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Abstract

The powerful cooperation of federated learning (FL) and differential privacy (DP)1

provides a promising paradigm for the large-scale private clients. However, existing2

analyses in FL-DP mostly rely on the composition theorem and cannot tightly quan-3

tify the privacy leakage challenges, which is tight for a few communication rounds4

but yields an arbitrarily loose and divergent bound eventually. This also implies5

a counterintuitive judgment, suggesting that FL-DP may not provide adequate6

privacy support during long-term training under constant-level noisy perturbations,7

yielding discrepancy between the theoretical and experimental results. To further8

investigate the convergent privacy and reliability of the FL-DP framework, in this9

paper, we comprehensively evaluate the worst privacy of two classical methods10

under the non-convex and smooth objectives based on the f -DP analysis. With11

the aid of the shifted interpolation technique, we successfully prove that privacy in12

Noisy-FedAvg has a tight convergent bound. Moreover, with the regularization13

of the proxy term, privacy in Noisy-FedProx has a stable constant lower bound.14

Our analysis further demonstrates a solid theoretical foundation for the reliability15

of privacy in FL-DP. Meanwhile, our conclusions can also be losslessly converted16

to other classical DP analytical frameworks, e.g. (ϵ, δ)-DP and Rényi-DP (RDP),17

to provide more fine-grained understandings for the FL-DP frameworks.18

1 Introduction19

Since McMahan et al. [2017] proposes the FedAvg method as a general FL framework, it has been20

widely developed into a collaborative training standard with privacy protection attributes, which21

successfully avoids direct leakage of sensitive data. As research on privacy progresses, researchers22

have found that standard FL frameworks still face a threat from indirect leakage. Attackers can23

potentially recover local private data through reverse inference by persistently stealing model states24

via model (gradient) inversion attacks [Geiping et al., 2020] or distinguish whether individuals are25

involved in the training via membership inference attacks [Nasr et al., 2019]. To further strengthen26

the reliability of FL, DP [Dwork, 2006, Dwork et al., 2014, Abadi et al., 2016] has naturally been27

incorporated into the FL framework, yielding FL-DP [Wei et al., 2020]. As a primary technique, the28

noisy perturbation is widely applied in various advanced FL methods to further enhance its security.29

However, the theoretical analysis of the FL-DP framework, especially in evaluating the privacy30

levels, is currently unable to provide a comprehensive understanding of its proper application. Most31

of the previous works are built upon the foundational lemma of privacy amplification by iteration,32

directly resulting in divergent privacy bound as the training communication round T becomes large.33

This implies an inference that contradicts intuition and empirical studies, which is, that the FL-DP34

framework may completely lose its privacy protection attributes as T → ∞. Such a conclusion is35

almost unacceptable for FL-DP. Therefore, establishing a precise and tight analysis is a crucial target.36
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Table 1: The worst privacy of the Noisy-FedAvg and Noisy-FedProx methods in our analysis. V is
the norm of clip gradient. K,T are local training interval and communication round. σ is the variance
of the noise. The trade-off function TG(·) [a] is defined in Definition 4. µ, c and z are constants.

Lr [b] Worst Privacy Convergent?
on T → ∞

Convergent?
on K → ∞

Noisy
FedAvg

C TG

(
2µVK√

mσ

√
(1+µL)K+1
(1+µL)K−1

(1+µL)KT−1
(1+µL)KT+1

)
CD TG

(
2cV ln(K+1)√

mσ

√
(1+K)cµL+1
(1+K)cµL−1

(1+K)cµLT−1
(1+K)cµLT+1

)
SD TG

(
2µVK√

mσ

√
2− 1

T

)
ID TG

(
2zV√
mσ

√
2− 1

T

)
Noisy

FedProx TG

(
2V√
mασ

√
2α−L

L

√
αT−(α−L)T

αT+(α−L)T

)
[a] For the trade-off function TG(s), smaller s means stronger privacy.
[b] Learning rate decaying policy. C: constant learning rate; CD: cyclically decaying; SD:
stage-wise decaying; ID: iteratively decaying. More details are stated in Theorem 3 4.

Notably, significant progress has been made in characterizing convergent privacy in the noisy gradient37

descent method in RDP analysis [Chourasia et al., 2021, Ye and Shokri, 2022, Altschuler and Talwar,38

2022, Altschuler et al., 2024]. However, due to the challenges and intricacies of the analytical39

techniques adopted, similar results have not yet successfully been extended to the FL-DP. The multi-40

step local updates on heterogeneous datasets lead to biased local models, posing significant obstacles41

to the analysis. Recently, analyses based on f -DP [Dong et al., 2022] have brought a promising42

resolution to this challenge. This information-theoretically lossless definition naturally evaluates43

privacy by the Type I / II error trade-off curve of the hypothesis testing problem about whether a44

given individual is in the training dataset. Combined with shifted interpolation techniques [Bok et al.,45

2024], it successfully recovers tighter convergent privacy for strongly convex and convex objectives46

in noisy gradient descent methods. This may make it possible to quantify convergent privacy in47

FL-DP and may offer novel understandings about impacts of some key hyperparameters.48

In this paper, we investigate the privacy of two classic DP-FL methods, i.e. Noisy-FedAvg and49

Noisy-FedProx and successfully evaluate their worst privacy in the f -DP analysis, as shown in50

Table 1. For the Noisy-FedAvg method, we investigate four typical learning rate decay strategies51

and provide the coefficients corresponding to each case to ensure a tighter privacy lower bound. We52

also prove that its iterative privacy on non-convex and smooth objectives could not diverge w.r.t.53

the number of communication rounds T , i.e., a convergent privacy. To the best of our knowledge,54

this contributes the first convergent privacy analysis in FL-DP methods for non-convex functions.55

Furthermore, by exploring the decay properties of the proximal term in Noisy-FedProx, we prove56

that its worst privacy can converge to a general constant lower bound. Our analysis successfully57

challenges the long-standing belief that privacy budgets of FL-DP have to increase as training58

processes and provides reliable guarantees for its privacy protection ability. At the same time, the59

exploration from the proximal term provides a promising solution, suggesting that a well-designed60

local regularization term can achieve a win-win solution for both optimization and privacy in FL-DP.61

2 Related Work62

Federated Learning. FL is a classic learning paradigm that protects local privacy. Since McMahan63

et al. [2017] proposes the basic framework, it has been widely studied in several communities. As its64

foundational study, the local-SGD [Stich, 2019, Lin et al., 2019, Woodworth et al., 2020, Gorbunov65

et al., 2021] method fully demonstrates the efficiency of local training. Based on this, FL further66

considers the impacts of heterogeneous private datasets and communication bottlenecks [Wang et al.,67

2020, Chen et al., 2021, Kairouz et al., 2021]. To address these two basic issues, a series of studies68

have explored these processes from different perspectives. One approach involves proposing better69
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optimization algorithms by defining concepts such as client drift [Karimireddy et al., 2020] and70

heterogeneity similarity [Mendieta et al., 2022], specifically targeting and resolving the additional71

error terms they cause. This mainly includes the natural application and expansion of variance-72

reduction optimizers [Jhunjhunwala et al., 2022, Malinovsky et al., 2022, Li et al., 2023], the flexible73

implementation of the advanced primal-dual methods [Zhang et al., 2021c, Wang et al., 2022, Sun74

et al., 2023b, Mishchenko et al., 2022, Grudzień et al., 2023, Acar et al., Sun et al., 2023a], and the75

additional deployment of the momentum-based correction [Liu et al., 2020, Khanduri et al., 2021,76

Das et al., 2022, Sun et al., 2023c, 2024]. Upgraded optimizers allow the aggregation frequency77

to largely decrease while maintaining convergence. Another approach primarily focuses on sparse78

training and quantization to reduce communication bits [Reisizadeh et al., 2020, Shlezinger et al.,79

2020, Dai et al., 2022]. Additionally, research based on data domain and feature domain has also80

made significant contributions to the FL community [Yao et al., 2019, Zhang et al., 2021a, Xu et al.].81

FL-DP. DP is a natural privacy-preserving framework with theoretical foundations [Dwork et al.,82

2006b,a, Dwork, 2006]. As one of the main algorithms for differential privacy, noise perturbation83

has achieved great success in deep learning [Abadi et al., 2016, Zhao et al., 2019, Arachchige et al.,84

