
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFERENTIABLE CLUSTER DISCOVERY IN TEMPORAL
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing temporal graph clustering methods suffer from poor optimization dy-
namics due to reliance on heuristically initialized cluster assignment distribution
without considering the dynamic nature of the evolving graph. The target cluster
assignment distribution often conflicts with evolving temporal representations,
leading to oscillatory gradients and unstable convergence. Motivated by the need
for differentiable and adaptive clustering in dynamic settings, we propose TGRAIL
(Temporal Graph Alignment and Index Learning), a novel end-to-end framework
for temporal graph clustering based on Gumbel–Softmax sampling. TGRAIL
enables discrete cluster assignments while maintaining the gradient flow. To ensure
stable training, we formulate the clustering objective as an expectation over Monte
Carlo samples and show that this estimator is both unbiased and variance-reduced.
Furthermore, we incorporate a temporal consistency loss to preserve the order of
interactions across time. Extensive experiments on six real-world temporal graph
datasets demonstrate that our approach consistently outperforms state-of-the-art
baselines, achieving higher clustering accuracy and robustness. Our results validate
the effectiveness of jointly optimizing temporal dynamics and discrete cluster
assignments in evolving graphs.

1 INTRODUCTION

Graphs are fundamental tools for modeling relationships and interactions in complex systems,
spanning domains such as social networks, biological networks, communication systems, and financial
markets (Ying et al., 2019; Hamilton et al., 2017; Sun et al., 2020; Wang et al., 2022). A central task
in graph analysis is clustering, which aims to group nodes into communities based on structural or
semantic similarity. Traditional graph clustering methods operate on static graphs, where the topology
and node attributes remain fixed. These methods, including spectral clustering and modularity-based
approaches (Tsitsulin et al., 2023; Bianchi et al., 2020), have been widely adopted due to their
theoretical foundations and interpretability. However, the assumption of a fixed structure is overly
restrictive for real-world applications, where graphs often evolve as new nodes and edges are added
or removed over time.

To address this, deep clustering methods have emerged, integrating representation learning with
clustering objectives. For instance, Deep Embedded Clustering (DEC) (Xie et al., 2016) combines
autoencoder-based embeddings with Kullback–Leibler (KL) divergence-based soft assignments.
Extensions such as Improved DEC (Guo et al., 2017) and Structural Deep Clustering Networks
(SDCN) (Bo et al., 2020) incorporate reconstruction losses or graph neural networks to better
leverage node features and topology. Despite their success, these methods are fundamentally static:
they assume access to a complete adjacency matrix and cannot model temporal dependencies.
Consequently, they are unable to capture the evolving nature of communities or adapt to dynamic
patterns of interaction.

Temporal graph clustering has recently emerged to address these limitations. A temporal graph
captures the temporal dimension through a sequence of time-stamped events. Instead of modeling
edges as static relations, temporal graphs represent interactions as sequences, allowing finer-grained
analysis of how relationships form, persist, and dissolve over time. This richer representation
enables new opportunities, such as tracking evolving communities, detecting temporal anomalies,
and forecasting future events (Postuvan et al., 2024; Cini et al., 2023; Liu et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Several approaches have been proposed to model temporal graphs. Time-aware graph neural networks
(TGNNs), such as TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), and HTNE (Zuo et al., 2018b),
introduce temporal attention, memory, or Hawkes processes to encode evolving features. However,
these methods typically decouple representation learning from clustering, requiring a post hoc
clustering step. This two-stage design can be suboptimal, as the learned representations may not
align well with the clustering objective, and errors from the first stage propagate without correction.
Moreover, the clustering step is non-differentiable, preventing end-to-end training.

Recent methods attempt to address this limitation by integrating clustering within the training
loop. For example, TGC (Liu et al., 2024) incorporates a clustering loss into the temporal graph
encoder using soft assignments derived from a Student’s t-distribution. This approach enables joint
optimization of embeddings and cluster centroids. While the target distribution is expressed as time
dependent in their approach, its reliance on fixed node embeddings results in a distribution that does
not evolve over time which fails to adapt temporally consistent cluster assignment. Additionally,
the t-distribution has several drawbacks in dynamic settings: it assumes a fixed degree-of-freedom
parameter, is sensitive to initialization, and tends to overemphasize outliers due to its heavy-tailed
nature (Linderman & Steinerberger, 2019). In temporal graphs, where node positions in latent
space shift, these properties can lead to unstable optimization and oscillating cluster assignments.
Furthermore, fixed target distributions used for sharpening do not adapt to the evolving structure,
introducing conflicting gradients and misaligned learning dynamics. Figure 1 provides a visual
depiction of temporal cluster dynamics in evolving graphs. At the initial timestamp t1, nodes form
distinct clusters based on their interactions and attributes. By the next timestamp t2, the introduction
of a new node E and subsequent interactions cause some nodes to shift their cluster affiliations,
demonstrating that clusters are not static but context-dependent. At timestamp T , further structural
evolution is evident as nodes become inactive or new connections emerge, leading to additional shifts
in cluster assignments. This dynamic and context-sensitive clustering highlights the challenges faced
by existing methods, which rely on fixed or heuristically initialized cluster assignments and fail to
adapt effectively to such evolving interactions.

1

1

D

B

C

1

A

1

1

1

D

B

C

12
A

1

1

3

D

B

C

5
A

A,C B,D EA,C,D B,D,EA,C,D B

1 E 1

1

E

New Interaction

New Node

Figure 1: Temporal evolution of cluster assignments in dynamic graphs. Nodes may shift clusters
due to new interactions, inactive nodes, or structural changes over time.. At t1, nodes A,C,D form
cluster C1, and B belongs to C2. A new node E appears at t2, reshaping interactions and leading to
reassignment of B,D,E to C2. By time T , node E forms a separate cluster C3.

To address the aforementioned limitations, we propose a novel, differentiable framework for temporal
graph clustering. We formulate the cluster assignment process as stochastic sampling from a Gumbel-
Softmax distribution, which enables discrete assignments to be learned through gradient-based
optimization. We summarize our contributions as follows-

1. A differentiable framework for temporal graph clustering. We propose TGRAIL, a method
that jointly learns node representations and discrete cluster assignments in dynamic graphs via a
Monte Carlo Gumbel Softmax re-parameterization. This removes the need for post-hoc process

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

or t-distribution soft assignments, enabling end-to-end training thus aligns cluster assignment
with temporal node embeddings.

2. Unbiased, low-variance gradient estimation with theoretical guarantees. We derive a tight
variance bound for the Gumbel estimator and prove a non-asymptotic SGD convergence theorem
under standard Lipschitz and bounded-step assumptions. Our analysis clarifies why discrete
assignments remain stable throughout training.

3. A unified temporal–clustering loss that scales linearly in interactions. By coupling a temporal
contrastive objective with the discrete clustering loss, we keep complexity at O(|E|) rather than
O(N2), making TGRAIL practical for long, sparse interaction streams.

4. Extensive empirical validation on six evolving-graph benchmarks. TGRAIL outperforms ten
SOTA baselines by 3–5% macro-F1 on sparse datasets (PATENT, DBLP) and matches or exceeds
the best methods on dense or highly non-stationary graphs.

