

≤ BWBl
DCσB

l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D̃(L),m
local −D

(L),m
local

∥∥∥
F

(f)

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H̃(L),m
local −H

(L),m
local

∥∥∥
F

(g)

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
l
∆H

≤ max
1≤l≤L

((
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+(BWBPCσ)
L−l

LlB
l
∆H

)
,

where (a) uses Assumption 5.3, (b) is because of Assumptions 5.2 and 5.3 and Lemma H.3, (c)
follows from Assumptions 5.2 and 5.3, (d) utilizes Assumption 5.3 and Lemma H.3, (e) results from
Eq. (9) and Proposition H.1, (f) is because of Assumption 5.1, and (g) is due to Eq. (9).

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

=

∥∥∥∥[P̃ (l+1),m
local + P̃

(l+1),m
remote

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F
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(a)

≤ BW

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

≤ BW

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

(b)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+BWBPB
f
D

∥∥∥∇σ
(
Z̃

(l+1),m
full

)
−∇σ

(
Z

(l+1),m
full

)∥∥∥
F

(c)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P̃ (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H

(l),m
full

∥∥∥
F

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P̃ (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H̃

(l),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H

(l),m
full

∥∥∥
F

(d)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσB

f
H

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+B2

WB2
PB

f
DLσ

∥∥∥H̃(l),m
full −H

(l),m
full

∥∥∥
F

(e)

≤ BWBf
DCσB

f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D̃(L),m
full −D

(L),m
full

∥∥∥
F

(f)

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H̃(L),m
full −H

(L),m
full

∥∥∥
F

(g)

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
f
∆H

≤ max
1≤l≤L

((
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
f
∆H

)
,

where (a) is because of Assumption 5.3, (b) results from Assumptions 5.2 and 5.3 and Lemma H.3,
(c) uses Assumptions 5.2 and 5.3, (d) is due to Assumption 5.3 and Lemma H.3, (e) follows from Eq.
(10) and Proposition H.1, (f) utilizes Assumption 5.1, and (g) is because of Eq. (10).
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Lemma H.5. Under Assumptions 5.1–5.3, and for any l ∈ [L], the errors caused by the information
loss of the cross-client neighbors are bounded, i.e.,∥∥∥H(l),m

local −H
(l),m
full

∥∥∥
F
≤ Br

∆H ,
∥∥∥D(l),m

local −D
(l),m
full

∥∥∥
F
≤ Br

∆D,

where

Br
∆H = max

1≤l≤L

(
(CσBWBP )

l
Br

X +
(
CσBWBf

HBP

)l)
,

Br
∆D = max

1≤l≤L

((
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+(BWBPCσ)
L−l

LlB
r
∆H

)
.

Proof.∥∥∥H(l),m
local −H

(l),m
full

∥∥∥
F
=
∥∥∥σ (P (l),m

local H
(l−1),m
local

)
W (l),m − σ

(
P

(l),m
full H

(l−1),m
full

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤ CσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
local H

(l−1),m
full

∥∥∥
F

+ CσBW

∥∥∥P (l),m
local H

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

(b)

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

H

∥∥∥P (l),m
local − P

(l),m
full

∥∥∥
F

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

H

∥∥∥P (l),m
remote

∥∥∥
F

(c)

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

HBP

≤ (CσBWBP )
l ∥∥Xm

local −Xm
full

∥∥
F
+
(
CσBWBf

HBP

)l
(d)

≤ (CσBWBP )
l
Br

X +
(
CσBWBf

HBP

)l
≤ max

1≤l≤L

(
(CσBWBP )

l
Br

X +
(
CσBWBf

HBP

)l)
, (11)

where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma H.3, (c)
follows from Assumption 5.3, and (d) is due to Proposition H.1.

