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Abstract

The powerful cooperation of federated learning (FL) and differential privacy (DP)
provides a promising paradigm for the large-scale private clients. However, existing
analyses in FL-DP mostly rely on the composition theorem and cannot tightly quan-
tify the privacy leakage challenges, which is tight for a few communication rounds
but yields an arbitrarily loose and divergent bound eventually. This also implies
a counterintuitive judgment, suggesting that FL-DP may not provide adequate
privacy support during long-term training under constant-level noisy perturbations,
yielding discrepancy between the theoretical and experimental results. To further
investigate the convergent privacy and reliability of the FL-DP framework, in this
paper, we comprehensively evaluate the worst privacy of two classical methods
under the non-convex and smooth objectives based on the f-DP analysis. With
the aid of the shifted interpolation technique, we successfully prove that privacy in
Noisy-FedAvg has a tight convergent bound. Moreover, with the regularization
of the proxy term, privacy in Noisy-FedProx has a stable constant lower bound.
Our analysis further demonstrates a solid theoretical foundation for the reliability
of privacy in FL-DP. Meanwhile, our conclusions can also be losslessly converted
to other classical DP analytical frameworks, e.g. (¢, )-DP and Rényi-DP (RDP),
to provide more fine-grained understandings for the FL-DP frameworks.

1 Introduction

Since McMahan et al. [2017] proposes the FedAvg method as a general FL framework, it has been
widely developed into a collaborative training standard with privacy protection attributes, which
successfully avoids direct leakage of sensitive data. As research on privacy progresses, researchers
have found that standard FL frameworks still face a threat from indirect leakage. Attackers can
potentially recover local private data through reverse inference by persistently stealing model states
via model (gradient) inversion attacks [Geiping et al., 2020] or distinguish whether individuals are
involved in the training via membership inference attacks [Nasr et al., 2019]. To further strengthen
the reliability of FL, DP [Dwork, 2006, Dwork et al., 2014, Abadi et al., 2016] has naturally been
incorporated into the FL framework, yielding FL-DP [Wei et al., 2020]. As a primary technique, the
noisy perturbation is widely applied in various advanced FL methods to further enhance its security.

However, the theoretical analysis of the FL-DP framework, especially in evaluating the privacy
levels, is currently unable to provide a comprehensive understanding of its proper application. Most
of the previous works are built upon the foundational lemma of privacy amplification by iteration,
directly resulting in divergent privacy bound as the training communication round 7" becomes large.
This implies an inference that contradicts intuition and empirical studies, which is, that the FL-DP
framework may completely lose its privacy protection attributes as 7' — co. Such a conclusion is
almost unacceptable for FL-DP. Therefore, establishing a precise and tight analysis is a crucial target.
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Table 1: The worst privacy of the Noisy-FedAvg and Noisy-FedProx methods in our analysis. V' is
the norm of clip gradient. K, T" are local training interval and communication round. ¢ is the variance
of the noise. The trade-off function T (+) [%l is defined in Definition 4. y, ¢ and z are constants.
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[a] For the trade-off function T (s), smaller s means stronger privacy.
[b] Learning rate decaying policy. C: constant learning rate; CD: cyclically decaying; SD:
stage-wise decaying; ID: iteratively decaying. More details are stated in Theorem 3 4.

Notably, significant progress has been made in characterizing convergent privacy in the noisy gradient
descent method in RDP analysis [Chourasia et al., 2021, Ye and Shokri, 2022, Altschuler and Talwar,
2022, Altschuler et al., 2024]. However, due to the challenges and intricacies of the analytical
techniques adopted, similar results have not yet successfully been extended to the FL-DP. The multi-
step local updates on heterogeneous datasets lead to biased local models, posing significant obstacles
to the analysis. Recently, analyses based on f-DP [Dong et al., 2022] have brought a promising
resolution to this challenge. This information-theoretically lossless definition naturally evaluates
privacy by the Type I/ II error trade-off curve of the hypothesis testing problem about whether a
given individual is in the training dataset. Combined with shifted interpolation techniques [Bok et al.,
20241, it successfully recovers tighter convergent privacy for strongly convex and convex objectives
in noisy gradient descent methods. This may make it possible to quantify convergent privacy in
FL-DP and may offer novel understandings about impacts of some key hyperparameters.

In this paper, we investigate the privacy of two classic DP-FL methods, i.e. Noisy-FedAvg and
Noisy-FedProx and successfully evaluate their worst privacy in the f-DP analysis, as shown in
Table 1. For the Noisy-FedAvg method, we investigate four typical learning rate decay strategies
and provide the coefficients corresponding to each case to ensure a tighter privacy lower bound. We
also prove that its iterative privacy on non-convex and smooth objectives could not diverge w.r.t.
the number of communication rounds 7', i.e., a convergent privacy. To the best of our knowledge,
this contributes the first convergent privacy analysis in FL-DP methods for non-convex functions.
Furthermore, by exploring the decay properties of the proximal term in Noisy-FedProx, we prove
that its worst privacy can converge to a general constant lower bound. Our analysis successfully
challenges the long-standing belief that privacy budgets of FL-DP have to increase as training
processes and provides reliable guarantees for its privacy protection ability. At the same time, the
exploration from the proximal term provides a promising solution, suggesting that a well-designed
local regularization term can achieve a win-win solution for both optimization and privacy in FL-DP.

2 Related Work

Federated Learning. FL is a classic learning paradigm that protects local privacy. Since McMahan
et al. [2017] proposes the basic framework, it has been widely studied in several communities. As its
foundational study, the 1ocal-SGD [Stich, 2019, Lin et al., 2019, Woodworth et al., 2020, Gorbunov
et al., 2021] method fully demonstrates the efficiency of local training. Based on this, FL further
considers the impacts of heterogeneous private datasets and communication bottlenecks [Wang et al.,
2020, Chen et al., 2021, Kairouz et al., 2021]. To address these two basic issues, a series of studies
have explored these processes from different perspectives. One approach involves proposing better
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optimization algorithms by defining concepts such as client drift [Karimireddy et al., 2020] and
heterogeneity similarity [Mendieta et al., 2022], specifically targeting and resolving the additional
error terms they cause. This mainly includes the natural application and expansion of variance-
reduction optimizers [Jhunjhunwala et al., 2022, Malinovsky et al., 2022, Li et al., 2023], the flexible
implementation of the advanced primal-dual methods [Zhang et al., 2021c, Wang et al., 2022, Sun
et al., 2023b, Mishchenko et al., 2022, Grudzien et al., 2023, Acar et al., Sun et al., 2023a], and the
additional deployment of the momentum-based correction [Liu et al., 2020, Khanduri et al., 2021,
Das et al., 2022, Sun et al., 2023c, 2024]. Upgraded optimizers allow the aggregation frequency
to largely decrease while maintaining convergence. Another approach primarily focuses on sparse
training and quantization to reduce communication bits [Reisizadeh et al., 2020, Shlezinger et al.,
2020, Dai et al., 2022]. Additionally, research based on data domain and feature domain has also
made significant contributions to the FL. community [Yao et al., 2019, Zhang et al., 2021a, Xu et al.].