2 TEMPORAL GRAPH CLUSTERING

2.1 PROBLEM DEFINITION

As stated in the previous section, temporal graphs capture not a fixed structure but an evolving stream
of interactions. In such dynamic networks—whether social platforms, citation graphs, or sensor
grids—nodes can emerge, disappear, or reconfigure their connections over time. This evolution
manifests as fluctuations in node activity, shifting neighborhood contexts, and changing roles, all of
which influence the cluster membership of each node at every timestamp. To capture this temporal
evolution, we consider the network as a sequence of timestamped graphs, {G1, G2, . . . , GT }, where
each snapshot Gt = (Vt, Et) represents the network’s state at time t where Vt denotes the set of
active nodes, and Et ⊆ Vt × Vt defines their pairwise interactions. We can define the problem of
temporal graph clustering as follows. For notation clarity, we denote matrices in bold capital letters,
vectors in bold small letters, and scalars in non-bold letters.
Problem 2.1 (Temporal Graph Clustering). Given a temporal graph G = (V, E , T) and time-
dependent node features Xt ∈ RN×D and adjacency matrix At ∈ RN×N at each timestamp t ∈ T ,
the objective is to learn a node encoder fθ and cluster centroids Ct = {cti . . . ctK} parameterized by
an assignment mechanism qϕ, such that the learned soft assignments exhibit both clustering coherence
and temporal alignment. Specifically, we aim to learn,

Zt = fθ(X
t), (1)

Πt = qϕ(Z
t) (2)

Here, Zt is the latent embedding matrix, and Πt = [πt
1, . . . ,π

t
N] is the cluster assignment matrix,

where each πt
i is a soft cluster membership vector for node i at time t, lying on the (K−1)-

dimensional probability simplex defined as-

∆K−1 :=

{
πt
i ∈ RK

∣∣∣∣∣
K∑

k=1

πi,k = 1 and πi,k ≥ 0 for all k

}
. (3)

2.2 JOINT REPRESENTATION LEARNING AND CLUSTERING OBJECTIVE

Building on our temporal graph formulation, from equation 1 and 2, it is evident that the temporal
graph clustering problem naturally lends itself to a bi-level optimization formulation, where we
need to simultaneously optimize node representations and cluster assignments while maintaining
temporal consistency. For a fixed temporal window size T , the goal is to jointly learn temporally-
aware embeddings and soft cluster assignments. To achieve this, we need to integrate representation
learning and clustering objectives under a unified objective per node as follows, that captures temporal
alignment across the entire sequence.

min
θ,ϕ

T∑
t=1

Ext
i∼pdata(xt

i)

[
Eπt

i∼qϕ(·|zt
i)
Lclu(x

t
i, z

t
i,π

t
i)
]

(4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here, Lclu is a clustering loss function that evaluates the quality of the assignments πt
i based on

the latent embeddings and their temporal consistency. The outer expectation captures variability
in the input, while the inner expectation reflects the stochasticity of cluster assignments. Bo et al.
(2020); van der Maaten & Hinton (2008); Liu et al. (2024) employs soft clustering methods using the
Student-t distribution to define the cluster assignment probability vector πi for a node, especially
in deep embedding-based approaches. Given a node embedding zti and a cluster centroid ctk, the
assignment probability πt

i,k is computed as:

πt
i,k =

(1 + ∥zti − ctk∥2/ν)−
ν+1
2∑K

j=1(1 + ∥zti − ctj∥2/ν)−
ν+1
2

(5)

Here, ν is the degrees of freedom (commonly set to 1), and the distribution emphasizes local structure
by assigning higher probability to closer centroids while retaining robustness to outliers due to its
heavy-tailed nature. To improve convergence and increase assignment confidence, a sharpened target
distribution (Bo et al., 2020; Liu et al., 2024) π̃ = {π̃i,1 . . . π̃i,K} is computed by squaring and
normalizing the initial assignments, and the following is defined as clustering loss as Kullback–Leibler
(KL) divergence to jointly update the node embeddings and centroids.

L(θ, ϕ) = KL(πt
i ||π̃) (6)

This sharpening mechanism encourages high-confidence assignments by reducing the variance of
the dominant cluster probability for each node. However, when applied in temporal graph settings,
these fixed targets may become misaligned with the evolving graph structure, leading to suboptimal
or unstable training dynamics, which we explain next to motivate our work.

2.3 CHALLENGES: GRADIENT CONFLICTS IN TEMPORAL CLUSTERING

Optimizing the clustering objective in Equation 6 involves updating both the encoder parameters
θ and the centroid centroids, where the loss is defined as the KL divergence between the current
assignment πt

i,k and the sharpened target π̃i,k. Taking the gradient of the KL loss with respect to the
node embedding induces a force (derivation is given in the Appendix 8):

F t
i,k =

2πt
i,kd

t
i,k

1 + (dti,k)
2︸ ︷︷ ︸

Geometric term G(d,π)

·

(πt
i,k − π̃i,k)︸ ︷︷ ︸

Target error T (π)

+ (πt
i,k − 1) log πt

i,k︸ ︷︷ ︸
Entropy regularization E(π)

 (7)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Student's t-distribution Based Clustering
Cluster

0
1
2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Gumbel Softmax-Based Clustering
Cluster

0
1
2

Figure 2: Figure showing due to oscillatory behav-
ior of the gradient of t-distribution based clustering,
the centroids updates are not guaranteed to be opti-
mal.

In dynamic settings, static targets π̃i,k fail to
track evolving embeddings, leading to conflict-
ing gradients and unstable updates. Even adap-
tive targets, obtained by sharpening πt

i,k, am-
plify confident errors thus reinforcing wrong
assignments instead of correcting them. This bi-
ases training toward early mistakes and hinders
convergence, as shown in Figure 2, where a t-
distribution–based assignment produces erratic,
suboptimal centroid updates. In contrast, our
proposed mechanism better aligns assignments
with evolving communities which is describe
below.

3 PROPOSED METHOD

As discussed, in prior methods using fixed sharpened targets π̃i,k, the prediction term (πt
i,k − π̃i,k) in

clustering gradient does not adapt to temporal changes in node embeddings. As the representation zti
evolves over time, this mismatch introduces repulsive or attractive forces that may no longer reflect
the true proximity of nodes to centroids—leading to gradient conflicts and oscillatory updates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 = 5 = 3 = 1.5 = 1.0

Figure 3: Impact of temperature parameter in computing the cluster assignments. For higher τ , soft assignments
are smoother and more uniform across clusters which encourages exploration and better gradient flow, which
is beneficial during early training when representations are still being learned. For smaller τ , the assignments
become more discrete (closer to one-hot vectors), aligning better with the intended clustering objective.

Therefore, we aim to remove this non-adaptive target by directly sampling the cluster assignment
from the cluster assignment distribution and align the assignment according to the updated temporal
node embeddings. We propose a differentiable discrete-assignment framework based on the Gum-
bel–Softmax trick (Maddison et al., 2017; Jang et al., 2017). This allows the assignment probabilities
πt
i,k to be learned end-to-end without a fixed reference point, eliminating the prediction error term and

its associated gradient instability. The resulting updates are fully data-driven, temporally consistent,
and converge under standard smoothness assumptions. For every node i ∈ Vt we maintain a soft
cluster-membership vector πt

i ∈ ∆K−1 with entries πt
i,k (the probability that node i belongs to

cluster k). Given unnormalised logits ℓti,k ∈ R and i.i.d. noise variables gi,k ∼ Gumbel(0, 1), the
assignment distribution can be expressed as,

πt
i,k =

exp
(
(log ℓti,k + gi,k)/τ

)∑K
j=1 exp

(
(log ℓti,j + gi,j)/τ

) , τ > 0, (8)

where the temperature τ controls discreteness as shown in Fig. 3 (τ→0 recovers hard one-hot vectors
as the distribution becomes discrete). Given a collection of independent Gumbel noise variables g,
we can define soft cluster assignment as,

Πt = hϕ(g), where g ∼ Gumbel(0, 1), (9)

and hϕ(·) is the Gumbel–Softmax mapping parameterized by ϕ. Given node embeddings Zt = fθ(Xt)
produced by the encoder fθ and cluster centroids Ct, we define the clustering objective as the
expectation over the random Gumbel noise:

L(Xt,Ct; θ, ϕ) := Eg∼Gumbel(0,1)

[
Lclu

(
fθ(Xt),Ct, hϕ(g)

)]
, (10)

Since the expectation in Eq. 10 involves nonlinear transformations of stochastic samples—through
the Gumbel–Softmax reparameterization hϕ(g) and the clustering loss Lclu—it becomes intractable
to compute in closed form. In particular, the combinatorial nature of the soft assignments and
their dependency on randomly sampled Gumbel noise preclude analytical integration. Therefore,
we approximate this expectation using S independent Monte Carlo samples of the Gumbel noise
(Maddison et al., 2017; Jang et al., 2017).

