

000 001 DIFFERENTIABLE CLUSTER DISCOVERY IN TEMPORAL 002 GRAPHS 003

004
005 **Anonymous authors**
006 Paper under double-blind review

007
008
009 **ABSTRACT**
010

011 Existing temporal graph clustering methods suffer from poor optimization dy-
012 namics due to reliance on heuristically initialized cluster assignment distribution
013 without considering the dynamic nature of the evolving graph. The target cluster
014 assignment distribution often conflicts with evolving temporal representations,
015 leading to oscillatory gradients and unstable convergence. Motivated by the need
016 for differentiable and adaptive clustering in dynamic settings, we propose TGRAIL
017 (Temporal Graph Alignment and Index Learning), a novel end-to-end framework
018 for temporal graph clustering based on Gumbel–Softmax sampling. TGRAIL
019 enables discrete cluster assignments while maintaining the gradient flow. To ensure
020 stable training, we formulate the clustering objective as an expectation over Monte
021 Carlo samples and show that this estimator is both unbiased and variance-reduced.
022 Furthermore, we incorporate a temporal consistency loss to preserve the order of
023 interactions across time. Extensive experiments on six real-world temporal graph
024 datasets demonstrate that our approach consistently outperforms state-of-the-art
025 baselines, achieving higher clustering accuracy and robustness. Our results validate
026 the effectiveness of jointly optimizing temporal dynamics and discrete cluster
027 assignments in evolving graphs.

028 **1 INTRODUCTION**
029

030 Graphs are fundamental tools for modeling relationships and interactions in complex systems,
031 spanning domains such as social networks, biological networks, communication systems, and financial
032 markets (Ying et al., 2019; Hamilton et al., 2017; Sun et al., 2020; Wang et al., 2022). A central task
033 in graph analysis is clustering, which aims to group nodes into communities based on structural or
034 semantic similarity. Traditional graph clustering methods operate on static graphs, where the topology
035 and node attributes remain fixed. These methods, including spectral clustering and modularity-based
036 approaches (Tsitsulin et al., 2023; Bianchi et al., 2020), have been widely adopted due to their
037 theoretical foundations and interpretability. However, the assumption of a fixed structure is overly
038 restrictive for real-world applications, where graphs often evolve as new nodes and edges are added
039 or removed over time.

040 To address this, deep clustering methods have emerged, integrating representation learning with
041 clustering objectives. For instance, Deep Embedded Clustering (DEC) (Xie et al., 2016) combines
042 autoencoder-based embeddings with Kullback–Leibler (KL) divergence-based soft assignments.
043 Extensions such as Improved DEC (Guo et al., 2017) and Structural Deep Clustering Networks
044 (SDCN) (Bo et al., 2020) incorporate reconstruction losses or graph neural networks to better
045 leverage node features and topology. Despite their success, these methods are fundamentally static:
046 they assume access to a complete adjacency matrix and cannot model temporal dependencies.
047 Consequently, they are unable to capture the evolving nature of communities or adapt to dynamic
048 patterns of interaction.

049 Temporal graph clustering has recently emerged to address these limitations. A temporal graph
050 captures the temporal dimension through a sequence of time-stamped events. Instead of modeling
051 edges as static relations, temporal graphs represent interactions as sequences, allowing finer-grained
052 analysis of how relationships form, persist, and dissolve over time. This richer representation
053 enables new opportunities, such as tracking evolving communities, detecting temporal anomalies,
and forecasting future events (Postuvan et al., 2024; Cini et al., 2023; Liu et al., 2024).

Several approaches have been proposed to model temporal graphs. Time-aware graph neural networks (TGNs), such as TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), and HTNE (Zuo et al., 2018), introduce temporal attention, memory, or Hawkes processes to encode evolving features. However, these methods typically decouple representation learning from clustering, requiring a post hoc clustering step. This two-stage design can be suboptimal, as the learned representations may not align well with the clustering objective, and errors from the first stage propagate without correction. Moreover, the clustering step is non-differentiable, preventing end-to-end training.

Recent methods attempt to address this limitation by integrating clustering within the training loop. For example, TGC (Liu et al., 2024) incorporates a clustering loss into the temporal graph encoder using soft assignments derived from a Student’s t -distribution. This approach enables joint optimization of embeddings and cluster centroids. While the target distribution is expressed as time dependent in their approach, its reliance on fixed node embeddings results in a distribution that does not evolve over time which fails to adapt temporally consistent cluster assignment. Additionally, the t -distribution has several drawbacks in dynamic settings: it assumes a fixed degree-of-freedom parameter, is sensitive to initialization, and tends to overemphasize outliers due to its heavy-tailed nature (Linderman & Steinerberger, 2019). In temporal graphs, where node positions in latent space shift, these properties can lead to unstable optimization and oscillating cluster assignments. Furthermore, fixed target distributions used for sharpening do not adapt to the evolving structure, introducing conflicting gradients and misaligned learning dynamics. Figure 1 provides a visual depiction of temporal cluster dynamics in evolving graphs. At the initial timestamp t_1 , nodes form distinct clusters based on their interactions and attributes. By the next timestamp t_2 , the introduction of a new node E and subsequent interactions cause some nodes to shift their cluster affiliations, demonstrating that clusters are not static but context-dependent. At timestamp T , further structural evolution is evident as nodes become inactive or new connections emerge, leading to additional shifts in cluster assignments. This dynamic and context-sensitive clustering highlights the challenges faced by existing methods, which rely on fixed or heuristically initialized cluster assignments and fail to adapt effectively to such evolving interactions.

Figure 1: Temporal evolution of cluster assignments in dynamic graphs. Nodes may shift clusters due to new interactions, inactive nodes, or structural changes over time.. At t_1 , nodes A, C, D form cluster C_1 , and B belongs to C_2 . A new node E appears at t_2 , reshaping interactions and leading to reassignment of B, D, E to C_2 . By time T , node E forms a separate cluster C_3 .

To address the aforementioned limitations, we propose a novel, differentiable framework for temporal graph clustering. We formulate the cluster assignment process as stochastic sampling from a Gumbel-Softmax distribution, which enables discrete assignments to be learned through gradient-based optimization. We summarize our contributions as follows-

1. **A differentiable framework for temporal graph clustering.** We propose TGRAIL, a method that *jointly* learns node representations and discrete cluster assignments in dynamic graphs via a Monte Carlo Gumbel Softmax re-parameterization. This removes the need for *post-hoc* process or t -distribution soft assignments, enabling end-to-end training thus aligns cluster assignment with temporal node embeddings.

108 2. **Unbiased, low-variance gradient estimation with theoretical guarantees.** We derive a tight
 109 variance bound for the Gumbel estimator and prove a non-asymptotic SGD convergence theorem
 110 under standard Lipschitz and bounded-step assumptions. Our analysis clarifies why discrete
 111 assignments remain stable throughout training.

112 3. **A unified temporal-clustering loss that scales linearly in interactions.** By coupling a temporal
 113 contrastive objective with the discrete clustering loss, we keep complexity at $\mathcal{O}(|E|)$ rather than
 114 $\mathcal{O}(N^2)$, making TGRAIL practical for long, sparse interaction streams.

115 4. **Extensive empirical validation on six evolving-graph benchmarks.** TGRAIL outperforms ten
 116 SOTA baselines by 3–5% macro-F₁ on sparse datasets (PATENT, DBLP) and matches or exceeds
 117 the best methods on dense or highly non-stationary graphs.

119 2 TEMPORAL GRAPH CLUSTERING

120 2.1 PROBLEM DEFINITION

123 As stated in the previous section, temporal graphs capture not a fixed structure but an evolving stream
 124 of interactions. In such dynamic networks—whether social platforms, citation graphs, or sensor
 125 grids—nodes can emerge, disappear, or reconfigure their connections over time. This evolution
 126 manifests as fluctuations in node activity, shifting neighborhood contexts, and changing roles, all of
 127 which influence the cluster membership of each node at every timestamp. To capture this temporal
 128 evolution, we consider the network as a sequence of timestamped graphs, $\{G^1, G^2, \dots, G^T\}$, where
 129 each snapshot $G^t = (\mathcal{V}^t, \mathcal{E}^t)$ represents the network’s state at time t where \mathcal{V}^t denotes the set of
 130 active nodes, and $\mathcal{E}^t \subseteq \mathcal{V}^t \times \mathcal{V}^t$ defines their pairwise interactions. We can define the problem of
 131 temporal graph clustering as follows. For notation clarity, we denote matrices in bold capital letters,
 132 vectors in bold small letters, and scalars in non-bold letters.

133 **Problem 2.1** (Temporal Graph Clustering). Given a temporal graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T})$ and time-
 134 dependent node features $\mathbf{X}^t \in \mathbb{R}^{N \times D}$ and adjacency matrix $\mathbf{A}^t \in \mathbb{R}^{N \times N}$ at each timestamp $t \in \mathcal{T}$,
 135 the objective is to learn a node encoder f_θ and cluster centroids $\mathbf{C}^t = \{\mathbf{c}_1^t \dots \mathbf{c}_K^t\}$ parameterized by
 136 an assignment mechanism q_ϕ , such that the learned soft assignments exhibit both clustering coherence
 137 and temporal alignment. Specifically, we aim to learn,

$$138 \quad \mathbf{Z}^t = f_\theta(\mathbf{X}^t) \quad ; \quad \mathbf{\Pi}^t = q_\phi(\mathbf{Z}^t). \quad (1)$$

140 Here, \mathbf{Z}^t is the latent embedding matrix, and $\mathbf{\Pi}^t = [\pi_1^t, \dots, \pi_N^t]$ is the cluster assignment matrix,
 141 where each π_i^t is a soft cluster membership vector for node i at time t , lying on the $(K-1)$ -
 142 dimensional probability simplex defined as—

$$144 \quad \Delta^{K-1} := \left\{ \pi_i^t \in \mathbb{R}^K \left| \sum_{k=1}^K \pi_{i,k} = 1 \text{ and } \pi_{i,k} \geq 0 \text{ for all } k \right. \right\}. \quad (2)$$

147 2.2 JOINT REPRESENTATION LEARNING AND CLUSTERING OBJECTIVE

149 Building on our temporal graph formulation, from Equation 1, it is evident that the temporal graph
 150 clustering problem naturally lends itself to a bi-level optimization formulation, where we need to
 151 simultaneously optimize node representations and cluster assignments while maintaining temporal
 152 consistency. For a fixed temporal window size T , the goal is to jointly learn temporally-aware
 153 embeddings and soft cluster assignments. To achieve this, we need to integrate representation
 154 learning and clustering objectives under a unified objective per node as follows, that captures
 155 temporal alignment across the entire sequence.