FL-DP. DP is a natural privacy-preserving framework with theoretical foundations [Dwork et al.,
2006b,a, Dwork, 2006]. As one of the main algorithms for differential privacy, noise perturbation
has achieved great success in deep learning [Abadi et al., 2016, Zhao et al., 2019, Arachchige et al.,
2019, Wu et al., 2020]. Combining this, FL-DP adds noise before transmitting their variables, i.e.
client-level noises [Geyer et al., 2017] and server-level noises [Wei et al., 2020]. Since there is no
fundamental difference between the analysis of them, in this paper, we mainly consider client-level
noises. One major research direction involves conducting noise testing on widely developed federated
optimization algorithms [Zhu et al., 2021, Noble et al., 2022, Lowy et al., 2023, Zhang and Tang,
2022, Yang and Wu, 2023], and evaluating the performance of different methods under DP noises
through convergence analysis and privacy analysis. Another research direction involves injecting
noise into real-world systems to address practical challenges, which primarily focuses on personalized
scenarios [Hu et al., 2020, Yang et al., 2021, 2023, Wei et al., 2023], decentralized scenarios [Wittkopp
and Acker, 2020, Chen et al., 2022, Gao et al., 2023, Shi et al., 2023], and adaptive or asymmetric
update scenarios [Girgis et al., 2021, Wu et al., 2022, He et al., 2023]. FL-DP has been extensively
tested across various scales of tasks and has successfully validated its robust local privacy protection
capabilities. At the same time, the theoretical analysis of FL-DP has been progressing systematically
and in tandem. Based on various DP relaxations, they provide a comparison of privacy performance
by analyzing concepts such as privacy budgets, and further understand the specific attributes of
privacy algorithms [Rodriguez-Barroso et al., 2020, Wei et al., 2021, Kim et al., 2021, Zheng et al.,
2021, Ling et al., 2024, Jiao et al., 2024]. Theoretical advancements in DP have revolutionized how
we could quantify and safeguard privacy, offering unprecedented precision and robustness.

3 Preliminaries

Notations. In the subsequent content, we use italics for scalars and denote the integer set from 1 to a
by [a]. All sequences of variables are represented in subscript, e.g. w; i ;. For arithmetic operators,
unless specifically stated otherwise, the calculations are performed element-wise. Other symbols
used in this paper will be explicitly defined when they are first introduced.

3.1 General FL-DP framework
We consider the general finite-sum minimization problem in the classical federated learning:

1
* : A - .
w* € argmin f(w) £ 3 filw), 6]
1€L
where f;(w) = E..p, [f;(w, €)] denotes the local population risk. w € R? denotes d-dim learnable
parameters. € ~ D; denotes that the private dataset on client ¢ is sampled from distribution D;. We
consider the general heterogeneity, i.e. D; can differ from D; if i # j, leading to f;(w) # f;(w).

In our analysis, we consider the FL-DP framework with the classical client-level Gaussian noises.
The FL training process remains consistent with standard training procedures. The local clients
enhance local privacy by adding isotropic Gaussian noises to the uploaded model parameters, i.e.
n; ~ N(0,0%1,). Then the global server aggregates the noisy parameters as the global model wy 1.
Due to the page limitation, details of the algorithmic implementation are deferred to the Appendix A.

Noisy-FedAvg: we consider that each local client performs a fundamental gradient descent as follows:

Wi k41,6 = Wikt — Nt Gk ts )
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where g; k1 = V fi(w; k¢, €)/ max{1, W/i“g)“}, and V is a constant coefficient.

Noisy-FedProx: The vanilla local training in FedProx is based on solving the following surrogate:
) o
min f;(w) + —|Jw — w . 3)
w 2
To generally compare with Noisy-FedAvg, we consider an iterative form of gradient descent as:

Wi k1,6 = Wikt — it [kt + (Wi g — wy)] . “)

3.2 DPand f-DP

Definition 1 We denote heterogeneous datasets on the client i by S; = {e;;} and let the union of all
local datasets be C = {S;}. We say two unions are adjacent datasets if they only differ by one data
sample. For instance, there exists the union C' = {S/}. (C,C') are adjacent datasets if there exists
the index pair (i*, j*) such that all other data samples are the same except for €;x j« # €§*j*.

Definition 2 A randomized mechanism M is (€, §)-DP if for any event E the following satisfies:
P(M(C) e E) <eP(M(C") e E) +4. 5)

Definition 2 is the widely used (¢, )-DP, which is a lossy relaxation in the DP analysis since its
probabilistic gaps. To bridge the discrepancy of precise DP definitions, statistic analysis demonstrates
that DP could be naturally deduced by hypothesis-testing problems [Wasserman and Zhou, 2010,
Kairouz et al., 2015]. From the perspective of attackers, DP means the difficulty in distinguishing C
and C’ under the mechanism M. They can generally consider the following problem:

Given M, is the underlying union C (Hy) or C' (Hy)?

To exactly quantify the difficulty of its answer, Dong et al. [2022] propose that distinguishing these
two hypotheses could be best delineated by the optimal trade-off between the possible type I and type
II errors. Specifically, by considering rejection rules 0 < x < 1, type I and type II errors can be:

Er=Eme)xl,  Eun=1-Enme X, (6)

Here, we abuse M(C) to represent its probability distribution. To measure the fine-grained relation-
ships between these two testing errors, f-DP is introduced.

Definition 3 (Trade-off function) For any two probability distributions P and Q), the trade-off

function is defined as: T(P;Q)(vy) = inf{1 — Eq [x] | Ep [x] < v}, where the infimum is taken
over all measurable rejection rules.

T(P;Q)(v) is convex, continuous, and non-increasing. For any possible rejection rules, it satisfies
T(P;Q)(y) <1 — . It functions as the clear boundary between the achievable and unachievable
selections of type I and type II errors, essentially distinguishing the difficulties between these two
hypotheses. This relevant statistical property provides a stricter definition of privacy, which mitigates
the excessive relaxation of privacy based on composition analysis in existing approaches.

Definition 4 (f-DP and GDP) A mechanism M is f-DP if T(M(C), M(C"))(v) > f(v) for all
possible adjacent datasets C and C'. When f measures two Gaussian distributions, namely Gaussian-
DP (GDP), denoted as T (p)(y) = T (N(0,1),N (11, 1)) () for u > 0.

According to the definition, the explicit representation of GDP is T (1)(v) = ®(®~1(1 — ) — p)
where ® denotes the standard Gaussian CDF. Any single sampling mechanism that introduces Gaus-
sian noises can be considered as an exact GDP, which monotonically decreases when p increases.

4 Convergent Privacy

In this section, we primarily demonstrate how to provide the worst privacy in FL-DP and its convergent
bound. Generally, we assume that local objectives satisfy smoothness with a constant L,

Assumption 1 Each local objective function f;(-) satisfies L-smoothness, i.e.,

IV fi(w1) = V fi(w2)]| < Ll|wy — wz]. @)
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Figure 1: Left: The global privacy amplification path induced by the shifted interpolation sequence.
Right: Estimation of the global sensitivity under local updates via an auxiliary sequence.

4.1 Shifted Interpolation

To simplify presentations, we denote global updates at round ¢ on the adjacent datasets C and C' as:

C: Wi+1 = ¢(wt) + ﬁt, CI : ’UJ;+1 = (,ZS/(’LUQ) +ﬁ2 (8)
¢(w;) denotes the accumulation of total K steps from the initialization state w; o+ = w; at round ¢.
m; could be considered as the averaged noise, i.e. 7y ~ N (0, 021, /m). Traditional methods require
performing privacy amplification T' times based on the relationship between w and w’, yielding

non-convergent privacy as T'. To avoid loose privacy amplification, we follow Bok et al. [2024] to
adopt the shifted interpolation technique. Specifically, we define the following sequence:

W1 = Mep10(we) + (1 — Ng1) @' (W) + 7y, 9

where t = tg,--- ,7 — 1. By setting Ay = 1, then wy = wy, and we add the definition of w;, = wéo
as the beginning of interpolations. 0 < A\; < 1 are interpolation coefficients to be optimized. As
shown in Figure 1 (left), the interpolation sequence path enables a privacy amplification analysis
over T' — to times where £ is an optimizable coefficient. Therefore, we can establish the following
theorem along this new privacy amplification path.

Theorem 1 Under Assumption I and corresponding updates in Eq.(8), After T training rounds on
the adjacent datasets C and C', we can bound the trade-off function between wy and w. as:

\/E T-1
T(wr;wr) = T(@r;wr) > T | ~— D A2 lld(we) — ¢ (@) ] - (10)

t=to

In addition to the influence of standard parameters, Theorem 1 highlights the critical relationship
between the privacy lower bound and the weighted sum of global sensitivity terms from ¢, to 7.
Therefore, we then analyze the global sensitivity term ||¢(w;) — ¢’ (wy)]|.

