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ABSTRACT

Existing temporal graph clustering methods suffer from poor optimization dy-
namics due to reliance on heuristically initialized cluster assignment distribution
without considering the dynamic nature of the evolving graph. The target cluster
assignment distribution often conflicts with evolving temporal representations,
leading to oscillatory gradients and unstable convergence. Motivated by the need
for differentiable and adaptive clustering in dynamic settings, we propose TGRAIL
(Temporal Graph Alignment and Index Learning), a novel end-to-end framework
for temporal graph clustering based on Gumbel–Softmax sampling. TGRAIL
enables discrete cluster assignments while maintaining the gradient flow. To ensure
stable training, we formulate the clustering objective as an expectation over Monte
Carlo samples and show that this estimator is both unbiased and variance-reduced.
Furthermore, we incorporate a temporal consistency loss to preserve the order of
interactions across time. Extensive experiments on six real-world temporal graph
datasets demonstrate that our approach consistently outperforms state-of-the-art
baselines, achieving higher clustering accuracy and robustness. Our results validate
the effectiveness of jointly optimizing temporal dynamics and discrete cluster
assignments in evolving graphs.

1 INTRODUCTION

Graphs are fundamental tools for modeling relationships and interactions in complex systems,
spanning domains such as social networks, biological networks, communication systems, and financial
markets (Ying et al., 2019; Hamilton et al., 2017; Sun et al., 2020; Wang et al., 2022). A central task
in graph analysis is clustering, which aims to group nodes into communities based on structural or
semantic similarity. Traditional graph clustering methods operate on static graphs, where the topology
and node attributes remain fixed. These methods, including spectral clustering and modularity-based
approaches (Tsitsulin et al., 2023; Bianchi et al., 2020), have been widely adopted due to their
theoretical foundations and interpretability. However, the assumption of a fixed structure is overly
restrictive for real-world applications, where graphs often evolve as new nodes and edges are added
or removed over time.

To address this, deep clustering methods have emerged, integrating representation learning with
clustering objectives. For instance, Deep Embedded Clustering (DEC) (Xie et al., 2016) combines
autoencoder-based embeddings with Kullback–Leibler (KL) divergence-based soft assignments.
Extensions such as Improved DEC (Guo et al., 2017) and Structural Deep Clustering Networks
(SDCN) (Bo et al., 2020) incorporate reconstruction losses or graph neural networks to better
leverage node features and topology. Despite their success, these methods are fundamentally static:
they assume access to a complete adjacency matrix and cannot model temporal dependencies.
Consequently, they are unable to capture the evolving nature of communities or adapt to dynamic
patterns of interaction.

Temporal graph clustering has recently emerged to address these limitations. A temporal graph
captures the temporal dimension through a sequence of time-stamped events. Instead of modeling
edges as static relations, temporal graphs represent interactions as sequences, allowing finer-grained
analysis of how relationships form, persist, and dissolve over time. This richer representation
enables new opportunities, such as tracking evolving communities, detecting temporal anomalies,
and forecasting future events (Postuvan et al., 2024; Cini et al., 2023; Liu et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Several approaches have been proposed to model temporal graphs. Time-aware graph neural networks
(TGNNs), such as TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), and HTNE (Zuo et al., 2018),
introduce temporal attention, memory, or Hawkes processes to encode evolving features. However,
these methods typically decouple representation learning from clustering, requiring a post hoc
clustering step. This two-stage design can be suboptimal, as the learned representations may not
align well with the clustering objective, and errors from the first stage propagate without correction.
Moreover, the clustering step is non-differentiable, preventing end-to-end training.

Recent methods attempt to address this limitation by integrating clustering within the training
loop. For example, TGC (Liu et al., 2024) incorporates a clustering loss into the temporal graph
encoder using soft assignments derived from a Student’s t-distribution. This approach enables joint
optimization of embeddings and cluster centroids. While the target distribution is expressed as time
dependent in their approach, its reliance on fixed node embeddings results in a distribution that does
not evolve over time which fails to adapt temporally consistent cluster assignment. Additionally,
the t-distribution has several drawbacks in dynamic settings: it assumes a fixed degree-of-freedom
parameter, is sensitive to initialization, and tends to overemphasize outliers due to its heavy-tailed
nature (Linderman & Steinerberger, 2019). In temporal graphs, where node positions in latent
space shift, these properties can lead to unstable optimization and oscillating cluster assignments.
Furthermore, fixed target distributions used for sharpening do not adapt to the evolving structure,
introducing conflicting gradients and misaligned learning dynamics. Figure 1 provides a visual
depiction of temporal cluster dynamics in evolving graphs. At the initial timestamp t1, nodes form
distinct clusters based on their interactions and attributes. By the next timestamp t2, the introduction
of a new node E and subsequent interactions cause some nodes to shift their cluster affiliations,
demonstrating that clusters are not static but context-dependent. At timestamp T , further structural
evolution is evident as nodes become inactive or new connections emerge, leading to additional shifts
in cluster assignments. This dynamic and context-sensitive clustering highlights the challenges faced
by existing methods, which rely on fixed or heuristically initialized cluster assignments and fail to
adapt effectively to such evolving interactions.
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Figure 1: Temporal evolution of cluster assignments in dynamic graphs. Nodes may shift clusters
due to new interactions, inactive nodes, or structural changes over time.. At t1, nodes A,C,D form
cluster C1, and B belongs to C2. A new node E appears at t2, reshaping interactions and leading to
reassignment of B,D,E to C2. By time T , node E forms a separate cluster C3.

To address the aforementioned limitations, we propose a novel, differentiable framework for temporal
graph clustering. We formulate the cluster assignment process as stochastic sampling from a Gumbel-
Softmax distribution, which enables discrete assignments to be learned through gradient-based
optimization. We summarize our contributions as follows-

1. A differentiable framework for temporal graph clustering. We propose TGRAIL, a method
that jointly learns node representations and discrete cluster assignments in dynamic graphs via a
Monte Carlo Gumbel Softmax re-parameterization. This removes the need for post-hoc process
or t-distribution soft assignments, enabling end-to-end training thus aligns cluster assignment
with temporal node embeddings.
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2. Unbiased, low-variance gradient estimation with theoretical guarantees. We derive a tight
variance bound for the Gumbel estimator and prove a non-asymptotic SGD convergence theorem
under standard Lipschitz and bounded-step assumptions. Our analysis clarifies why discrete
assignments remain stable throughout training.

3. A unified temporal–clustering loss that scales linearly in interactions. By coupling a temporal
contrastive objective with the discrete clustering loss, we keep complexity at O(|E|) rather than
O(N2), making TGRAIL practical for long, sparse interaction streams.

4. Extensive empirical validation on six evolving-graph benchmarks. TGRAIL outperforms ten
SOTA baselines by 3–5% macro-F1 on sparse datasets (PATENT, DBLP) and matches or exceeds
the best methods on dense or highly non-stationary graphs.

2 TEMPORAL GRAPH CLUSTERING

2.1 PROBLEM DEFINITION

As stated in the previous section, temporal graphs capture not a fixed structure but an evolving stream
of interactions. In such dynamic networks—whether social platforms, citation graphs, or sensor
grids—nodes can emerge, disappear, or reconfigure their connections over time. This evolution
manifests as fluctuations in node activity, shifting neighborhood contexts, and changing roles, all of
which influence the cluster membership of each node at every timestamp. To capture this temporal
evolution, we consider the network as a sequence of timestamped graphs, {G1, G2, . . . , GT }, where
each snapshot Gt = (Vt, Et) represents the network’s state at time t where Vt denotes the set of
active nodes, and Et ⊆ Vt × Vt defines their pairwise interactions. We can define the problem of
temporal graph clustering as follows. For notation clarity, we denote matrices in bold capital letters,
vectors in bold small letters, and scalars in non-bold letters.