2019, Wu et al., 2020]. Combining this, FL-DP adds noise before transmitting their variables, i.e.85

client-level noises [Geyer et al., 2017] and server-level noises [Wei et al., 2020]. Since there is no86

fundamental difference between the analysis of them, in this paper, we mainly consider client-level87

noises. One major research direction involves conducting noise testing on widely developed federated88

optimization algorithms [Zhu et al., 2021, Noble et al., 2022, Lowy et al., 2023, Zhang and Tang,89

2022, Yang and Wu, 2023], and evaluating the performance of different methods under DP noises90

through convergence analysis and privacy analysis. Another research direction involves injecting91

noise into real-world systems to address practical challenges, which primarily focuses on personalized92

scenarios [Hu et al., 2020, Yang et al., 2021, 2023, Wei et al., 2023], decentralized scenarios [Wittkopp93

and Acker, 2020, Chen et al., 2022, Gao et al., 2023, Shi et al., 2023], and adaptive or asymmetric94

update scenarios [Girgis et al., 2021, Wu et al., 2022, He et al., 2023]. FL-DP has been extensively95

tested across various scales of tasks and has successfully validated its robust local privacy protection96

capabilities. At the same time, the theoretical analysis of FL-DP has been progressing systematically97

and in tandem. Based on various DP relaxations, they provide a comparison of privacy performance98

by analyzing concepts such as privacy budgets, and further understand the specific attributes of99

privacy algorithms [Rodríguez-Barroso et al., 2020, Wei et al., 2021, Kim et al., 2021, Zheng et al.,100

2021, Ling et al., 2024, Jiao et al., 2024]. Theoretical advancements in DP have revolutionized how101

we could quantify and safeguard privacy, offering unprecedented precision and robustness.102

3 Preliminaries103

Notations. In the subsequent content, we use italics for scalars and denote the integer set from 1 to a104

by [a]. All sequences of variables are represented in subscript, e.g. wi,k,t. For arithmetic operators,105

unless specifically stated otherwise, the calculations are performed element-wise. Other symbols106

used in this paper will be explicitly defined when they are first introduced.107

3.1 General FL-DP framework108

We consider the general finite-sum minimization problem in the classical federated learning:109

w⋆ ∈ argmin
w

f(w) ≜
1

m

∑
i∈I

fi(w), (1)

where fi(w) = Eε∼Di
[fi(w, ε)] denotes the local population risk. w ∈ Rd denotes d-dim learnable110

parameters. ε ∼ Di denotes that the private dataset on client i is sampled from distribution Di. We111

consider the general heterogeneity, i.e. Di can differ from Dj if i ̸= j, leading to fi(w) ̸= fj(w).112

In our analysis, we consider the FL-DP framework with the classical client-level Gaussian noises.113

The FL training process remains consistent with standard training procedures. The local clients114

enhance local privacy by adding isotropic Gaussian noises to the uploaded model parameters, i.e.115

ni ∼ N (0, σ2Id). Then the global server aggregates the noisy parameters as the global model wt+1.116

Due to the page limitation, details of the algorithmic implementation are deferred to the Appendix A.117

Noisy-FedAvg: we consider that each local client performs a fundamental gradient descent as follows:118

wi,k+1,t = wi,k,t − ηk,tgi,k,t, (2)
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where gi,k,t = ∇fi(wi,k,t, ε)/max{1, ∥∇fi(wi,k,t,ε)∥
V }, and V is a constant coefficient.119

Noisy-FedProx: The vanilla local training in FedProx is based on solving the following surrogate:120

min
w

fi(w) +
α

2
∥w − wt∥2. (3)

To generally compare with Noisy-FedAvg, we consider an iterative form of gradient descent as:121

wi,k+1,t = wi,k,t − ηk,t [gi,k,t + α(wi,k,t − wt)] . (4)

3.2 DP and f -DP122

Definition 1 We denote heterogeneous datasets on the client i by Si = {εij} and let the union of all123

local datasets be C = {Si}. We say two unions are adjacent datasets if they only differ by one data124

sample. For instance, there exists the union C′ = {S ′
i}. (C, C′) are adjacent datasets if there exists125

the index pair (i⋆, j⋆) such that all other data samples are the same except for εi⋆j⋆ ̸= ε′i⋆j⋆ .126

Definition 2 A randomized mechanism M is (ϵ, δ)-DP if for any event E the following satisfies:127

P (M(C) ∈ E) ≤ eϵP (M(C′) ∈ E) + δ. (5)

Definition 2 is the widely used (ϵ, δ)-DP, which is a lossy relaxation in the DP analysis since its128

probabilistic gaps. To bridge the discrepancy of precise DP definitions, statistic analysis demonstrates129

that DP could be naturally deduced by hypothesis-testing problems [Wasserman and Zhou, 2010,130

Kairouz et al., 2015]. From the perspective of attackers, DP means the difficulty in distinguishing C131

and C′ under the mechanism M. They can generally consider the following problem:132

Given M, is the underlying union C (H0) or C′ (H1)?133

To exactly quantify the difficulty of its answer, Dong et al. [2022] propose that distinguishing these134

two hypotheses could be best delineated by the optimal trade-off between the possible type I and type135

II errors. Specifically, by considering rejection rules 0 ≤ χ ≤ 1, type I and type II errors can be:136

EI = EM(C) [χ] , EII = 1− EM(C′) [χ] , (6)

Here, we abuse M(C) to represent its probability distribution. To measure the fine-grained relation-137

ships between these two testing errors, f -DP is introduced.138

Definition 3 (Trade-off function) For any two probability distributions P and Q, the trade-off139

function is defined as: T (P ;Q)(γ) = inf {1− EQ [χ] | EP [χ] ≤ γ}, where the infimum is taken140

over all measurable rejection rules.141

T (P ;Q)(γ) is convex, continuous, and non-increasing. For any possible rejection rules, it satisfies142

T (P ;Q)(γ) ≤ 1− γ. It functions as the clear boundary between the achievable and unachievable143

selections of type I and type II errors, essentially distinguishing the difficulties between these two144

hypotheses. This relevant statistical property provides a stricter definition of privacy, which mitigates145

the excessive relaxation of privacy based on composition analysis in existing approaches.146

Definition 4 (f -DP and GDP) A mechanism M is f -DP if T (M(C),M(C′))(γ) ≥ f(γ) for all147

possible adjacent datasets C and C′. When f measures two Gaussian distributions, namely Gaussian-148

DP (GDP), denoted as TG(µ)(γ) ≜ T (N (0, 1),N (µ, 1)) (γ) for µ ≥ 0.149

According to the definition, the explicit representation of GDP is TG(µ)(γ) = Φ(Φ−1(1− γ)− µ)150

where Φ denotes the standard Gaussian CDF. Any single sampling mechanism that introduces Gaus-151

sian noises can be considered as an exact GDP, which monotonically decreases when µ increases.152

4 Convergent Privacy153

In this section, we primarily demonstrate how to provide the worst privacy in FL-DP and its convergent154

bound. Generally, we assume that local objectives satisfy smoothness with a constant L,155

Assumption 1 Each local objective function fi(·) satisfies L-smoothness, i.e.,156

∥∇fi(w1)−∇fi(w2)∥ ≤ L∥w1 − w2∥. (7)
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Figure 1: Left: The global privacy amplification path induced by the shifted interpolation sequence.
Right: Estimation of the global sensitivity under local updates via an auxiliary sequence.