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

=

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

) [
W (l+1),m

]⊤
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

≤ BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
local

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F
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(b)

≤BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+BWBPB
f
D

∥∥∥∇σ
(
Z

(l+1),m
local

)
−∇σ

(
Z

(l+1),m
full

)∥∥∥
F

(c)

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
local H

(l),m
local − P

(l+1),m
full H

(l),m
full

∥∥∥
F

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
local H

(l),m
local − P

(l+1),m
full H

(l),m
local

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
full H

(l),m
local − P

(l+1),m
full H

(l),m
full

∥∥∥
F

(d)

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσB

l
H

∥∥∥P (l+1),m
local − P

(l+1),m
full

∥∥∥
F
+B2

WB2
PB

f
DLσ

∥∥∥H(l),m
local −H

(l),m
full

∥∥∥
F

(e)

≤ BWBl
DCσBP +B2

WB2
PB

f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

+BWBPCσ
∥∥∥D(l+1),m

local −D
(l+1),m
full

∥∥∥
F

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D(L),m
local −D

(L),m
full

∥∥∥
F

(f)

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H(L),m
local −H

(L),m
full

∥∥∥
F

(g)

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
r
∆H

≤ max
1≤l≤L

((
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
r
∆H

)
,

where (a) follows from Assumption 5.3, (b) uses Assumptions 5.2 and 5.3 and Lemma H.3, (c) is
because of Assumptions 5.2 and 5.3, (d) results from Assumption 5.3 and Lemma H.3, (e) is due to
Assumption 5.3 and Eq. (11), (f) utilizes Assumption 5.1, and (g) uses Eq. (11).

H.3 ERRORS OF STOCHASTIC GRADIENTS

Lemma H.6. Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full
gradients are bounded as follows:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)
∥∥∥
F
≤ LBl

∆G,
∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)
∥∥∥
F
≤ LBf

∆G,

where

Bl
∆G = max

1≤l≤L

((
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

)
, (12)
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Bf
∆G = max

1≤l≤L

((
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

)
(13)

Proof.∥∥∥G̃(l),m
local −G

(l),m
local

∥∥∥
F

=

∥∥∥∥[P̃ (l),m
local H̃

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−
[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

≤
∥∥∥∥[P̃ (l),m

local H̃
(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−
[
P

(l),m
local H

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−
[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−
[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

(a)

≤ Bl
DCσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+BPB
l
HBl

D

∥∥∥∇σ
(
Z̃

(l),m
local

)
−∇σ

(
Z

(l),m
local

)∥∥∥
F

(b)

≤ Bl
DCσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+BPB
l
HBl

DLσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

) ∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

) ∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

+BPB
l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

(c)

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(d)

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

≤ max
1≤l≤L

((
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

)
:= Bl

∆G,

where (a) follows from Assumptions 5.2 and 5.3 and Lemma H.3, (b) is because of Assumptions 5.2
and 5.3, (c) uses Assumption 5.3 and Lemma H.3, and (d) results from Lemma H.4 and Proposi-
tion H.1.

When client m performs local training with only its local data, the error between the stochastic
gradient and the full-gradient can be bounded as:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)
∥∥∥
F
=

L∑
l=1

∥∥∥G(l),m
local − G̃

(l),m
local

∥∥∥
F
≤ LBl

∆G.

∥∥∥G̃(l),m
full −G

(l),m
full

∥∥∥
F
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=

∥∥∥∥[P̃ (l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

≤
∥∥∥∥[P̃ (l),m

full H̃
(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

(a)

≤ Bf
DCσ

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

D

∥∥∥∇σ
(
Z̃

(l),m
full

)
−∇σ

(
Z

(l),m
full

)∥∥∥
F

(b)

≤ Bf
DCσ

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

DLσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H̃

(l−1),m
full

∥∥∥
F

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

+BPB
f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

(c)

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

H

∥∥∥P̃ (l),m
full − P

(l),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

(d)

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

≤ max
1≤l≤L

((
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

)
:= Bf

∆G,

where (a) results from Assumptions 5.2 and 5.3 and Lemma H.3, (b) uses Assumptions 5.2 and 5.3,
(c) is due to Assumption 5.3 and Lemma H.3, and (d) is because of Lemma H.4 and Proposition H.1.