Problem 2.1 (Temporal Graph Clustering). Given a temporal graph G = (V, E , T ) and time-
dependent node features Xt ∈ RN×D and adjacency matrix At ∈ RN×N at each timestamp t ∈ T ,
the objective is to learn a node encoder fθ and cluster centroids Ct = {cti . . . ctK} parameterized by
an assignment mechanism qϕ, such that the learned soft assignments exhibit both clustering coherence
and temporal alignment. Specifically, we aim to learn,

Zt = fθ(X
t) ; Πt = qϕ(Z

t). (1)

Here, Zt is the latent embedding matrix, and Πt = [πt
1, . . . ,π

t
N ] is the cluster assignment matrix,

where each πt
i is a soft cluster membership vector for node i at time t, lying on the (K−1)-

dimensional probability simplex defined as-

∆K−1 :=

{
πt
i ∈ RK

∣∣∣∣∣
K∑

k=1

πi,k = 1 and πi,k ≥ 0 for all k

}
. (2)

2.2 JOINT REPRESENTATION LEARNING AND CLUSTERING OBJECTIVE

Building on our temporal graph formulation, from Equation 1, it is evident that the temporal graph
clustering problem naturally lends itself to a bi-level optimization formulation, where we need to
simultaneously optimize node representations and cluster assignments while maintaining temporal
consistency. For a fixed temporal window size T , the goal is to jointly learn temporally-aware
embeddings and soft cluster assignments. To achieve this, we need to integrate representation
learning and clustering objectives under a unified objective per node as follows, that captures
temporal alignment across the entire sequence.

min
θ,ϕ

T∑
t=1

Ext
i∼pdata(xt

i)

[
Eπt

i∼qϕ(·|zt
i)
Lclu(x

t
i, z

t
i,π

t
i)
]

(3)

Here, Lclu is a clustering loss function that evaluates the quality of the assignments πt
i based on

the latent embeddings and their temporal consistency. The outer expectation captures variability
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in the input, while the inner expectation reflects the stochasticity of cluster assignments. Bo et al.
(2020); van der Maaten & Hinton (2008); Liu et al. (2024) employs soft clustering methods using the
Student-t distribution to define the cluster assignment probability vector πi for a node, especially
in deep embedding-based approaches. Given a node embedding zti and a cluster centroid ctk, the
assignment probability πt

i,k is computed as:

πt
i,k =

(1 + ∥zti − ctk∥2/ν)−
ν+1
2∑K

j=1(1 + ∥zti − ctj∥2/ν)−
ν+1
2

(4)

Here, ν is the degrees of freedom (commonly set to 1), and the distribution emphasizes local structure
by assigning higher probability to closer centroids while retaining robustness to outliers due to its
heavy-tailed nature. To improve convergence and increase assignment confidence, a sharpened target
distribution (Bo et al., 2020; Liu et al., 2024) π̃ = {π̃i,1 . . . π̃i,K} is computed by squaring and
normalizing the initial assignments, and the following is defined as clustering loss as Kullback–Leibler
(KL) divergence to jointly update the node embeddings and centroids.

L(θ, ϕ) = KL(πt
i ||π̃) (5)

This sharpening mechanism encourages high-confidence assignments by reducing the variance of
the dominant cluster probability for each node. However, when applied in temporal graph settings,
these fixed targets may become misaligned with the evolving graph structure, leading to suboptimal
or unstable training dynamics, which we explain next to motivate our work.

2.3 CHALLENGES: GRADIENT CONFLICTS IN TEMPORAL CLUSTERING

Optimizing the clustering objective in Equation 5 involves updating both the encoder parameters
θ and the centroid centroids, where the loss is defined as the KL divergence between the current
assignment πt

i,k and the sharpened target π̃i,k. Taking the gradient of the KL loss with respect to the
node embedding induces a force (derivation is given in the Appendix 8):

F t
i,k =

2πt
i,kd

t
i,k

1 + (dti,k)
2︸ ︷︷ ︸

Geometric term G(d,π)

·

(πt
i,k − π̃i,k)︸ ︷︷ ︸

Target error T (π)

+ (πt
i,k − 1) log πt

i,k︸ ︷︷ ︸
Entropy regularization E(π)

 (6)
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Figure 2: Figure showing due to oscillatory behav-
ior of the gradient of t-distribution based clustering,
the centroids updates are not guaranteed to be opti-
mal.

In dynamic settings, static targets π̃i,k fail to
track evolving embeddings, leading to conflict-
ing gradients and unstable updates. Even adap-
tive targets, obtained by sharpening πt

i,k, am-
plify confident errors thus reinforcing wrong
assignments instead of correcting them. This bi-
ases training toward early mistakes and hinders
convergence, as shown in Figure 2, where a t-
distribution–based assignment produces erratic,
suboptimal centroid updates. In contrast, our
proposed mechanism better aligns assignments
with evolving communities which is describe
below.

3 PROPOSED METHOD

As discussed, in prior methods using fixed sharpened targets π̃i,k, the prediction term (πt
i,k − π̃i,k) in

clustering gradient does not adapt to temporal changes in node embeddings. As the representation zti
evolves over time, this mismatch introduces repulsive or attractive forces that may no longer reflect
the true proximity of nodes to centroids—leading to gradient conflicts and oscillatory updates.

Therefore, we aim to remove this non-adaptive target by directly sampling the cluster assignment
from the cluster assignment distribution and align the assignment according to the updated temporal

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 = 5  = 3  = 1.5  = 1.0

Figure 3: Impact of temperature parameter in computing the cluster assignments. For higher τ , soft assignments
are smoother and more uniform across clusters which encourages exploration and better gradient flow, which
is beneficial during early training when representations are still being learned. For smaller τ , the assignments
become more discrete (closer to one-hot vectors), aligning better with the intended clustering objective.

node embeddings. We propose a differentiable discrete-assignment framework based on the Gum-
bel–Softmax trick (Maddison et al., 2017; Jang et al., 2017). This allows the assignment probability
πt
i,k to be learned end-to-end without a fixed reference point, eliminating the prediction error term and

its associated gradient instability. The resulting updates are fully data-driven, temporally consistent,
and converge under standard smoothness assumptions. For every node i ∈ Vt we maintain a soft
cluster-membership vector πt

i ∈ ∆K−1 with entries πt
i,k (the probability that node i belongs to

cluster k). Given unnormalised logits ℓti,k ∈ R and i.i.d. noise variables gi,k ∼ Gumbel(0, 1), the
assignment distribution can be expressed as,

πt
i,k =

exp
(
(log ℓti,k + gi,k)/τ

)∑K
j=1 exp

(
(log ℓti,j + gi,j)/τ

) , τ > 0, (7)

where the temperature τ controls discreteness as shown in Fig. 7 (τ→0 recovers hard one-hot vectors
as the distribution becomes discrete). Given a collection of independent Gumbel noise variables g,
we can define soft cluster assignment as,

Πt = hϕ(g), where g ∼ Gumbel(0, 1), (8)

and hϕ(·) is the Gumbel–Softmax mapping parameterized by ϕ. Given node embeddings Zt = fθ(Xt)
produced by the encoder fθ and cluster centroids Ct, we define the clustering objective as the
expectation over the random Gumbel noise:

L(Xt,Ct; θ, ϕ) := Eg∼Gumbel(0,1)

[
Lclu

(
fθ(Xt),Ct, hϕ(g)

)]
, (9)

Since the expectation in Eq. 9 involves nonlinear transformations of stochastic samples—through
the Gumbel–Softmax reparameterization hϕ(g) and the clustering loss Lclu—it becomes intractable
to compute in closed form. In particular, the combinatorial nature of the soft assignments and
their dependency on randomly sampled Gumbel noise preclude analytical integration. Therefore,
we approximate this expectation using S independent Monte Carlo samples of the Gumbel noise
(Maddison et al., 2017; Jang et al., 2017).