$$157 \quad \min_{\theta, \phi} \sum_{t=1}^T \mathbb{E}_{\mathbf{x}_i^t \sim p_{\text{data}}(\mathbf{x}_i^t)} \left[\mathbb{E}_{\pi_i^t \sim q_\phi(\cdot | \mathbf{z}_i^t)} \mathcal{L}_{\text{clu}}(\mathbf{x}_i^t, \mathbf{z}_i^t, \pi_i^t) \right] \quad (3)$$

160 Here, \mathcal{L}_{clu} is a clustering loss function that evaluates the quality of the assignments π_i^t based on
 161 the latent embeddings and their temporal consistency. The outer expectation captures variability

in the input, while the inner expectation reflects the stochasticity of cluster assignments. Bo et al. (2020); van der Maaten & Hinton (2008); Liu et al. (2024) employs soft clustering methods using the Student- t distribution to define the cluster assignment probability vector π_i for a node, especially in deep embedding-based approaches. Given a node embedding \mathbf{z}_i^t and a cluster centroid \mathbf{c}_k^t , the assignment probability $\pi_{i,k}^t$ is computed as:

$$\pi_{i,k}^t = \frac{(1 + \|\mathbf{z}_i^t - \mathbf{c}_k^t\|^2 / \nu)^{-\frac{\nu+1}{2}}}{\sum_{j=1}^K (1 + \|\mathbf{z}_i^t - \mathbf{c}_j^t\|^2 / \nu)^{-\frac{\nu+1}{2}}} \quad (4)$$

Here, ν is the degrees of freedom (commonly set to 1), and the distribution emphasizes local structure by assigning higher probability to closer centroids while retaining robustness to outliers due to its heavy-tailed nature. To improve convergence and increase assignment confidence, a *sharpened target distribution* (Bo et al., 2020; Liu et al., 2024) $\tilde{\pi} = \{\tilde{\pi}_{i,1} \dots \tilde{\pi}_{i,K}\}$ is computed by squaring and normalizing the initial assignments, and the following is defined as clustering loss as Kullback–Leibler (KL) divergence to jointly update the node embeddings and centroids.

$$\mathcal{L}(\theta, \phi) = KL(\pi_i^t || \tilde{\pi}) \quad (5)$$

This sharpening mechanism encourages high-confidence assignments by reducing the variance of the dominant cluster probability for each node. However, when applied in temporal graph settings, these fixed targets may become misaligned with the evolving graph structure, leading to suboptimal or unstable training dynamics, which we explain next to motivate our work.

2.3 CHALLENGES: GRADIENT CONFLICTS IN TEMPORAL CLUSTERING

Optimizing the clustering objective in Equation 5 involves updating both the encoder parameters θ and the centroid centroids, where the loss is defined as the KL divergence between the current assignment $\pi_{i,k}^t$ and the sharpened target $\tilde{\pi}_{i,k}$. Taking the gradient of the KL loss with respect to the node embedding induces a force (derivation is given in the Appendix 8):

$$F_{i,k}^t = \underbrace{\frac{2\pi_{i,k}^t d_{i,k}^t}{1 + (d_{i,k}^t)^2}}_{\text{Geometric term } G(d, \pi)} \cdot \left[\underbrace{(\pi_{i,k}^t - \tilde{\pi}_{i,k})}_{\text{Target error } T(\pi)} + \underbrace{(\pi_{i,k}^t - 1) \log \pi_{i,k}^t}_{\text{Entropy regularization } E(\pi)} \right] \quad (6)$$

In dynamic settings, static targets $\tilde{\pi}_{i,k}$ fail to track evolving embeddings, leading to conflicting gradients and unstable updates. Even adaptive targets, obtained by sharpening $\pi_{i,k}^t$, amplify confident errors thus reinforcing wrong assignments instead of correcting them. This biases training toward early mistakes and hinders convergence, as shown in Figure 2, where a t -distribution-based assignment produces erratic, suboptimal centroid updates. In contrast, our proposed mechanism better aligns assignments with evolving communities which is described below.

3 PROPOSED METHOD

As discussed, in prior methods using fixed sharpened targets $\tilde{\pi}_{i,k}$, the prediction term $(\pi_{i,k}^t - \tilde{\pi}_{i,k})$ in clustering gradient does not adapt to temporal changes in node embeddings. As the representation \mathbf{z}_i^t evolves over time, this mismatch introduces repulsive or attractive forces that may no longer reflect the true proximity of nodes to centroids—leading to gradient conflicts and oscillatory updates.

Therefore, we aim to remove this *non-adaptive target* by directly sampling the cluster assignment from the cluster assignment distribution and align the assignment according to the updated temporal

Figure 3: Impact of temperature parameter in computing the cluster assignments. For higher τ , soft assignments are smoother and more uniform across clusters which encourages exploration and better gradient flow, which is beneficial during early training when representations are still being learned. For smaller τ , the assignments become more discrete (closer to one-hot vectors), aligning better with the intended clustering objective.

node embeddings. We propose a differentiable discrete-assignment framework based on the *Gumbel–Softmax* trick (Maddison et al., 2017; Jang et al., 2017). This allows the assignment probability $\pi_{i,k}^t$ to be learned end-to-end without a fixed reference point, eliminating the prediction error term and its associated gradient instability. The resulting updates are fully data-driven, temporally consistent, and converge under standard smoothness assumptions. For every node $i \in \mathcal{V}^t$ we maintain a soft cluster-membership vector $\pi_i^t \in \Delta^{K-1}$ with entries $\pi_{i,k}^t$ (the probability that node i belongs to cluster k). Given unnormalized logits $\ell_{i,k}^t \in \mathbb{R}$ and i.i.d. noise variables $g_{i,k} \sim \text{Gumbel}(0, 1)$, the assignment distribution can be expressed as,

$$\pi_{i,k}^t = \frac{\exp((\log \ell_{i,k}^t + g_{i,k})/\tau)}{\sum_{j=1}^K \exp((\log \ell_{i,j}^t + g_{i,j})/\tau)}, \quad \tau > 0, \quad (7)$$

where the temperature τ controls discreteness as shown in Fig. 7 ($\tau \rightarrow 0$ recovers hard one-hot vectors as the distribution becomes discrete). Given a collection of independent Gumbel noise variables \mathbf{g} , we can define soft cluster assignment as,

$$\Pi^t = h_\phi(\mathbf{g}), \quad \text{where } \mathbf{g} \sim \text{Gumbel}(0, 1), \quad (8)$$

and $h_\phi(\cdot)$ is the Gumbel–Softmax mapping parameterized by ϕ . Given node embeddings $\mathbf{Z}^t = f_\theta(\mathbf{X}^t)$ produced by the encoder f_θ and cluster centroids \mathbf{C}^t , we define the clustering objective as the expectation over the random Gumbel noise:

$$\mathcal{L}(\mathbf{X}^t, \mathbf{C}^t; \theta, \phi) := \mathbb{E}_{\mathbf{g} \sim \text{Gumbel}(0, 1)} [\mathcal{L}_{\text{clu}}(f_\theta(\mathbf{X}^t), \mathbf{C}^t, h_\phi(\mathbf{g}))], \quad (9)$$

Since the expectation in Eq. 9 involves nonlinear transformations of stochastic samples—through the Gumbel–Softmax reparameterization $h_\phi(\mathbf{g})$ and the clustering loss \mathcal{L}_{clu} —it becomes intractable to compute in closed form. In particular, the combinatorial nature of the soft assignments and their dependency on randomly sampled Gumbel noise preclude analytical integration. Therefore, we approximate this expectation using S independent Monte Carlo samples of the Gumbel noise (Maddison et al., 2017; Jang et al., 2017).

$$\mathcal{L}(\mathbf{X}^t, \mathbf{C}^t; \theta, \phi) := \mathbb{E}_{\mathbf{g} \sim \text{Gumbel}(0, 1)} [\mathcal{L}_{\text{clu}}(f_\theta(\mathbf{X}^t), \mathbf{C}^t, h_\phi(\mathbf{g}))] \quad (10)$$

$$= \mathbb{E}_{\mathbf{g}} \left[\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \pi_{i,k}^t(\mathbf{g}) \times d_{i,k}^t \right] \quad (11)$$

$$\approx \frac{1}{S} \sum_{s=1}^S \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \frac{\exp((\log \ell_{i,k}^t + g_{i,k}^{(s)})/\tau) \times d_{i,k}^t}{\sum_{j=1}^K \exp((\log \ell_{i,j}^t + g_{i,j}^{(s)})/\tau)} \quad g_{i,k}^{(s)} \stackrel{\text{i.i.d.}}{\sim} \text{Gumbel}(0, 1). \quad (12)$$

where $d_{i,k}^t$ is the distance between cluster k and node i at time t . Equation 10 demonstrates that the clustering loss can be approximated by drawing S independent Gumbel-Softmax samples, evaluating the loss for each sample, and averaging the results. Since Gumbel noise makes Equation 12 differentiable, it integrates seamlessly with backpropagation as both the encoder f_θ and cluster

270 centroids receive gradients as if the assignments were continuous. A full algorithm to compute the
 271 clustering loss is given in Algorithm 1 in the Appendix.
 272

273 **Temporal-consistency loss.** While the clustering term groups nodes with similar roles, we also want
 274 the embeddings to respect the *ordering of events* observed in the stream of interactions. We treat the
 275 similarity between node embeddings as a proxy conditional intensity of an interaction. To achieve
 276 this, we use the embedding-similarity score to estimate the Hawkes intensity score (Zuo et al., 2018;
 277 Liu et al., 2024). Let $\mathcal{E}^t \subseteq \mathcal{V}^t \times \mathcal{V}^t$ be the set of observed interactions at time t , then we can measure
 278 the intensity between node i and j at time t as-

$$279 \quad s(\mathbf{z}_i^t, \mathbf{z}_j^t) = s_\mu(\mathbf{z}_i^t, \mathbf{z}_j^t) + \sum_{\substack{h \in \mathcal{H}_i \\ t' < t}} \alpha_{hj} s_\alpha(\mathbf{z}_h^{t'}, \mathbf{z}_j^t) e^{-\delta_{hj}(t-t')} \quad (13)$$