4.2 Global Sensitivity

The sensitivity term ||¢(w;) — ¢’ (w;)||? means the stability gaps between w; and 1w after performing
local training on datasets C and C’ respectively. It is influenced by both the model parameters and
the data samples, making the analysis extremely challenging. To achieve a fine-grained analysis, we
propose an auxiliary sequence ¢’(w;). As shown in Figure 1 (right), the global sensitivity can be split
into data sensitivity and model sensitivity. The data sensitivity measures the estimable errors obtained
after training on different datasets for several steps from the same initialization. This discrepancy is
solely caused by the data. The model sensitivity measures the estimable errors of the updates when
two different initialized states are trained on the same dataset. Clearly, this discrepancy is directly
related to the degree of similarity between the two initializations. Thus, we have:

Theorem 2 Under K local updates by Eq.(2) and Eq.(4), the global sensitivity in Noisy-Fed4dvg
and Noisy-FedProxz methods can be shown as:

[p(we) — &' (W)l < pellwe — wel| + Ve ) (an
—_—— ~—
from model sensitivity ~ from data sensitivity

where p; and ~y; are shown in Table 2.
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Table 2: Specific formulation of p, and ~y; in Theorem 2.

Learning rate Pt Ve
K 2uV
Iz (14 pL) LK
L \%
| T S )
Noisy-FedAvg K
K (1 + &) 2pV K
T+1 t+1 m i1
zplL
n (g) 2:V 1) (u)
tK+k+1 t+1 m t+1
Noisy-FedProx non-increase o7 %

Remark 2.1 The result in Eq.(11) aligns with the intuition of designing the splitting operators. It can
be observed that the coefficient py is consistently greater than 1, which is a typical characteristic of
non-convexity. It also implies that the sensitivity upper bound tends to diverge as t — oco. However, in
Eq.(10), the parameters 0 < Ay < 1 can efficiently scale the sensitivity terms. By carefully selecting
the optimal \; values, it can ultimately achieve a convergent privacy lower bound.

4.3 Minimization Problem on ¢y and Its Relaxation

According to Eq.(10) and the sensitivity bound in Eq.(11), we denote the weighted accumulation of
the sensitivity term as H (A, to), where ); and ¢, are both to-be-optimized parameters. Therefore,
we can provide the tight bound of the privacy by solving the minimization of the following problem:
T—1
. o 2
M, =minH(\,to) 2> Ay (pellwe — @il| +7)” (12)
Atto t=to
If ¢y is very small, it means that the introduced stability gap will also be very small. However,
consequently, the sensitivity terms will extremely increase due to the accumulation over 1" — ¢ rounds.
Conversely, although the accumulated error is small, it remains divergent due to the unbounded global
sensitivity term. To avoid this uncertain analysis, we have to make a compromise. Because % is an
integer belonging to [0, T — 1], its optimal selection certainly exists when 7 is given. Therefore, we
consider a relaxed and simple problem instead, i.e. under ¢ty = 0,
T—1
Ho = minH (A, 0) = DA (pellwe = @l +30)” - (13)
‘ t=0
Its advantage lies in the fact that when ¢, = 0, the sensitivity error is 0, avoiding its divergence.
Compared to the optimal solution H,, it satisfies Ho > H.. More importantly, the solution of H
eliminates the influence of ¢ , allowing us to obtain an effective solution to the minimization problem
by directly minimizing the A; terms. The lower bound in Theorem 1 will be replaced by:

T(wr;wy) > Tg (@) >Tq (@) .

Although this is a relaxation of the privacy lower bound, our subsequent proof confirms that 7, can
still achieve convergent into a constant form, which means local privacy can still achieve convergence.

(14)

4.4 Convergent Privacy

In this part, we demonstrate our convergent privacy analysis. By solving Eq.(13) under corresponding
p¢ and 7y, we provide the worst privacy for the Noisy-FedAvg and Noisy-FedProx methods.

Theorem 3 Let f;(w) be a L-smooth and non-convex local objective and local updates be performed

as shown in Eq.(2). Under perturbations of isotropic noises n; ~ N (0, oI d), the worst privacy of
the Noisy-FedAvg method achieves:

(a) under constant learning rates 1y ; = [i:

2WVEK [(14pl)K +1 (1 + pL)ET -1 (15)
(Q14+pl)K =11+ pL)KT+1 )"
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(b) under cyclically decaying ni.,; = 15

oy > 15 (XEBEED JALRELALET L)
(c) under stage-wise decaying My, ; = t%
T(wrswh) > To (2\%5 2 ;) . (a7)
(d) under continuously decaying My, ; = tKJii‘kH
T(wr;wh) > Ta (\2;%/0 2 — 1{) . (18)

Remark 3.1 Theorem 3 provides the worst-case privacy analysis for the Noisy-Fed4dvg method.
Its privacy is primarily affected by the clipping norm V, the local interval K, the scale m, and
the noise intensity o. A larger gradient clipping norm V' always results in larger gaps. The local
interval K determines the sensitivity of the entire local process, which is primarily influenced by the
learning rate strategy. m in our proof represents the client scale; in fact, the number of data samples
is also proportional to m. An increased m will largely reduce the sensitivity, yielding improvements
in privacy. The impact of noise intensity o is also very intuitive. Infinite noise can provide perfect
privacy, while zero noise offers no privacy. Constant-level noise can still achieve convergent privacy.

Theorem 4 Let f;(w) be a L-smooth and non-convex local objective and local updates be performed
as shown in Eq.(4). Let the proximal coefficient « > L and n < a%, under perturbations of

isotropic noises n; ~ N (07 UQId), the worst privacy of the Noisy-FedProx method achieves:

2V 200 — L 2
Vmao L _( o )T+1

T(wr;wy) > Tg (19)

b

a—L

Remark 4.1 Aside from the influence of standard coefficients, due to the correction of the regulariza-
tion term, its privacy is no longer affected by the local interval K, even with a constant learning rate,
which becomes a significant advantage of the Noisy-FedProx method. Specifically, when oo > L,

increasing « significantly improves the worst privacy, which achieves O pay e distinguishability

in GDP. Therefore, the selection of « is a delicate trade-off between optimization and privacy. By
selecting a proper a > L, it enables a win-win outcome for both optimization and privacy.

Theoretical comparisons. Table 3 demonstrates the comparison between existing theoretical results
and ours of the Noisy-FedAvg method. Existing analyses are mostly based on the DP relaxations of
(¢,0)-DP and RDP [Mironov, 2017]. Apart from the lossiness in their DP definition, an important
weakness is that privacy amplification on composition is entirely loose. For instance, the general
amplification in (e, §)-DP indicates, the composition of an (e;, d1)-DP and an (e, d2)-DP leads to
an (€1 + €2, 01 + d2)-DP. Similarly, the composition of a ({, €;)-RDP and a ({, €2)-RDP results in a
(¢, €1 + €2)-RDP. This simple parameter addition mechanism directly leads to a linear amplification
of the privacy budget. Therefore, in previous works, when achieving specific DP guarantees, it is
often required that the noise intensity o2 is proportional to the communication rounds T (or TK).
Wei et al. [2020] prove a double-noisy single-step local training on both client and server sides is
possible to achieve the privacy amplification of O(T?) rate. Shi et al. [2021] further consider the
local intervals K. Zhang et al. [2021b] and Noble et al. [2022] elevate the theoretical results to
O (TK). Subsequent research further indicates that the impact of the interval K can be eliminated to
achieve O (T) rate via sparsified perturbation [Hu et al., 2023, Cheng et al., 2022], and algorithmic
improvements [Fukami et al., 2024]. However, these conclusions all indicate that the condition for
achieving constant privacy guarantees is to continually increase the noise intensity. Bastianello et al.
[2024] provide constant privacy under 3-strongly convex objectives.
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Table 3: Comparisons with the existing theoretical results in FL-DP. We losslessly transfer our
results into (e, )-DP and RDP results. In (¢, )-DP, we compare the requirement of noise variance
corresponding to achieving (¢, §)-DP. In (¢, ¢)-RDP, we directly compare the privacy budget term
d(¢). We mainly focus on the privacy changes on T and K. €(-), O(-), and o(-) correspond to the
lower, upper bound, and not tight upper bound of the complexity, respectively.