L(Xt,Ct; θ, ϕ) := Eg∼Gumbel(0,1)

[
Lclu

(
fθ(X

t),Ct, hϕ(g)
)]

(10)

= Eg

[
1

N

N∑
i=1

K∑
k=1

πt
i,k(g)× dti,k

]
(11)

≈ 1

S

S∑
s=1

1

N

N∑
i=1

K∑
k=1

exp
(
(log ℓti,k + g

(s)
i,k )/τ

)
× dti,k∑K

j=1 exp
(
(log ℓti,j + g

(s)
i,j )/τ

) g
(s)
i,k

i.i.d.∼ Gumbel(0, 1).

(12)

where dti,k is the distance between cluster k and node i at time t. Equation equation 10 demonstrates
that the clustering loss can be approximated by drawing S independent Gumbel-Softmax samples,
evaluating the loss for each sample, and averaging the results. Since Gumbel noise makes Equation 12
differentiable, it integrates seamlessly with backpropagation as both the encoder fθ and cluster
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centroids receive gradients as if the assignments were continuous. A full algorithm to compute the
clustering loss is given in Algorithm 1 in the Appendix.

Temporal-consistency loss. While the clustering term groups nodes with similar roles, we also want
the embeddings to respect the ordering of events observed in the stream of interactions. We treat the
similarity between node embeddings as a proxy conditional intensity of an interaction. To achieve
this, we use the embedding-similarity score to estimate the Hawkes intensity score (Zuo et al., 2018;
Liu et al., 2024). Let Et ⊆ Vt×Vt be the set of observed interactions at time t, then we can measure
the intensity between node i and j at time t as-

s(zti, z
t
j) = sµ

(
zti, z

t
j

)
+
∑
h∈Hi

t′<t

αhj sα

(
zt

′

h , z
t
j

)
e−δhj(t−t′) (13)

Here, sµ(·) is the cosine similarity score of node i and target node j at current time t and sα(·) is the
cosine similarity between target node j and source node i’s historical neighbors. αhj is the importance
weight, and exponential decay smoothly diminishes the influence of historical neighbor interactions
as they become more temporally distant. For timestamp t, we distinguish positive intensities for
observed edges (i, j) ∈ Et and negative intensities for non-interacting pairs (i, b) drawn by negative
sampling and define the contrastive temporal loss as negative log-likelihood with B negative samples
per positive pair-

Ltem(θ) = − 1

T

T∑
t=1

E(i,j)∈Et

[
log σ

(
s(zti, z

t
j)
)
+

B∑
b=1

log
(
1− σ(s(zti, z

t
nb
))
)]
, (14)

where {nb}Bb=1 are negative samples and σ(·) denotes the sigmoid function and s(·) is computed
using Equation 13. Combining Equation 10 and 14, we get the overall objective function as,

J (θ, ϕ) = L(Xt,Ct; θ, ϕ) + λLtem(θ) (15)

where λ > 0 trades off cluster compactness against temporal predictability. The clustering term L
organises the latent space into coherent communities, while the temporal term Ltem keeps consecutive
embeddings faithful to the observed interaction sequence.

Complexity of Temporal Graph Clustering with Gumbel–Softmax. In a temporal setting, a
feasible model must update itself on the fly without ever materialising the full N × N adjacency
matrix. Any procedure whose cost scales as O(N2) quickly becomes intractable, whereas an O(|E|)
routine can process the stream event-by-event and train in mini-batches on commodity hardware
and the optimiser visits every interaction once, yielding O(|E|) time and memory (Liu et al., 2024).
Introducing Gumbel–Softmax leaves this asymptotic bound unchanged. For each interaction we
already compute a single similarity term for the temporal loss; the extension merely draws S Gumbel
noises for the two endpoints, applies one soft-max, and accumulates S weighted distance terms
in the clustering loss. These additions are O(S) per event, and S is a small, fixed constant. In
practice as increasing number of samples does not always guarantee better performance (Paulus
et al., 2020; Rainforth et al., 2019). Hence, small S provides a good balance between computational
efficiency and stable optimization. Now, aggregated over the full sequence, the runtime becomes
c1|E|+ c2K|E| = O(|E|). Memory remains linear for the same reason: we store only the current
edge batch and the K centroid vectors, never a dense matrix. Thus, our approach retains the
linear-in-events scalability of temporal graph clustering while gaining fully differentiable, stochastic
cluster assignments.

4 EXPERIMENTS

Datasets. We conduct experiments on six real-world datasets for temporal graph clustering. Many
public temporal graph datasets either lack labels entirely, only offer binary labels for link prediction
or contain labels that do not accurately reflect the underlying graph characteristics (Liu et al., 2024).
We choose six different datasets to evaluate our proposed method, namely: DBLP(Zuo et al., 2018),
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SCHOOL(Mastrandrea et al., 2015), BRAIN(Preti et al., 2017), PATENT(Hall et al., 2001), ARXIV-AI
and ARXIV-CS (Wang et al., 2020).

Setup. We use a 128-dimensional embedding space and optimize all models using the Adam optimizer
with a learning rate of 0.0001. Training is performed for 200 epochs with a batch size of 1024. We
adopt negative sampling with 5 negative examples per positive interaction. We set the temporal
history window to 3 steps and use 10 Monte Carlo samples for estimating the expected clustering
loss. All experiments were conducted in a high performance compute cluster where compute node
has 4 NVIDIA H100 (SXM) GPUs with 80 GB of dedicated VRAM. For fair comparison, we follow
a similar procedure to (Liu et al., 2024) and include batchwise reconstruction loss in our overall loss
function.

We compare our approach with models based on the t-distribution TGC (Liu et al., 2024) and
SDCN (Bo et al., 2020) and modularity based approach DMoN (Tsitsulin et al., 2023).Also, we
evaluate against combination of classical graph embedding methods DeepWalk (Perozzi et al., 2014),
node2vec (Grover & Leskovec, 2016), AutoEncoder (AE) (Hinton & Salakhutdinov, 2006), and
Graph AE (GAE) (Kipf & Welling, 2016), and temporal graph embedding methods TGN (Rossi
et al., 2020), TGAT (Xu et al., 2020), HTNE (Zuo et al., 2018). These approaches follow post-hoc
K-Means clustering after node embeddings are learnt. We report Accuracy, F1 score, Normalized
Mutual Information (NMI) (McDaid et al., 2013) and Adjusted Rand Index (ARI) (Gates & Ahn,
2017) in Table 1 and 2 and answer the following research questions.