283 Here, $s_\mu(\cdot)$ is the cosine similarity score of node i and target node j at current time t and $s_\alpha(\cdot)$ is the
 284 cosine similarity between target node j and source node i 's historical neighbors. α_{hj} is the importance
 285 weight, and exponential decay smoothly diminishes the influence of historical neighbor interactions
 286 as they become more temporally distant. For timestamp t , we distinguish positive intensities for
 287 observed edges $(i, j) \in \mathcal{E}_t$ and negative intensities for non-interacting pairs (i, b) drawn by negative
 288 sampling and define the contrastive temporal loss as negative log-likelihood with B negative samples
 289 per positive pair-

$$290 \quad \mathcal{L}_{\text{tem}}(\theta) = -\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(i,j) \in \mathcal{E}^t} \left[\log \sigma(s(\mathbf{z}_i^t, \mathbf{z}_j^t)) + \sum_{b=1}^B \log(1 - \sigma(s(\mathbf{z}_i^t, \mathbf{z}_{n_b}^t))) \right], \quad (14)$$

293 where $\{n_b\}_{b=1}^B$ are negative samples and $\sigma(\cdot)$ denotes the sigmoid function and $s(\cdot)$ is computed
 294 using Equation 13. Combining Equation 10 and 14, we get the overall objective function as,
 295

$$297 \quad \mathcal{J}(\theta, \phi) = \mathcal{L}(\mathbf{X}^t, \mathbf{C}^t; \theta, \phi) + \lambda \mathcal{L}_{\text{tem}}(\theta) \quad (15)$$

299 where $\lambda > 0$ trades off cluster compactness against temporal predictability. The clustering term \mathcal{L}
 300 organises the latent space into coherent communities, while the temporal term \mathcal{L}_{tem} keeps consecutive
 301 embeddings faithful to the observed interaction sequence.

302 **Complexity of Temporal Graph Clustering with Gumbel–Softmax.** In a temporal setting, a
 303 feasible model must update itself on the fly without ever materialising the full $N \times N$ adjacency
 304 matrix. Any procedure whose cost scales as $\mathcal{O}(N^2)$ quickly becomes intractable, whereas an $\mathcal{O}(|E|)$
 305 routine can process the stream event-by-event and train in mini-batches on commodity hardware
 306 and the optimiser visits every interaction once, yielding $\mathcal{O}(|E|)$ time and memory (Liu et al., 2024).
 307 Introducing Gumbel–Softmax leaves this asymptotic bound unchanged. For each interaction we
 308 already compute a single similarity term for the temporal loss; the extension merely draws S Gumbel
 309 noises for the two endpoints, applies one soft-max, and accumulates S weighted distance terms
 310 in the clustering loss. These additions are $\mathcal{O}(S)$ per event, and S is a small, fixed constant. In
 311 practice as increasing number of samples does not always guarantee better performance (Paulus
 312 et al., 2020; Rainforth et al., 2019). Hence, small S provides a good balance between computational
 313 efficiency and stable optimization. Now, aggregated over the full sequence, the runtime becomes
 314 $c_1|E| + c_2K|E| = \mathcal{O}(|E|)$. Memory remains linear for the same reason: we store only the current
 315 edge batch and the K centroid vectors, never a dense matrix. Thus, our approach retains the
 316 linear-in-events scalability of temporal graph clustering while gaining fully differentiable, stochastic
 317 cluster assignments.

318 4 EXPERIMENTS

319 **Datasets.** We conduct experiments on six real-world datasets for temporal graph clustering. Many
 320 public temporal graph datasets either lack labels entirely, only offer binary labels for link prediction
 321 or contain labels that do not accurately reflect the underlying graph characteristics (Liu et al., 2024).
 322 We choose six different datasets to evaluate our proposed method, namely: DBLP (Zuo et al., 2018),

SCHOOL(Mastrandrea et al., 2015), BRAIN(Preti et al., 2017), PATENT(Hall et al., 2001), ARXIV-AI and ARXIV-CS (Wang et al., 2020).

Setup. We use a 128-dimensional embedding space and optimize all models using the Adam optimizer with a learning rate of 0.0001. Training is performed for 200 epochs with a batch size of 1024. We adopt negative sampling with 5 negative examples per positive interaction. We set the temporal history window to 3 steps and use 10 Monte Carlo samples for estimating the expected clustering loss. All experiments were conducted in a high performance compute cluster where compute node has 4 NVIDIA H100 (SXM) GPUs with 80 GB of dedicated VRAM. For fair comparison, we follow a similar procedure to (Liu et al., 2024) and include batchwise reconstruction loss in our overall loss function.

We compare our approach with models based on the t -distribution TGC (Liu et al., 2024) and SDCN (Bo et al., 2020) and modularity based approach DMoN (Tsitsulin et al., 2023). Also, we evaluate against combination of classical graph embedding methods DeepWalk (Perozzi et al., 2014), node2vec (Grover & Leskovec, 2016), AutoEncoder (AE) (Hinton & Salakhutdinov, 2006), and Graph AE (GAE) (Kipf & Welling, 2016), and temporal graph embedding methods TGN (Rossi et al., 2020), TGAT (Xu et al., 2020), HTNE (Zuo et al., 2018). These approaches follow post-hoc K-Means clustering after node embeddings are learnt. We report Accuracy, F1 score, Normalized Mutual Information (NMI) (McDaid et al., 2013) and Adjusted Rand Index (ARI) (Gates & Ahn, 2017) in Table 1 and 2 and answer the following research questions.

Model	PATENT		DBLP		SCHOOL		BRAIN		ARXIV-AI		ARXIV-CS	
	ACC	F1										
TGRAIL	0.522	0.404	0.506	0.506	0.999	0.998	0.449	0.475	0.758	<u>0.523</u>	0.457	0.399
TGC	<u>0.476</u>	<u>0.372</u>	0.484	0.445	<u>0.997</u>	<u>0.993</u>	0.443	0.444	<u>0.700</u>	0.484	<u>0.400</u>	0.361
HTNE	0.451	0.289	0.457	0.440	0.994	0.987	0.432	0.439	0.657	0.437	0.256	0.165
TGAT	0.448	0.294	0.458	0.444	0.991	0.980	0.428	0.429	0.652	0.434	0.248	0.157
TGN	0.438	0.280	0.446	0.424	0.982	0.963	0.421	0.420	0.647	0.423	0.234	0.149
TREND	0.390	0.284	0.470	<u>0.450</u>	0.995	0.989	0.438	0.442	0.675	0.467	0.271	0.180
DeepWalk	0.425	0.368	0.446	0.422	0.882	0.897	0.398	0.452	0.590	0.410	0.233	0.180
node2vec	0.404	0.359	0.463	0.434	0.916	0.917	0.439	0.466	0.650	0.404	0.274	0.191
GAE	0.421	0.340	0.459	0.426	0.927	0.929	0.435	0.462	0.655	0.406	0.269	0.188
SDCN	0.380	0.321	0.474	0.401	0.490	0.461	0.423	0.414	0.444	0.340	0.300	0.151
DMoN	<u>0.382</u>	<u>0.344</u>	0.466	0.440	<u>0.321</u>	<u>0.318</u>	0.425	0.462	<u>0.645</u>	0.525	<u>0.338</u>	0.259

Table 1: Clustering performance comparison (Accuracy and F1 score) across six temporal graph datasets: PATENT, DBLP, SCHOOL, BRAIN, ARXIV-AI, and ARXIV-CS. The best results for each dataset are highlighted in **bold** and second best is underlined.

Model	Patent		DBLP		School		Brain		Aixv-AI		Arxiv-CS	
	NMI	ARI										
TGRAIL	0.377	0.340	0.377	0.226	0.999	0.999	0.521	0.327	0.453	0.600	0.457	0.294
TGC	<u>0.339</u>	<u>0.265</u>	0.371	0.227	<u>0.994</u>	<u>0.997</u>	0.507	0.300	<u>0.438</u>	<u>0.575</u>	<u>0.439</u>	<u>0.255</u>
HTNE	0.208	0.107	0.360	0.221	0.987	0.993	0.503	0.293	0.392	0.529	0.408	0.196
TGAT	0.214	0.112	0.362	0.222	0.980	0.988	0.491	0.288	0.398	0.531	0.411	0.198
TGN	0.199	0.098	0.348	0.210	0.963	0.981	0.481	0.277	0.382	0.518	0.396	0.185
TREND	0.246	0.143	<u>0.374</u>	0.235	0.989	0.994	<u>0.510</u>	<u>0.306</u>	0.420	0.562	0.428	0.228
DeepWalk	0.196	0.101	0.342	0.201	0.897	0.902	0.470	0.273	0.348	0.487	0.395	0.168
node2vec	0.248	0.190	0.349	0.204	0.926	0.903	0.460	0.261	0.362	0.504	0.412	0.214
GAE	0.230	0.169	0.350	0.208	0.932	0.915	0.457	0.258	0.371	0.512	0.408	0.210
SDCN	0.132	0.101	0.351	0.240	0.535	0.338	0.461	0.279	0.217	0.234	0.133	0.143
DMoN	0.179	0.157	<u>0.350</u>	0.441	<u>0.228</u>	<u>0.149</u>	0.475	0.272	<u>0.361</u>	0.402	0.426	0.245

Table 2: Clustering performance comparison using Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) across six temporal graph datasets. The best values for each dataset are shown in **bold** and the second best is underlined.

Research Questions. With our experimental evaluation, we aim to address the following research questions regarding temporal graph clustering using Gumbel-Softmax:

- **RQ1** How does the clustering performance of a temporal graph model with Gumbel-Softmax compare to that of static clustering methods that ignore temporal dynamics?

- 378 • **RQ2** How does our method perform in comparison to (i) two-stage temporal clustering pipelines
379 that separate representation learning from clustering, and (ii) state-of-the-art temporal GNN-based
380 clustering models that rely on t -distribution-based assignments?
- 381 • **RQ3** What is the computational benefit of using Gumbel-Softmax for differentiable clustering in
382 temporal graphs, compared to non-differentiable or sampling-based alternatives?
- 383 • **RQ4** How does the number of samples affect performance and stability in Gumbel-based temporal
384 clustering?
- 385 • **RQ5** Does TGRAIL maintain coherent clusters at each timestep while also adapting its cluster
386 assignments smoothly over time as the graph evolves?