4.1 Shifted Interpolation157

To simplify presentations, we denote global updates at round t on the adjacent datasets C and C′ as:158

C : wt+1 = ϕ(wt) + nt, C′ : w′
t+1 = ϕ′(w′

t) + n′
t. (8)

ϕ(wt) denotes the accumulation of total K steps from the initialization state wi,0,t = wt at round t.159

nt could be considered as the averaged noise, i.e. nt ∼ N (0, σ2Id/m). Traditional methods require160

performing privacy amplification T times based on the relationship between w and w′, yielding161

non-convergent privacy as T . To avoid loose privacy amplification, we follow Bok et al. [2024] to162

adopt the shifted interpolation technique. Specifically, we define the following sequence:163

w̃t+1 = λt+1ϕ(wt) + (1− λt+1)ϕ
′(w̃t) + nt, (9)

where t = t0, · · · , T −1. By setting λT = 1, then w̃T = wT , and we add the definition of w̃t0 = w′
t0164

as the beginning of interpolations. 0 ≤ λt ≤ 1 are interpolation coefficients to be optimized. As165

shown in Figure 1 (left), the interpolation sequence path enables a privacy amplification analysis166

over T − t0 times where t0 is an optimizable coefficient. Therefore, we can establish the following167

theorem along this new privacy amplification path.168

Theorem 1 Under Assumption 1 and corresponding updates in Eq.(8), After T training rounds on169

the adjacent datasets C and C′, we can bound the trade-off function between wT and w′
T as:170

T (wT ;w
′
T ) = T (w̃T ;w

′
T ) ≥ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1∥ϕ(wt)− ϕ′(w̃t)∥2

 . (10)

In addition to the influence of standard parameters, Theorem 1 highlights the critical relationship171

between the privacy lower bound and the weighted sum of global sensitivity terms from t0 to T .172

Therefore, we then analyze the global sensitivity term ∥ϕ(wt)− ϕ′(w̃t)∥.173

4.2 Global Sensitivity174

The sensitivity term ∥ϕ(wt)−ϕ′(w̃t)∥2 means the stability gaps between wt and w̃t after performing175

local training on datasets C and C′ respectively. It is influenced by both the model parameters and176

the data samples, making the analysis extremely challenging. To achieve a fine-grained analysis, we177

propose an auxiliary sequence ϕ′(wt). As shown in Figure 1 (right), the global sensitivity can be split178

into data sensitivity and model sensitivity. The data sensitivity measures the estimable errors obtained179

after training on different datasets for several steps from the same initialization. This discrepancy is180

solely caused by the data. The model sensitivity measures the estimable errors of the updates when181

two different initialized states are trained on the same dataset. Clearly, this discrepancy is directly182

related to the degree of similarity between the two initializations. Thus, we have:183

Theorem 2 Under K local updates by Eq.(2) and Eq.(4), the global sensitivity in Noisy-FedAvg184

and Noisy-FedProx methods can be shown as:185

∥ϕ(wt)− ϕ′(w̃t)∥ ≤ ρt∥wt − w̃t∥︸ ︷︷ ︸
from model sensitivity

+ γt︸︷︷︸
from data sensitivity

, (11)

where ρt and γt are shown in Table 2.186

5



Table 2: Specific formulation of ρt and γt in Theorem 2.

Learning rate ρt γt

Noisy-FedAvg

µ (1 + µL)
K 2µV

m K

µ
k+1 (1 +K)

cµL 2cV
m ln(K + 1)

µ
t+1

(
1 + µL

t+1

)K
2µV
m

K
t+1

µ
tK+k+1

(
t+2
t+1

)zµL
2zV
m ln

(
t+2
t+1

)
Noisy-FedProx non-increase α

α−L
2V
mα

Remark 2.1 The result in Eq.(11) aligns with the intuition of designing the splitting operators. It can187

be observed that the coefficient ρt is consistently greater than 1, which is a typical characteristic of188

non-convexity. It also implies that the sensitivity upper bound tends to diverge as t → ∞. However, in189

Eq.(10), the parameters 0 ≤ λt ≤ 1 can efficiently scale the sensitivity terms. By carefully selecting190

the optimal λt values, it can ultimately achieve a convergent privacy lower bound.191

4.3 Minimization Problem on t0 and Its Relaxation192

According to Eq.(10) and the sensitivity bound in Eq.(11), we denote the weighted accumulation of193

the sensitivity term as H(λt, t0), where λt and t0 are both to-be-optimized parameters. Therefore,194

we can provide the tight bound of the privacy by solving the minimization of the following problem:195

H⋆ = min
λt,t0

H(λt, t0) ≜
T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
. (12)

If t0 is very small, it means that the introduced stability gap will also be very small. However,196

consequently, the sensitivity terms will extremely increase due to the accumulation over T−t0 rounds.197

Conversely, although the accumulated error is small, it remains divergent due to the unbounded global198

sensitivity term. To avoid this uncertain analysis, we have to make a compromise. Because t0 is an199

integer belonging to [0, T − 1], its optimal selection certainly exists when T is given. Therefore, we200

consider a relaxed and simple problem instead, i.e. under t0 = 0,201

H0 = min
λt

H(λt, 0) =

T−1∑
t=0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
. (13)

Its advantage lies in the fact that when t0 = 0, the sensitivity error is 0, avoiding its divergence.202

Compared to the optimal solution H⋆, it satisfies H0 ≥ H⋆. More importantly, the solution of H0203

eliminates the influence of t0 , allowing us to obtain an effective solution to the minimization problem204

by directly minimizing the λt terms. The lower bound in Theorem 1 will be replaced by:205

T (wT ;w
′
T ) ≥ TG

(√
mH⋆

σ

)
≥ TG

(√
mH0

σ

)
. (14)

Although this is a relaxation of the privacy lower bound, our subsequent proof confirms that H0 can206

still achieve convergent into a constant form, which means local privacy can still achieve convergence.207

4.4 Convergent Privacy208

In this part, we demonstrate our convergent privacy analysis. By solving Eq.(13) under corresponding209

ρt and γt, we provide the worst privacy for the Noisy-FedAvg and Noisy-FedProx methods.210

Theorem 3 Let fi(w) be a L-smooth and non-convex local objective and local updates be performed211

as shown in Eq.(2). Under perturbations of isotropic noises ni ∼ N
(
0, σ2Id

)
, the worst privacy of212

the Noisy-FedAvg method achieves:213

(a) under constant learning rates ηk,t = µ:214

T (wT ;w
′
T ) ≥ TG

(
2µV K√

mσ

√
(1 + µL)K + 1

(1 + µL)K − 1

(1 + µL)KT − 1

(1 + µL)KT + 1

)
. (15)
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(b) under cyclically decaying ηk,t =
µ

k+1 :215

T (wT ;w
′
T ) ≥ TG

(
2cV ln(K + 1)√

mσ

√
(1 +K)cµL + 1

(1 +K)cµL − 1

(1 +K)cµLT − 1

(1 +K)cµLT + 1

)
. (16)

(c) under stage-wise decaying ηk,t =
µ

t+1 :216

T (wT ;w
′
T ) > TG

(
2µV K√

mσ

√
2− 1

T

)
. (17)

(d) under continuously decaying ηk,t =
µ

tK+k+1 :217

T (wT ;w
′
T ) > TG

(
2zV√
mσ

√
2− 1

T

)
. (18)

Remark 3.1 Theorem 3 provides the worst-case privacy analysis for the Noisy-FedAvg method.218

Its privacy is primarily affected by the clipping norm V , the local interval K, the scale m, and219

the noise intensity σ. A larger gradient clipping norm V always results in larger gaps. The local220

interval K determines the sensitivity of the entire local process, which is primarily influenced by the221

learning rate strategy. m in our proof represents the client scale; in fact, the number of data samples222

is also proportional to m. An increased m will largely reduce the sensitivity, yielding improvements223

in privacy. The impact of noise intensity σ is also very intuitive. Infinite noise can provide perfect224

privacy, while zero noise offers no privacy. Constant-level noise can still achieve convergent privacy.225

Theorem 4 Let fi(w) be a L-smooth and non-convex local objective and local updates be performed226

as shown in Eq.(4). Let the proximal coefficient α > L and η < 1
α−L , under perturbations of227

isotropic noises ni ∼ N
(
0, σ2Id

)
, the worst privacy of the Noisy-FedProx method achieves:228

T (wT ;w
′
T ) ≥ TG

 2V√
mασ

√√√√√√2α− L

L

1− 2(
α

α−L

)T
+ 1


 , (19)

Remark 4.1 Aside from the influence of standard coefficients, due to the correction of the regulariza-229

tion term, its privacy is no longer affected by the local interval K, even with a constant learning rate,230

which becomes a significant advantage of the Noisy-FedProx method. Specifically, when α > L,231

increasing α significantly improves the worst privacy, which achieves O
(

V
σ
√
mαL

)
distinguishability232

in GDP. Therefore, the selection of α is a delicate trade-off between optimization and privacy. By233

selecting a proper α > L, it enables a win-win outcome for both optimization and privacy.234

Theoretical comparisons. Table 3 demonstrates the comparison between existing theoretical results235

and ours of the Noisy-FedAvg method. Existing analyses are mostly based on the DP relaxations of236