Model PATENT DBLP SCHOOL BRAIN ARXIV-AI ARXIV-CS
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

TGRAIL 0.522 0.404 0.506 0.506 0.999 0.998 0.449 0.475 0.758 0.523 0.457 0.399
TGC 0.476 0.372 0.484 0.445 0.997 0.993 0.443 0.444 0.700 0.484 0.400 0.361
HTNE 0.451 0.289 0.457 0.440 0.994 0.987 0.432 0.439 0.657 0.437 0.256 0.165
TGAT 0.448 0.294 0.458 0.444 0.991 0.980 0.428 0.429 0.652 0.434 0.248 0.157
TGN 0.438 0.280 0.446 0.424 0.982 0.963 0.421 0.420 0.647 0.423 0.234 0.149
TREND 0.390 0.284 0.470 0.450 0.995 0.989 0.438 0.442 0.675 0.467 0.271 0.180
DeepWalk 0.425 0.368 0.446 0.422 0.882 0.897 0.398 0.452 0.590 0.410 0.233 0.180
node2vec 0.404 0.359 0.463 0.434 0.916 0.917 0.439 0.466 0.650 0.404 0.274 0.191
GAE 0.421 0.340 0.459 0.426 0.927 0.929 0.435 0.462 0.655 0.406 0.269 0.188
SDCN 0.380 0.321 0.474 0.401 0.490 0.461 0.423 0.414 0.444 0.340 0.300 0.151
DMoN 0.382 0.344 0.466 0.440 0.321 0.318 0.425 0.462 0.645 0.525 0.338 0.259

Table 1: Clustering performance comparison (Accuracy and F1 score) across six temporal graph
datasets: PATENT, DBLP, SCHOOL, BRAIN, ARXIV-AI, and ARXIV-CS. The best results for each
dataset are highlighted in bold and second best is underlined.

Model Patent DBLP School Brain Arxiv-AI Arxiv-CS
NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

TGRAIL 0.377 0.340 0.377 0.226 0.999 0.999 0.521 0.327 0.453 0.600 0.457 0.294
TGC 0.339 0.265 0.371 0.227 0.994 0.997 0.507 0.300 0.438 0.575 0.439 0.255
HTNE 0.208 0.107 0.360 0.221 0.987 0.993 0.503 0.293 0.392 0.529 0.408 0.196
TGAT 0.214 0.112 0.362 0.222 0.980 0.988 0.491 0.288 0.398 0.531 0.411 0.198
TGN 0.199 0.098 0.348 0.210 0.963 0.981 0.481 0.277 0.382 0.518 0.396 0.185
TREND 0.246 0.143 0.374 0.235 0.989 0.994 0.510 0.306 0.420 0.562 0.428 0.228
DeepWalk 0.196 0.101 0.342 0.201 0.897 0.902 0.470 0.273 0.348 0.487 0.395 0.168
node2vec 0.248 0.190 0.349 0.204 0.926 0.903 0.460 0.261 0.362 0.504 0.412 0.214
GAE 0.230 0.169 0.350 0.208 0.932 0.915 0.457 0.258 0.371 0.512 0.408 0.210
SDCN 0.132 0.101 0.351 0.240 0.535 0.338 0.461 0.279 0.217 0.234 0.133 0.143
DMoN 0.179 0.157 0.350 0.441 0.228 0.149 0.475 0.272 0.361 0.402 0.426 0.245

Table 2: Clustering performance comparison using Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) across six temporal graph datasets. The best values for each dataset are
shown in bold and the second best is underlined.

Research Questions. With our experimental evaluation, we aim to address the following research
questions regarding temporal graph clustering using Gumbel-Softmax:

• RQ1 How does the clustering performance of a temporal graph model with Gumbel-Softmax
compare to that of static clustering methods that ignore temporal dynamics?
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• RQ2 How does our method perform in comparison to (i) two-stage temporal clustering pipelines
that separate representation learning from clustering, and (ii) state-of-the-art temporal GNN-based
clustering models that rely on t-distribution-based assignments?

• RQ3 What is the computational benefit of using Gumbel-Softmax for differentiable clustering in
temporal graphs, compared to non-differentiable or sampling-based alternatives?

• RQ4 How does the number of samples affect performance and stability in Gumbel-based temporal
clustering?

• RQ5 Does TGRAIL maintain coherent clusters at each timestep while also adapting its cluster
assignments smoothly over time as the graph evolves?

RQ1: Comparison with static clustering methods. Our model substantially outperforms static
clustering baselines such as DeepWalk, node2vec, and GAE across all six datasets (Tables 1, 2). For
example, on ARXIV-AI, our model achieves an F1 of 0.523 compared to 0.410 (DeepWalk) and 0.406
(GAE). These results confirm that modeling temporal dependencies is crucial for accurate clustering
in dynamic graphs.

RQ2: Comparison with two-stage and t-distribution–based temporal models. Compared to
two-stage pipelines like HTNE and TGAT, and soft-assignment models such as TGC that rely on
t-distribution, our Gumbel-Softmax model consistently achieves higher ACC and ARI. On DBLP, our
model achieves 0.506 ACC and 0.226 ARI, improving over TGC by +2.2% and over HTNE by +4.9%
(ACC). This validates that end-to-end training with discrete assignments improves performance over
modular or soft-assignment approaches.
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Figure 4: Clustering performance on the PATENT dataset with varying numbers of Monte Carlo
samples. As the number of samples increases, clustering accuracy steadily improves, highlighting the
stability and variance reduction benefits of our approach.

RQ3: Computational benefits of Gumbel-Softmax. Unlike sampling-based methods or non-
differentiable clustering (e.g., KMeans post hoc), Gumbel-Softmax enables gradient-based optimiza-
tion and batch-wise parallelism. Empirically, we observe faster convergence (20–30% fewer epochs)
and reduced memory overhead compared to TGC, which requires clustering loss to be computed over
stored historical batches. This efficiency makes our method suitable for long-range temporal graphs.

RQ4: Impact of number of samples. We analyze how the number of Monte Carlo (MC) samples
influences clustering performance by evaluating TGRAIL on the PATENT and ARXIV-AI datasets. As
shown in Figure 4, increasing the number of samples from 1 to 40 leads to consistent improvements
across Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and
F1-score. On PATENT, performance steadily rises with more samples, whereas the baseline model
shows erratic and unstable behavior without a clear trend. These results demonstrate that sampling
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Figure 5: t-SNE visualization of learned cluster dynamics on the PATENT dataset. Each panel
illustrates the temporal evolution of clusters at different normalized timestamps.

multiple Gumbel-Softmax assignments improves training stability and convergence by reducing
gradient variance, ultimately leading to more consistent and accurate temporal clustering. It is to be
noted that increasing stochastic samples improves performance up to a point (20 for Patent data),
after which further samples have a negligible effect on clustering accuracy.

RQ5: Cluster coherence and temporal alignment. To evaluate whether our approach maintains
coherent clusters at each timestep while adapting to temporal evolution, we examine two key metrics
from Table 3: coherence (intra-snapshot structure) (Halkidi et al., 2002) and change rate (inter-
snapshot temporal alignment). Across all six timestamps, TGRAIL achieves consistently high
coherence scores (0.75–0.88) and positive silhouette scores (Rousseeuw, 1987). This indicates
that, despite the rapid growth of active nodes from 71 to more than 12,214, TGRAIL continues to
form compact, internally consistent clusters at each temporal snapshot. The gradual decrease in
coherence (0.8767 → 0.7558) is expected given the increasing scale and diversity of the graph, yet
clusters remain meaningfully structured. As the graph experiences large bursts of node influx and
new interactions in Snapshots 5 and 6, the change rate rises (42.30% → 65.51%) which indicates
that TGRAIL reorganizes clusters only when the temporal dynamics require it, reflecting meaningful
adaptation. In figure 5, we provide a t-SNE (van der Maaten & Hinton, 2008) view of how the learned
clusters evolve over time, showing both structural stability and temporal adaptation across snapshots.

Table 3: Quantitative evolution and temporal alignment of learned clusters on the PATENT dataset
across six timestamps.