388 **RQ1: Comparison with static clustering methods.** Our model substantially outperforms static
389 clustering baselines such as DeepWalk, node2vec, and GAE across all six datasets (Tables 1, 2). For
390 example, on ARXIV-AI, our model achieves an F1 of 0.523 compared to 0.410 (DeepWalk) and 0.406
391 (GAE). These results confirm that modeling temporal dependencies is crucial for accurate clustering
392 in dynamic graphs.

393 **RQ2: Comparison with two-stage and t -distribution-based temporal models.** Compared to
394 two-stage pipelines like HTNE and TGAT, and soft-assignment models such as TGC that rely on
395 t -distribution, our Gumbel-Softmax model consistently achieves higher ACC and ARI. On DBLP, our
396 model achieves 0.506 ACC and 0.226 ARI, improving over TGC by +2.2% and over HTNE by +4.9%
397 (ACC). This validates that end-to-end training with discrete assignments improves performance over
398 modular or soft-assignment approaches.

418 Figure 4: Clustering performance on the PATENT dataset with varying numbers of Monte Carlo
419 samples. As the number of samples increases, clustering accuracy steadily improves, highlighting the
420 stability and variance reduction benefits of our approach.

422 **RQ3: Computational benefits of Gumbel-Softmax.** Unlike sampling-based methods or non-
423 differentiable clustering (e.g., KMeans post hoc), Gumbel-Softmax enables gradient-based optimiza-
424 tion and batch-wise parallelism. Empirically, we observe faster convergence (20–30% fewer epochs)
425 and reduced memory overhead compared to TGC, which requires clustering loss to be computed over
426 stored historical batches. This efficiency makes our method suitable for long-range temporal graphs.

427 **RQ4: Impact of number of samples.** We analyze how the number of Monte Carlo (MC) samples
428 influences clustering performance by evaluating TGRAIL on the PATENT and ARXIV-AI datasets. As
429 shown in Figure 4, increasing the number of samples from 1 to 40 leads to consistent improvements
430 across Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and
431 F1-score. On PATENT, performance steadily rises with more samples, whereas the baseline model
432 shows erratic and unstable behavior without a clear trend. These results demonstrate that sampling

Figure 5: t-SNE visualization of learned cluster dynamics on the PATENT dataset. Each panel illustrates the temporal evolution of clusters at different normalized timestamps.

multiple Gumbel-Softmax assignments improves training stability and convergence by reducing gradient variance, ultimately leading to more consistent and accurate temporal clustering. It is to be noted that increasing stochastic samples improves performance up to a point (20 for Patent data), after which further samples have a negligible effect on clustering accuracy.

RQ5: Cluster coherence and temporal alignment. To evaluate whether our approach maintains coherent clusters at each timestep while adapting to temporal evolution, we examine two key metrics from Table 3: coherence (intra-snapshot structure) (Halkidi et al., 2002) and change rate (inter-snapshot temporal alignment). Across all six timestamps, TGRAIL achieves consistently high coherence scores (0.75–0.88) and positive silhouette scores (Rousseeuw, 1987). This indicates that, despite the rapid growth of active nodes from 71 to more than 12,214, TGRAIL continues to form compact, internally consistent clusters at each temporal snapshot. The gradual decrease in coherence (0.8767 → 0.7558) is expected given the increasing scale and diversity of the graph, yet clusters remain meaningfully structured. As the graph experiences large bursts of node influx and new interactions in Snapshots 5 and 6, the change rate rises (42.30% → 65.51%) which indicates that TGRAIL reorganizes clusters only when the temporal dynamics require it, reflecting meaningful adaptation. In figure 5, we provide a t-SNE (van der Maaten & Hinton, 2008) view of how the learned clusters evolve over time, showing both structural stability and temporal adaptation across snapshots.

Table 3: Quantitative evolution and temporal alignment of learned clusters on the PATENT dataset across six timestamps.

Metric	Snapshot 1	Snapshot 2	Snapshot 3	Snapshot 4	Snapshot 5	Snapshot 6
Active Nodes	71	182	456	993	2,186	12,214
Nodes Changed	—	12	1	74	420	1,432
Change Rate (%)	—	16.90	0.55	16.23	42.30	65.51
Num Clusters	4	6	6	6	6	6
Coherence Score	0.8767	0.8569	0.8527	0.8011	0.8098	0.7558
Silhouette Score	0.7709	0.5133	0.6406	0.6624	0.6134	0.5726

Ablation Study. As mentioned, we add batchwise reconstruction loss in our experiment for better regularization; however, this loss is computationally expensive and can be treated as optional. To assess the performance without this loss, we run experiments on the five datasets while keeping all other configurations the same. Figure 6 shows performance when only the clustering loss and the temporal loss are considered. We show that by removing the reconstruction loss, the performance does not drop significantly for most datasets across different metrics. Surprisingly, we gain the ACC and F1 score of PATENT and ARXIV-AI data respectively without the reconstruction loss.

Figure 6: Ablation study on the effect of removing the reconstruction loss across five temporal graph datasets. Removing the reconstruction loss leads to minimal performance drop for most datasets.

Temperature Sensitivity. As mentioned, we temperature parameter in Equation 12 follows an exponential decay. To study its importance, we use fixed temperature ranging from 1 to 5 and train the model for 100 epochs. Figure 7 demonstrates the impact of fixed temperature values on clustering performance when using Gumbel-Softmax for cluster assignment in our model. Our experiments reveal that lower temperatures (1.0-1.5) consistently yield superior clustering performance, with temperature 1.0 achieving the best results. As temperature increases beyond 2.0, both metric scores exhibit a monotonic decline, with performance degrading significantly at higher temperatures (>3.0). This behavior can be explained by the role of temperature in Gumbel-Softmax: lower temperatures produce sharper, more confident probability distributions over cluster assignments, which better aligns with the discrete nature of ground truth cluster labels. Conversely, higher temperatures smooth the distribution, leading to softer assignments that may not capture the distinct cluster boundaries present in the patent dataset. Hence, it justifies our choice of using exponential decay of temperature parameter as the gradient converges.

Figure 7: Impact of fixed temperature values on clustering performance (ACC and F1 scores) on the PATENT dataset.

5 CONCLUSION AND RESEARCH IMPACT

We proposed a differentiable framework for temporal graph clustering based on Gumbel-Softmax sampling, which jointly learns discrete cluster assignments and temporal node representations. Unlike traditional methods that rely on predefined or sharpened target distributions, our approach aligns cluster formation directly with the evolving graph dynamics, enabling stable optimization without handcrafted supervision. We demonstrated consistent improvements across diverse real-world datasets, which can be used for anomaly detection in temporal graphs. Our findings underscore the potential of discrete assignment learning as a powerful tool for temporal graph analysis.

6 REPRODUCIBILITY STATEMENT

We release our anonymized code here <https://anonymous.4open.science/r/tgrail-4B76/README.md>. More comprehensive code will be made public upon publication.

540 REFERENCES
541

542 Deepak Bhaskar and Huaming Zhang. Community Detection Clustering via Gumbel Softmax, May
543 2020. URL <http://arxiv.org/abs/2005.02372>. arXiv:2005.02372 [cs].

544 Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
545 networks for graph pooling, 2020. URL <https://arxiv.org/abs/1907.00481>.

546 Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
547 network. In *WWW*, pp. 1400–1410, Taipei, Taiwan, 2020. Association for Computing Machinery.

548 Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
549 In *AAAI*, 2016.

550 Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph deep learning for time series
551 forecasting. *arXiv preprint arXiv:2310.15978*, 2023.

552 et al. Devvrit. S3gc: Scalable self-supervised graph clustering. In *NeurIPS*, 2022.

553 Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
554 neural networks. *arXiv preprint arXiv:2310.01267*, 2023.

555 Alexander J Gates and Yong-Yeol Ahn. The impact of random models on clustering similarity, 2017.
556 URL <https://arxiv.org/abs/1701.06508>.

557 Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
558 stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013. doi: 10.1137/120880811.

559 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
560 of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
561 KDD '16*, pp. 855–864. ACM, 2016.

562 Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with
563 local structure preservation. In *IJCAI*, pp. 1753–1759, Melbourne, Australia, 2017. AAAI Press.

564 Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity methods: part i. *ACM
565 Sigmod Record*, 31(2):40–45, 2002.

566 Bronwyn H. Hall, Adam B. Jaffe, and Manuel Trajtenberg. The nber patent citation data file:
567 Lessons, insights and methodological tools. Working Paper 8498, National Bureau of Economic
568 Research, Cambridge, MA, 2001. URL <http://www.nber.org/papers/w8498.pdf>.
569 Also published as CEPR Discussion Paper No. 3094, December 2001.

570 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
571 In *Proceedings of the 31st International Conference on Neural Information Processing Systems*,
572 pp. 1024–1034, 2017.

573 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
574 networks. *Science*, 313(5786):504–507, 2006.

575 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
576 preprint arXiv:1611.01144*, 2017.

577 Yujun Jia, Qiang Zhang, Weinan Zhang, and Xin Wang. Communitygan: Community detection with
578 generative adversarial nets. In *WWW*, 2019.

579 Thomas N Kipf and Max Welling. Variational graph auto-encoders. In *NIPS workshop*, pp. 1–3,
580 Centre Convencions Internacionals Barcelona, Barcelona SPAIN, 2016.

581 George C Linderman and Stefan Steinerberger. Clustering with t-sne, provably. *SIAM journal on
582 mathematics of data science*, 1(2):313–332, 2019.

583 Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu. Deep
584 temporal graph clustering. In *International Conference on Learning Representations (ICLR)*, 2024.

594 Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, and Xinwang Liu. Dink-net: Neural
 595 clustering on large graphs. In *ICML*, 2023a.

596

597 Yue Liu, Xihong Yang, Sihang Zhou, and Xinwang Liu. Simple contrastive graph clustering. *IEEE
 598 Transactions on Neural Networks and Learning Systems*, 2023b.

599

600 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
 601 relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2017.

602

603 Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a comparison
 604 between data collected using wearable sensors, contact diaries and friendship surveys. *PLOS ONE*,
 10(9):e0136497, 2015. doi: 10.1371/journal.pone.0136497.

605

606 Aaron F. McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to evaluate
 607 overlapping community finding algorithms, 2013. URL <https://arxiv.org/abs/1110.2515>.

608

609 Shirui Pan, Renzhe Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Adversarially regularized
 610 graph autoencoder. In *IJCAI*, 2018.