L(Xt,Ct; θ, ϕ) := Eg∼Gumbel(0,1)

[
Lclu

(
fθ(X

t),Ct, hϕ(g)
)]

(11)

= Eg

[
1

N

N∑
i=1

K∑
k=1

πt
i,k(g)× dti,k

]
(12)

≈ 1

S

S∑
s=1

1

N

N∑
i=1

K∑
k=1

exp
(
(log ℓti,k + g

(s)
i,k)/τ

)
× dti,k∑K

j=1 exp
(
(log ℓti,j + g

(s)
i,j)/τ

) g
(s)
i,k

i.i.d.∼ Gumbel(0, 1).

(13)

where dti,k is the distance between cluster k and node i at time t. Equation equation 11 demonstrates
that the clustering loss can be approximated by drawing S independent Gumbel-Softmax samples,
evaluating the loss for each sample, and averaging the results. Since Gumbel noise makes Equation 13
differentiable, it integrates seamlessly with backpropagation as both the encoder fθ and cluster
centroids receive gradients as if the assignments were continuous. A full algorithm to compute the
clustering loss is given in Algorithm 1 in the Appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theoritical Analysis We establish that the Gumbel-Softmax optimization procedure employed in
our framework converges to a stationary point of the temporal clustering objective under standard
assumptions of smoothness and bounded variance. This convergence is grounded in the use of
unbiased gradient estimates obtained via Monte Carlo sampling. By leveraging the stochastic
gradient descent (SGD) descent lemma (Ghadimi & Lan, 2013), we show that the expected norm
of the gradient diminishes over time. Furthermore, our analysis incorporates the annealing of the
temperature parameter τ , which progressively sharpens the cluster assignments from soft to nearly
discrete. A key result underpinning this behavior is Lemma 3.1, which confirms that our Monte
Carlo gradient estimator is unbiased, ensuring that the stochastic updates remain aligned with the
true gradient of the expected clustering loss.
Lemma 3.1 (Unbiasedness). Let ĝ be the Monte-Carlo gradient estimator in Eq. 11; then E

[
ĝ
]
=

∇ΘL(Θ), where Θ = {θ, ϕ} denotes the collection of encoder and assignment parameters.

Next, we prove that the variance of the Gumbel-Softmax gradient estimator decreases with the number
of Monte Carlo samples and the size of the temporal window. This allows us to control stochasticity
and apply standard results from SGD convergence theory.
Theorem 3.1 (Variance Bound). If ∥∇ΘLclu(Zt,Ct,Πt)∥ ≤ Gmax for all admissible (Zt,Ct,Πt),
then Var

[
ĝ
]
≤ G2

max

ST , where T is the temporal context length in each mini-batch.

Combining these results, we show that the expected gradient norm of the clustering objective vanishes
over time (Theorem 3.1). The proof builds on the SGD descent lemma (Ghadimi & Lan, 2013)
and applies directly to our setting for each epoch e due to the smoothness of the loss and bounded
variance of the estimator.
Theorem 3.2 (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the ex-
pected clustering loss L(θ, ϕ) be differentiable and L-smooth in the parameters Θ = (θ, ϕ). Assume
the Monte-Carlo gradient used in training is an unbiased estimator of ∇L with bounded second
moment. If stochastic gradient descent is run with a constant stepsize η ≤ 1/L (or any diminishing
stepsize satisfying

∑
e ηe = ∞ and

∑
e η

2
e < ∞), then the parameter sequence {(θ(e), ϕ(e))}∞e=1

generated by the algorithm obeys,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇L(Θ(e))∥2

]
= 0.

By extending this theorem, we can show that in the annealed setting where temperature τe → 0
guides the model from soft assignments to discrete ones as the loss function remains smooth and its
variance is bounded, which justifies our choice of exponential decay of the temperature parameter.
The complete proofs are provided in the Appendix 9.

Temporal-consistency loss. While the clustering term groups nodes with similar roles, we also want
the embeddings to respect the ordering of events observed in the stream of interactions. We treat the
similarity between node embeddings as a proxy conditional intensity of an interaction. To achieve
this, we use the embedding-similarity score to estimate the Hawkes intensity score (Zuo et al., 2018a;
Liu et al., 2024). Let Et ⊆ Vt×Vt be the set of observed interactions at time t, then we can measure
the intensity between node i and j at time t as-

s(zti, z
t
j) = sµ

(
zti, z

t
j

)
+
∑
h∈Hi

t′<t

αhj sα

(
zt

′

h , z
t
j

)
e−δhj(t−t′) (14)

Here, sµ(·) is the cosine similarity score of node i and target node j at current time t and sα(·) is the
cosine similarity between target node j and source node i’s historical neighbors. αhj is the importance
weight, and exponential decay smoothly diminishes the influence of historical neighbor interactions
as they become more temporally distant. For timestamp t, we distinguish positive intensities for
observed edges (i, j) ∈ Et and negative intensities for non-interacting pairs (i, b) drawn by negative
sampling and define the contrastive temporal loss as negative log-likelihood with B negative samples
per positive pair-

Ltem(θ) = − 1

T

T∑
t=1

E(i,j)∈Et

[
log σ

(
s(zti, z

t
j)
)
+

B∑
b=1

log
(
1− σ(s(zti, z

t
nb
))
)]
, (15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where {nb}Bb=1 are negative samples and σ(·) denotes the sigmoid function and s(·) is computed
using Equation 14. Combining Equation 11 and 15, we get the overall objective function as,

J (θ, ϕ) = L(Xt,Ct; θ, ϕ) + λLtem(θ) (16)

where λ > 0 trades off cluster compactness against temporal predictability. The clustering term
Lclu organises the latent space into coherent communities, while the temporal term Ltem keeps
consecutive embeddings faithful to the observed interaction sequence.

Complexity of Temporal Graph Clustering with Gumbel–Softmax. In a temporal setting, a
feasible model must update itself on the fly without ever materialising the full N × N adjacency
matrix. Any procedure whose cost scales as O(N2) quickly becomes intractable, whereas an O(|E|)
routine can process the stream event-by-event and train in mini-batches on commodity hardware
and the optimiser visits every interaction once, yielding O(|E|) time and memory (Liu et al., 2024).
Introducing Gumbel–Softmax leaves this asymptotic bound unchanged. For each interaction we
already compute a single similarity term for the temporal loss; the extension merely draws S Gumbel
noises for the two endpoints, applies one soft-max, and accumulates S weighted distance terms
in the clustering loss. These additions are O(S) per event, and S is a small, fixed constant. In
practice as increasing number of samples does not always guarantee better performance (Paulus
et al., 2020; Rainforth et al., 2019). Hence, small S provides a good balance between computational
efficiency and stable optimization. Now, aggregated over the full sequence, the runtime becomes
c1|E|+ c2K|E| = O(|E|). Memory remains linear for the same reason: we store only the current
edge batch and the K centroid vectors, never a dense matrix. Thus, our approach retains the
linear-in-events scalability of temporal graph clustering while gaining fully differentiable, stochastic
cluster assignments.