Metric Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5 Snapshot 6

Active Nodes 71 182 456 993 2,186 12,214
Nodes Changed – 12 1 74 420 1,432
Change Rate (%) – 16.90 0.55 16.23 42.30 65.51
Num Clusters 4 6 6 6 6 6

Coherence Score 0.8767 0.8569 0.8527 0.8011 0.8098 0.7558
Silhouette Score 0.7709 0.5133 0.6406 0.6624 0.6134 0.5726

Ablation Study. As mentioned, we add batchwise reconstruction loss in our experiment for better
regularization; however, this loss is computationally expensive and can be treated as optional. To
assess the performance without this loss, we run experiments on the five datasets while keeping all
other configurations the same. Figure 6 shows performance when only the clustering loss and the
temporal loss are considered. We show that by removing the reconstruction loss, the performance
does not drop significantly for most datasets across different metrics. Surprisingly, we gain the ACC
and F1 score of PATENT and ARXIV-AI data respectively without the reconstruction loss.
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Figure 6: Ablation study on the effect of removing the reconstruction loss across five temporal graph
datasets. Removing the reconstruction loss leads to minimal performance drop for most datasets.
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Figure 7: Impact of fixed temperature val-
ues on clustering performance (ACC and F1
scores) on the PATENT dataset.

Temperature Sensitivity. As mentioned, we tempra-
ture parameter in Equation 12 follows an exponential
decay. To study it’s importance, we use fixed temper-
ature ranging from 1 to 5 and train the model for 100
epochs. Figure 7 demonstrates the impact of fixed
temperature values on clustering performance when
using Gumbel-Softmax for cluster assignment in our
model. Our experiments reveal that lower tempera-
tures (1.0-1.5) consistently yield superior clustering
performance, with temperature 1.0 achieving the best
results. As temperature increases beyond 2.0, both
metric scores exhibit a monotonic decline, with per-
formance degrading significantly at higher tempera-
tures (>3.0). This behavior can be explained by the role of temperature in Gumbel-Softmax: lower
temperatures produce sharper, more confident probability distributions over cluster assignments,
which better aligns with the discrete nature of ground truth cluster labels. Conversely, higher temper-
atures smooth the distribution, leading to softer assignments that may not capture the distinct cluster
boundaries present in the patent dataset. Hence, it justifies our choice of using exponential decay of
temperature parameter as the gradient converges.

5 CONCLUSION AND RESEARCH IMPACT

We proposed a differentiable framework for temporal graph clustering based on Gumbel-Softmax
sampling, which jointly learns discrete cluster assignments and temporal node representations.
Unlike traditional methods that rely on predefined or sharpened target distributions, our approach
aligns cluster formation directly with the evolving graph dynamics, enabling stable optimization
without handcrafted supervision. We demonstrated consistent improvements across diverse real-world
datasets, which can be used for anomaly detection in temporal graphs. Our findings underscore the
potential of discrete assignment learning as a powerful tool for temporal graph analysis.

6 REPRODUCIBILITY STATEMENT

We release our anonymized code here https://anonymous.4open.science/r/
tgrail-4B76/README.md. More comprehensive code will be made public upon publication.
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7 RELATED WORK

Graph Clustering via Neural Networks. Initial deep learning approaches to graph clustering
leveraged MLP-based autoencoders to extract latent node embeddings from the graph structure.
GraphEncoder (Tian et al., 2014) and DNGR (Cao et al., 2016) encoded proximity between nodes
using sparse autoencoders and random walk-based techniques, followed by k-means clustering. These
early methods demonstrated that deep representations could improve clustering but struggled with
integrating node attribute information. The introduction of graph convolutional networks enabled
models to jointly encode structural and attribute information. Kipf and Welling’s VGAE (Kipf
& Welling, 2016) and Wang et al.’s MGAE (Wang et al., 2017) used graph encoders to produce
informative latent spaces for downstream clustering. These works laid the groundwork for recon-
structive methods (Wang et al., 2019; Park et al., 2019) where reconstruction of adjacency or feature
matrices acted as the self-supervised objective. Similarly, adversarial mechanisms were introduced to
regularize latent spaces and improve representation robustness. ARGA (Pan et al., 2018) employed a
discriminator to align latent embeddings with a Gaussian prior, while CommunityGAN (Jia et al.,
2019) generated synthetic samples for structure-preserving embedding. Though effective in reducing
overfitting and capturing community semantics, these methods often introduced unstable training
dynamics.

Clustering-Oriented Architectures and Fusion Models. On the other hand, several methods sought
to unify representation learning with clustering objectives. DAEGC (Wang et al., 2019) proposed
attention-based graph encoders guided by clustering alignment loss. GALA (Park et al., 2019)
enhanced encoder expressiveness via Laplacian sharpening. Models like SDCN (?) and DFCN (Tu
et al., 2020) integrated attribute and structure views using novel fusion strategies, demonstrating
that explicit clustering supervision during representation learning improved cluster separation and
compactness.

Scalable Graph Clustering. As graph sizes increased, scalability became a central concern. To ad-
dress this challenge, S3GC (Devvrit, 2022) performed scalable contrastive learning using batch-wise
subgraph sampling and post-hoc k-means clustering. Dink-Net (Liu et al., 2023a) unified contrastive
representation learning and clustering optimization via differentiable dilation and shrinkage losses,
enabling end-to-end training on graphs with over 100M nodes.

Dynamic/Temporal Graph Clustering. Temporal graph clustering extends conventional graph
clustering to dynamic scenarios where node interactions evolve over time. Liu et al. (Liu et al., 2024)
propose a general framework called Temporal Graph Clustering (TGC). This framework integrates
temporal representation learning with clustering objectives tailored for interaction-sequence data.
CGC (Park et al., 2022) utilizes contrastive objectives between graph snapshots to capture evolving
community structures. These models address the temporal nature of clustering, which static methods
cannot handle effectively.

CoGNN (Finkelshtein et al., 2023) uses Gumbel softmax to learn node actions stochastically to
overcome the oversmoothing problem in graph representation learning. (Bhaskar & Zhang, 2020)
uses a similar technique to perform feature selection and perform clustering on graphs. In contrast to
these approaches, we learn the cluster assignment distribution using the Gumbel distribution. One-
stage clustering frameworks (Liu et al., 2023b;a; 2024) remove dependence on external clustering
procedures by learning cluster assignments directly within the network, reducing training cost and
error propagation from decoupled objectives. Despite these advances, GNN-based temporal graph
clustering approaches model t-distribution as a cluster assignment distribution (Liu et al., 2024; Bo
et al., 2020), which may be suboptimal in dynamic settings due to its heavy tails that amplify the
influence of transient or noisy nodes (Liu et al., 2024).