611

612 Jiwoong Park, Minsu Lee, Hyunwoo J Chang, Kyoung Mu Lee, and Jin Young Choi. Symmetric
 613 graph convolutional autoencoder for unsupervised graph representation learning. In *ICCV*, 2019.

614

615 Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan
 616 Du, Nesreen Ahmed, and Christos Faloutsos. Cgc: Contrastive graph clustering for community
 617 detection and tracking. In *Proceedings of the ACM Web Conference 2022 (WWW)*, pp. 1115–1126.
 ACM, 2022.

618

619 Max B. Paulus, Chris J. Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
 620 gumbel-softmax gradient estimator, 2020. URL <https://arxiv.org/abs/2010.04838>.

621

622 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
 623 tions. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
 and Data Mining*, KDD '14, pp. 701–710. ACM, 2014.

624

625 Tim Postuvan, Claas Grohnfeldt, Michele Russo, and Giulio Lovisotto. Learning-based link anomaly
 626 detection in continuous-time dynamic graphs. *Transactions on Machine Learning Research*, 2024.
 627 ISSN 2835-8856. URL <https://openreview.net/forum?id=8imVCizVEw>.

628

629 Maria Giulia Preti, Thomas A.W. Bolton, and Dimitri Van De Ville. The dynamic functional
 630 connectome: State-of-the-art and perspectives. *NeuroImage*, 160:41–54, 2017. doi: 10.1016/j.
 neuroimage.2016.12.061.

631

632 Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood,
 633 and Yee Whye Teh. Tighter variational bounds are not necessarily better, 2019. URL <https://arxiv.org/abs/1802.04537>.

634

635 Emanuele Rossi, Ben Chambers, Rex Ying, Michael Bronstein, and Maurice Buterez. Temporal graph
 636 networks for deep learning on dynamic graphs. In *ICLR Workshop on Representation Learning on
 637 Graphs and Manifolds*, 2020.

638

639 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
 640 *Journal of computational and applied mathematics*, 20:53–65, 1987.

641

642 Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
 643 supervised graph-level representation learning via mutual information maximization. In *Inter-
 644 national Conference on Learning Representations*, 2020.

644

645 Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for
 646 graph clustering. In *AAAI*, 2014.

647

648 Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
 649 neural networks, 2023. URL <https://arxiv.org/abs/2006.16904>.

648 Wei Tu, Sihang Zhou, Xinwang Liu, En Zhu, and Jian Cheng. Deep fusion clustering network. *arXiv*
 649 *preprint arXiv:2012.09600*, 2020.
 650

651 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine*
 652 *Learning Research*, 9(Nov):2579–2605, 2008.

653 C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang. Attributed graph clustering: A deep
 654 attentional embedding approach. In *IJCAI*, pp. 3670–3676, Macao, China, 2019. AAAI Press.
 655

656 Chong Wang, Shirui Pan, Guodong Long, Xiaojun Zhu, and Jing Jiang. Mgae: Marginalized graph
 657 autoencoder for graph clustering. In *CIKM*, 2017.

658 Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph neural network methods
 659 in financial applications. *Journal of Data Science*, 20(2):111–134, 2022. doi: 10.6339/22-JDS1047.
 660

661 Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
 662 Microsoft academic graph: When experts are not enough. *Quantitative Science Studies*, 1(1):
 663 396–413, 2020. doi: 10.1162/qss_a_00021.

664 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
 665 In *Proceedings of the 33rd International Conference on Machine Learning (ICML)*, pp. 478–487,
 666 New York, NY, USA, 2016. PMLR.
 667

668 Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
 669 sentation learning on temporal graphs. In *International Conference on Learning Representations*
 670 (*ICLR*), 2020.

671 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Žitnik, and Jure Leskovec. Gnnexplainer:
 672 Generating explanations for graph neural networks. In *Advances in Neural Information Processing*
 673 *Systems*, volume 32, 2019.

674 Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Embedding temporal
 675 network via neighborhood formation. In *Proceedings of the 24th ACM SIGKDD International*
 676 *Conference on Knowledge Discovery and Data Mining*, KDD ’18, pp. 2857–2866, London, United
 677 Kingdom, 2018. ACM. doi: 10.1145/3219819.3220054.
 678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 7 RELATED WORK

704 **Graph Clustering via Neural Networks.** Initial deep learning approaches to graph clustering
 705 leveraged MLP-based autoencoders to extract latent node embeddings from the graph structure.
 706 GraphEncoder (Tian et al., 2014) and DNGR (Cao et al., 2016) encoded proximity between nodes
 707 using sparse autoencoders and random walk-based techniques, followed by k -means clustering. These
 708 early methods demonstrated that deep representations could improve clustering but struggled with
 709 integrating node attribute information. The introduction of graph convolutional networks enabled
 710 models to jointly encode structural and attribute information. Kipf and Welling’s VGAE (Kipf
 711 & Welling, 2016) and Wang et al.’s MGAE (Wang et al., 2017) used graph encoders to produce
 712 informative latent spaces for downstream clustering. These works laid the groundwork for recon-
 713 structive methods (Wang et al., 2019; Park et al., 2019) where reconstruction of adjacency or feature
 714 matrices acted as the self-supervised objective. Similarly, adversarial mechanisms were introduced to
 715 regularize latent spaces and improve representation robustness. ARGA (Pan et al., 2018) employed a
 716 discriminator to align latent embeddings with a Gaussian prior, while CommunityGAN (Jia et al.,
 717 2019) generated synthetic samples for structure-preserving embedding. Though effective in reducing
 718 overfitting and capturing community semantics, these methods often introduced unstable training
 719 dynamics.

720 **Clustering-Oriented Architectures and Fusion Models.** On the other hand, several methods sought
 721 to unify representation learning with clustering objectives. DAEGC (Wang et al., 2019) proposed
 722 attention-based graph encoders guided by clustering alignment loss. GALA (Park et al., 2019)
 723 enhanced encoder expressiveness via Laplacian sharpening. Models like SDCN (?) and DFCN (Tu
 724 et al., 2020) integrated attribute and structure views using novel fusion strategies, demonstrating
 725 that explicit clustering supervision during representation learning improved cluster separation and
 726 compactness.

727 **Scalable Graph Clustering.** As graph sizes increased, scalability became a central concern. To ad-
 728 dress this challenge, S3GC (Devvrit, 2022) performed scalable contrastive learning using batch-wise
 729 subgraph sampling and post-hoc k -means clustering. Dink-Net (Liu et al., 2023a) unified contrastive
 730 representation learning and clustering optimization via differentiable dilation and shrinkage losses,
 731 enabling end-to-end training on graphs with over 100M nodes.

732 **Dynamic/Temporal Graph Clustering.** Temporal graph clustering extends conventional graph
 733 clustering to dynamic scenarios where node interactions evolve over time. Liu et al. (Liu et al., 2024)
 734 propose a general framework called Temporal Graph Clustering (TGC). This framework integrates
 735 temporal representation learning with clustering objectives tailored for interaction-sequence data.
 736 CGC (Park et al., 2022) utilizes contrastive objectives between graph snapshots to capture evolving
 737 community structures. These models address the temporal nature of clustering, which static methods
 738 cannot handle effectively.

739 CoGNN (Finkelshtein et al., 2023) uses Gumbel softmax to learn node actions stochastically to
 740 overcome the oversmoothing problem in graph representation learning. (Bhaskar & Zhang, 2020)
 741 uses a similar technique to perform feature selection and perform clustering on graphs. In contrast to
 742 these approaches, we learn the cluster assignment distribution using the Gumbel distribution. One-
 743 stage clustering frameworks (Liu et al., 2023b;a; 2024) remove dependence on external clustering
 744 procedures by learning cluster assignments directly within the network, reducing training cost and
 745 error propagation from decoupled objectives. Despite these advances, GNN-based temporal graph
 746 clustering approaches model t -distribution as a cluster assignment distribution (Liu et al., 2024; Bo
 747 et al., 2020), which may be suboptimal in dynamic settings due to its heavy tails that amplify the
 748 influence of transient or noisy nodes (Liu et al., 2024).

749 8 MORE ON METHODOLOGY

751 Gradient Conflicts in Temporal Clustering

753 Optimizing the clustering objective involves updating both the encoder parameters θ and the cluster
 754 centroids ϕ , where the loss is defined as the Kullback–Leibler (KL) divergence between the current
 755 assignment $\pi_{i,k}^t$ and the sharpened target $\tilde{\pi}_{i,k}$. Taking the gradient of the KL loss with respect to the
 756 node embedding induces a force

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

$$F_{i,k}^t = \underbrace{\frac{2\pi_{i,k}^t d_{i,k}^t}{1 + (d_{i,k}^t)^2}}_{\text{Geometric term } G(d, \pi)} \cdot \left[\underbrace{(\pi_{i,k}^t - \tilde{\pi}_{i,k})}_{\text{Target error } T(\pi)} + \underbrace{(\pi_{i,k}^t - 1) \log \pi_{i,k}^t}_{\text{Entropy regularization } E(\pi)} \right] \quad (16)$$

Proof. From the definition of Student t-distribution,

$$\pi_{i,k}^t = \frac{\left(1 + \frac{\|\mathbf{z}_i^t - \mathbf{c}_k^t\|^2}{\nu}\right)^{-\frac{\nu+1}{2}}}{\sum_{j=1}^K \left(1 + \frac{\|\mathbf{z}_i^t - \mathbf{c}_j^t\|^2}{\nu}\right)^{-\frac{\nu+1}{2}}} \quad (17)$$

Sharpened Student t-distribution,

$$\tilde{\pi}_{i,k}^{(t)} = \frac{\left(\pi_{i,k}^t\right)^2 / \sum_{i=1}^N \pi_{i,k}^t}{\sum_{j=1}^K \left(\pi_{i,j}^t\right)^2 / \sum_{i=1}^N \pi_{i,j}^t} \quad (18)$$

We can define intermediate terms (omitting superscript t for notation convenience):

$$g_{i,k} = 1 + \frac{\|\mathbf{z}_i - \mathbf{c}_k\|^2}{\nu} \quad // \text{squared distance term scaled by degrees of freedom} \quad (19)$$

$$n_{i,k} = g_{i,k}^{-\frac{\nu+1}{2}} \quad // \text{unnormalized density term} \quad (20)$$

$$d_i = \sum_{j=1}^K n_{i,j} \quad // \text{normalization constant} \quad (21)$$

$$\pi_{i,k} = \frac{n_{i,k}}{d_i} \quad // \text{final soft assignment probability} \quad (22)$$