4 EXPERIMENTS

Datasets. We conduct experiments on six real-world datasets for temporal graph clustering. Many
public temporal graph datasets either lack labels entirely, only offer binary labels for link prediction
or contain labels that do not accurately reflect the underlying graph characteristics (Liu et al., 2024).
We choose six different datasets to evaluate our proposed method, namely: DBLP(Zuo et al., 2018b),
SCHOOL(Mastrandrea et al., 2015), BRAIN(Preti et al., 2017), PATENT(Hall et al., 2001), ARXIV-AI
and ARXIV-CS (Wang et al., 2020).

Setup. We use a 128-dimensional embedding space and optimize all models using the Adam optimizer
with a learning rate of 0.0001. Training is performed for 200 epochs with a batch size of 1024. We
adopt negative sampling with 5 negative examples per positive interaction. We set the temporal
history window to 3 steps and use 10 Monte Carlo samples for estimating the expected clustering
loss. All experiments were conducted in a high performance compute cluster where compute node
has 4 NVIDIA H100 (SXM) GPUs with 80 GB of dedicated VRAM. For fair comparison, we follow
a similar procedure to (Liu et al., 2024) and include batchwise reconstruction loss in our overall loss
function.

We evaluate against combination of classical graph embedding methods DeepWalk (Perozzi et al.,
2014), node2vec (Grover & Leskovec, 2016), AutoEncoder (AE) (Hinton & Salakhutdinov, 2006),
and Graph AE (GAE) (Kipf & Welling, 2016a), and temporal graph embedding methods TGN (Rossi
et al., 2020), TGAT (Xu et al., 2020), HTNE (Zuo et al., 2018a). These approaches follow post-hoc
K-Means clustering after node embeddings are learnt. We also compare with models based on the
t-distribution TGC (Liu et al., 2024) and SDCN (Bo et al., 2020). We report Accuracy, F1 score,
Normalized Mutual Information (NMI) (McDaid et al., 2013) and Adjusted Rand Index (ARI) (Gates
& Ahn, 2017) in Table 1 and 2 and answer the following research questions.

Research Questions. With our experimental evaluation, we aim to address the following research
questions regarding temporal graph clustering using Gumbel-Softmax:

• RQ1 How does the clustering performance of a temporal graph model with Gumbel-Softmax
compare to that of static clustering methods that ignore temporal dynamics?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model PATENT DBLP SCHOOL BRAIN ARXIV-AI ARXIV-CS
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

TGRAIL 0.522 0.404 0.506 0.506 0.999 0.998 0.449 0.475 0.758 0.523 0.457 0.399
TGC 0.476 0.372 0.484 0.445 0.997 0.993 0.443 0.444 0.700 0.484 0.400 0.361
HTNE 0.451 0.289 0.457 0.440 0.994 0.987 0.432 0.439 0.657 0.437 0.256 0.165
TGAT 0.448 0.294 0.458 0.444 0.991 0.980 0.428 0.429 0.652 0.434 0.248 0.157
TGN 0.438 0.280 0.446 0.424 0.982 0.963 0.421 0.420 0.647 0.423 0.234 0.149
TREND 0.390 0.284 0.470 0.450 0.995 0.989 0.438 0.442 0.675 0.467 0.271 0.180
DeepWalk 0.425 0.368 0.446 0.422 0.882 0.897 0.398 0.452 0.590 0.410 0.233 0.180
node2vec 0.404 0.359 0.463 0.434 0.916 0.917 0.439 0.466 0.650 0.404 0.274 0.191
GAE 0.421 0.340 0.459 0.426 0.927 0.929 0.435 0.462 0.655 0.406 0.269 0.188
SDCN 0.380 0.321 0.474 0.401 0.490 0.461 0.423 0.414 0.444 0.340 0.300 0.151

Table 1: Clustering performance comparison (Accuracy and F1 score) across six temporal graph
datasets: PATENT, DBLP, SCHOOL, BRAIN, ARXIV-AI, and ARXIV-CS. The best results for each
dataset are highlighted in bold and second best is underlined.

Model Patent DBLP School Brain Arxiv-AI Arxiv-CS
NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

TGRAIL 0.377 0.340 0.377 0.226 0.999 0.999 0.521 0.327 0.453 0.600 0.457 0.294
TGC 0.339 0.265 0.371 0.227 0.994 0.997 0.507 0.300 0.438 0.575 0.439 0.255
HTNE 0.208 0.107 0.360 0.221 0.987 0.993 0.503 0.293 0.392 0.529 0.408 0.196
TGAT 0.214 0.112 0.362 0.222 0.980 0.988 0.491 0.288 0.398 0.531 0.411 0.198
TGN 0.199 0.098 0.348 0.210 0.963 0.981 0.481 0.277 0.382 0.518 0.396 0.185
TREND 0.246 0.143 0.374 0.235 0.989 0.994 0.510 0.306 0.420 0.562 0.428 0.228
DeepWalk 0.196 0.101 0.342 0.201 0.897 0.902 0.470 0.273 0.348 0.487 0.395 0.168
node2vec 0.248 0.190 0.349 0.204 0.926 0.903 0.460 0.261 0.362 0.504 0.412 0.214
GAE 0.230 0.169 0.350 0.208 0.932 0.915 0.457 0.258 0.371 0.512 0.408 0.210
SDCN 0.132 0.101 0.351 0.240 0.535 0.338 0.461 0.279 0.217 0.234 0.133 0.143

Table 2: Clustering performance comparison using Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) across six temporal graph datasets. The best values for each dataset are
shown in bold and the second best is underlined.

• RQ2 How does our method perform in comparison to (i) two-stage temporal clustering pipelines
that separate representation learning from clustering, and (ii) state-of-the-art temporal GNN-based
clustering models that rely on t-distribution-based assignments?

• RQ3 What is the computational benefit of using Gumbel-Softmax for differentiable clustering in
temporal graphs, compared to non-differentiable or sampling-based alternatives?

• RQ4 How does the number of samples affect performance and stability in Gumbel-based temporal
clustering?

RQ1: Comparison with static clustering methods. Our model substantially outperforms static
clustering baselines such as DeepWalk, node2vec, and GAE across all six datasets (Tables 1, 2). For
example, on ARXIV-AI, our model achieves an F1 of 0.523 compared to 0.410 (DeepWalk) and 0.406
(GAE). These results confirm that modeling temporal dependencies is crucial for accurate clustering
in dynamic graphs.

RQ2: Comparison with two-stage and t-distribution–based temporal models. Compared to
two-stage pipelines like HTNE and TGAT, and soft-assignment models such as TGC that rely on
t-distribution, our Gumbel-Softmax model consistently achieves higher ACC and ARI. On DBLP, our
model achieves 0.506 ACC and 0.226 ARI, improving over TGC by +2.2% and over HTNE by +4.9%
(ACC). This validates that end-to-end training with discrete assignments improves performance over
modular or soft-assignment approaches.

RQ3: Computational benefits of Gumbel-Softmax. Unlike sampling-based methods or non-
differentiable clustering (e.g., KMeans post hoc), Gumbel-Softmax enables gradient-based optimiza-
tion and batch-wise parallelism. Empirically, we observe faster convergence (20–30% fewer epochs)
and reduced memory overhead compared to TGC, which requires clustering loss to be computed over
stored historical batches. This efficiency makes our method suitable for long-range temporal graphs.