(ϵ, δ)-DP and RDP [Mironov, 2017]. Apart from the lossiness in their DP definition, an important237

weakness is that privacy amplification on composition is entirely loose. For instance, the general238

amplification in (ϵ, δ)-DP indicates, the composition of an (ϵ1, δ1)-DP and an (ϵ2, δ2)-DP leads to239

an (ϵ1 + ϵ2, δ1 + δ2)-DP. Similarly, the composition of a (ζ, ϵ1)-RDP and a (ζ, ϵ2)-RDP results in a240

(ζ, ϵ1 + ϵ2)-RDP. This simple parameter addition mechanism directly leads to a linear amplification241

of the privacy budget. Therefore, in previous works, when achieving specific DP guarantees, it is242

often required that the noise intensity σ2 is proportional to the communication rounds T (or TK).243

Wei et al. [2020] prove a double-noisy single-step local training on both client and server sides is244

possible to achieve the privacy amplification of O(T 2) rate. Shi et al. [2021] further consider the245

local intervals K. Zhang et al. [2021b] and Noble et al. [2022] elevate the theoretical results to246

O (TK). Subsequent research further indicates that the impact of the interval K can be eliminated to247

achieve O (T ) rate via sparsified perturbation [Hu et al., 2023, Cheng et al., 2022], and algorithmic248

improvements [Fukami et al., 2024]. However, these conclusions all indicate that the condition for249

achieving constant privacy guarantees is to continually increase the noise intensity. Bastianello et al.250

[2024] provide constant privacy under β-strongly convex objectives.251
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Table 3: Comparisons with the existing theoretical results in FL-DP. We losslessly transfer our
results into (ϵ, δ)-DP and RDP results. In (ϵ, δ)-DP, we compare the requirement of noise variance
corresponding to achieving (ϵ, δ)-DP. In (ζ, ϵ)-RDP, we directly compare the privacy budget term
δ(ζ). We mainly focus on the privacy changes on T and K. Ω(·), O(·), and o(·) correspond to the
lower, upper bound, and not tight upper bound of the complexity, respectively.

(ϵ, δ)-DP (ζ, ϵ)-RDP when T,K → ∞

Wei et al. [2020] σ = O
(

V
ϵm

√
T 2 −mL2

)
-

σ → ∞ on
non-convex

Shi et al. [2021] σ = O

(
V
√

log( 1
δ )

ϵ T
√
K

)
-

Zhang et al. [2021b] σ = O

(
V
√

log( 1
δ )

ϵm

√
T +mK

)
-

Noble et al. [2022] σ = Ω

(
V
√

log( 2T
δ )

ϵ
√
m

√
TK

)
-

Cheng et al. [2022] σ = Ω

(
V
√

log( 1
δ )

ϵ

√
T

)
-

Zhang and Tang [2022] - ϵ = Ω
(

ζV 2

σ2 TK
)

Hu et al. [2023] σ = Ω

(
V
√

ϵ+2 log( 1
δ )

ϵ

√
T

)
-

Fukami et al. [2024] σ = Ω

(
V (1+

√
1+ϵ)

√
log(e+ ϵ

δ )
ϵ

√
T

)
-

Bastianello et al. [2024] - ϵ = O
(

ζLV 2

β2σ2

(
1− e−βT

)) convergent on
β-strongly convex

Ours (Noisy-FedAvg) σ = o

(
V
√

(Φ−1(δ))2+4ϵ

ϵ
√
m

√
2− 1

T

)
ϵ = O

(
ζV 2

mσ2

(
2− 1

T

)) convergent on
non-convex

5 Empirical Validation252

Setups. We conduct experiments on MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky et al.,253

2009] with the LeNet-5 [LeCun et al., 1998] and ResNet-18 [He et al., 2016] models. We follow254

the widely used standard federated learning experimental setups to introduce heterogeneity by the255

Dirichlet splitting. The heterogeneity level is set high (Dir-0.1 splitting).256

Accuracy. Table 4 shows the comparison on Noisy-FedAvg. Our theory precisely addresses this257

misconception and rigorously provides its privacy protection performance. It can be observed that258

as the number of clients increases, the impact of noise gradually diminishes. We have previously259

explained this principle: for the globally averaged model, the more noise involved in the averaging260

process, the closer it gets to the noise mean, which is akin to the situation without noise interference.261

When we adjust the intensity from σ = 10−3 to 10−1, the accuracy decreases by 5.57% and 1.62%262

on m = 20 and 100 respectively on the MNIST and 14.19% and 11% on the CIFAR-10. The local263

interval K does not significantly affect noise, and the accuracy drops consistently. K primarily affects264

global sensitivity and higher aggregation frequency usually means better performance.265

Sensitivity in Noisy-FedAvg. We mainly study the impact from the scale m, local interval K, and266

clipping norm V , as shown in Fig. 2. The first figure clearly demonstrates the impact of the scale267

m on sensitivity, which corresponds to the worst privacy bound O
(

1√
m

)
. More clients generally268

imply stronger global privacy. The second figure shows evident that although increasing K can raise269

the sensitivity during the process, it does not alter the upper bound of sensitivity after optimization270

converges. This is entirely consistent with our analysis, indicating that the privacy lower bound exists271

and is unaffected by T and K. The third figure indicates that the sensitivity will be affected by the V ,272

which corresponds to the worst privacy bound O (V ).273
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Table 4: Comparison of the accuracy under different experimental settings. We select the scale m
from [50, 100]. Each client holds 600 heterogeneous data samples of MNIST or 500 heterogeneous
data samples of CIFAR-10. For each scale, we test two settings of the local interval K = 50, 100,
and 200, respectively. Throughout the entire process, we fix TK = 30000. “-" means the training
loss diverges. Each result is repeated 5 times to compute its mean and variance.

Noisy
Intensity

m = 50 m = 100

K = 50 K = 100 K = 200 K = 50 K = 100 K = 200

MNIST
LeNet-5

σ = 1.0 - - - - - -
σ = 10−1 95.40±0.18 95.42±0.15 95.21±0.11 97.32±0.14 97.50±0.11 97.42±0.18

σ = 10−2 98.33±0.12 98.02±0.15 97.88±0.12 98.71±0.10 97.97±0.08 97.72±0.12

σ = 10−3 98.41±0.07 98.23±0.03 98.00±0.07 98.94±0.04 98.50±0.06 98.01±0.10

CIFAR-10
ResNet-18

σ = 1.0 - - - - - -
σ = 10−1 53.76±0.25 53.38±0.23 53.49±0.21 62.02±0.28 61.33±0.25 61.11±0.17

σ = 10−2 70.11±0.22 69.08±0.12 66.63±0.16 74.34±0.29 72.87±0.19 70.74±0.15

σ = 10−3 70.98±0.11 69.81±0.20 67.98±0.03 75.38±0.19 74.44±0.12 72.11±0.06
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Figure 2: Sensitivity studies on Noisy-FedAvg and Noisy-FedProx. The general setups are
m = 20, K = 5, and V = 10. In each group, we keep all other parameters fixed to ensure fairness.

Table 5: Performance and sensitivity (T = 600).
Accuracy Sensitivity

Noisy-FedAvg 60.67 31.33
Noisy-FedProx α = 0.01 60.69 30.97
Noisy-FedProx α = 0.1 60.94 18.52
Noisy-FedProx α = 1 56.33 6.34

Sensitivity in Noisy-FedProx. As274

shown in Fig. 2 (the fourth figure),275

the larger α means smaller global sen-276

sitivity. This is consistent with our277

analysis, which states that the lower278

bound of privacy performance is given279

by O
(

1√
α

)
. When we select α =280

0, it degrades to the Noisy-FedAvg281

method. In fact, based on the comparison, we can see that when α is sufficiently small, i.e. α = 0.01,282

its global sensitivity is almost at the same level as Noisy-FedAvg. In Table 5, we present a compari-283

son between them. Although the proximal term provides limited improvement in accuracy, selecting284

an appropriate α significantly reduces global sensitivity. This implies that the privacy performance of285

Noisy-FedProx is far superior to that of Noisy-FedAvg. While achieving similar performance, the286

regularization proxy term can significantly reduce the global sensitivity of the output model, thereby287

enhancing privacy. This conclusion also demonstrates the superiority on privacy of a series of FL-DP288

optimization methods based on training with this regularization approach.289

6 Summary290

To our best knowledge, this paper is the first work to demonstrate convergent privacy for the general291