Gradient of $n_{i,k}$ and d_i

$$\frac{\partial g_{i,k}}{\partial \mathbf{c}_k} = \frac{2}{\nu} (\mathbf{c}_k - \mathbf{z}_i), \quad (23)$$

$$\frac{\partial n_{i,k}}{\partial \mathbf{c}_k} = -\frac{\nu+1}{2} g_{i,k}^{-\frac{\nu+1}{2}-1} \frac{\partial g_{i,k}}{\partial \mathbf{c}_k} = -\frac{\nu+1}{\nu} g_{i,k}^{-\frac{\nu+3}{2}} (\mathbf{c}_k - \mathbf{z}_i), \quad (24)$$

$$\frac{\partial d_i}{\partial \mathbf{c}_k} = \frac{\partial n_{i,k}}{\partial \mathbf{c}_k}. \quad (25)$$

Gradient of $\pi_{i,k}$ and $\tilde{\pi}_{i,k}$

$$\frac{\partial \pi_{i,k}}{\partial \mathbf{c}_k} = \frac{\left(\frac{\partial n_{i,k}}{\partial \mathbf{c}_k}\right) d_i - n_{i,k} \left(\frac{\partial d_i}{\partial \mathbf{c}_k}\right)}{d_i^2} = \left(\frac{\partial n_{i,k}}{\partial \mathbf{c}_k}\right) \frac{d_i - n_{i,k}}{d_i^2} \quad (26)$$

$$= -\frac{\nu+1}{\nu} g_{i,k}^{-\frac{\nu+3}{2}} (\mathbf{c}_k - \mathbf{z}_i) \frac{d_i - n_{i,k}}{d_i^2} \quad (27)$$

$$= -\frac{\nu+1}{\nu} p_{i,k} (1 - p_{i,k}) g_{i,k}^{-1} (\mathbf{c}_k - \mathbf{z}_i), \quad (28)$$

$$\frac{\partial \tilde{\pi}_{i,k}}{\partial \mathbf{c}_k} = -\frac{\nu+\alpha}{\nu} \tilde{\pi}_{i,k} (1 - \tilde{\pi}_{i,k}) g_{i,k}^{-1} (\mathbf{c}_k - \mathbf{z}_i). \quad (29)$$

810
811 **KL Divergence and Its Gradient**

812
$$\mathcal{L} = \sum_{i=1}^N \sum_{k=1}^K \pi_{i,k} \log \pi_{i,k} - \sum_{i=1}^N \sum_{k=1}^K \pi_{i,k} \log \tilde{\pi}_{i,k}, \quad (30)$$

813
814

815
$$\frac{\partial}{\partial \mathbf{c}_k} (\pi_{i,k} \log \pi_{i,k}) = (\log \pi_{i,k} + 1) \frac{\partial \pi_{i,k}}{\partial \mathbf{c}_k} = -\frac{\nu+1}{\nu} \pi_{i,k} (1 - \pi_{i,k}) \frac{\log \pi_{i,k} + 1}{g_{i,k}} (\mathbf{c}_k - \mathbf{z}_i), \quad (31)$$

816
817

818
$$\frac{\partial}{\partial \mathbf{c}_k} (\pi_{i,k} \log \tilde{\pi}_{i,k}) = \pi_{i,k} \frac{\partial}{\partial \mathbf{c}_k} \log \tilde{\pi}_{i,k} = -\frac{\nu+\alpha}{\nu} \pi_{i,k} (1 - \tilde{\pi}_{i,k}) \frac{1}{g_{i,k}} (\mathbf{c}_k - \mathbf{z}_i). \quad (32)$$

819
820

821
$$\frac{\partial \mathcal{L}}{\partial \mathbf{c}_k} = \sum_{i=1}^N \left[-\frac{\nu+1}{\nu} p_{i,k} (1 - p_{i,k}) \frac{\log p_{i,k} + 1}{g_{i,k}} + \frac{\nu+\alpha}{\nu} \pi_{i,k} (1 - \tilde{\pi}_{i,k}) \frac{1}{g_{i,k}} \right] (\mathbf{c}_k - \mathbf{z}_i) \quad (33)$$

822
823

824
$$= \sum_{i=1}^N \frac{2\pi_{i,k}(\mathbf{c}_k - \mathbf{z}_i)}{1 + \|\mathbf{z}_i - \mathbf{c}_k\|^2} \left[(1 - \tilde{\pi}_{i,k}) - (1 - \pi_{i,k})(1 + \log \pi_{i,k}) \right] \quad (34)$$

825
826

827
$$= \sum_{i=1}^N \frac{2\pi_{i,k}(\mathbf{c}_k - \mathbf{z}_i)}{1 + \|\mathbf{z}_i - \mathbf{c}_k\|^2} \left[\underbrace{(\pi_{i,k} - \tilde{\pi}_{i,k})}_{\text{Target Error } T(\pi)} + \underbrace{(\pi_{i,k} - 1) \log \pi_{i,k}}_{\text{Entropy Regularization } E(\pi)} \right] \quad (35)$$

828
829
830

831 For a single sample and centroid, the gradient force becomes-
832

833
$$F_{i,k} = \underbrace{\frac{2\pi_{i,k}d_{i,k}}{1 + d_{i,k}^2}}_{\text{Geometric Term } G(d, \pi)} \left[\underbrace{(\pi_{i,k} - \tilde{\pi}_{i,k})}_{\text{Target Error } T(\pi)} + \underbrace{(\pi_{i,k} - 1) \log \pi_{i,k}}_{\text{Entropy Regularization } E(\pi)} \right] \quad (36)$$

834
835
836
837

838 The gradient force $F_{i,k}$ is parameterized by the encoder parameters θ and the cluster centroid
839 parameters ϕ , through the soft assignment $\pi_{i,k}$ and the distance term $d_{i,k}$. Hence, the direction and
840 magnitude of the force jointly depend on how the latent representation and centroid interact at each
841 timestamp. Depending on the temporal alignment of gradients across successive updates, the system
842 may converge smoothly or exhibit unstable behavior. Specifically, we distinguish the following two
843 scenarios:
844845 1. If the gradients $\nabla_\theta \mathcal{L}^t$ and $\nabla_\phi \mathcal{L}^t$ remain directionally aligned across temporal windows
846 t , then under standard SGD assumptions both the prediction error term $(\pi_{i,k}^t - \tilde{\pi}_{i,k})$ and
847 entropy regularization term $(\pi_{i,k}^t - 1) \log \pi_{i,k}^t$ vanish asymptotically as representations and
848 centroids become stationary under temporal dynamics.
849 2. Conversely, if the temporal evolution of node embeddings \mathbf{z}_i^t causes misalignment between
850 the assignment $\pi_{i,k}^t$ and the fixed target $\tilde{\pi}_{i,k}$, the gradient force may switch direction across
851 timestamps, leading to unstable or oscillatory centroid updates:
852 (a) If $\pi_{i,k}^t > \tilde{\pi}_{i,k}$, the force becomes repulsive, pushing \mathbf{z}_i^t away from \mathbf{c}_k^t .
853 (b) If $\pi_{i,k}^t < \tilde{\pi}_{i,k}$ due to temporal drift, the force flips and becomes attractive, pulling \mathbf{z}_i^t
854 toward \mathbf{c}_k^t .
855
856857 \square
858859 Figure 8 illustrates how the gradient force may act counterproductively under static supervision.
860 Suppose $\tilde{\pi}_{i,k} = 0.05$, but the node is close to the centroid and its current assignment $\pi_{i,k}^t$ is high
861 due to recent temporal interactions. Despite this correct behavior, the model perceives a large
862 mismatch and applies a strong *repulsive* force, pushing the node away which results in *under-*
863 *clustering*. Conversely, if $\tilde{\pi}_{i,k} = 0.9$ but the node is far from the centroid and $\pi_{i,k}^t$ is low, the
864 model attempts to *pull* the node closer, potentially causing *over-clustering*. The impact of this is

Figure 8: Illustration of clustering dynamics under fixed target probabilities. **(Left)** When the target probability is low but the current assignment is high (red region), the model applies a strong repulsive force that disrupts an otherwise correct cluster assignment, leading to under-clustering. **(Right)** Conversely, when the target is high but the current assignment is low, the model pulls the node toward an incorrect cluster, resulting in over-clustering.

empirically demonstrated in Figure 2 using the same training process, where a t -distribution-based assignment results in erratic and suboptimal centroid behavior. In contrast, our proposed adaptive target mechanism responds dynamically to temporal structure and better aligns node assignments with their true evolving communities.

Theoretical Analysis We establish that the Gumbel-Softmax optimization procedure employed in our framework converges to a stationary point of the temporal clustering objective under standard assumptions of smoothness and bounded variance. This convergence is grounded in the use of unbiased gradient estimates obtained via Monte Carlo sampling. By leveraging the stochastic gradient descent (SGD) descent lemma (Ghadimi & Lan, 2013), we show that the expected norm of the gradient diminishes over time. Furthermore, our analysis incorporates the annealing of the temperature parameter τ , which progressively sharpens the cluster assignments from soft to nearly discrete. A key result underpinning this behavior is Lemma 8.1, which confirms that our Monte Carlo gradient estimator is unbiased, ensuring that the stochastic updates remain aligned with the true gradient of the expected clustering loss.

Lemma 8.1 (Unbiasedness). Let \hat{g} be the Monte-Carlo gradient estimator in Eq. 10; then $\mathbb{E}[\hat{g}] = \nabla_{\Theta} \mathcal{L}(\Theta)$, where $\Theta = \{\theta, \phi\}$ denotes the collection of encoder and assignment parameters.

Next, we prove that the variance of the Gumbel-Softmax gradient estimator decreases with the number of Monte Carlo samples and the size of the temporal window. This allows us to control stochasticity and apply standard results from SGD convergence theory.

Theorem 8.1 (Variance Bound). If $\|\nabla_{\Theta} \mathcal{L}_{\text{clu}}(\mathbf{Z}^t, \mathbf{C}^t, \Pi^t)\| \leq G_{\max}$ for all admissible $(\mathbf{Z}^t, \mathbf{C}^t, \Pi^t)$, then $\text{Var}[\hat{g}] \leq \frac{G_{\max}^2}{ST}$, where T is the temporal context length in each mini-batch.

Combining these results, we show that the expected gradient norm of the clustering objective vanishes over time (Theorem 8.1). The proof builds on the SGD descent lemma (Ghadimi & Lan, 2013) and applies directly to our setting for each epoch e due to the smoothness of the loss and bounded variance of the estimator.