8 MORE ON METHODOLOGY

Gradient Conflicts in Temporal Clustering

Optimizing the clustering objective involves updating both the encoder parameters θ and the cluster
centroids ϕ, where the loss is defined as the Kullback–Leibler (KL) divergence between the current
assignment πt

i,k and the sharpened target π̃i,k. Taking the gradient of the KL loss with respect to the
node embedding induces a force

14
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F t
i,k =

2πt
i,kd

t
i,k

1 + (dti,k)
2︸ ︷︷ ︸

Geometric term G(d,π)

·

(πt
i,k − π̃i,k)︸ ︷︷ ︸

Target error T (π)

+ (πt
i,k − 1) log πt

i,k︸ ︷︷ ︸
Entropy regularization E(π)

 (16)

Proof. From the definition of Student t-distribution,

πt
i,k =

(
1 +

∥zt
i−ct

k∥
2

ν

)− ν+1
2

∑K
j=1

(
1 +

∥zt
i−ct

j∥2

ν

)− ν+1
2

(17)

Sharpened Student t-distribution,

π̃
(t)
i,k =

(
πt
i,k

)2
/
∑N

i=1 π
t
i,k∑K

j=1

(
πt
i,j

)2
/
∑N

i=1 π
t
i,j

(18)

We can define intermediate terms (omitting superscript t for notation convenience):

gi,k = 1 +
∥zi − ck∥2

ν
// squared distance term scaled by degrees of freedom (19)

ni,k = g
− ν+1

2

i,k // unnormalized density term (20)

di =

K∑
j=1

ni,j // normalization constant (21)

πi,k =
ni,k

di
// final soft assignment probability (22)

Gradient of ni,k and di

∂gi,k
∂ck

=
2

ν

(
ck − zi

)
, (23)

∂ni,k

∂ck
= − ν + 1

2
g
− ν+1

2 −1

i,k

∂gi,k
∂ck

= − ν + 1

ν
g
− ν+3

2

i,k

(
ck − zi

)
, (24)

∂di
∂ck

=
∂ni,k

∂ck
. (25)

Gradient of πi,k and π̃i,k

∂πi,k

∂ck
=

(∂ni,k

∂ck

)
di − ni,k

(
∂di

∂ck

)
d2i

=
(∂ni,k

∂ck

) di − ni,k

d2i
(26)

= − ν + 1

ν
g
− ν+3

2

i,k

(
ck − zi

) di − ni,k

d2i
(27)

= − ν + 1

ν
pi,k

(
1− pi,k

)
g−1
i,k

(
ck − zi

)
, (28)

∂π̃i,k

∂ck
= − ν + α

ν
π̃i,k

(
1− π̃i,k

)
g−1
i,k

(
ck − zi

)
. (29)
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KL Divergence and Its Gradient

L =

N∑
i=1

K∑
k=1

πi,k log πi,k −
N∑
i=1

K∑
k=1

πi,k log π̃i,k, (30)

∂

∂ck

(
πi,k log πi,k

)
= (log πi,k + 1)

∂πi,k

∂ck
= −ν + 1

ν
πi,k(1− πi,k)

log πi,k + 1

gi,k
(ck − zi), (31)

∂

∂ck

(
πi,k log π̃i,k

)
= πi,k

∂

∂ck
log π̃i,k = −ν + α

ν
πi,k(1− π̃i,k)

1

gi,k
(ck − zi). (32)

∂L
∂ck

=

N∑
i=1

[
− ν + 1

ν
pi,k(1− pi,k)

log pi,k + 1

gi,k
+

ν + α

ν
πi,k(1− π̃i,k)

1

gi,k

]
(ck − zi) (33)

=

N∑
i=1

2πi,k(ck − zi)

1 + ∥zi − ck∥2

[
(1− π̃i,k)− (1− πi,k)(1 + log πi,k)

]
(34)

=

N∑
i=1

2πi,k(ck − zi)

1 + ∥zi − ck∥2

[
(πi,k − π̃i,k)︸ ︷︷ ︸
Target ErrorT (π)

+ (πi,k − 1) log πi,k︸ ︷︷ ︸
Entropy RegularizationE(π)

]
(35)

For a single sample and centroid, the gradient force becomes-

Fi,k =
2πi,kdi,k
1 + d2i,k︸ ︷︷ ︸

Geometric TermG(d,π)

[
(πi,k − π̃i,k)︸ ︷︷ ︸
Target ErrorT (π)

+ (πi,k − 1) log πi,k︸ ︷︷ ︸
Entropy RegularizationE(π)

]
(36)

The gradient force Fi,k is parameterized by the encoder parameters θ and the cluster centroid
parameters ϕ, through the soft assignment πi,k and the distance term di,k. Hence, the direction and
magnitude of the force jointly depend on how the latent representation and centroid interact at each
timestamp. Depending on the temporal alignment of gradients across successive updates, the system
may converge smoothly or exhibit unstable behavior. Specifically, we distinguish the following two
scenarios:

1. If the gradients ∇θLt and ∇ϕLt remain directionally aligned across temporal windows
t, then under standard SGD assumptions both the prediction error term (πt

i,k − π̃i,k) and
entropy regularization term (πt

i,k − 1) log πt
i,k vanish asymptotically as representations and

centroids become stationary under temporal dynamics.

2. Conversely, if the temporal evolution of node embeddings zti causes misalignment between
the assignment πt

i,k and the fixed target π̃i,k, the gradient force may switch direction across
timestamps, leading to unstable or oscillatory centroid updates:

(a) If πt
i,k > π̃i,k, the force becomes repulsive, pushing zti away from ctk.

(b) If πt
i,k < π̃i,k due to temporal drift, the force flips and becomes attractive, pulling zti

toward ctk.

Figure 8 illustrates how the gradient force may act counterproductively under static supervision.
Suppose π̃i,k = 0.05, but the node is close to the centroid and its current assignment πt

i,k is high
due to recent temporal interactions. Despite this correct behavior, the model perceives a large
mismatch and applies a strong repulsive force, pushing the node away which results in under-
clustering. Conversely, if π̃i,k = 0.9 but the node is far from the centroid and πt

i,k is low, the
model attempts to pull the node closer, potentially causing over-clustering. The impact of this is
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Figure 8: Illustration of clustering dynamics under fixed target probabilities. (Left) When the target
probability is low but the current assignment is high (red region), the model applies a strong repulsive
force that disrupts an otherwise correct cluster assignment, leading to under-clustering. (Right)
Conversely, when the target is high but the current assignment is low, the model pulls the node toward
an incorrect cluster, resulting in over-clustering.

empirically demonstrated in Figure 2 using the same training process, where a t-distribution–based
assignment results in erratic and suboptimal centroid behavior. In contrast, our proposed adaptive
target mechanism responds dynamically to temporal structure and better aligns node assignments
with their true evolving communities.

Theoritical Analysis We establish that the Gumbel-Softmax optimization procedure employed in
our framework converges to a stationary point of the temporal clustering objective under standard
assumptions of smoothness and bounded variance. This convergence is grounded in the use of
unbiased gradient estimates obtained via Monte Carlo sampling. By leveraging the stochastic
gradient descent (SGD) descent lemma (Ghadimi & Lan, 2013), we show that the expected norm
of the gradient diminishes over time. Furthermore, our analysis incorporates the annealing of the
temperature parameter τ , which progressively sharpens the cluster assignments from soft to nearly
discrete. A key result underpinning this behavior is Lemma 8.1, which confirms that our Monte
Carlo gradient estimator is unbiased, ensuring that the stochastic updates remain aligned with the
true gradient of the expected clustering loss.

Lemma 8.1 (Unbiasedness). Let ĝ be the Monte-Carlo gradient estimator in Eq. 10; then E
[
ĝ
]
=

∇ΘL(Θ), where Θ = {θ, ϕ} denotes the collection of encoder and assignment parameters.

Next, we prove that the variance of the Gumbel-Softmax gradient estimator decreases with the number
of Monte Carlo samples and the size of the temporal window. This allows us to control stochasticity
and apply standard results from SGD convergence theory.
Theorem 8.1 (Variance Bound). If ∥∇ΘLclu(Zt,Ct,Πt)∥ ≤ Gmax for all admissible (Zt,Ct,Πt),
then Var

[
ĝ
]
≤ G2

max

ST , where T is the temporal context length in each mini-batch.