FL-DP paradigms. We comprehensively study and illustrate the fine-grained privacy level for292

Noisy-FedAvg and Noisy-FedProx methods based on f -DP analysis, an information-theoretic293

lossless DP definition. Moreover, we conduct comprehensive analysis with existing work on other DP294

frameworks and highlight the long-term cognitive bias of the privacy lower bound. Our analysis fills295

the theoretical gap in the convergent privacy of FL-DP while further providing a reliable theoretical296

guarantee for its privacy protection performance. Moreover, We conduct a series of experiments to297

verify the boundedness of global sensitivity and its influence on different variables, further validating298

that our theoretical analysis aligns more closely with practical scenarios.299
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Limitations and Broader Impacts. Our paper provides the first convergence-privacy analysis for513

the FL framework. The current analysis primarily includes the impact of multi-step updates on514

local nodes and the effect of multi-clients aggregation on the privacy bounds. A limitation of this515

paper is the inability to directly extend the privacy analysis to stability analysis. Stability analysis of516

convergence has always been a crucial theoretical objective in non-convex optimization. Although517

the trade-off function constructed by f-DP incorporates certain iterative properties of stability terms,518

it currently cannot directly derive convergence bounds for stability. Moreover, the theoretical analysis519

in this paper provides a crucial theoretical basis for privacy preservation, demonstrating that privacy520

can still be maintained under finite noise and infinitely long learning processes. This implies that521

many online methods can ensure privacy through cumulative noise accumulation, which may provide522

valuable guidance for privacy preservation in future engineering applications.523

A General FL-DP Framework524

FL framework usually allows local clients to train several iterations and then aggregates these525

optimized local models for global consistency guarantees. Though indirect access to the dataset526

significantly mitigates the risk of data leakage, vanilla gradients or parameters communicated to527

the server still bring privacy concerns, i.e. indirect leakage. Thus, DP techniques are introduced528

by adding isotropic noises on local parameters before communication, to further enhance privacy529

protection.530

Algorithm 1 General FL-DP Framework
Input: initial parameters w0, round T , interval K
Output: global parameters wT

1: for t = 0, 1, 2, · · · , T − 1 do
2: activate local clients and communications
3: for client i ∈ I in parallel do
4: set the initialization wi,0,t = wt

5: for k = 0, 1, 2, · · · ,K − 1 do
6: wi,k+1,t = L-update(wi,k,t)
7: end for
8: generate a noise ni ∼ N (0, σ2Id)
9: communicate wi,K,t + ni to the server

10: end for
11: wt+1 = G-update({wi,K,t + ni})
12: end for

In our analysis, we consider the FL-DP framework with the classical normal client-level noises, as531

shown in Algorithm 1. At the beginning of each communication round t, the server activates local532

clients and communicates necessary variables. Then local clients begin the training in parallel. We533

describe this process as a total of K > 1 steps of L-update function updates. Depending on algorithm534

designs, the specific form of local update functions varies. After training, the local clients enhance535

local privacy by adding noise perturbations to the uploaded model parameters. Our analysis primarily536

considers the properties of the isotropic Gaussian noise distribution, i.e. ni ∼ N (0, σ2Id). Then the537

global server aggregates the noisy parameters to generate the global model wt+1 via the G-update538

function. Repeat this for T rounds and return wT as output.539

B Preliminary Properties of f -DP540

In this section, we mainly supplement some basic properties of f -DP, all of which are lemmas541

proposed by Dong et al. [2022]. Specifically, Lemmas 1 and 2 are employed in our theoretical542

analysis, whereas Lemmas 3 and 4 facilitate a lossless translation of our results into other standard543

DP frameworks for comparative purposes.544

Lemma 1 (Post-processing) If a randomized mechanism M is f -DP, any post processing mecha-545

nism based on M is still at least f -DP, i.e. T (P ′;Q′) ≥ T (P ;Q) for any post-processing mapping546

which leads to P → P ′ and Q → Q′.547
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Intuitively, post-processing mappings bring some changes in the original distributions. However,548

such changes can not allow the updated distributions to be much easier to discern. This lemma also549

widely exists in other DP relaxations and stands as one of the foundational elements in current privacy550

analyses. In f -DP, this lemma also clearly demonstrates that the difficulty of hypothesis testing551

problems can not be simplified with the addition of known information, which still preserves the552

original distinguishability.553

Lemma 2 (Composition) We have a series of mechanisms Mi and a joint serial composition mech-554

anism M. Let each private mechanism Mi(·, y1, · · · , yi−1) be fi-DP for all y1 ∈ Y1, · · · , yi−1 ∈555

Yi−1. Then the n-fold composed mechanism M : X → Y1 × · · · × Yn is f1 ⊗ · · · ⊗ fn-DP,556

where ⊗ denotes the joint distribution. For instance, if f = T (P ;Q) and g = T (P ′;Q′), then557

f ⊗ g = T (P × P ′;Q×Q′).558

The composition in the f -DP framework is closed and tight. This is also one of the advantages of559

privacy representation in f -DP. Correspondingly, the advanced composition theorem for (ε, δ)-DP560

can not admit the optimal parameters to exactly capture the privacy in the composition process [Dwork561

et al., 2015]. However, the trade-off function has an exact probabilistic interpretation and can precisely562

measure the composition.563

Lemma 3 (GDP → (ϵ, δ)-DP) A µ-GDP mechanism with a trade-off function TG(µ) is also564

(ϵ, δ(ϵ))-DP for all ϵ ≥ 0 where565

δ(ϵ) = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
. (20)

Lemma 4 (GDP → RDP) A µ-GDP mechanism with a trade-off function TG(µ) is also
(
ζ, 1

2µ
2ζ
)
-566

RDP for any ζ > 1.567

We state the transition and conversion calculations from f -DP (we specifically consider the GDP)568

to other DP relaxations, e.g. for the (ε, δ)-DP and RDP. These lemmas can effectively compare569

our theoretical results with existing ones. Our comparison primarily aims to demonstrate that the570

convergent privacy obtained in our analysis would directly derive bounded privacy budgets in other571

DP relaxations. Moreover, we will illustrate how the convergent f -DP further addresses conclusions572

that current FL-DP work cannot cover theoretically, which provides solid support for understanding573

its reliability of privacy protection.574

C Proof of Main Theorems575

C.1 Proofs of Theorem 1576

We consider the general updates on the adjacent datasets C and C′ on round t as follows:577

wt+1 = ϕ(wt) +
1

m

∑
i∈I

ni,t,

w′
t+1 = ϕ′(w′

t) +
1

m

∑
i∈I

n′
i,t,

(21)

where w0 is the initial state. ni,t and n′
i,t are two noises generated from the normal distribution578

N (0, σ2Id). To construct the interpolated sequence, we introduce the concentration coefficients λt to579

provide a convex combination of the updates above, which is,580

w̃t+1 = λt+1ϕ(wt) + (1− λt+1)ϕ
′(w̃t) +

1

m

∑
i∈I

ni,t, (22)

for t = t0, t0+1, · · · , T−1. Furthermore, we set λT = 1 to let w̃T = ϕ(wT−1)+
1
m

∑
i∈I ni,T−1 =581

wT , and we add the definition of w̃t0 = w′
t0 as the interpolation beginning. t0 determines the length582

of the interpolation sequence.583

584

Lemma 5 According to the expansion of trade-off functions, for the general updates in Eq.(22), we585

have the following recurrence relation:586

T
(
w̃t+1;w

′
t+1

)
≥ T (w̃t;w

′
t)⊗ TG

(√
m

σ
λt+1∥ϕ(wt)− ϕ′(w̃t)∥

)
. (23)
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Proof. Based on the post-processing and compositions, let z and z′ be the corresponding noises587

above, for any constant λ ∈ [0, 1], we have (subscripts are temporarily omitted):588

T (λϕ(w) + (1− λ)ϕ′(w̃) + z;ϕ′(w′) + z′)

= T (ϕ′(w̃) + λ (ϕ(w)− ϕ′(w̃)) + z;ϕ′(w′) + z′)

≥ T ((ϕ′(w̃), λ (ϕ(w)− ϕ′(w̃)) + z) ; (ϕ′(w′), z′))

≥ T (ϕ′(w̃);ϕ′(w′))⊗ T (λ (ϕ(w)− ϕ′(w̃)) + z; z′)