Theorem 8.2 (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the expected clustering loss $\mathcal{L}(\theta, \phi)$ be differentiable and L -smooth in the parameters $\Theta = (\theta, \phi)$. Assume the Monte-Carlo gradient used in training is an unbiased estimator of $\nabla \mathcal{L}$ with bounded second moment. If stochastic gradient descent is run with a constant stepsize $\eta \leq 1/L$ (or any diminishing stepsize satisfying $\sum_e \eta_e = \infty$ and $\sum_e \eta_e^2 < \infty$), then the parameter sequence $\{(\theta^{(e)}, \phi^{(e)})\}_{e=1}^{\infty}$ generated by the algorithm obeys,

$$\lim_{E \rightarrow \infty} \frac{1}{E} \sum_{e=1}^E \mathbb{E} \left[\|\nabla \mathcal{L}(\Theta^{(e)})\|^2 \right] = 0.$$

918 By extending this theorem, we can show that in the annealed setting where temperature $\tau^e \rightarrow 0$
 919 guides the model from soft assignments to discrete ones as the loss function remains smooth and its
 920 variance is bounded, which justifies our choice of exponential decay of the temperature parameter.
 921 The complete proofs are provided in the Appendix 9.

923 9 THEORETICAL PROOFS

926 **Monte-Carlo Gradient Estimator.** Let $\Theta = (\theta, \phi)$ denote the model parameters. For each time
 927 step $t \in \{1, \dots, T\}$ and Monte-Carlo sample $s \in \{1, \dots, S\}$, draw Gumbel noise $g_s^t \sim \text{Gumbel}(0, 1)$
 928 and define the sampled assignment as

$$929 \quad 930 \quad \Pi_s^t := h_\phi(g_s^t), \quad (37)$$

931 where h_ϕ is the differentiable Gumbel-Softmax mapping. The per-timestep loss is denoted

$$933 \quad 934 \quad \ell_t(\Theta; g) := \mathcal{L}_{\text{clu}}(f_\theta(X^t), C, h_\phi(g)). \quad (38)$$

935 The Monte-Carlo estimator of the full gradient is

$$937 \quad 938 \quad \nabla_\Theta \mathcal{L} := \frac{1}{ST} \sum_{t=1}^T \sum_{s=1}^S \nabla_\Theta \ell_t(\Theta; g_s^t). \quad (39)$$

940 **Lemma 3.1** (Unbiasedness). The Monte-Carlo gradient estimator $\nabla_\Theta \mathcal{L}$, defined over S independent
 941 Gumbel-Softmax samples per time step across T temporal windows, is an unbiased estimator of the
 942 true gradient; that is,

$$944 \quad \mathbb{E} [\nabla_\Theta \mathcal{L}] = \nabla_\Theta \mathcal{L}(\Theta). \quad (40)$$

947 *Proof.* Assume that $g_s^t \stackrel{\text{iid}}{\sim} \text{Gumbel}(0, 1)$, $\ell_t(\Theta; g)$ is differentiable in Θ and h_ϕ is differentiable in ϕ .
 948 We can compute the expectation of the Monte-Carlo estimator:

$$950 \quad 951 \quad \mathbb{E} [\nabla_\Theta \mathcal{L}] = \frac{1}{ST} \sum_{t=1}^T \sum_{s=1}^S \mathbb{E}_{g_s^t} [\nabla_\Theta \ell_t(\Theta; g_s^t)] \quad (41)$$

$$953 \quad 954 \quad = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{g^t} [\nabla_\Theta \ell_t(\Theta; g^t)] \quad (\text{i.i.d samples, identical expectation}) \quad (42)$$

$$956 \quad 957 \quad = \frac{1}{T} \sum_{t=1}^T \nabla_\Theta \mathbb{E}_{g^t} [\ell_t(\Theta; g^t)] \quad (\text{interchanging gradient and expectation}) \quad (43)$$

$$959 \quad 960 \quad = \nabla_\Theta \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{g^t} [\ell_t(\Theta; g^t)] \right) \quad (44)$$

$$961 \quad = \nabla_\Theta \mathcal{L}(\Theta) \quad (45)$$

963 \square

965 **Theorem 3.1** (Variance Bound). Assume that the per-sample gradient norm is uniformly bounded as

$$967 \quad 968 \quad \|\nabla_\Theta \ell_t(\Theta; g)\| \leq G_{\max} \quad \text{for all } t, \Theta, g.$$

969 Then the variance of the Monte-Carlo gradient estimator satisfies

$$971 \quad \text{Var} [\nabla_\Theta \mathcal{L}] \leq \frac{G_{\max}^2}{ST}.$$

972 *Proof.* Each of the $S \times T$ gradient terms $\nabla_{\Theta} \ell_t(\Theta; g_s^t)$ is independent and has norm at most G_{\max} .
 973 Thus:

$$975 \quad \text{Var} [\nabla_{\Theta} \mathcal{L}] = \text{Var} \left[\frac{1}{ST} \sum_{t=1}^T \sum_{s=1}^S \nabla_{\Theta} \ell_t(\Theta; g_s^t) \right] \quad (46)$$

$$978 \quad = \frac{1}{S^2 T^2} \sum_{t=1}^T \sum_{s=1}^S \text{Var} [\nabla_{\Theta} \ell_t(\Theta; g_s^t)] \quad (\text{independence}) \quad (47)$$

$$980 \quad \leq \frac{1}{S^2 T^2} \cdot ST \cdot G_{\max}^2 \quad (\text{bounded variance}) \quad (48)$$

$$983 \quad = \frac{G_{\max}^2}{ST}. \quad (49)$$

985 \square

986 **Theorem 3.2** (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the ex-
 987 pected clustering loss $\mathcal{L}(\theta, \phi)$ be differentiable and L -smooth in the parameters $\Theta = (\theta, \phi)$. Assume
 988 the Monte-Carlo gradient used in training is an unbiased estimator of $\nabla \mathcal{L}$ with bounded second
 989 moment. If stochastic gradient descent is run with a constant stepsize $\eta \leq 1/L$ (or any diminishing
 990 stepsize satisfying $\sum_e \eta_e = \infty$ and $\sum_e \eta_e^2 < \infty$), then the parameter sequence $\{(\theta^{(e)}, \phi^{(e)})\}_{e=1}^{\infty}$
 991 generated by the algorithm obeys,

$$992 \quad \lim_{E \rightarrow \infty} \frac{1}{E} \sum_{e=1}^E \mathbb{E} [\|\nabla \mathcal{L}(\Theta^{(e)})\|^2] = 0.$$

996 *Proof.* From Lemma 1, $\mathbb{E} [\nabla_{\Theta} \mathcal{L}] = \nabla \mathcal{L}^{(t)}$. By L -smoothness of \mathcal{L} , the descent lemma gives:

$$998 \quad \mathbb{E} [\mathcal{L}^{e+1}] \leq \mathcal{L}^e - \eta \left\| \nabla \mathcal{L}^{(e)} \right\|^2 + \frac{L\eta^2}{2} \left(\|\nabla \mathcal{L}^e\|^2 + \text{Var} [\nabla_{\Theta} \mathcal{L}] \right).$$

1000 Substituting $\text{Var} [\nabla_{\Theta} \mathcal{L}] \leq G_{\max}^2/(ST)$ yields:

$$1002 \quad \mathbb{E} [\mathcal{L}^{e+1}] \leq \mathcal{L}^e - \left(\eta - \frac{L\eta^2}{2} \right) \|\nabla \mathcal{L}^e\|^2 + \frac{L\eta^2 G_{\max}^2}{2ST}.$$

1004 Rearranging and summing over epochs, $e = 1$ to E :

$$1006 \quad \frac{1}{E} \sum_{e=1}^E \mathbb{E} [\|\nabla \mathcal{L}^e\|^2] \leq \frac{\mathcal{L}^1 - \mathcal{L}^{(*)}}{T \left(\eta - \frac{L\eta^2}{2} \right)} + \frac{L\eta G_{\max}^2}{2S}.$$

1010 As $E \rightarrow \infty$, the first term vanishes. Hence,

$$1012 \quad \lim_{E \rightarrow \infty} \frac{1}{E} \sum_{e=1}^E \mathbb{E} [\|\nabla \mathcal{L}^e\|^2] \leq \frac{L\eta G_{\max}^2}{2S}.$$

1014 Choosing large enough S or using diminishing η_e ensures convergence to a stationary point. \square

1016 **Corollary 3.1** (Annealed Convergence for Temporal Graph Clustering). Let $\tau^e \rightarrow 0$ as $e \rightarrow \infty$, and
 1017 suppose the temperature decays slowly such that each intermediate loss $\mathcal{L}_{\tau^e}(\theta, \phi)$ is L -smooth and
 1018 the gradient variance remains bounded. Then the stochastic updates

$$1019 \quad (\theta^{(e+1)}, \phi^{(e+1)}) = (\theta^e, \phi^e) - \eta_e \cdot \hat{\nabla} \mathcal{L}_{\tau^e}(\theta^e, \phi^e)$$

1021 satisfy:

$$1022 \quad \lim_{e \rightarrow \infty} \mathbb{E} [\|\nabla \mathcal{L}_{\text{cat}}(\theta^e, \phi^e)\|] = 0,$$

1023 where \mathcal{L}_{cat} denotes the limiting discrete clustering objective with categorical (one-hot) assignments.
 1024 That is, temporal clustering with Gumbel-Softmax and annealed temperature converges to a stationary
 1025 point of the discrete temporal clustering loss.