When client m conducts cross-client training using its local data and the cross-client neighbors, the
error between the stochastic gradient and the full-gradient can be bounded as:∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)
∥∥∥
F
=

L∑
l=1

∥∥∥G(l),m
full − G̃

(l),m
full

∥∥∥
F
≤ LBf

∆G.

Lemma H.7. Under Assumptions 5.1–5.3, the error between the full gradient computed with both
the local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:∥∥∇Fm

full (θ
m)−∇Fm

local (θ
m)
∥∥
F
≤ LBr

∆G,

where

Br
∆G = max

1≤l≤L

((
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

)
(14)

Proof.∥∥∥G(l),m
local −G

(l),m
full

∥∥∥
F

=

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

≤
∥∥∥∥[P (l),m

local H
(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
local

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

(a)

≤ Bl
DCσ

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

D

∥∥∥∇σ
(
Z

(l),m
local

)
−∇σ

(
Z

(l),m
full

)∥∥∥
F

(b)

≤ Bl
DCσ

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

DLσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
local H

(l−1),m
full

∥∥∥
F

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
local H

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

+BPB
f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

(c)

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
BP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

H

∥∥∥P (l),m
local − P

(l),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

(d)

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

≤ max
1≤l≤L

((
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

)
= Br

∆G,

where (a) is because of Assumptions 5.2 and 5.3 and Lemma H.3, (b) uses Assumptions 5.2 and 5.3, (c)
follow from Assumption 5.3 and Lemma H.3, and (d) results from Assumption 5.3 and Lemma H.5.

The error between the full gradient computed with both the local graph data and the cross-client
neighbors and the full gradient computed with only the local graph data is bounded as follows:

∥∥∇Fm
full (θ

m)−∇Fm
local (θ

m)
∥∥
F
=

L∑
l=1

∥∥∥G(l),m
local −G

(l),m
full

∥∥∥
F
≤ LBr

∆G.
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H.4 MAIN PROOF OF THEOREM 5.6

Theorem H.8. Under Assumptions 5.1–5.3, choose step-size α = min
{√

M/
√
T , 1/LF

}
, where

LF is the smoothness constant given in Lemma H.2. The output of Swift-FedGNN with a L-layer
GNN satisfies:

1

T

T−1∑
t=0

∥∇L (θt)∥2 ≤ 2√
MT

(L (θ0)−L (θ∗))+

(
1− K

IM

)
L2
(
Bl

∆G+Br
∆G

)2
+

K

IM
L2(Bf

∆G)
2.

Proof.
L (θt+1)− L (θt)

(a)

≤ ⟨∇L (θt) ,θt+1 − θt⟩+
LF

2
∥θt+1 − θt∥2

(b)
= −α

〈
∇L (θt) ,

1

M

∑
m∈M

∇F̃m (θm
t )

〉
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2
(c)
= −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2 + α

2

∥∥∥∥∇L (θt)−
1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2
= −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2 + α

2

∥∥∥∥ 1

M

∑
m∈M

(
∇Fm (θm

t )−∇F̃m (θm
t )
)∥∥∥∥2

+
LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2
(d)

≤ −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2 + α

2

1

M

∑
m∈M

∥∥∥∥∇Fm (θm
t )−∇F̃m (θm

t )

∥∥∥∥2
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t )

∥∥∥∥2
(e)

≤ −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 + α

2

1

M

∑
m∈M

∥∥∥∥∇Fm (θm
t )−∇F̃m (θm

t )

∥∥∥∥2, (15)

where (a) follows from Lemma H.2, (b) is because of the update rule in Swift-FedGNN, (c) uses
⟨x,y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2, (d) utilizes ∥
∑n

i=1 xi∥
2 ≤ n

∑n
i=1 ∥xi∥2, and (e) is due

to the choice of α ≤ 1/LF .