≥ T (w̃;w′)⊗ T (λ (ϕ(w)− ϕ′(w̃)) + z; z′) ,

where z and z′ are two Gaussian noises that can be considered to be sampled from N (0, σ2

m Id) (av-589

erage of m isotropic Gaussian noises). Therefore, the distinguishability between the first term and590

the second term does not exceed the mean shift of the distribution, which is ∥
√
m
σ λ (ϕ(w)− ϕ′(w̃)) ∥.591

By taking w = wt and λ = λt+1, the proofs are completed.592

593

According to the above lemma, by expanding it from t = t0 to T − 1 and the factor T (w̃t0 ;w
′
t0) =594

TG(0), we can prove the formulation in Eq. (10).595

C.2 Proofs of Theorem 2596

Lemma 5 provides the general recursive relationship on the global states along the communication597

round t. To obtain the lower bound of the trade-off function, we only need to solve for the gaps598

∥ϕ(w)− ϕ′(w̃)∥. It is worth noting that the local update process here involves dual replacement of599

both the dataset (ϕ and ϕ′) and the initial state (w and w̃). Therefore, we measure their maximum600

discrepancy by assessing their respective distances to the intermediate variable constructed by the601

cross-items:602

∥ϕ(w)− ϕ′(w̃)∥ ≤ ∥ϕ(w)− ϕ′(w)∥︸ ︷︷ ︸
Data Sensitivity

+ ∥ϕ′(w)− ϕ′(w̃)∥︸ ︷︷ ︸
Model Sensitivity

. (24)

The first term measures the disparity in training on different datasets and the second term measures603

the gap in training from different initial models. One of our contributions is to provide their general604

gaps. In our paper, we expand the update function ϕ(x) by considering the multiple local iterations605

and federated cross-device settings. By simply setting the local interval to 1 and the number of clients606

to 1, our results can easily reproduce the original conclusion in [Bok et al., 2024]. Furthermore, our607

comprehensive considerations have led to a new understanding of the impact of local updates on608

privacy.609

ϕ(wt) and ϕ′(wt) begin from wt. ϕ′(wt) and ϕ′(w̃t) adopt the data samples ε′ ∈ C′. We naturally use610

wi,k,t and w̃i,k,t to represent individual states in ϕ(wt) and ϕ′(w̃t), respectively. To avoid ambiguity,611

we define the states in ϕ′(wt) as ŵi,k,t. When i ̸= i⋆, since ε = ε′, then wi,k,t only differs from612

ŵi,k,t on i⋆-th client.613

on the Noisy-FedAvg Method:614

Lemma 6 (Data Sensitivity.) The data sensitivity caused by gradient descent steps can be bounded615

as:616

∥ϕ(wt)− ϕ′(wt)∥ ≤ 2V

m

K−1∑
k=0

ηk,t, (25)

where ηk,t is the learning rate at the k-th iteration of t-th communication round.617

Proof. By directly expanding the update functions ϕ and ϕ′ at wt, we have:618

∥ϕ(wt)− ϕ′(wt)∥

= ∥wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(wi,k,t, ε)− wt +
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(ŵi,k,t, ε
′)∥

≤ 1

m

∑
i∈I

K−1∑
k=0

ηk,t∥∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε
′)∥
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=
1

m

K−1∑
k=0

ηk,t∥∇fi⋆(wi⋆,k,t, ε)−∇fi⋆(ŵi⋆,k,t, ε
′)∥ ≤ 2V

m

K−1∑
k=0

ηk,t.

The last equation adopts ε = ε′ when i ̸= i⋆. This completes the proofs.619

620

Lemma 7 (Model Sensitivity.) The model sensitivity caused by gradient descent steps can be621

bounded as:622

∥ϕ′(wt)− ϕ′(w̃t)∥ ≤ (1 + η(K, t)L) ∥wt − w̃t∥, (26)

where η(K, t) = η0,t +
∑K−1

k=1 ηk,t
∏k−1

j=0 (1 + ηj,tL) is a constant related the selection of learning623

rates.624

Proof. We first learn an individual case. On the t-th round, we assume the initial states of two625

sequences are wt and w̃t. Each is performed by the update function ϕ′ for local K steps. For each626

step, we have:627

∥ŵi,k+1,t − w̃i,k+1,t∥
≤ ∥ŵi,k,t − w̃i,k,t∥+ ηk,t∥∇fi(ŵi,k,t, ε

′)−∇fi(w̃i,k,t, ε
′)∥

≤ (1 + ηk,tL)∥ŵi,k,t − w̃i,k,t∥.

This implies each gap when k ≥ 1 can be upper bounded by:628

∥ŵi,k,t − w̃i,k,t∥ ≤ (1 + ηk−1,tL)∥ŵi,k−1,t − w̃i,k−1,t∥ ≤ · · · ≤
k−1∏
j=0

(1 + ηj,tL) ∥wt − w̃t∥.

Then we consider the recursive formulation of the stability gaps along the iterations k. We can629

directly apply Eq.(22) to obtain the relationship for the differences updated from different initial630

states on the same dataset. By directly expanding the update function ϕ′ at wt and w̃t, we have:631

∥ϕ′(wt)− ϕ′(w̃t)∥

= ∥wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(ŵi,k,t, ε
′)− w̃t +

1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(w̃i,k,t, ε
′)∥

≤ ∥wt − w̃t∥+ ∥ 1

m

∑
i∈I

K−1∑
k=0

ηk,t (∇fi(ŵi,k,t, ε
′)−∇fi(w̃i,k,t, ε

′)) ∥

≤ ∥wt − w̃t∥+
L

m

∑
i∈I

K−1∑
k=0

ηk,t∥ŵi,k,t − w̃i,k,t∥

≤

1 +
η0,t +

K−1∑
k=1

ηk,t

k−1∏
j=0

(1 + ηj,tL)

L

 ∥wt − w̃t∥.

This completes the proofs.632

633

We have successfully quantified the specific form of the problem as above. By solving for a series634

of reasonable values of the auxiliary variable λ to minimize the above problem, we obtain the tight635

lower bound on privacy. Before that, let’s discuss the learning rate to simplify this expression. Both636

η(K, t) and
∑

ηk,t terms are highly related to the selections of learning rates. Typically, this choice637

is determined by the optimization process. Whether it’s generalization or privacy analysis, both are638

based on the assumption that the optimization can converge properly. Therefore, we selected several639

different learning rate designs based on various combination methods to complete the subsequent640

analysis. Due to the unique two-stage learning perspective of federated learning, current methods641

for designing the learning rate generally choose between a constant rate or a rate that decreases642

with local rounds or iterations. Therefore, we discuss them separately including constant learning643

rate, cyclically decaying learning rate, stage-wise decaying learning rate, and continuously decaying644

learning rate. We provide a simple comparison in Figure 3.645
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Figure 3: Four general setups of learning rate adopted in the federated learning community. From left
to right, they are: Constant learning rates, Cyclically decaying learning rates, Stage-wise decaying
learning rate, and Continuously decaying learning rate.

Constant learning rates This is currently the simplest case. We consider the learning rate to646

always be a constant, i.e. ηk,t = µ. Then we have that the accumulation term
∑K−1

k=0 ηk,t = µK. For647

the η(K, t) term, we have:648

η(K, t) = η0,t +

K−1∑
k=1

ηk,t

k−1∏
j=0

(1 + ηj,tL) = µ

K−1∑
k=0

(1 + µL)
k
=

1

L

(
(1 + µL)K − 1

)
.