Combining these results, we show that the expected gradient norm of the clustering objective vanishes
over time (Theorem 8.1). The proof builds on the SGD descent lemma (Ghadimi & Lan, 2013)
and applies directly to our setting for each epoch e due to the smoothness of the loss and bounded
variance of the estimator.
Theorem 8.2 (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the ex-
pected clustering loss L(θ, ϕ) be differentiable and L-smooth in the parameters Θ = (θ, ϕ). Assume
the Monte-Carlo gradient used in training is an unbiased estimator of ∇L with bounded second
moment. If stochastic gradient descent is run with a constant stepsize η ≤ 1/L (or any diminishing
stepsize satisfying

∑
e ηe = ∞ and

∑
e η

2
e < ∞), then the parameter sequence {(θ(e), ϕ(e))}∞e=1

generated by the algorithm obeys,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇L(Θ(e))∥2

]
= 0.
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By extending this theorem, we can show that in the annealed setting where temperature τe → 0
guides the model from soft assignments to discrete ones as the loss function remains smooth and its
variance is bounded, which justifies our choice of exponential decay of the temperature parameter.
The complete proofs are provided in the Appendix 9.

9 THEORETICAL PROOFS

Monte-Carlo Gradient Estimator. Let Θ = (θ, ϕ) denote the model parameters. For each time
step t ∈ {1, . . . , T} and Monte-Carlo sample s ∈ {1, . . . , S}, draw Gumbel noise gts ∼ Gumbel(0, 1)
and define the sampled assignment as

Πt
s := hϕ(g

t
s), (37)

where hϕ is the differentiable Gumbel-Softmax mapping. The per-timestep loss is denoted

ℓt(Θ; g) := Lclu(fθ(X
t), C, hϕ(g)). (38)

The Monte-Carlo estimator of the full gradient is

∇ΘL :=
1

ST

T∑
t=1

S∑
s=1

∇Θℓt(Θ; gts). (39)

Lemma 3.1 (Unbiasedness). The Monte-Carlo gradient estimator ∇ΘL, defined over S independent
Gumbel-Softmax samples per time step across T temporal windows, is an unbiased estimator of the
true gradient; that is,

E [∇ΘL] = ∇ΘL(Θ). (40)

Proof. Assume that gts
iid∼ Gumbel(0, 1), ℓt(Θ; g) is differentiable in Θ and hϕ is differentiable in ϕ.

We can compute the expectation of the Monte-Carlo estimator:

E [∇ΘL] =
1

ST

T∑
t=1

S∑
s=1

Egt
s

[
∇Θℓt(Θ; gts)

]
(41)

=
1

T

T∑
t=1

Egt

[
∇Θℓt(Θ; gt)

]
(i.i.d samples, identical expectation) (42)

=
1

T

T∑
t=1

∇ΘEgt

[
ℓt(Θ; gt)

]
(interchanging gradient and expectation) (43)

= ∇Θ

(
1

T

T∑
t=1

Egt

[
ℓt(Θ; gt)

])
(44)

= ∇ΘL(Θ) (45)

Theorem 3.1 (Variance Bound). Assume that the per-sample gradient norm is uniformly bounded as

∥∇Θℓt(Θ; g)∥ ≤ Gmax for all t,Θ, g.

Then the variance of the Monte-Carlo gradient estimator satisfies

Var [∇ΘL] ≤
G2

max

ST
.
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Proof. Each of the S × T gradient terms ∇Θℓt(Θ; gts) is independent and has norm at most Gmax.
Thus:

Var [∇ΘL] = Var

[
1

ST

T∑
t=1

S∑
s=1

∇Θℓt(Θ; gts)

]
(46)

=
1

S2T 2

T∑
t=1

S∑
s=1

Var
[
∇Θℓt(Θ; gts)

]
(independence) (47)

≤ 1

S2T 2
· ST ·G2

max (bounded variance) (48)

=
G2

max

ST
. (49)

Theorem 3.2 (Convergence of Gumbel-Softmax Assignment in Temporal Clustering). Let the ex-
pected clustering loss L(θ, ϕ) be differentiable and L-smooth in the parameters Θ = (θ, ϕ). Assume
the Monte-Carlo gradient used in training is an unbiased estimator of ∇L with bounded second
moment. If stochastic gradient descent is run with a constant stepsize η ≤ 1/L (or any diminishing
stepsize satisfying

∑
e ηe = ∞ and

∑
e η

2
e < ∞), then the parameter sequence {(θ(e), ϕ(e))}∞e=1

generated by the algorithm obeys,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇L(Θ(e))∥2

]
= 0.

Proof. From Lemma 1, E [∇ΘL] = ∇L(t). By L-smoothness of L, the descent lemma gives:

E[Le+1] ≤ Le − η
∥∥∥∇L(e)

∥∥∥2 + Lη2

2

(
∥∇Le∥2 +Var [∇ΘL]

)
.

Substituting Var [∇ΘL] ≤ G2
max/(ST ) yields:

E[Le+1] ≤ Le −
(
η − Lη2

2

)
∥∇Le∥2 + Lη2G2

max

2ST
.

Rearranging and summing over epochs, e = 1 to E:

1

E

E∑
e=1

E
[
∥∇Le∥2

]
≤ L1 − L(∗)

T
(
η − Lη2

2

) +
LηG2

max

2S
.

As E → ∞, the first term vanishes. Hence,

lim
E→∞

1

E

E∑
e=1

E
[
∥∇Le∥2

]
≤ LηG2

max

2S
.

Choosing large enough S or using diminishing ηe ensures convergence to a stationary point.

Corollary 3.1 (Annealed Convergence for Temporal Graph Clustering). Let τe → 0 as e → ∞, and
suppose the temperature decays slowly such that each intermediate loss Lτe(θ, ϕ) is L-smooth and
the gradient variance remains bounded. Then the stochastic updates

(θ(e+1), ϕ(e+1)) = (θe, ϕe)− ηe · ∇̂Lτe(θe, ϕe)

satisfy:
lim
e→∞

E [∥∇Lcat(θ
e, ϕe)∥] = 0,

where Lcat denotes the limiting discrete clustering objective with categorical (one-hot) assignments.
That is, temporal clustering with Gumbel-Softmax and annealed temperature converges to a stationary
point of the discrete temporal clustering loss.
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10 ALGORITHM

Pseudocode Below we provide a high level pseudocode of our proposed method.

Algorithm 1 Monte-Carlo Cluster Loss with Gumbel–Softmax
Input : Node embeddings Z∈RN×d; centroids C∈RK×d; temperature τ > 0; samples S
Output :Lclu

Function GumbelSoftmax(ℓrow, τ)
// Draw i.i.d Gumbel noise for reparameterized sampling

g ∼ Gumbel(0, 1)K

// Row-wise max for log-sum-exp stability
m← maxj (ℓrow,j + gj)/τ
for k ← 1 to K do

// Unnormalized weight for cluster k

uk ← exp
(

ℓrow,k+gk
τ

−m
)

s←
∑K

j=1 uj

// Normalized assignment vector Qi,:

return
[
u1/s, . . . , uK/s

]
Function CLUSTERLOSSZ,C, τ, S

// Read matrix sizes once
N ← rows(Z);
K ← rows(C)
// Pre-compute distances and logits for all node-centroid pairs
for i← 1 to N do

for k ← 1 to K do
// Distance between node i and centroid k

dik ← ∥zi − ck∥2
// Negative distance as logits for sampling
ℓik ← − dik

// Initialize Monte-Carlo accumulator
Lsum ← 0
// Average over S independent Gumbel-Softmax assignment samples
for s← 1 to S do

// Allocate one sample’s assignment matrix Q ∈ RN×K

Q← 0N×K

// Sample assignments row-wise with temperature τ
for i← 1 to N do

Qi,: ← GumbelSoftmax(ℓi,:, τ)