| (¢,0)-DP | (¢, €)-RDP | whenT, K — oo
Wei etal. [2020] | o=0(LVT?—mL?) \ - \
. |4 log(%)
Shi et al. [2021] =0 +=2TVK

og( L
Zhangetal. [2021b] | o=0O <V RO, mK>
Noble et al. [2022] =0 (Vvl"gm TK)

Cheng et al. [2022] o=0 (VV log(3) \/T>

g — 00 0on
non-convex

Zhang and Tang [2022] ‘ - ‘ =0 (%TK) ‘

Hu et al. [2023] c=0 (V\/m ﬁ)

Fukami et al. [2024] | 0 = Q (V“* ““\/m ﬁ)

convergent on
[3-strongly convex

Bastianello et al. [2024] - e=0 (%% (1-e7))

evym non-convex

Ours (Noisy-FedAvg) | o =o (Viw‘w /9 _ %) =0 (cv2 (2- %)) convergent on

S Empirical Validation

Setups. We conduct experiments on MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky et al.,
2009] with the LeNet-5 [LeCun et al., 1998] and ResNet-18 [He et al., 2016] models. We follow
the widely used standard federated learning experimental setups to introduce heterogeneity by the
Dirichlet splitting. The heterogeneity level is set high (Dir-0.1 splitting).

Accuracy. Table 4 shows the comparison on Noisy-FedAvg. Our theory precisely addresses this
misconception and rigorously provides its privacy protection performance. It can be observed that
as the number of clients increases, the impact of noise gradually diminishes. We have previously
explained this principle: for the globally averaged model, the more noise involved in the averaging
process, the closer it gets to the noise mean, which is akin to the situation without noise interference.
When we adjust the intensity from o = 1072 to 1071, the accuracy decreases by 5.57% and 1.62%
on m = 20 and 100 respectively on the MNIST and 14.19% and 11% on the CIFAR-10. The local
interval K does not significantly affect noise, and the accuracy drops consistently. K primarily affects
global sensitivity and higher aggregation frequency usually means better performance.

Sensitivity in Noisy-FedAvg. We mainly study the impact from the scale m, local interval K, and
clipping norm V/, as shown in Fig. 2. The first figure clearly demonstrates the impact of the scale

m on sensitivity, which corresponds to the worst privacy bound O (ﬁ) More clients generally

imply stronger global privacy. The second figure shows evident that although increasing K can raise
the sensitivity during the process, it does not alter the upper bound of sensitivity after optimization
converges. This is entirely consistent with our analysis, indicating that the privacy lower bound exists
and is unaffected by 7" and K. The third figure indicates that the sensitivity will be affected by the V,
which corresponds to the worst privacy bound O (V).
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Table 4: Comparison of the accuracy under different experimental settings. We select the scale m
from [50, 100]. Each client holds 600 heterogeneous data samples of MNIST or 500 heterogeneous
data samples of CIFAR-10. For each scale, we test two settings of the local interval K = 50, 100,
and 200, respectively. Throughout the entire process, we fix 7K' = 30000. “-" means the training
loss diverges. Each result is repeated 5 times to compute its mean and variance.

Noisy | m =50 m = 100
Intensity | K =50 K=100 K=200 K=50 K =100 K =200
oc=1.0

MNIST o= 1071 95404018 954241015 95214011 97.324014 97501011 97421018
LeNet-5 |0 =10""[98334012 98.02+015 97.88+012 98.71:010 97.97+008 97.72+0.12
0=10"3 98411007 98231003 98.004007 98.941004 98.501006 98.01+0.10

CIFAR-10 |0 =10""|53.761025 53.38+023 53494021 62.021028 61.331025 61.114017
ResNet-18 | 0 = 1072 70111022 69.081012 66.631016 74.341020 72.871019 70.7410.15
oc=10"3 70981011 69.811020 67981003 75381019 74441012 72111006
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Figure 2: Sensitivity studies on Noisy-FedAvg and Noisy-FedProx. The general setups are
m = 20, K = 5, and V = 10. In each group, we keep all other parameters fixed to ensure fairness.

Sensitivity in Noisy-FedProx. As Table 5: Performance and sensitivity (T' = 600).
shown in Fig. 2 (the fourth figure),
the larger & means smaller global sen-

Accuracy  Sensitivity

sitivity. This is consistent with our Noisy-FedAvg 60.67 31.33
analysis, which states that the lower Noisy-FedProx o = 0.01 60.69 30.97
bound of privacy performance is given Noisy-FedProx a = 0.1 60.94 18.52

by O (%) When we select o — Noisy-FedProxa =1 56.33 6.34

0, it degrades to the Noisy-FedAvg

method. In fact, based on the comparison, we can see that when « is sufficiently small, i.e. « = 0.01,
its global sensitivity is almost at the same level as Noisy-FedAvg. In Table 5, we present a compari-
son between them. Although the proximal term provides limited improvement in accuracy, selecting
an appropriate « significantly reduces global sensitivity. This implies that the privacy performance of
Noisy-FedProx is far superior to that of Noisy-FedAvg. While achieving similar performance, the
regularization proxy term can significantly reduce the global sensitivity of the output model, thereby
enhancing privacy. This conclusion also demonstrates the superiority on privacy of a series of FL-DP
optimization methods based on training with this regularization approach.

6 Summary

To our best knowledge, this paper is the first work to demonstrate convergent privacy for the general
FL-DP paradigms. We comprehensively study and illustrate the fine-grained privacy level for
Noisy-FedAvg and Noisy-FedProx methods based on f-DP analysis, an information-theoretic
lossless DP definition. Moreover, we conduct comprehensive analysis with existing work on other DP
frameworks and highlight the long-term cognitive bias of the privacy lower bound. Our analysis fills
the theoretical gap in the convergent privacy of FL-DP while further providing a reliable theoretical
guarantee for its privacy protection performance. Moreover, We conduct a series of experiments to
verify the boundedness of global sensitivity and its influence on different variables, further validating
that our theoretical analysis aligns more closely with practical scenarios.
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Limitations and Broader Impacts. Our paper provides the first convergence-privacy analysis for
the FL framework. The current analysis primarily includes the impact of multi-step updates on
local nodes and the effect of multi-clients aggregation on the privacy bounds. A limitation of this
paper is the inability to directly extend the privacy analysis to stability analysis. Stability analysis of
convergence has always been a crucial theoretical objective in non-convex optimization. Although
the trade-off function constructed by f-DP incorporates certain iterative properties of stability terms,
it currently cannot directly derive convergence bounds for stability. Moreover, the theoretical analysis
in this paper provides a crucial theoretical basis for privacy preservation, demonstrating that privacy
can still be maintained under finite noise and infinitely long learning processes. This implies that
many online methods can ensure privacy through cumulative noise accumulation, which may provide
valuable guidance for privacy preservation in future engineering applications.

A General FL-DP Framework

FL framework usually allows local clients to train several iterations and then aggregates these
optimized local models for global consistency guarantees. Though indirect access to the dataset
significantly mitigates the risk of data leakage, vanilla gradients or parameters communicated to
the server still bring privacy concerns, i.e. indirect leakage. Thus, DP techniques are introduced
by adding isotropic noises on local parameters before communication, to further enhance privacy
protection.