1026 **10 ALGORITHM**
10271028 **Pseudocode** Below we provide a high level pseudocode of our proposed method.
10291030 **Algorithm 1** Monte-Carlo Cluster Loss with Gumbel–Softmax

1031 **Input** : Node embeddings $Z \in \mathbb{R}^{N \times d}$; centroids $C \in \mathbb{R}^{K \times d}$; temperature $\tau > 0$; samples S
 1032 **Output**: \mathcal{L}_{clu}
Function GumbelSoftmax (ℓ_{row}, τ)
 1034 // Draw i.i.d Gumbel noise for reparameterized sampling
 1035 $g \sim \text{Gumbel}(0, 1)^K$
 1036 // Row-wise max for log-sum-exp stability
 1037 $m \leftarrow \max_j (\ell_{\text{row},j} + g_j) / \tau$
 1038 **for** $k \leftarrow 1$ **to** K **do**
 1039 // Unnormalized weight for cluster k
 1040 $u_k \leftarrow \exp\left(\frac{\ell_{\text{row},k} + g_k}{\tau} - m\right)$
 1041 $s \leftarrow \sum_{j=1}^K u_j$
 1042 // Normalized assignment vector $Q_{i,:}$
 1043 **return** $[u_1/s, \dots, u_K/s]$
 1044 **Function** CLUSTERLOSS Z, C, τ, S
 1045 // Read matrix sizes once
 1046 $N \leftarrow \text{rows}(Z)$;
 1047 $K \leftarrow \text{rows}(C)$
 1048 // Pre-compute distances and logits for all node-centroid pairs
 1049 **for** $i \leftarrow 1$ **to** N **do**
 1050 **for** $k \leftarrow 1$ **to** K **do**
 1051 // Distance between node i and centroid k
 1052 $d_{ik} \leftarrow \|z_i - c_k\|^2$
 1053 // Negative distance as logits for sampling
 1054 $\ell_{ik} \leftarrow -d_{ik}$
 1055 // Initialize Monte-Carlo accumulator
 1056 $\mathcal{L}_{\text{sum}} \leftarrow 0$
 1057 // Average over S independent Gumbel-Softmax assignment samples
 1058 **for** $s \leftarrow 1$ **to** S **do**
 1059 // Allocate one sample's assignment matrix $Q \in \mathbb{R}^{N \times K}$
 1060 $Q \leftarrow \mathbf{0}_{N \times K}$
 1061 // Sample assignments row-wise with temperature τ
 1062 **for** $i \leftarrow 1$ **to** N **do**
 1063 $Q_{i,:} \leftarrow \text{GumbelSoftmax}(\ell_{i,:}, \tau)$
 1064 // One-sample loss: expected distance under Q
 1065 $L^{(s)} \leftarrow \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K Q_{ik} d_{ik}$
 1066 // Accumulate for Monte-Carlo average
 1067 $\mathcal{L}_{\text{sum}} \leftarrow \mathcal{L}_{\text{sum}} + L^{(s)}$
 1068 // Final Monte-Carlo estimate (variance decreases with S)
 1069 $\mathcal{L}_{\text{clu}} \leftarrow \mathcal{L}_{\text{sum}} / S$
 1070 // Return clustering loss
 1071 **return** \mathcal{L}_{clu}

11 EXPERIMENTS

1072 **Node initialization.** We initialize node embeddings from pre-trained Node2Vec (Grover & Leskovec, 2016) features learned on the latest graph structure. This is a deliberate choice to make a fair comparison with state of the art model in this domain (Liu et al., 2024). Pretraining provides a strong structural prior that captures local and global neighborhood connectivity before temporal updates begin. Pretrained embeddings are updated using the clustering loss and temporal consistency loss to learn the clusters that consider historical interactions among the nodes. Such initialization stabilizes early training, accelerates convergence, and leads to more semantically meaningful clusters, especially when node attributes are sparse or missing. We choose the number of unique node labels

1080 as the number of clusters for evaluation purposes. This choice does not affect training, which remains
 1081 fully unsupervised; it simply provides a consistent reference for comparing the discovered clusters to
 1082 ground-truth labels at the current timestamp.

1083 **Dataset Statistics** We evaluate our method on six temporal graph datasets summarized in Table 4,
 1084 which vary widely in size, interaction density, and temporal dynamics.

1086 Table 4: Dataset statistics with temporal characteristics.
 1087

1088 Dataset	1089 Nodes	1090 Interactions	1091 Edges	1092 Timestamps	1093 K	1094 Degree	1095 Temporal Nature
DBLP	28,085	236,894	162,441		27	10	16.87 Sparse, academic co-authorship
Brain	5,000	1,955,488	1,751,910		12	10	782.00 High-frequency, dense brain signals
Patent	12,214	41,916	41,915		891	6	6.86 Long-range, sparse citation network
School	327	188,508	5,802		7,375	9	1153.0 Short-term, dense social contacts
arXivAI	69,854	699,206	699,198		27	5	20.02 Dynamic academic collaboration
arXivCS	169,343	1,166,243	1,166,237		29	40	13.77 Highly dynamic, non-stationary

1096 **Coherence Score.** The coherence score Halkidi et al. (2002) measures the average intra-cluster
 1097 similarity across all clusters, with higher values indicating more compact cluster structure. It is
 1098 defined in the range $[0, 1]$. For each cluster c , let \mathcal{P}_c be all unordered node pairs (i, j) within the
 1099 cluster. Let $d_{\text{cos}}(i, j)$ denote the cosine distance. We convert distances to similarities $(s(i, j))$ and
 1100 compute per-cluster coherence as-

$$1103 \quad s(i, j) = 1 - d_{\text{cos}}(i, j). \quad (50)$$

$$1105 \quad \text{Coherence}(c) = \frac{1}{|\mathcal{P}_c|} \sum_{(i, j) \in \mathcal{P}_c} s(i, j). \quad (51)$$

1109 Table 5: Hyperparameter Search Space for TGRAIL Model
 1110

1111 Hyperparameter	1112 Search Space
<i>Training</i>	
1114 Learning Rate	log-uniform($10^{-5}, 10^{-2}$)
1115 Batch Size	$\{128, 256, 512, 1024\}$
1116 Optimizer	$\{\text{Adam}, \text{AdamW}, \text{SGD}\}$
<i>Architecture</i>	
1118 Embedding Size	$\{64, 128, 256\}$
<i>Temporal/Graph</i>	
1120 Negative Size	$\{5, 10, 20, 50\}$
1121 History Length	$\{3, 5, 7, 10\}$
<i>Temperature</i>	
1123 Temp Max	$\{5, 10, 15\}$
1124 Temp Min	uniform($0.1, 1.0$)
1125 Decay Rate	uniform($0.5, 0.95$)

1127 **Empirical Evaluation.** Using the metrics from Table 3, TGRAIL demonstrates strong clustering
 1128 coherence, with scores ranging from 0.8767 to 0.7558 despite rapid growth in the number of active
 1129 nodes (from 71 to 12,214). Temporal alignment follows the expected trend in a rapidly evolving
 1130 graph: it is high in early snapshots (e.g., 0.831 and 0.994 for Snapshots 2–3) and gradually decreases
 1131 as the graph undergoes substantial structural reorganization (down to 0.345 by Snapshot 6). These
 1132 results confirm that TGRAIL produces clusters that remain both semantically coherent and temporally
 1133 consistent across evolving graph states.

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

Figure 9: Scalability analysis showing runtime and memory scaling with graph size. Experiments use synthetic graphs with $n \in \{1000, 2000\}$ nodes, $m \in \{5000, 10000, 20000\}$ edges, and $T \in \{10, 50\}$ timestamps. Linear fits (red dashed lines) demonstrate linear scalability.

Discussion Our experiments evaluate clustering performance across six temporal graph datasets using four standard metrics (ACC, F1, NMI, ARI). As shown in Tables 1 and 2, our method achieves competitive or state-of-the-art performance, suggesting that joint modeling of temporal dynamics and cluster structure improves representation learning in evolving graphs.

On the School dataset, where temporal structure aligns cleanly with cluster assignments, our model achieves perfect scores (ACC/F1/NMI/ARI = ~ 1.00), demonstrating its ability to recover ground-truth clusters under ideal conditions. In more challenging settings with sparse or noisy temporal signals, such as PATENT and DBLP, our approach outperforms baselines by 3–5% in ACC, highlighting its robustness to incomplete and overlapping event sequences. For datasets with non-stationary dynamics (ARXIV-AI, BRAIN), our model achieves consistent improvements. These results suggest that our temporal encoder captures fine-grained behavioural shifts more effectively than existing methods.

Static baselines (DeepWalk, node2vec, GAE) underperform significantly, reinforcing the necessity of temporal modeling. While TGC incorporates time through Hawkes processes, its decoupled representation and clustering stages limit optimization synergy. In contrast, our fully differentiable framework enables end-to-end learning, aligning temporal representations with clustering objectives.

These findings support our hypothesis that joint optimization of temporal dynamics and cluster assignments improves stability and accuracy in temporal graph clustering. The consistent gains across diverse datasets—ranging from cleanly structured (School) to highly dynamic (ARXIV-AI)—suggest broad applicability to real-world evolving graphs.

Empirical Complexity Analysis

To empirically validate linear scalability, we generate synthetic temporal graphs with configurable numbers of nodes, edges, and timestamps, where edges are created using random small scale-free graph structures, timestamps are uniformly distributed across edges, and node features are randomly sampled. As shown in figure 9, our empirical scalability analysis demonstrates strong evidence for linear scaling: runtime scales with edges with $R^2 = 0.952$ and $p < 3.5 \times 10^{-5}$, confirming near-perfect linear scalability, while memory usage scales with nodes with $R^2 = 0.804$ and $p = 0.003$, indicating a very good linear fit that explains 80.4% of the variance. Runtime scaling with nodes shows $R^2 = 0.664$ with $p = 0.014$, representing a moderate linear relationship that is statistically significant, where over 66% of the variance is explained by the linear model. These R^2 values, ranging from moderate ($R^2 \geq 0.66$) to excellent ($R^2 \geq 0.80$), combined with statistically significant

1188 *p*-values ($p < 0.05$), provide robust empirical justification for our linear scalability claims, as they
1189 demonstrate that the dominant scaling behaviour is linear with only minor non-linear components
1190 that do not substantially impact the overall scalability characteristics of the model.
1191

1192 12 LIMITATIONS 1193

1194 Our method assumes a fixed number of clusters (K), which may limit adaptability in scenarios
1195 with varying community structure. Future research directions may include adopting a Bayesian
1196 Non-Parametric approach to develop an infinite (K -free) temporal graph clustering model or a
1197 meta-learning based approach to learn cluster centroids adaptively.
1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 13 LLM USAGE

1244 When preparing this manuscript, we utilized a Large Language Model (LLM) to assist with various
1245 aspects of the writing and research process. The LLM was employed for several key tasks:
1246

- 1247 • **Grammar and Language Polishing:** The LLM helped improve sentence structure, grammar,
1248 and overall readability of the manuscript, ensuring clear and professional academic
1249 writing throughout the paper.
- 1250 • **Formatting Consistency:** We used the LLM to check and maintain consistent formatting
1251 across sections, including proper citation formatting, equation numbering, and LaTeX
1252 structure.

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295