When t ∈ [(nt − 1) I + 1, ntI − 1] ∩ Z, where nt = {1, 2, · · · }, Swift-FedGNN conducts local
training for all clients m ∈ M. Thus,∥∥∥∥∇Fm (θm

t )−∇F̃m (θm
t )

∥∥∥∥ =

∥∥∥∥∇Fm
full (θ

m
t )−∇F̃m

local (θ
m
t )

∥∥∥∥
≤
∥∥∥∥∇Fm

full (θ
m
t )−∇Fm

local (θ
m
t )

∥∥∥∥+∥∥∥∥∇Fm
local (θ

m
t )−∇F̃m

local (θ
m
t )

∥∥∥∥
(a)

≤ LBr
∆G + LBl

∆G, (16)
where (a) follows from Lemmas H.6 and H.7.

When t = ntI , where nt = {1, 2, · · · }, Swift-FedGNN performs local training for clients m ∈ M\K,
and thus the inequality (16) holds for these clients. The randomly sampled clients m ∈ K conduct
cross-client training, and thus∥∥∥∥∇Fm (θm

t )−∇F̃m (θm
t )

∥∥∥∥ =

∥∥∥∥∇Fm
full (θ

m
t )−∇F̃m

full (θ
m
t )

∥∥∥∥ (a)

≤ LBf
∆G,
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where (a) uses Lemma H.6.

Telescoping (15) from i = (nt − 1) I + 1 to ntI , we have

ntI∑
i=(nt−1)I+1

(L (θi+1)− L (θi))

≤ −α

2

ntI∑
i=(nt−1)I+1

∥∥∥∥∇L (θi)

∥∥∥∥2 + α

2
(I − 1)L2

(
Bl

∆G +Br
∆G

)2
+

α

2M
KL2

(
Bf

∆G

)2
+

α

2M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Choosing T = ntI yields

T−1∑
t=0

(L (θt+1)− L (θt))

≤ −α

2

T−1∑
t=0

∥∥∥∥∇L (θt)

∥∥∥∥2 + α

2
(T − nt)L

2
(
Bl

∆G +Br
∆G

)2
+ nt

α

2M
KL2

(
Bf

∆G

)2
+ nt

α

2M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Rearranging the terms and multiplying both sides by 2/α, we get

T−1∑
t=0

∥∥∥∥∇L (θt)

∥∥∥∥2

≤ 2

α

T−1∑
t=0

(L (θt)− L (θt+1)) + (T − nt)L
2
(
Bl

∆G +Br
∆G

)2
+

nt

M
KL2

(
Bf

∆G

)2
+

nt

M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Dividing both sides by T and choosing α =
√
M/

√
T completes the proof of Theorem 5.6.

I THEORETICAL ANALYSIS EXTENSIONS FOR GRAPHSAGE AND GIN

While our theoretical analysis is presented under the GCN architecture for mathematical tractability,
the core convergence results of Swift-FedGNN extend naturally to a broader class of element-wise
operation-based GNNs, including GraphSAGE and GIN. In particular, our convergence bounds
remain applicable to these models under similar assumptions.

The main challenge in extending the theoretical analysis to GraphSAGE and GIN lies in handling
non-linear and heterogeneous aggregation functions, which are more prominent in GraphSAGE
(e.g., max-pooling, LSTM) and GIN (e.g., MLP-based injective updates). These functions introduce
additional sources of nonlinearity and variance in the layer-wise error propagation, making it harder
to tightly bound the bias and variance of the resulting stochastic gradients.

Below, we describe the respective update rules and outline the required modifications to adapt our
proof strategy for GraphSAGE and GIN.

I.1 UPDATE RULES FOR GRAPHSAGE AND GIN

1) GraphSAGE: The propagation matrices for GraphSAGE are given by Km
local = D−1

m Âm
local

and Km
remote = D−1

m Âm
remote. Similar to GCN, when client m trains using only the
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local graph data, the update rule for GraphSAGE (i.e., Eq. (3) and (4)) is: H̃
(l),m
t =

σ
([

H̃
(l−1),m
t ∥ K̃

(l),m
local H̃

(l−1),m
local

]
W

(l),m
t

)
. When client m trains based on both the local graph

data and the cross-client neighbors, the update rule for GraphSAGE (i.e., Eq. (5)–(8)) becomes
H̃

(l),m
t = σ

([
H̃

(l−1),m
t ∥

(
K̃

(l),m
local H̃

(l−1),m
local + K̃

(l),m
remoteH̃

(l−1),m
remote

)]
W

(l),m
t

)
.