Algorithm 1 General FL-DP Framework

Input: initial parameters wq, round 7, interval K
Output: global parameters wp
1: fort =0,1,2,--- , T —1do

2 activate local clients and communications
3:  forclient 7 € 7 in parallel do
4: set the initialization w; o ¢ = w;
5: fork=0,1,2,--- K —1do
6: Wy k41,0 = L-update(w; i 1)
7 end for
8: generate a noise n; ~ N(0,021)
9: communicate w; i+ + n; to the server
10:  end for
11: w1 = G-update({w; g+ +n;})
12: end for

In our analysis, we consider the FL-DP framework with the classical normal client-level noises, as
shown in Algorithm 1. At the beginning of each communication round ¢, the server activates local
clients and communicates necessary variables. Then local clients begin the training in parallel. We
describe this process as a total of K > 1 steps of L-update function updates. Depending on algorithm
designs, the specific form of local update functions varies. After training, the local clients enhance
local privacy by adding noise perturbations to the uploaded model parameters. Our analysis primarily
considers the properties of the isotropic Gaussian noise distribution, i.e. n; ~ N (0, 521;). Then the
global server aggregates the noisy parameters to generate the global model w; via the G-update
function. Repeat this for 7" rounds and return wr as output.

B Preliminary Properties of f-DP

In this section, we mainly supplement some basic properties of f-DP, all of which are lemmas
proposed by Dong et al. [2022]. Specifically, Lemmas 1 and 2 are employed in our theoretical
analysis, whereas Lemmas 3 and 4 facilitate a lossless translation of our results into other standard
DP frameworks for comparative purposes.

Lemma 1 (Post-processing) If a randomized mechanism M is f-DP, any post processing mecha-
nism based on M is still at least f-DP, i.e. T(P'; Q") > T(P;Q) for any post-processing mapping
which leads to P — P’ and Q — Q'.
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Intuitively, post-processing mappings bring some changes in the original distributions. However,
such changes can not allow the updated distributions to be much easier to discern. This lemma also
widely exists in other DP relaxations and stands as one of the foundational elements in current privacy
analyses. In f-DP, this lemma also clearly demonstrates that the difficulty of hypothesis testing
problems can not be simplified with the addition of known information, which still preserves the
original distinguishability.

Lemma 2 (Composition) We have a series of mechanisms M and a joint serial composition mech-
anism M. Let each private mechanism M;(-,y1,- - ,yi—1) be fi-DP forally; € Y1,--- ,y;—1 €
Y;_1. Then the n-fold composed mechanism M : X — Y] X -+ x Y, is {1 ® -+ ® fn-DP,
where ® denotes the joint distribution. For instance, if f = T(P;Q) and g = T(P’;Q’), then
feg=TP xP;QxQ").

The composition in the f-DP framework is closed and tight. This is also one of the advantages of
privacy representation in f-DP. Correspondingly, the advanced composition theorem for (e, §)-DP
can not admit the optimal parameters to exactly capture the privacy in the composition process [Dwork
etal., 2015]. However, the trade-off function has an exact probabilistic interpretation and can precisely
measure the composition.

Lemma 3 (GDP — (€,08)-DP) A ;-GDP mechanism with a trade-off function T (p) is also
(e,d(€))-DP for all € > 0 where

5(6):@)(—;4-5) —eP (—;—g) . (20)

Lemma 4 (GDP — RDP) A (1-GDP mechanism with a trade-off function Te;(p) is also (¢, $1%¢)-
RDP for any ¢ > 1.

We state the transition and conversion calculations from f-DP (we specifically consider the GDP)
to other DP relaxations, e.g. for the (e,9)-DP and RDP. These lemmas can effectively compare
our theoretical results with existing ones. Our comparison primarily aims to demonstrate that the
convergent privacy obtained in our analysis would directly derive bounded privacy budgets in other
DP relaxations. Moreover, we will illustrate how the convergent f-DP further addresses conclusions
that current FL-DP work cannot cover theoretically, which provides solid support for understanding
its reliability of privacy protection.

C Proof of Main Theorems

C.1 Proofs of Theorem 1

We consider the general updates on the adjacent datasets C and C’ on round ¢ as follows:
1
w1 = P(we) + o ;ni,ta

1
/ / / /
wy = ¢’ (wy) + m Z”i,m
i€

2

where wy is the initial state. n;, and n, are two noises generated from the normal distribution

,0°14). To construct the interpolated sequence, we introduce the concentration coefficients A; to
N(0,0%1;). T truct the interpolated seq troduce th trat fficients \; t
provide a convex combination of the updates above, which is,

~ . 1
Wig1 = Mp10(wy) + (1 = A1) (W) + — Zni,m (22)
M ez
fort = tg,tg+1,--- ,T—1. Furthermore, we set A7 = 1 toletwr = gb(wT_l)Jr% Dier i T—1 =

wr, and we add the definition of w;, = wy, as the interpolation beginning. t, determines the length
of the interpolation sequence.

Lemma 5 According to the expansion of trade-off functions, for the general updates in Eq.(22), we
have the following recurrence relation:

T (@i ) 2 T (@iul) @ T (L allotwn) - o (@))). @3)

16



587
588

589
590

591
592
593

594
595

596

597
598
599
600
601
602

603
604
605
606
607
608
609

610
611
612
613

614

615
616

617

618

Proof. Based on the post-processing and compositions, let z and z' be the corresponding noises
above, for any constant A € [0, 1], we have (subscripts are temporarily omitted):

T (Ap(w) + (L= N)¢' (@) + 2 ¢/ (w') + )
=T (¢'(w) + A (p(w) — ¢ (W)) + 2 ¢/ (w') + =)
> T ((¢' (@), AMp(w) = ¢ (@) + 2); (¢ (w'), 2))
> T (¢ (w); ¢'(w') & T (A ($(w) — ¢ (w)) + 2;2")
> T (w;w) @ T (A(d(w) — ¢'(w)) + 2;2) ,

2
where z and 2" are two Gaussian noises that can be considered to be sampled from N (0, %-1;) (av-
erage of m isotropic Gaussian noises). Therefore, the distinguishability between the first term and

the second term does not exceed the mean shift of the distribution, which is || @)\ (p(w) — @' (w)) ||-
By taking w = wy and X\ = A1, the proofs are completed.

According to the above lemma, by expanding it from ¢ = ¢y to 7' — 1 and the factor T'(w;,; w} ) =
T¢(0), we can prove the formulation in Eq. (10).

C.2 Proofs of Theorem 2

Lemma 5 provides the general recursive relationship on the global states along the communication
round ¢. To obtain the lower bound of the trade-off function, we only need to solve for the gaps
[[¢(w) — ¢’ (w)]]. It is worth noting that the local update process here involves dual replacement of
both the dataset (¢ and ¢’) and the initial state (w and w). Therefore, we measure their maximum
discrepancy by assessing their respective distances to the intermediate variable constructed by the

cross-items:

[p(w) = ¢"(@)]| < [lp(w) — ¢ (w)|| + ||¢'(w) — ¢'(w)] - (24)

Data Sensitivity Model Sensitivity

The first term measures the disparity in training on different datasets and the second term measures
the gap in training from different initial models. One of our contributions is to provide their general
gaps. In our paper, we expand the update function ¢(x) by considering the multiple local iterations
and federated cross-device settings. By simply setting the local interval to 1 and the number of clients
to 1, our results can easily reproduce the original conclusion in [Bok et al., 2024]. Furthermore, our
comprehensive considerations have led to a new understanding of the impact of local updates on
privacy.

¢(wy) and ¢’ (wy) begin from w;. ¢’ (w;) and ¢’ (w;) adopt the data samples &’ € C’. We naturally use
wy k¢ and w; i, ¢ to represent individual states in ¢(w;) and ¢’ (w; ), respectively. To avoid ambiguity,
we define the states in ¢'(w,) as @; ;. When i # i*, since ¢ = ¢/, then w; j; only differs from
W; 1.+ on 1*-th client.

on the Noisy-FedAvg Method:

Lemma 6 (Data Sensitivity.) The data sensitivity caused by gradient descent steps can be bounded
as:
K—1
2V
lé(we) = ' (wOll < > s (25)
k=0

where 1y, is the learning rate at the k-th iteration of t-th communication round.

Proof. By directly expanding the update functions ¢ and ¢’ at wy, we have:

[p(we) — ¢'(wy) |

K-1 K-1
1 1 .
lwe = — SN ki Vii(wigs,e) —wi + — SN ki Viiigs )l

i€ k=0 i€ k=0

IN

1 K-1
— D> Ml V(i ene) = V(i)

i€T k=0
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K-1

1 ov A
= ;;) Mt ||V fir (Wi ko, €) = V fin (Wix pp, €7)|| < o ;;) Mt

The last equation adopts € = &' when i # i*. This completes the proofs.