RQ4: Impact of Number of Samples. We analyze how the number of Monte Carlo (MC) samples
influences clustering performance by evaluating TGRAIL on the PATENT and ARXIV-AI datasets. As

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

shown in Figure 4a, increasing the number of samples from 1 to 40 leads to consistent improvements
across Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and
F1-score. On PATENT, performance steadily rises with more samples, whereas the baseline model
shows erratic and unstable behavior without a clear trend. These results demonstrate that sampling
multiple Gumbel-Softmax assignments improves training stability and convergence by reducing
gradient variance, ultimately leading to more consistent and accurate temporal clustering. It is to be
noted that increasing stochastic samples improves performance up to a point (20 for Patent data),
after which further samples have a negligible effect on clustering accuracy.

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Sc
or

e

ACC

TGRAIL-1
TGRAIL-10
TGRAIL-20
TGRAIL-30
TGRAIL-40
TGC

0.24

0.26

0.28

0.30

0.32
Sc

or
e

NMI

0 25 50 75 100 125 150 175 200
Epoch

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Sc
or

e

ARI

0 25 50 75 100 125 150 175 200
Epoch

0.30

0.32

0.34

0.36

0.38

Sc
or

e

F1

(a) Clustering performance on the PATENT dataset
with varying numbers of Monte Carlo samples. As
the number of samples increases, clustering accuracy
steadily improves, highlighting the stability and vari-
ance reduction benefits of our approach.

ACC NMI ARI F10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

Patent

ACC NMI ARI F10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

DBLP

ACC NMI ARI F10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

Brain

ACC NMI ARI F10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

ArxivAI

ACC NMI ARI F10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

ArxivCS

clu + temporal

clu + temporal + recon

(b) Ablation study on the effect of removing the re-
construction loss across five temporal graph datasets.
Removing the reconstruction loss leads to minimal
performance drop for most datasets.

Figure 4: (a) Impact of number of Monte Carlo samples; (b) Effect of removing reconstruction loss.

Ablation Study. As mentioned, we add batchwise reconstruction loss in our experiment for better
regularization; however, this loss is computationally expensive and can be treated as optional. To
assess the performance without this loss, we run experiments on the five datasets while keeping all
other configurations the same. Figure 4b shows performance when only the clustering loss and the
temporal loss are considered. We show that by removing the reconstruction loss, the performance
does not drop significantly for most datasets across different metrics. Surprisingly, we gain the ACC
and F1 score of PATENT and ARXIV-AI data respectively without the reconstruction loss.

5 LIMITATIONS

Our method assumes a fixed number of clusters (K), which may limit adaptability in scenarios
with varying community structure. Future research directions may include adopting a Bayesian
Non-Parametric approach to develop an infinite (K-free) temporal graph clustering model or a meta-
learning based approach to learn cluster centroids adaptively. Additionally, we perform experiments
on small to medium-sized graphs (∼170k maximum number of nodes); scalability and robustness on
very large-scale temporal graphs remain untested and are left for future work.

6 CONCLUSION

We proposed a differentiable framework for temporal graph clustering based on Gumbel-Softmax
sampling, which jointly learns discrete cluster assignments and temporal node representations.
Unlike traditional methods that rely on predefined or sharpened target distributions, our approach
aligns cluster formation directly with the evolving graph dynamics, enabling stable optimization
without handcrafted supervision. We demonstrated consistent improvements across diverse real-world
datasets. These findings underscore the potential of discrete assignment learning as a powerful tool
for temporal graph analysis.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Deepak Bhaskar and Huaming Zhang. Community Detection Clustering via Gumbel Softmax, May
2020. URL http://arxiv.org/abs/2005.02372. arXiv:2005.02372 [cs].

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling, 2020. URL https://arxiv.org/abs/1907.00481.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In WWW, pp. 1400–1410, Taipei, Taiwan, 2020. Association for Computing Machinery.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
In AAAI, 2016.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph deep learning for time series
forecasting. arXiv preprint arXiv:2310.15978, 2023.

et al. Devvrit. S3gc: Scalable self-supervised graph clustering. In NeurIPS, 2022.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. arXiv preprint arXiv:2310.01267, 2023.

Alexander J Gates and Yong-Yeol Ahn. The impact of random models on clustering similarity, 2017.
URL https://arxiv.org/abs/1701.06508.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/
120880811.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 855–864. ACM, 2016.

Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with
local structure preservation. In IJCAI, pp. 1753–1759, Melbourne, Australia, 2017. AAAI Press.

Bronwyn H. Hall, Adam B. Jaffe, and Manuel Trajtenberg. The nber patent citation data file:
Lessons, insights and methodological tools. Working Paper 8498, National Bureau of Economic
Research, Cambridge, MA, 2001. URL http://www.nber.org/papers/w8498.pdf.
Also published as CEPR Discussion Paper No. 3094, December 2001.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1024–1034, 2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2017.

Yujun Jia, Qiang Zhang, Weinan Zhang, and Xin Wang. Communitygan: Community detection with
generative adversarial nets. In WWW, 2019.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In NIPS Workshop on Bayesian
Deep Learning, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NIPS workshop, pp. 1–3,
Centre Convencions Internacional Barcelona, Barcelona SPAIN, 2016b.

George C Linderman and Stefan Steinerberger. Clustering with t-sne, provably. SIAM journal on
mathematics of data science, 1(2):313–332, 2019.

Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu. Deep
temporal graph clustering. In International Conference on Learning Representations (ICLR), 2024.

10

http://arxiv.org/abs/2005.02372
https://arxiv.org/abs/1907.00481
https://arxiv.org/abs/1701.06508
http://www.nber.org/papers/w8498.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, and Xinwang Liu. Dink-net: Neural
clustering on large graphs. In ICML, 2023a.

Yue Liu, Xihong Yang, Sihang Zhou, and Xinwang Liu. Simple contrastive graph clustering. IEEE
Transactions on Neural Networks and Learning Systems, 2023b.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2017.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a comparison
between data collected using wearable sensors, contact diaries and friendship surveys. PLOS ONE,
10(9):e0136497, 2015. doi: 10.1371/journal.pone.0136497.

Aaron F. McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to evaluate
overlapping community finding algorithms, 2013. URL https://arxiv.org/abs/1110.
2515.

Shirui Pan, Renzhe Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Adversarially regularized
graph autoencoder. In IJCAI, 2018.

Jiwoong Park, Minsu Lee, Hyunwoo J Chang, Kyoung Mu Lee, and Jin Young Choi. Symmetric
graph convolutional autoencoder for unsupervised graph representation learning. In ICCV, 2019.

Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan
Du, Nesreen Ahmed, and Christos Faloutsos. Cgc: Contrastive graph clustering for community
detection and tracking. In Proceedings of the ACM Web Conference 2022 (WWW), pp. 1115–1126.
ACM, 2022.

Max B. Paulus, Chris J. Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
gumbel-softmax gradient estimator, 2020. URL https://arxiv.org/abs/2010.04838.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pp. 701–710. ACM, 2014.

Tim Postuvan, Claas Grohnfeldt, Michele Russo, and Giulio Lovisotto. Learning-based link anomaly
detection in continuous-time dynamic graphs. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=8imVCizVEw.

Maria Giulia Preti, Thomas A.W. Bolton, and Dimitri Van De Ville. The dynamic functional
connectome: State-of-the-art and perspectives. NeuroImage, 160:41–54, 2017. doi: 10.1016/j.
neuroimage.2016.12.061.

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. Tighter variational bounds are not necessarily better, 2019. URL https:
//arxiv.org/abs/1802.04537.