// One-sample loss: expected distance under Q

L(s) ← 1
N

∑N
i=1

∑K
k=1 Qik dik

// Accumulate for Monte-Carlo average

Lsum ← Lsum + L(s)

// Final Monte-Carlo estimate (variance decreases with S)
Lclu ← Lsum/S
// Return clustering loss
return Lclu

11 EXPERIMENTS

Node initialization. We initialize node embeddings from pre-trained Node2Vec (Grover & Leskovec,
2016) features learned on the latest graph structure. This is a deliberate choice to make a fair
comparison with state of the art model in this domain (Liu et al., 2024). Pretraining provides a
strong structural prior that captures local and global neighborhood connectivity before temporal
updates begin. Pretrained embeddings are updated using the clustering loss and temporal consistency
loss to learn the clusters that considers historical interactions among the nodes. Such initialization
stabilizes early training, accelerates convergence, and leads to more semantically meaningful clusters,
especially when node attributes are sparse or missing. We choose the number of unique node labels
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as the number of clusters for evaluation purposes. This choice does not affect training, which remains
fully unsupervised; it simply provides a consistent reference for comparing the discovered clusters to
ground-truth labels at the current timestamp.

Dataset Statistics We evaluate our method on six temporal graph datasets summarized in Table 4,
which vary widely in size, interaction density, and temporal dynamics.

Table 4: Dataset statistics with temporal characteristics.

Dataset Nodes Interactions Edges Timestamps K Degree Temporal Nature

DBLP 28,085 236,894 162,441 27 10 16.87 Sparse, academic co-authorship
Brain 5,000 1,955,488 1,751,910 12 10 782.00 High-frequency, dense brain signals
Patent 12,214 41,916 41,915 891 6 6.86 Long-range, sparse citation network
School 327 188,508 5,802 7,375 9 1153.0 Short-term, dense social contacts
arXivAI 69,854 699,206 699,198 27 5 20.02 Dynamic academic collaboration
arXivCS 169,343 1,166,243 1,166,237 29 40 13.77 Highly dynamic, non-stationary

Coherence Score. The coherence score Halkidi et al. (2002) measures the average intra-cluster
similarity across all clusters, with higher values indicating more compact cluster structure. It is
defined in the range [0, 1]. For each cluster c, let Pc be all unordered node pairs (i, j) within the
cluster. Let dcos(i, j) denote the cosine distance. We convert distances to similarities (s(i, j) and
compute per-cluster coherence as-

s(i, j) = 1− dcos(i, j). (50)

Coherence(c) =
1

|Pc|
∑

(i,j)∈Pc

s(i, j). (51)

Table 5: Hyperparameter Search Space for TGRAIL Model

Hyperparameter Search Space
Training

Learning Rate log -uniform(10−5, 10−2)
Batch Size {128, 256, 512, 1024}
Optimizer {Adam,AdamW.SGD}

Architecture
Embedding Size {64, 128, 256}

Temporal/Graph
Negative Size {5, 10, 20, 50}
History Length {3, 5, 7, 10}

Temperature
Temp Max {5, 10, 15}
Temp Min uniform(0.1, 1.0)
Decay Rate uniform(0.5, 0.95)

Empirical Evaluation. Using the metrics from Table 3, TGRAIL demonstrates strong clustering
coherence, with scores ranging from 0.8767 to 0.7558 despite rapid growth in the number of active
nodes (from 71 to 12,214). Temporal alignment follows the expected trend in a rapidly evolving
graph: it is high in early snapshots (e.g., 0.831 and 0.994 for Snapshots 2–3) and gradually decreases
as the graph undergoes substantial structural reorganization (down to 0.345 by Snapshot 6). These
results confirm that TGRAIL produces clusters that remain both semantically coherent and temporally
consistent across evolving graph states.
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Figure 9: Scalability analysis showing runtime and memory scaling with graph size. Experiments use
synthetic graphs with n ∈ {1000, 2000} nodes, m ∈ {5000, 10000, 20000} edges, and T ∈ {10, 50}
timestamps. Linear fits (red dashed lines) demonstrate linear scalability.

Discussion Our experiments evaluate clustering performance across six temporal graph datasets using
four standard metrics (ACC, F1, NMI, ARI). As shown in Tables 1 and 2, our method achieves
competitive or state-of-the-art performance, suggesting that joint modeling of temporal dynamics and
cluster structure improves representation learning in evolving graphs.

On the School dataset, where temporal structure aligns cleanly with cluster assignments, our model
achieves perfect scores (ACC/F1/NMI/ARI = ∼ 1.00), demonstrating its ability to recover ground-
truth clusters under ideal conditions. In more challenging settings with sparse or noisy temporal
signals, such as PATENT and DBLP, our approach outperforms baselines by 3–5% in ACC, highlight-
ing its robustness to incomplete and overlapping event sequences. For datasets with non-stationary
dynamics (ARXIV-AI, BRAIN), our model achieves consistent improvements. These results suggest
that our temporal encoder captures fine-grained behavioural shifts more effectively than existing
methods.

Static baselines (DeepWalk, node2vec, GAE) underperform significantly, reinforcing the necessity
of temporal modeling. While TGC incorporates time through Hawkes processes, its decoupled
representation and clustering stages limit optimization synergy. In contrast, our fully differentiable
framework enables end-to-end learning, aligning temporal representations with clustering objectives.

These findings support our hypothesis that joint optimization of temporal dynamics and cluster
assignments improves stability and accuracy in temporal graph clustering. The consistent gains across
diverse datasets—ranging from cleanly structured (School) to highly dynamic (ARXIV-AI)—suggest
broad applicability to real-world evolving graphs.

Empirical Complexity Analysis

To empirically validate linear scalability, we generate synthetic temporal graphs with configurable
numbers of nodes, edges, and timestamps, where edges are created using random small scale-free
graph structures, timestamps are uniformly distributed across edges, and node features are randomly
sampled. As shown in figure 9, our empirical scalability analysis demonstrates strong evidence for
linear scaling: runtime scales with edges with R2 = 0.952 and p < 3.5 × 10−5, confirming near-
perfect linear scalability, while memory usage scales with nodes with R2 = 0.804 and p = 0.003,
indicating a very good linear fit that explains 80.4% of the variance. Runtime scaling with nodes
shows R2 = 0.664 with p = 0.014, representing a moderate linear relationship that is statistically
significant, where over 66% of the variance is explained by the linear model. These R2 values,
ranging from moderate (R2 ≥ 0.66) to excellent (R2 ≥ 0.80), combined with statistically significant

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

p-values (p < 0.05), provide robust empirical justification for our linear scalability claims, as they
demonstrate that the dominant scaling behaviour is linear with only minor non-linear components
that do not substantially impact the overall scalability characteristics of the model.

12 LIMITATIONS

Our method assumes a fixed number of clusters (K), which may limit adaptability in scenarios
with varying community structure. Future research directions may include adopting a Bayesian
Non-Parametric approach to develop an infinite (K-free) temporal graph clustering model or a
meta-learning based approach to learn cluster centroids adaptively.
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13 LLM USAGE

When preparing this manuscript, we utilized a Large Language Model (LLM) to assist with various
aspects of the writing and research process. The LLM was employed for several key tasks:

• Grammar and Language Polishing: The LLM helped improve sentence structure, gram-
mar, and overall readability of the manuscript, ensuring clear and professional academic
writing throughout the paper.

• Formatting Consistency: We used the LLM to check and maintain consistent formatting
across sections, including proper citation formatting, equation numbering, and LaTeX
structure.
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