When K is selected, both of them can be considered as a constant related to K. The choice of µ also649

requires careful consideration. Although it is a constant, its selection is typically related to m, K,650

and T based on the optimization process. We will discuss this point in the final theorems.651

Cyclically decaying learning rates Some works treat this learning process as an aggregation652

process of several local training processes, i.e. each local client learns from a better initial state653

(knowledge learned from other clients). And since the client pool is very large, most clients will exit654

after obtaining the model they desire. This setting is often used in “cross-device" scenarios [Kairouz655

et al., 2021]. Thus, local learning can be considered as an independent learning process. In this656

case, the learning rate is designed to decay in an inversely proportional function to achieve optimal657

local accuracy, i.e. ηk,t = µ
k+1 , and is restored to a larger initial value at the start of each round, i.e.658

η0,t = µ. Then we have the accumulation term:659

ln(K + 1) =

∫ K

k=0

1

k + 1
dk ≤

K−1∑
k=0

1

k + 1
≤ 1 +

∫ K−1

0

1

k + 1
dk = 1 + ln(K). (27)

When K is large, this term is dominated by O(ln(K)). Based on the fact that K is very large in660

federated learning, we further approximate this term to c ln(K + 1) where c is a scaled constant. It is661

easy to check that there must exist 1 ≤ c < 1.543 for any K ≥ 1. Thus we have the accumulation662

term as
∑K−1

k=0 ηk,t = cµ ln(K + 1). For the η(K, t) term, we have its upper bound:663

η(K, t) = µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

(
1 +

µL

j + 1

)
≤ µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

exp

(
µL

j + 1

)

= µ+

K−1∑
k=1

µ

k + 1

exp
k−1∑

j=0

1

j + 1

µL

=

K−1∑
k=0

µ

k + 1
[exp (c ln(k + 1))]

µL

= µ

K−1∑
k=0

(k + 1)
cµL−1 ≤ µ

∫ K

k=0

(k + 1)
cµL−1

dk =
1

cL

(
(1 +K)cµL − 1

)
.

The first inequality adopts 1 + x ≤ ex and the last adopts the concavity. Actually, we still can learn664

its general lower bound by a scaling constant. By adopting a scaling b, we can have 1 + x ≥ ebx,665

which is equal to b ≤ ln(x+1)
x . It is also easy to check 0.693 < b < 1 when 0 < x ≤ 1. Thus we666

have:667

η(K, t) = µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

(
1 +

µL

j + 1

)
≥ µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

exp

(
µbL

j + 1

)
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= µ+

K−1∑
k=1

µ

k + 1

exp
k−1∑

j=0

1

j + 1

µbL

=

K−1∑
k=0

µ

k + 1
[exp (c ln(k + 1))]

µbL

= µ

K−1∑
k=0

(k + 1)
cµbL−1 ≥ µ

∫ K−1

k=−1

(k + 1)
cµbL−1

dk =
1

cbL
KcµbL.

The last inequality also adopts concavity. Through this simple scaling, we learn the general bounds668

for the learning rate function η(K, t) as:669

1

cbL
KcµbL ≤ η(K, t) ≤ 1

cL

(
(1 +K)cµL − 1

)
, (28)

where 1 ≤ c < 1.543, 0.693 < b < 1 and µ ≤ 1
L (this condition is almost universally satisfied in670

current optimization theories). Although we cannot precisely find the tight bound of this function671

η(K, t), we can still treat it as a form based on constants to complete the subsequent analysis, i.e. it672

could be approximated as a larger upper bound 1
L

(
(1 +K)cµL − 1

)
. More importantly, we have673

determined that this learning rate function still diverges as K increases.674

Stage-wise decaying learning rates This is one of the most common selections of learning rate675

in the current federated community, which is commonly applied in “cross-silo" scenarios [Kairouz676

et al., 2021]. When the client pool is not very large, clients who participate in the training often aim677

to establish long-term cooperation to continuously improve their models. Therefore, each client will678

contribute to the entire training process over a long period. From a learning perspective, local training679

is more like exploring the path to a local optimum rather than actually achieving the local optimum.680

Therefore, each local training will adopt a constant learning rate and perform several update steps, i.e.681

ηk,t = ηt. At each communication round, the learning rate decays once and continues to the next682

stage, i.e. ηt = µ
t+1 . Based on the analysis of the constant learning rate, the accumulation term is683 ∑K−1

k=0 ηk,t =
µK
t+1 . For the η(K, t) term, we have:684

η(K, t) =
µ

t+ 1
+

K−1∑
k=1

µ

t+ 1

k−1∏
j=0

(
1 +

µL

t+ 1

)

=
µL

t+ 1

K−1∑
k=0

(
1 +

µL

t+ 1

)k

=
1

L

((
1 +

µL

t+ 1

)K

− 1

)
.

It can be seen that the analysis of this function is more challenging because the learning rate function685

η(K, t) is decided by t, which introduces complexity to the subsequent analysis. We will explain this686

in detail in the subsequent discussion.687

Continuously decaying learning rates This is a common selection of learning rate in the federated688

community, involving dual learning rate decay along both local training and global training. This689

can almost be applied to all methods to adapt to the final training, including both the cross-silo and690

cross-device cases. At the same time, its analysis is also more challenging because the learning rate691

is coupled with communication rounds and local iterations, yielding new upper and lower bounds.692

We consider the general case ηk,t =
µ

tK+k+1 . Therefore, the accumulation term can be bounded as:693

K−1∑
k=0

1

tK + k + 1
>

∫ K

k=0

1

tK + k + 1
dk = ln

(
tK +K + 1

tK + 1

)
,

K−1∑
k=0

1

tK + k + 1
<

1

tK + 1
+

∫ K−1

k=0

1

tK + k + 1
dk =

1

tK + 1
+ ln

(
tK +K

tK + 1

)
.

Similarly, when K is large enough, this term is dominated by O
(
ln
(
t+1
t

))
. For simplicity in the694

subsequent proof, we follow the process above and let it be z ln
(

t+2
t+1

)
to include the term at t = 0.695

It is also easy to check that z > 1 is a constant for any K > 1. And z is also a constant. It means696
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we can always select the lower bound as its representation. Therefore, for the learning rate function697

η(K, t), we have:698

η(K, t) =
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

k−1∏
j=0

(
1 +

µL

tK + j + 1

)

≤ µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

exp
k−1∑

j=0

1

tK + j + 1

µL

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

[
exp

(
z ln

(
tK + k + 1

tK + 1

))]µL

=
µ

(tK + 1)
zµL

K−1∑
k=0

(tK + k + 1)
zµL−1

≤ µ

(tK + 1)
zµL

∫ K

k=0

(tK + k + 1)
zµL−1

dk =
1

zL

((
tK +K + 1

tK + 1

)zµL

− 1

)
.

Similarly, we introduce the coefficient b to provide the lower bound as:699

η(K, t)

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

k−1∏
j=0

(
1 +

µL

tK + j + 1

)

≥ µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

exp
k−1∑

j=0

1

tK + j + 1

µbL

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

[
exp

(
z ln

(
tK + k + 1

tK + 1

))]µbL

=
µ

(tK + 1)
zµbL

K−1∑
k=0

(tK + k + 1)
zµbL−1

≥ µ

(tK + 1)
zµbL

∫ K−1

k=−1

(tK + k + 1)
zµbL−1

dk =
1

zbL

((
tK +K

tK + 1

)zµbL

−
(

tK

tK + 1

)zµbL
)

>
1

zbL

((
tK +K

tK + 1

)zµbL

− 1

)
.

Through the sample scaling, we learn the general bounds for the learning rate function η(K, t) as:700

1

zbL

((
tK +K

tK + 1

)zµbL

− 1

)
< η(K, t) ≤ 1

zL

((
tK +K + 1

tK + 1

)zµL

− 1

)
, (29)

where 1 < z, 0.693 < b < 1 and µ ≤ 1
L . Obviously, when K is large enough, the learning rate term701

is still dominated by O
((

t+2
t+1

)zµL
− 1

)
. Therefore, to learn the general cases, we can consider the702

specific form of the learning rate function based on the constant scaling as 1
L

((
t+2
t+1

)zµL
− 1

)
. As703

t increases, this function will approach zero.704

705

on the Noisy-FedProx Method:706
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In this part, we will address the differential privacy analysis of a noisy version of another classical707

federated learning optimization method, i.e. the Noisy-FedProx method. The vanilla FedProx708

method is an optimization algorithm designed for cross-silo federated learning, particularly to address709

the challenges caused by data heterogeneity across different clients. Unlike traditional federated710

learning algorithms like FedAvg, which can struggle with variations in data distribution, it introduces711

a proximal term to the objective function. This helps to stabilize the training process and improve712

convergence. Specifically, it adopts the consistency as the penalized term to correct the local objective:713

min
w

fi(w) +
α

2
∥w − wt∥2. (30)

The proximal term is a very common regularization term in federated learning and has been widely714

used in both federated learning and personalized federated learning approaches. It introduces an715

additional penalty to the local objective, ensuring that local updates are optimized towards the716

local optimal solution while being subject to an extra global constraint, i.e. each local update does717

not stray too far from the initialization point. In fact, there are many optimization methods that718

apply such regularization terms. For example, various federated primal-dual methods based on719

the ADMM approach construct local Lagrangian functions, and in personalized federated learning,720

local privatization regularization terms are introduced to differentiate from the vanilla consistency721

objective. The analysis of the above methods is fundamentally based on a correct understanding of722

the advantages and significance of the proximal term in stability error. In this paper, to achieve a723

cross-comparison while maintaining generality, we consider the optimization process of local training724

as total K-step updates:725

ϕ(wt) = wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t (∇fi(wi,k,t, ε) + α (wi,k,t − wt)) . (31)

Here, we also employ the proofs mentioned in the previous section, and our study of the difference726

term is based on both data sensitivity and model sensitivity perspectives. We provide these two main727

lemmas as follows.728

729

Lemma 8 (Data Sensitivity.) The local data sensitivity of the Noisy-FedProx method at t-th com-730

munication round can be upper bounded as:731

∥ϕ(wt)− ϕ′(wt)∥ ≤ 2V

mα
. (32)

Proof. We first consider a single step in Eq.(31) as:732

wi,k+1,t = wi,k,t − ηk,t (∇fi(wi,k,t, ε) + α(wi,k,t − wt)) .