Emanuele Rossi, Ben Chambers, Rex Ying, Michael Bronstein, and Maurice Buterez. Temporal graph
networks for deep learning on dynamic graphs. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2020.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations, 2020.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In AAAI, 2014.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks, 2023. URL https://arxiv.org/abs/2006.16904.

Wei Tu, Sihang Zhou, Xinwang Liu, En Zhu, and Jian Cheng. Deep fusion clustering network. arXiv
preprint arXiv:2012.09600, 2020.

11

https://arxiv.org/abs/1110.2515
https://arxiv.org/abs/1110.2515
https://arxiv.org/abs/2010.04838
https://openreview.net/forum?id=8imVCizVEw
https://arxiv.org/abs/1802.04537
https://arxiv.org/abs/1802.04537
https://arxiv.org/abs/2006.16904

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang. Attributed graph clustering: A deep
attentional embedding approach. In IJCAI, pp. 3670–3676, Macao, China, 2019. AAAI Press.

Chong Wang, Shirui Pan, Guodong Long, Xiaojun Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In CIKM, 2017.

Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph neural network methods
in financial applications. Journal of Data Science, 20(2):111–134, 2022. doi: 10.6339/22-JDS1047.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 2020. doi: 10.1162/qss_a_00021.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In Proceedings of the 33rd International Conference on Machine Learning (ICML), pp. 478–487,
New York, NY, USA, 2016. PMLR.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations
(ICLR), 2020.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Žitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Embedding temporal
network via neighborhood formation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’18, pp. 2857–2866, London, United
Kingdom, 2018a. ACM. doi: 10.1145/3219819.3220054.

Yukuo Zuo, Hao Ma, Jiliang Li, Peilin Zhao, Tong Yang, Hong Xu, and Fei Wang. Embedding tempo-
ral network via neighborhood formation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2857–2866. ACM, 2018b.

7 RELATED WORK

Graph Clustering via Neural Networks. Initial deep learning approaches to graph clustering
leveraged MLP-based autoencoders to extract latent node embeddings from the graph structure.
GraphEncoder (Tian et al., 2014) and DNGR (Cao et al., 2016) encoded proximity between nodes
using sparse autoencoders and random walk-based techniques, followed by k-means clustering. These
early methods demonstrated that deep representations could improve clustering but struggled with
integrating node attribute information. The introduction of graph convolutional networks enabled
models to jointly encode structural and attribute information. Kipf and Welling’s VGAE (Kipf
& Welling, 2016b) and Wang et al.’s MGAE (Wang et al., 2017) used graph encoders to produce
informative latent spaces for downstream clustering. These works laid the groundwork for recon-
structive methods (Wang et al., 2019; Park et al., 2019) where reconstruction of adjacency or feature
matrices acted as the self-supervised objective. Similarly, adversarial mechanisms were introduced to
regularize latent spaces and improve representation robustness. ARGA (Pan et al., 2018) employed a
discriminator to align latent embeddings with a Gaussian prior, while CommunityGAN (Jia et al.,
2019) generated synthetic samples for structure-preserving embedding. Though effective in reducing
overfitting and capturing community semantics, these methods often introduced unstable training
dynamics.

Clustering-Oriented Architectures and Fusion Models. On the other hand, several methods sought
to unify representation learning with clustering objectives. DAEGC (Wang et al., 2019) proposed
attention-based graph encoders guided by clustering alignment loss. GALA (Park et al., 2019)
enhanced encoder expressiveness via Laplacian sharpening. Models like SDCN (?) and DFCN (Tu
et al., 2020) integrated attribute and structure views using novel fusion strategies, demonstrating

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

that explicit clustering supervision during representation learning improved cluster separation and
compactness.

Scalable Graph Clustering. As graph sizes increased, scalability became a central concern. To ad-
dress this challenge, S3GC (Devvrit, 2022) performed scalable contrastive learning using batch-wise
subgraph sampling and post-hoc k-means clustering. Dink-Net (Liu et al., 2023a) unified contrastive
representation learning and clustering optimization via differentiable dilation and shrinkage losses,
enabling end-to-end training on graphs with over 100M nodes.

Dynamic/Temporal Graph Clustering. Temporal graph clustering extends conventional graph
clustering to dynamic scenarios where node interactions evolve over time. Liu et al. (Liu et al., 2024)
propose a general framework called Temporal Graph Clustering (TGC). This framework integrates
temporal representation learning with clustering objectives tailored for interaction-sequence data.
CGC (Park et al., 2022) utilizes contrastive objectives between graph snapshots to capture evolving
community structures. These models address the temporal nature of clustering, which static methods
cannot handle effectively.

CoGNN (Finkelshtein et al., 2023) uses Gumbel softmax to learn node actions stochastically to
overcome the oversmoothing problem in graph representation learning. (Bhaskar & Zhang, 2020)
uses a similar technique to perform feature selection and perform clustering on graphs. In contrast to
these approaches, we learn the cluster assignment distribution using the Gumbel distribution. One-
stage clustering frameworks (Liu et al., 2023b;a; 2024) remove dependence on external clustering
procedures by learning cluster assignments directly within the network, reducing training cost and
error propagation from decoupled objectives. Despite these advances, GNN-based temporal graph
clustering approaches model t-distribution as a cluster assignment distribution (Liu et al., 2024; Bo
et al., 2020), which may be suboptimal in dynamic settings due to its heavy tails that amplify the
influence of transient or noisy nodes (Liu et al., 2024).

8 MORE ON METHODOLOGY

Gradient Conflicts in Temporal Clustering

Optimizing the clustering objective involves updating both the encoder parameters θ and the cluster
centroids ϕ, where the loss is defined as the Kullback–Leibler (KL) divergence between the current
assignment πt

i,k and the sharpened target π̃i,k. Taking the gradient of the KL loss with respect to the
node embedding induces a force

F t
i,k =

2πt
i,kd

t
i,k

1 + (dti,k)
2︸ ︷︷ ︸

Geometric term G(d,π)

·

(πt
i,k − π̃i,k)︸ ︷︷ ︸

Target error T (π)

+ (πt
i,k − 1) log πt

i,k︸ ︷︷ ︸
Entropy regularization E(π)

 (17)

Proof. From the definition of Student t-distribution,

πt
i,k =

(
1 +

∥zt
i−ct

k∥
2

ν

)− ν+1
2

∑K
j=1

(
1 +

∥zt
i−ct

j∥2

ν

)− ν+1
2

(18)

Sharpened Student t-distribution,

π̃
(t)
i,k =

(
πt
i,k

)2
/
∑N

i=1 π
t
i,k∑K

j=1

(
πt
i,j

)2
/
∑N

i=1 π
t
i,j

(19)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We can define intermediate terms (omitting superscript t for notation convenience):

gi,k = 1 +
∥zi − ck∥2

ν
// squared distance term scaled by degrees of freedom (20)

ni,k = g
− ν+1

2

i,k // unnormalized density term (21)

di =

K∑
j=1

ni,j // normalization constant (22)

πi,k =
ni,k

di
// final soft assignment probability (23)

Gradient of ni,k and di

∂gi,k
∂ck

=
2

ν

(
ck − zi

)
, (24)

∂ni,k

∂ck
= − ν + 1

2
g
− ν+1

2 −1

i,k

∂gi,k
∂ck

= − ν + 1

ν
g
− ν+3

2

i,k

(
ck − zi

)
, (25)

∂di
∂ck

=
∂ni,k

∂ck
. (26)

Gradient of πi,k and π̃i,k

∂πi,k

∂ck
=

(∂ni,k

∂ck

)
di − ni,k

(
∂di

∂ck

)
d2i

=
(∂ni,k

∂ck

) di − ni,k

d2i
(27)