2) GIN: The propagation matrices for GIN are defined as S
(l),m
local = Am

local +
(
1 + ϵ(l),m

)
I and

S
(l),m
remote = Am

remote +
(
1 + ϵ(l),m

)
I . When client m trains on local graph data only, the update rule

for GIN (i.e., Eq. (3) and (4)) is: H̃(l),m
t =MLP(l),m

(
S̃

(l),m
local H̃

(l−1),m
local

)
. When client m trains using

both the local graph data and the cross-client neighbors, the update rule for GIN (i.e., Eq. (5)–(8))
becomes: H̃(l),m

t =MLP(l),m
(
S̃

(l),m
local H̃

(l−1),m
local +S̃

(l),m
remoteH̃

(l−1),m
remote

)
.

I.2 PROOF SKETCH: EXTENDING THEORETICAL ANALYSIS TO GRAPHSAGE AND GIN

Extending the convergence analysis in Theorem 5.6 to GraphSAGE and GIN follows a similar proof
strategy as that for GCN, with the GCN-specific lemmas replaced by their respective counterparts for
GraphSAGE or GIN.

1) Modified Bias Bounding Strategy: The original convergence proof (Theorem 5.6) relies on
bounding the gradient bias introduced by (i) stochastic neighbor sampling and (ii) the absence
of cross-client neighbors. These bounds are formalized in Lemmas 5.4 and 5.5, supported by
Lemmas H.3–H.5, all of which are based on GCN-specific updates.

To generalize the analysis, we replace the GCN-specific update rules with the corresponding rules for
GraphSAGE or GIN, and re-derive the associated bounds in Lemmas 5.4 and 5.5 and their supporting
lemmas (Lemmas H.3–H.5). This yields modified upper bounds on the gradient bias, where the
constants depend on the respective GNN architectures.
Lemma I.1. Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full
gradients are bounded as follows:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)
∥∥∥
F
≤ Cl

∆G,
∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)
∥∥∥
F
≤ Cf

∆G,

where Cl
∆G and Cf

∆G are constants that depend on the respective GNN architectures (e.g., Graph-
SAGE or GIN) and are positively correlated with the GNN depth.

Lemma I.2. Under Assumptions 5.1–5.3, the error between the full gradient computed with both the
local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:∥∥∇Fm

full (θ
m)−∇Fm

local (θ
m)
∥∥
F
≤ Cr

∆G,

where Cr
∆G is a constant that depends on the respective GNN architectures (e.g., GraphSAGE or

GIN) and is positively correlated with the GNN depth.

2) Generalized Convergence Result: By substituting the updated gradient bias bounds (Lemmas I.1
and I.2) into the main convergence proof (Theorem 5.6), we obtain the following generalized
convergence result for Swift-FedGNN with GraphSAGE or GIN:

1

T

T−1∑
t=0

∥∇L (θt)∥2≤
2 (L (θ0)−L (θ∗))√

MT
+
(
Cl

∆G+Cr
∆G

)2
+

K

IM

((
Cf

∆G

)2
−
(
Cl

∆G+Cr
∆G

)2)
,

where the residual error terms depend on the specific GNN architecture used.

This extension demonstrates that Swift-FedGNN ’s convergence guarantees are not limited to GCN,
but remain valid for other element-wise operation-based GNNs such as GraphSAGE and GIN under
similar assumptions. Importantly, the key theoretical insights (e.g., the residual error scaling with the
correction frequency I and the client sampling size K) persist across architectures, supporting the
broad applicability of our framework.
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