Lemma 7 (Model Sensitivity.) The model sensitivity caused by gradient descent steps can be
bounded as:

16" (we) = @' (@)l < (1 + (K, t)L) [|wy — @y, (26)

where (K, t) = 1o+ + Z,{:ll Mt Hf;é (1 +n;,L) is a constant related the selection of learning
rates.

Proof. We first learn an individual case. On the t-th round, we assume the initial states of two
sequences are wy and Wy. Each is performed by the update function ¢' for local K steps. For each
step, we have:
1Ws k41,6 — Wi k1, ]l
< skt = Wi et + 0kt IV fi (Wi e, €7) = Vi Wi g, €|
< (14 npeL)|

This implies each gap when k > 1 can be upper bounded by:

Wy ket — Wikt |-

k—1
lbisee = @il < (L4 oo D) bip—re = Digomrall < -+ < T] (04 m50L) e — @]
§=0

Then we consider the recursive formulation of the stability gaps along the iterations k. We can
directly apply Eq.(22) to obtain the relationship for the differences updated from different initial
states on the same dataset. By directly expanding the update function ¢' at wy and w;, we have:

16" (we) — ¢ (wy) ||
1 K-1 1 K-1
= |Jws — — SN eV itbigase’) — @y + p— SN a Vi @igs, )

ieT k=0 ieZ k=0
1 K-1
< Jlwe — e + ||% Z > ikt (Vfi(igsne) = Vfil@ige ) |
i€Z k=0
I K-1
< [lwe = well + — SN Ml e — @il
i€Z k=0
K—-1 k—1
< 1+ e+ Y e [T (U4 mieL) | L flwe — @ll.
k=1 j=0

This completes the proofs.

We have successfully quantified the specific form of the problem as above. By solving for a series
of reasonable values of the auxiliary variable A to minimize the above problem, we obtain the tight
lower bound on privacy. Before that, let’s discuss the learning rate to simplify this expression. Both
n(K,t) and > . terms are highly related to the selections of learning rates. Typically, this choice
is determined by the optimization process. Whether it’s generalization or privacy analysis, both are
based on the assumption that the optimization can converge properly. Therefore, we selected several
different learning rate designs based on various combination methods to complete the subsequent
analysis. Due to the unique two-stage learning perspective of federated learning, current methods
for designing the learning rate generally choose between a constant rate or a rate that decreases
with local rounds or iterations. Therefore, we discuss them separately including constant learning
rate, cyclically decaying learning rate, stage-wise decaying learning rate, and continuously decaying
learning rate. We provide a simple comparison in Figure 3.
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Figure 3: Four general setups of learning rate adopted in the federated learning community. From left
to right, they are: Constant learning rates, Cyclically decaying learning rates, Stage-wise decaying
learning rate, and Continuously decaying learning rate.

Constant learning rates This is currently the simplest case. We consider the learning rate to
always be a constant, i.e. 1, ; = 1. Then we have that the accumulation term Zi:ol M, = k. For
the n(K, t) term, we have:

K—1 k—1 K-

1
n(K,t):no,t+;nk,tg(Hth ukzzo 1+ pul) :Z((lﬂtL)K*l).

,_.

When K is selected, both of them can be considered as a constant related to K. The choice of y also
requires careful consideration. Although it is a constant, its selection is typically related to m, K,
and 7" based on the optimization process. We will discuss this point in the final theorems.

Cyclically decaying learning rates Some works treat this learning process as an aggregation
process of several local training processes, i.e. each local client learns from a better initial state
(knowledge learned from other clients). And since the client pool is very large, most clients will exit
after obtaining the model they desire. This setting is often used in “cross-device" scenarios [Kairouz
et al., 2021]. Thus, local learning can be considered as an independent learning process. In this
case, the learning rate is designed to decay in an inversely proportional function to achieve optimal
local accuracy, i.e. g = ﬁ_l, and is restored to a larger initial value at the start of each round, i.e.
7o,+ = p. Then we have the accumulation term:

K K-1 1
ln(K+1):/k 0k+1 Zk / mdk:H—ln(K). (27)

When K is large, this term is dominated by O(In(XK)). Based on the fact that K is very large in
federated learning, we further approximate this term to ¢In(K + 1) where c¢ is a scaled constant. It is
easy to check that there must exist 1 < ¢ < 1.543 for any K > 1. Thus we have the accumulation

term as Zi:ol Mt = cuIn(K + 1). For the n(K, t) term, we have its upper bound:

K—-1 k—1
7

K, t) = . el
S I (s )-wzmn (m)

K-1 ’ k—1 1 mho g

k=1 7=0 k=0

K-1 K 1

=u Y (k+1)* ! < u/ (k+ 1) ak = = (1 + Kt 1),
k=0 k=0 ¢

The first inequality adopts 1 + = < e” and the last adopts the concavity. Actually, we still can learn
its general lower bound by a scaling constant. By adopting a scaling b, we can have 1 + 2 > @,

which is equal to b < w It is also easy to check 0.693 < b < 1 when 0 < z < 1. Thus we
have:

n(K,t) = p Kz_: 1i[<1+>_u+zk+1ﬂ (j“bfl>
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pubL

K1, =l K-
— nbL
_“+Zk+1 Zgﬁ Z [exp (cIn(k +1))]
k=1 7=0 k=0
K- K—1
_ 1

o (k+ 1)Lt > M/ (e + 1)L~ g, — JoHbL

0 k=—1 cbL

The last inequality also adopts concavity. Through this simple scaling, we learn the general bounds
for the learning rate function (K, t) as:

cubL 1 cpul
chK n(K.t) < — ((1+ K) 1), (28)
where 1 < ¢ < 1.543,0.693 < b < land p < % (this condition is almost universally satisfied in
current optimization theories). Although we cannot precisely find the tight bound of this function
n(K,t), we can still treat it as a form based on constants to complete the subsequent analysis, i.e. it
could be approximated as a larger upper bound % ((1 + K)erl — 1). More importantly, we have
determined that this learning rate function still diverges as K increases.

Stage-wise decaying learning rates This is one of the most common selections of learning rate
in the current federated community, which is commonly applied in “cross-silo" scenarios [Kairouz
et al., 2021]. When the client pool is not very large, clients who participate in the training often aim
to establish long-term cooperation to continuously improve their models. Therefore, each client will
contribute to the entire training process over a long period. From a learning perspective, local training
is more like exploring the path to a local optimum rather than actually achieving the local optimum.
Therefore, each local training will adopt a constant learning rate and perform several update steps, i.e.
Nt = M. At each communication round, the learning rate decays once and continues to the next

stage, i e N = t +1 Based on the analysis of the constant learning rate, the accumulation term is

Yhso Mt = 1. For the (K, t) term, we have:

y S R L
K t) =t AT (14 B
) =g+ t—i—lH( +t+1>
k=1 7=0
1

I
Tl=
+\h
—_
B =
I8 [
7 N

_l’_
RS
+\h

—_
N———
=

Il
e~ =

VR
VS
[
_|_
RS
+\h

—
N———
=
|
N——

It can be seen that the analysis of this function is more challenging because the learning rate function
n(K,t) is decided by ¢, which introduces complexity to the subsequent analysis. We will explain this
in detail in the subsequent discussion.

Continuously decaying learning rates This is a common selection of learning rate in the federated
community, involving dual learning rate decay along both local training and global training. This
can almost be applied to all methods to adapt to the final training, including both the cross-silo and
cross-device cases. At the same time, its analysis is also more challenging because the learning rate
is coupled with communication rounds and local iterations, yielding new upper and lower bounds.