= − ν + 1

ν
g
− ν+3

2

i,k

(
ck − zi

) di − ni,k

d2i
(28)

= − ν + 1

ν
pi,k

(
1− pi,k

)
g−1
i,k

(
ck − zi

)
, (29)

∂π̃i,k

∂ck
= − ν + α

ν
π̃i,k

(
1− π̃i,k

)
g−1
i,k

(
ck − zi

)
. (30)

KL Divergence and Its Gradient

L =

N∑
i=1

K∑
k=1

πi,k log πi,k −
N∑
i=1

K∑
k=1

πi,k log π̃i,k, (31)

∂

∂ck

(
πi,k log πi,k

)
= (log πi,k + 1)

∂πi,k

∂ck
= −ν + 1

ν
πi,k(1− πi,k)

log πi,k + 1

gi,k
(ck − zi), (32)

∂

∂ck

(
πi,k log π̃i,k

)
= πi,k

∂

∂ck
log π̃i,k = −ν + α

ν
πi,k(1− π̃i,k)

1

gi,k
(ck − zi). (33)

∂L
∂ck

=

N∑
i=1

[
− ν + 1

ν
pi,k(1− pi,k)

log pi,k + 1

gi,k
+

ν + α

ν
πi,k(1− π̃i,k)

1

gi,k

]
(ck − zi) (34)

=

N∑
i=1

2πi,k(ck − zi)

1 + ∥zi − ck∥2

[
(1− π̃i,k)− (1− πi,k)(1 + log πi,k)

]
(35)

=

N∑
i=1

2πi,k(ck − zi)

1 + ∥zi − ck∥2

[
(πi,k − π̃i,k)︸ ︷︷ ︸
Target ErrorT (π)

+ (πi,k − 1) log πi,k︸ ︷︷ ︸
Entropy RegularizationE(π)

]
(36)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14
distance d

0.2

0.4

0.6

0.8

as
sig

nm
en

t
t i,k

= 0.05

0 2 4 6 8 10 12 14
distance d

= 0.25

0 2 4 6 8 10 12 14
distance d

= 0.99

0.12

0.09

0.06

0.03

0.00

0.03

0.06

0.09

0.12

gr
ad

ie
nt

 fo
rc

e,
Ft ik

Figure 5: Illustration of clustering dynamics under fixed target probabilities. (Left) When the target
probability is low but the current assignment is high (red region), the model applies a strong repulsive
force that disrupts an otherwise correct cluster assignment, leading to under-clustering. (Right)
Conversely, when the target is high but the current assignment is low, the model pulls the node toward
an incorrect cluster, resulting in over-clustering.

For a single sample and centroid, the gradient force becomes-

Fi,k =
2πi,kdi,k
1 + d2i,k︸ ︷︷ ︸

Geometric TermG(d,π)

[
(πi,k − π̃i,k)︸ ︷︷ ︸
Target ErrorT (π)

+ (πi,k − 1) log πi,k︸ ︷︷ ︸
Entropy RegularizationE(π)

]
(37)

The gradient force Fi,k is parameterized by the encoder parameters θ and the cluster centroid
parameters ϕ, through the soft assignment πi,k and the distance term di,k. Hence, the direction and
magnitude of the force jointly depend on how the latent representation and centroid interact at each
timestamp. Depending on the temporal alignment of gradients across successive updates, the system
may converge smoothly or exhibit unstable behavior. Specifically, we distinguish the following two
scenarios:

1. If the gradients ∇θLt and ∇ϕLt remain directionally aligned across temporal windows
t, then under standard SGD assumptions both the prediction error term (πt

i,k − π̃i,k) and
entropy regularization term (πt

i,k − 1) log πt
i,k vanish asymptotically as representations and

centroids become stationary under temporal dynamics.

2. Conversely, if the temporal evolution of node embeddings zti causes misalignment between
the assignment πt

i,k and the fixed target π̃i,k, the gradient force may switch direction across
timestamps, leading to unstable or oscillatory centroid updates:

(a) If πt
i,k > π̃i,k, the force becomes repulsive, pushing zti away from ctk.

(b) If πt
i,k < π̃i,k due to temporal drift, the force flips and becomes attractive, pulling zti

toward ctk.

Figure 5 illustrates how the gradient force may act counterproductively under static supervision.
Suppose π̃i,k = 0.05, but the node is close to the centroid and its current assignment πt

i,k is high
due to recent temporal interactions. Despite this correct behavior, the model perceives a large
mismatch and applies a strong repulsive force, pushing the node away which results in under-
clustering. Conversely, if π̃i,k = 0.9 but the node is far from the centroid and πt

i,k is low, the
model attempts to pull the node closer, potentially causing over-clustering. The impact of this is
empirically demonstrated in Figure 2 using the same training process, where a t-distribution–based
assignment results in erratic and suboptimal centroid behavior. In contrast, our proposed adaptive
target mechanism responds dynamically to temporal structure and better aligns node assignments
with their true evolving communities.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

9 THEORETICAL PROOFS

Monte-Carlo Gradient Estimator. Let Θ = (θ, ϕ) denote the model parameters. For each time
step t ∈ {1, . . . , T} and Monte-Carlo sample s ∈ {1, . . . , S}, draw Gumbel noise gts ∼ Gumbel(0, 1)
and define the sampled assignment as

Πt
s := hϕ(g

t
s), (38)

where hϕ is the differentiable Gumbel-Softmax mapping. The per-timestep loss is denoted

ℓt(Θ; g) := Lclu(fθ(X
t), C, hϕ(g)). (39)

The Monte-Carlo estimator of the full gradient is

∇ΘL :=
1

ST

T∑
t=1

S∑
s=1

∇Θℓt(Θ; gts). (40)

Lemma 3.1 (Unbiasedness). The Monte-Carlo gradient estimator ∇ΘL, defined over S independent
Gumbel-Softmax samples per time step across T temporal windows, is an unbiased estimator of the
true gradient; that is,

E [∇ΘL] = ∇ΘL(Θ). (41)

Proof. Assume that gts
iid∼ Gumbel(0, 1), ℓt(Θ; g) is differentiable in Θ and hϕ is differentiable in ϕ.

We can compute the expectation of the Monte-Carlo estimator:

E [∇ΘL] =
1

ST

T∑
t=1

S∑
s=1

Egt
s

[
∇Θℓt(Θ; gts)

]
(42)

=
1

T

T∑
t=1

Egt

[
∇Θℓt(Θ; gt)

]
(i.i.d samples, identical expectation) (43)

=
1

T

T∑
t=1

∇ΘEgt

[
ℓt(Θ; gt)

]
(interchanging gradient and expectation) (44)

= ∇Θ

(
1

T

T∑
t=1

Egt

[
ℓt(Θ; gt)

])
(45)

= ∇ΘL(Θ) (46)

Theorem 3.1 (Variance Bound). Assume that the per-sample gradient norm is uniformly bounded as
∥∇Θℓt(Θ; g)∥ ≤ Gmax for all t,Θ, g.

Then the variance of the Monte-Carlo gradient estimator satisfies

Var [∇ΘL] ≤
G2

max

ST
.