We consider the general case 7y, ; = ﬁ Therefore, the accumulation term can be bounded as:
~ /K L o (KA E+]
- dk=In( =TT
tK+k+1 w0 tK +Ek+1 tK+1 ’

1 o1 +/Kl L S 47§
tK+k+1 tK+1 Jo_y tK+k+1 tK+1 tK+1)"

EM7 M

Similarly, when K is large enough, this term is dominated by O (1n (Hl )) For simplicity in the

t+1
It is also easy to check that z > 1 is a constant for any K > 1. And z is also a constant. It means

subsequent proof, we follow the process above and let it be z In (t+2> to include the term at ¢ = 0.
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697 we can always select the lower bound as its representation. Therefore, for the learning rate function
ess  1(K,t), we have:

K-1 k—1

Iz Iz pL
Kt) = I 14—
n(#, 1) tK+1+§tK+k+ljlj[o( +tK+j+1)
nL
1 K-1 " k—1 1
< 7 -
—tK+1+;tK+k+1 <P j;)tK+j+1
K—-1 L
tK +k+1 K
1 -
+;tK+k+1[eXp<Zn< 1K + 1 >)]
M K-—1
PN K k1)
(tK—i—l)z"LZ )

K zpL
1 tK+K+1
g%/ (tK +k+ 1) dk = BEATE ).
(tK +1)**" Jr=o 2L tK+1

699 Similarly, we introduce the coefficient b to provide the lower bound as:

n(K,t)
K—-1 k—1

Iz 7 pL
S 14 P2
tK+1+I;tK+k+1E)( +sz+j+1)

i K—1 M k—1 1 ubL
> N -
_ﬁK+1+;tK+k+1 CXP jz:(:)tK-i-j-i-l

K-1 pubL
“ I tK+k+1
= _ 1 _
tK+1+;tK+k+1[eXp<zn< K41
y K-1
S e — (tK + k + 1)*0F1
(tK—Fl)Z,LbLZ )

K—1 zpubL zpubL
bl — 1 tK+ K tK
z%/ (tK +k+ 1) dk = — < ha ) —( )
(tK + 1" Je=—1 2bL tK +1 tK +1

_ 1 ((tE+K #ubL .
zbL tK +1 '

700 Through the sample scaling, we learn the general bounds for the learning rate function n( K, t) as

1 tK + K\ " 1 tK + K + 1\
— -1 K< — (22272 -1 2
sz((tK+1) <nK.t) <7 ( K +1 ) @

701 where 1 < 2,0.693 <b<landp < + Obv1ous1y, when K is large enough, the learning rate term

nL
702 is still dominated by O <(iﬁ) — 1) . Therefore, to learn the general cases, we can consider the

zpL
703 specific form of the learning rate function based on the constant scaling as + <(§ﬁ) - 1) . As

704 t increases, this function will approach zero.
705

706 on the Noisy-FedProx Method:
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In this part, we will address the differential privacy analysis of a noisy version of another classical
federated learning optimization method, i.e. the Noisy-FedProx method. The vanilla FedProx
method is an optimization algorithm designed for cross-silo federated learning, particularly to address
the challenges caused by data heterogeneity across different clients. Unlike traditional federated
learning algorithms like FedAvg, which can struggle with variations in data distribution, it introduces
a proximal term to the objective function. This helps to stabilize the training process and improve
convergence. Specifically, it adopts the consistency as the penalized term to correct the local objective:

) o
ngnfi(w)—&—iﬂw—thQ. (30)

The proximal term is a very common regularization term in federated learning and has been widely
used in both federated learning and personalized federated learning approaches. It introduces an
additional penalty to the local objective, ensuring that local updates are optimized towards the
local optimal solution while being subject to an extra global constraint, i.e. each local update does
not stray too far from the initialization point. In fact, there are many optimization methods that
apply such regularization terms. For example, various federated primal-dual methods based on
the ADMM approach construct local Lagrangian functions, and in personalized federated learning,
local privatization regularization terms are introduced to differentiate from the vanilla consistency
objective. The analysis of the above methods is fundamentally based on a correct understanding of
the advantages and significance of the proximal term in stability error. In this paper, to achieve a
cross-comparison while maintaining generality, we consider the optimization process of local training
as total K -step updates:

K-1

1
Slwe) =wi——> > et (Vfilwigs€) + o (wigs —wr)). 31)

i€Z k=0

Here, we also employ the proofs mentioned in the previous section, and our study of the difference
term is based on both data sensitivity and model sensitivity perspectives. We provide these two main
lemmas as follows.

Lemma 8 (Data Sensitivity.) The local data sensitivity of the Noisy-FedProx method at t-th com-
munication round can be upper bounded as:

lo(wn) — &' (wo)] < 22 32)

mao

Proof. We first consider a single step in Eq.(31) as:
Wi gt 1,t = Wikt — Myt (Vfi(Wi k1, €) + a(wi g — we)) -

The proximal term brings more opportunities to enhance the analysis of local updates. We can split
the proximal term and subtract the wy term on both sides, resulting in a recursive formula for the
cumulative update term:

Wi k1,0 — We = (L — Mg ) (Wit — wi) — Mt V i (Wi ot €)-

The above equation indicates that a reduction factor 1 — ny ca < 1 can limit the scale of local
updates. This is a very good property, allowing us to shift the analysis of the data sensitivity to their
relationship of local updates. According to the above, we can upper bound the gaps between {w; i +}
and {; 1, +} sequences as:
[ (wi k1,6 = we) = (Wi kg1t — we) |

= 11 = mee) (Wit — we) = (Wit — we)] = Mot (V fi (Wit €) = V fi(Wi e, €)) |

< (1= k) | (Wi — we) — (Wi e — we) | + 0|V fi(wi e, €) = V fi(i e, €|

< (1= mepa) || (wik,e — we) = (Wi g — we) | + 20k, V.
Different from proofs in Lemma 6, the term 1 — ny, o can further decrease the stability gap during
accumulation. By summing form k = 0 to K — 1, we can obtain:

[(wi, k¢ = we) = (Wi rcp = wi)|
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K-1 K-1 K-1
< TT (0= meea) [(wio.0 — wi) = (i0,0 — we)|| + II G —njea) | 2m:V
k=0 k=0 \j=k+1
K-1 K-1
=2y | I A =njec) | mies-
k=0 \j=k+1

742 Here, we provide a simple proof using a constant learning rate to demonstrate that its upper bound
743 can be independent of K. By considering ny, ¢+ = |1, we have:

K—1 [ K-1 K-1 [ K-1
1—(1—pa)® 1
FECRIPS) ENES ol (5 ICIE) PR

k=0 \j=k+1 k=0 \j=k+1

744 In fact, when the learning rate decays with k, it can still be easily proven to have a constant upper
745 bound. Therefore, in the subsequent proofs, we directly use the form of this constant upper bound
746 as the result of data sensitivity in the Noisy-FedProz method. Based on the definition of ¢p(w), we
747 have:

lp(we) — &' (we)ll = [ (d(we) — we) = (¢ (wr) —wy) || = II% Y lwiks = we) = (@ixe — w)] |

1 R 2V
= — i* — — (w;* — < —.
m|| (wis Kt — we) — (Wix k0 — we) || -

748 This completes the proofs.

749

750 Lemma 9 (Model Sensitivity.) The local model sensitivity of the Noisy-FedProx method at t-th
751 communication round can be upper bounded as:

16/ (wy) — &' (@) < — [[wy — @] (33)
ar

752 Proof. We also adopt the splitting above. Since both sequences are trained on the same dataset, the
753  gradient difference can be measured by the parameter difference. Therefore, we directly consider the
754  form of the parameter difference:

Wi k1,6 — Wi kg1,

(1 = mep0) (Wit — Wieyt) — Mt (V fi (Wit €") = Vi (Wi eyt €7)) — miepr(wy — wy) ||
< (1 — e 0) || s 1,6 — Wi kot || + 1ie,e Ll Wi o — Wi, — wy|

= (I = nrarp) ||Wi g, — Wikt | + nreceljwe — wel|,

755  where ap, = o — L is a constant. Here, we consider o« > L. When o < L, its upper bound can
756 not be guaranteed to be reduced. When o« > L, it can restore the property of decayed stability. By
757 summing from k = 0 to K — 1, we can obtain:

l|0i 5t — Wi et |

K-1 K-1 K-1
< [T = merar)ldios —@ioel + > | ] (0= meear) | meialw, — @l
k=0 k=0 j=k+1
K-1 K-1 [ K-1
= | [T =merar)+ D | T] (0= mesen) | mese| lwr — @
k=0 k=0 \j=k+1

758 Similarly, we learn the upper bound from a simple constant learning rate. By select ny,; = p, we
759 have:

K-1 K-1 K-1
[T =mear)+ > T (0= mesear) | mesa
k=0 k=0 \j=k+1
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The same, it can also be checked that the general upper bound of the stability gaps is a constant
even if the learning rate is selected to be decayed along iteration k. Therefore, in the subsequent
proofs, we directly use the form of this constant upper bound as the result of model sensitivity in the
Noisy-FedProz method. Based on the definition of ¢(w), we have:

— 1
19/ (we) — ¢' (@) | = II%Z(wzm — Wi k) || < EZ @i, x¢ =

i€l €T

— w.
This completes the proofs.

C.3 Solution of Eq. (13)
According to the recurrence relation in Lemma 5, we can confine the privacy amplification process to

a finite number of steps with the aid of an interpolation sequence, yielding to the convergent bound.
Therefore, we have:

T (wr;wy) = T (Wr; wr)
~ ’ Vm e
Z'T(leﬂﬂTﬁcgjb’<aAT|¢(wT1)—-¢(wT1))

> 7 (@y5u,) 0+ 0 T (LA otwr-) - ¢ (@r-1))

=T (why ) © T | VS o) — (@)

t=to
T-1
Vm _ 2
=l D AR (pillwe — @l + )
t=to

Although the above form appears promising, an inappropriate selection of the key parameters will
still cause divergence due to the recurrence term coefficient 1 + n(K,t)L > 1, leading it to approach
infinity as ¢ increases. For instance, small £y will result in a significantly increased A and the bound
will be closed to the stability gap ||wr — w/-||, and large to will result in a long accumulation of the
stability gaps, which is also unsatisfied. At the same time, it is also crucial to choose appropriate
A to ensure that the stability accumulation can be reasonably diluted. Therefore, we also need
to thoroughly investigate how significant the stability gap caused by the interpolation points is.
According to Eq.(21) and (22), we have:

[wepr — W]l < (1= Aepa) (pellwe — wel| +72) -
The above relationship further constrains the stability of the interpolation sequence. It is worth noting
that the upper bound of the final step is independent of the choice of A. At the same time, since all
terms are positive, given a group of specific A, taking the upper bound at each possible ¢ will result in
the maximum error accumulation. This is also the worst-case privacy we have constructed. Therefore,
solving the worst privacy could be considered as solving the following problem:

~ 2
w Wy || + R
{)\t+1}t0 {”wt th Z t+1 Pt|| t— t|| ’Yt)

(34)

worst privacy

tight privacy lower bound

st fJwirr — Wegr ]| < (1= Aeyr) (pellwe — W] + 1) -
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Based on the above analysis, this problem can be directly transformed into a privacy minimization
problem when the interpolation sequence reaches the maximum stability error. Therefore, we just
need to solve the following problem:

T-1
min A2 wy — We|| +1)° ,
{At+1}’t01fzzto t+1 (el [we ¢l +7e) (35)

st Jwipr — Wigrll = (1= A1) (pellwe — well + 1) -

It is important to note that this upper bound condition is usually loose because the probability that the
interpolation terms simultaneously reach their maximum deviation is very low. This is merely the
theoretical worst-case privacy scenario.

Then we solve the minimization problem. By considering the worst stability conditions, we can
provide the relationship between the gaps and coefficients \¢4 1 as:
lwisr = Wit || = pellwe — wel| + v — Avsr (pellwe — we|l + 7).

Expanding it from ¢ = t( to T', we have:

T-1 T-1 T-1
0= [lwr —wrl| = (H Pt) | wey — W, || + Z H pi | e = A1 (pellwe — Wl + 7)) -

t=to t=to \Jj=t+1

Due to the term Ay (p¢||wr — W] + 7¢) being part of the analytical form of the minimization
objective, we preserve the integrity of this algebraic form and only split it from the perspectives of
coefficients \;, p; and ;. According to the definition w;, = w{o, then we have:

-1 [ T-1 T—1 T7-1 [ T-1
Z H pi | At (pellwe — wel| + 7)) = (H Pt) [[we, —wi, ||+ H pj | Ve (36)

t=to \j=t+1 t=to t=to \j=t+1

The above equation presents the summation of the term A1 (p¢||wy — We|| + 7¢) accompanied by
a scaling coefficient (HJT;}_H pj) > 1. It naturally transforms the summation form into an initial

stability gap and a constant term achieved through a combination of learning rates. To solve it, we
can directly adopt the Cauchy-Schwarz inequality to separate the terms and construct a constant term
based on the form of the scaling coefficient to find its achievable lower bound:

T-1
~ 2
> A2 (pellwe — @l + )
t=to
2 2
T-1 T-1 T-1 T-1
2 Z H pi | At (pellwe — well 4 ve) H Pj
t=to \j=t+1 t=ty \j=t+1
2
T—1 7-1 [ T-1 7-1 [ T-1
()it X (T o)) (2 (T
t=to t=ty \j=t+1 t=ty \j=t+1

Although the original problem requires solving the A, 1, here we can know one possible minimum
form of the problem no longer includes this parameter. In fact, this parameter has been transformed
into the optimality condition of the Cauchy-Schwarz inequality.

Therefore, we only need to optimize it w.r.t the parameter to. Unfortunately, this part highly
correlates with the stability gaps ||wy, —wy ||. Current research progress indicates that in non-convex
optimization, this term diverges as the number of training rounds ¢ increases. This makes it difficult
for us to accurately quantify its specific impact on the privacy bound. If ¢; is very small, it means
that the introduced stability gap will also be very small. However, consequently, the coefficients of
the p; and ~y; terms will increase due to the accumulation over 1" — £ rounds. To detail this, we have
to make certain compromises. Because ¢y is an integer belonging to [0, 7' — 1], we denote its optimal
selection by ¢* (it certainly exists when 7" is given). Therefore, the privacy lower bound under other
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sto  choices of ¢y will certainly be more relaxed, i.e. Privacy, < Privacy,. (privacy is weak at other
811 selection of ¢p). This allows us to look for other asymptotic solutions instead of finding the optimal
812 solution. Although we cannot ultimately achieve the form of the optimal solution, we can still provide
813  a stable privacy lower bound. To eliminate the impact of stability error, we directly choose ¢y = 0,
814 yielding the following bound:

T-1 7-1 [ T-1 2 (ro [ 121
ozt (T o)ttt + X (T o)) (S (Te) | 1,
t=tg t=to \j=t+1 t=to \j=t+1 0=
2
-1 [ T-1 7-1 [ T-1
(X a)) (ST s
t=0 \j=t+1 t=0 \j=t+1

815 By substituting the values of p; and v, under different cases, then we can prove the main theorems in
816 this paper.
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7 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have outlined the core contributions of this paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the relaxed components in the theoretical analysis and provided
auxiliary arguments to ensure the correctness of the conclusions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide a comprehensive proof for the main theorems.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the necessary information for reproducibility.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide all the necessary information for reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the necessary information for reproducibility.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviation in our evaluations.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Our experimental scale is relatively small, and they are easy to reproduce.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Fully compliant.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The core contribution of our paper lies in machine learning theory.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all related papers and show our respects to those studies.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	General FL-DP framework
	DP and f-DP

	Convergent Privacy
	Shifted Interpolation
	Global Sensitivity
	Minimization Problem on t0 and Its Relaxation
	Convergent Privacy

	Empirical Validation
	Summary
	General FL-DP Framework
	Preliminary Properties of f-DP
	Proof of Main Theorems
	Proofs of Theorem 1
	Proofs of Theorem 2
	Solution of Eq. (13)