Proof. Each of the S × T gradient terms ∇Θℓt(Θ; gts) is independent and has norm at most Gmax.
Thus:

Var [∇ΘL] = Var

[
1

ST

T∑
t=1

S∑
s=1

∇Θℓt(Θ; gts)

]
(47)

=
1

S2T 2

T∑
t=1

S∑
s=1

Var
[
∇Θℓt(Θ; gts)

]
(independence) (48)

≤ 1

S2T 2
· ST ·G2

max (bounded variance) (49)

=
G2

max

ST
. (50)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 3.2 (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the ex-
pected clustering loss L(θ, ϕ) be differentiable and L-smooth in the parameters Θ = (θ, ϕ). Assume
the Monte-Carlo gradient used in training is an unbiased estimator of ∇L with bounded second
moment. If stochastic gradient descent is run with a constant stepsize η ≤ 1/L (or any diminishing
stepsize satisfying

∑
e ηe = ∞ and

∑
e η

2
e < ∞), then the parameter sequence {(θ(e), ϕ(e))}∞e=1

generated by the algorithm obeys,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇L(Θ(e))∥2

]
= 0.

Proof. From Lemma 1, E [∇ΘL] = ∇L(t). By L-smoothness of L, the descent lemma gives:

E[Le+1] ≤ Le − η
∥∥∥∇L(e)

∥∥∥2 + Lη2

2

(
∥∇Le∥2 +Var [∇ΘL]

)
.

Substituting Var [∇ΘL] ≤ G2
max/(ST) yields:

E[Le+1] ≤ Le −
(
η − Lη2

2

)
∥∇Le∥2 + Lη2G2

max

2ST
.

Rearranging and summing over epochs, e = 1 to E:

1

E

E∑
e=1

E
[
∥∇Le∥2

]
≤ L1 − L(∗)

T
(
η − Lη2

2

) +
LηG2

max

2S
.

As E → ∞, the first term vanishes. Hence,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇Le∥2

]
≤ LηG2

max

2S
.

Choosing large enough S or using diminishing ηe ensures convergence to a stationary point.

Corollary 3.1 (Annealed Convergence for Temporal Graph Clustering). Let τe → 0 as e → ∞, and
suppose the temperature decays slowly such that each intermediate loss Lτe(θ, ϕ) is L-smooth and
the gradient variance remains bounded. Then the stochastic updates

(θ(e+1), ϕ(e+1)) = (θe, ϕe)− ηe · ∇̂Lτe(θe, ϕe)

satisfy:
lim
e→∞

E [∥∇Lcat(θ
e, ϕe)∥] = 0,

where Lcat denotes the limiting discrete clustering objective with categorical (one-hot) assignments.
That is, temporal clustering with Gumbel-Softmax and annealed temperature converges to a stationary
point of the discrete temporal clustering loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

10 ALGORITHM

Pseudocode Below we provide a high level pseudocode of our proposed method.

Algorithm 1 Monte-Carlo Cluster Loss with Gumbel–Softmax
Input : Node embeddings Z∈RN×d; centroids C∈RK×d; temperature τ > 0; samples S
Output :Lclu

Function GumbelSoftmax(ℓrow, τ)
// Draw i.i.d Gumbel noise for reparameterized sampling

g ∼ Gumbel(0, 1)K

// Row-wise max for log-sum-exp stability
m← maxj (ℓrow,j + gj)/τ
for k ← 1 to K do

// Unnormalized weight for cluster k

uk ← exp
(

ℓrow,k+gk
τ

−m
)

s←
∑K

j=1 uj

// Normalized assignment vector Qi,:

return
[
u1/s, . . . , uK/s

]
Function CLUSTERLOSSZ,C, τ, S

// Read matrix sizes once
N ← rows(Z);
K ← rows(C)
// Pre-compute distances and logits for all node-centroid pairs
for i← 1 to N do

for k ← 1 to K do
// Distance between node i and centroid k

dik ← ∥zi − ck∥2
// Negative distance as logits for sampling
ℓik ← − dik

// Initialize Monte-Carlo accumulator
Lsum ← 0
// Average over S independent Gumbel-Softmax assignment samples
for s← 1 to S do

// Allocate one sample’s assignment matrix Q ∈ RN×K

Q← 0N×K

// Sample assignments row-wise with temperature τ
for i← 1 to N do

Qi,: ← GumbelSoftmax(ℓi,:, τ)

// One-sample loss: expected distance under Q

L(s) ← 1
N

∑N
i=1

∑K
k=1 Qik dik

// Accumulate for Monte-Carlo average

Lsum ← Lsum + L(s)

// Final Monte-Carlo estimate (variance decreases with S)
Lclu ← Lsum/S
// Return clustering loss
return Lclu

11 EXPERIMENTS

Dataset Statistics We evaluate our method on six temporal graph datasets summarized in Table 3,
which vary widely in size, interaction density, and temporal dynamics.

Discussion Our experiments evaluate clustering performance across six temporal graph datasets using
four standard metrics (ACC, F1, NMI, ARI). As shown in Tables 1 and 2, our method achieves
competitive or state-of-the-art performance, suggesting that joint modeling of temporal dynamics and
cluster structure improves representation learning in evolving graphs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Dataset statistics with temporal characteristics.

Dataset Nodes Interactions Edges Timestamps K Degree Temporal Nature

DBLP 28,085 236,894 162,441 27 10 16.87 Sparse, academic co-authorship
Brain 5,000 1,955,488 1,751,910 12 10 782.00 High-frequency, dense brain signals
Patent 12,214 41,916 41,915 891 6 6.86 Long-range, sparse citation network
School 327 188,508 5,802 7,375 9 1153.0 Short-term, dense social contacts
arXivAI 69,854 699,206 699,198 27 5 20.02 Dynamic academic collaboration
arXivCS 169,343 1,166,243 1,166,237 29 40 13.77 Highly dynamic, non-stationary

On the School dataset, where temporal structure aligns cleanly with cluster assignments, our model
achieves perfect scores (ACC/F1/NMI/ARI = ∼ 1.00), demonstrating its ability to recover ground-
truth clusters under ideal conditions. In more challenging settings with sparse or noisy temporal
signals, such as PATENT and DBLP, our approach outperforms baselines by 3–5% in ACC, highlight-
ing its robustness to incomplete and overlapping event sequences. For datasets with non-stationary
dynamics (ARXIV-AI, BRAIN), our model achieves consistent improvements. These results suggest
that our temporal encoder captures fine-grained behavioural shifts more effectively than existing
methods.

Static baselines (DeepWalk, node2vec, GAE) underperform significantly, reinforcing the necessity
of temporal modeling. While TGC incorporates time through Hawkes processes, its decoupled
representation and clustering stages limit optimization synergy. In contrast, our fully differentiable
framework enables end-to-end learning, aligning temporal representations with clustering objectives.

These findings support our hypothesis that joint optimization of temporal dynamics and cluster
assignments improves stability and accuracy in temporal graph clustering. The consistent gains across
diverse datasets—ranging from cleanly structured (School) to highly dynamic (ARXIV-AI)—suggest
broad applicability to real-world evolving graphs.

12 LLM USAGE

When preparing this manuscript, we utilized a Large Language Model (LLM) to assist with various
aspects of the writing and research process. The LLM was employed for several key tasks:

• Grammar and Language Polishing: The LLM helped improve sentence structure, gram-
mar, and overall readability of the manuscript, ensuring clear and professional academic
writing throughout the paper.

• Formatting Consistency: We used the LLM to check and maintain consistent formatting
across sections, including proper citation formatting, equation numbering, and LaTeX
structure.

• Technical Writing Assistance: The LLM provided support in crafting clear explanations
of technical concepts, improving the clarity of mathematical formulations, and ensuring
consistent terminology throughout the paper.

19

	Introduction
	Temporal Graph Clustering
	Problem Definition
	Joint Representation Learning and Clustering Objective
	Challenges: Gradient Conflicts in Temporal Clustering

	Proposed Method
	Experiments
	Limitations
	Conclusion
	Related Work
	More on Methodology
	Theoretical Proofs
	Algorithm
	Experiments
	LLM Usage