The proximal term brings more opportunities to enhance the analysis of local updates. We can split733

the proximal term and subtract the wt term on both sides, resulting in a recursive formula for the734

cumulative update term:735

wi,k+1,t − wt = (1− ηk,tα) (wi,k,t − wt)− ηk,t∇fi(wi,k,t, ε).

The above equation indicates that a reduction factor 1 − ηk,tα < 1 can limit the scale of local736

updates. This is a very good property, allowing us to shift the analysis of the data sensitivity to their737

relationship of local updates. According to the above, we can upper bound the gaps between {wi,k,t}738

and {ŵi,k,t} sequences as:739

∥(wi,k+1,t − wt)− (ŵi,k+1,t − wt)∥
= ∥ (1− ηk,tα) [(wi,k,t − wt)− (ŵi,k,t − wt)]− ηk,t(∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε

′))∥
≤ (1− ηk,tα) ∥ (wi,k,t − wt)− (ŵi,k,t − wt) ∥+ ηk,t∥∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε

′)∥
≤ (1− ηk,tα) ∥ (wi,k,t − wt)− (ŵi,k,t − wt) ∥+ 2ηk,tV.

Different from proofs in Lemma 6, the term 1− ηk,tα can further decrease the stability gap during740

accumulation. By summing form k = 0 to K − 1, we can obtain:741

∥(wi,K,t − wt)− (ŵi,K,t − wt)∥
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≤
K−1∏
k=0

(1− ηk,tα) ∥(wi,0,t − wt)− (ŵi,0,t − wt)∥+
K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 2ηk,tV

= 2V

K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 ηk,t.

Here, we provide a simple proof using a constant learning rate to demonstrate that its upper bound742

can be independent of K. By considering ηk,t = µ, we have:743

K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 ηk,t =

K−1∑
k=0

 K−1∏
j=k+1

(1− µα)

µ =
1− (1− µα)K

α
<

1

α
.

In fact, when the learning rate decays with k, it can still be easily proven to have a constant upper744

bound. Therefore, in the subsequent proofs, we directly use the form of this constant upper bound745

as the result of data sensitivity in the Noisy-FedProx method. Based on the definition of ϕ(w), we746

have:747

∥ϕ(wt)− ϕ′(wt)∥ = ∥ (ϕ(wt)− wt)− (ϕ′(wt)− wt) ∥ = ∥ 1

m

∑
i∈I

[(wi,K,t − wt)− (ŵi,K,t − wt)] ∥

=
1

m
∥ (wi⋆,K,t − wt)− (ŵi⋆,K,t − wt) ∥ <

2V

mα
.

This completes the proofs.748

749

Lemma 9 (Model Sensitivity.) The local model sensitivity of the Noisy-FedProx method at t-th750

communication round can be upper bounded as:751

∥ϕ′(wt)− ϕ′(w̃t)∥ ≤ α

αL
∥wt − w̃t∥. (33)

Proof. We also adopt the splitting above. Since both sequences are trained on the same dataset, the752

gradient difference can be measured by the parameter difference. Therefore, we directly consider the753

form of the parameter difference:754

∥ŵi,k+1,t − w̃i,k+1,t∥
= ∥(1− ηk,tα)(ŵi,k,t − w̃i,k,t)− ηk,t(∇fi(ŵi,k,t, ε

′)−∇fi(w̃i,k,t, ε
′))− ηk,tα(wt − w̃t)∥

≤ (1− ηk,tα)∥ŵi,k,t − w̃i,k,t∥+ ηk,tL∥ŵi,k,t − w̃i,k,t∥+ ηk,tα∥wt − w̃t∥
= (1− ηk,tαL)∥ŵi,k,t − w̃i,k,t∥+ ηk,tα∥wt − w̃t∥,

where αL = α − L is a constant. Here, we consider α > L. When α ≤ L, its upper bound can755

not be guaranteed to be reduced. When α > L, it can restore the property of decayed stability. By756

summing from k = 0 to K − 1, we can obtain:757

∥ŵi,K,t − w̃i,K,t∥

≤
K−1∏
k=0

(1− ηk,tαL)∥ŵi,0,t − w̃i,0,t∥+
K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα∥wt − w̃t∥

=

K−1∏
k=0

(1− ηk,tαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα

 ∥wt − w̃t∥.

Similarly, we learn the upper bound from a simple constant learning rate. By select ηk,t = µ, we758

have:759

K−1∏
k=0

(1− ηk,tαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα
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=

K−1∏
k=0

(1− µαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− µαL)

µα

= (1− µαL)
K + α

1− (1− µαL)
K

αL

=
α

αL
− L(1− µαL)

K

αL
<

α

αL
.

The same, it can also be checked that the general upper bound of the stability gaps is a constant760

even if the learning rate is selected to be decayed along iteration k. Therefore, in the subsequent761

proofs, we directly use the form of this constant upper bound as the result of model sensitivity in the762

Noisy-FedProx method. Based on the definition of ϕ(w), we have:763

∥ϕ′(wt)− ϕ′(w̃t)∥ = ∥ 1

m

∑
i∈I

(ŵi,K,t − w̃i,K,t) ∥ ≤ 1

m

∑
i∈I

∥ŵi,K,t − w̃i,K,t∥ ≤ α

αL
∥wt − w̃t∥.

This completes the proofs.764

C.3 Solution of Eq. (13)765

According to the recurrence relation in Lemma 5, we can confine the privacy amplification process to766

a finite number of steps with the aid of an interpolation sequence, yielding to the convergent bound.767

Therefore, we have:768

T (wT ;w
′
T ) = T (w̃T ;w

′
T )

≥ T
(
w̃T−1;w

′
T−1

)
⊗ TG

(√
m

σ
λT ∥ϕ(wT−1)− ϕ′(w̃T−1)∥

)
≥ T

(
w̃t0 ;w

′
t0

)
⊗ · · · ⊗ TG

(√
m

σ
λT ∥ϕ(wT−1)− ϕ′(w̃T−1)∥

)

= T
(
w′

t0 ;w
′
t0

)
⊗ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1∥ϕ(wt)− ϕ′(w̃t)∥2


≥ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2

 .

Although the above form appears promising, an inappropriate selection of the key parameters will769

still cause divergence due to the recurrence term coefficient 1 + η(K, t)L > 1, leading it to approach770

infinity as t increases. For instance, small t0 will result in a significantly increased λ and the bound771

will be closed to the stability gap ∥wT − w′
T ∥, and large t0 will result in a long accumulation of the772

stability gaps, which is also unsatisfied. At the same time, it is also crucial to choose appropriate773

λ to ensure that the stability accumulation can be reasonably diluted. Therefore, we also need774

to thoroughly investigate how significant the stability gap caused by the interpolation points is.775

According to Eq.(21) and (22), we have:776

∥wt+1 − w̃t+1∥ ≤ (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

The above relationship further constrains the stability of the interpolation sequence. It is worth noting777

that the upper bound of the final step is independent of the choice of λ. At the same time, since all778

terms are positive, given a group of specific λ, taking the upper bound at each possible t will result in779

the maximum error accumulation. This is also the worst-case privacy we have constructed. Therefore,780

solving the worst privacy could be considered as solving the following problem:781

min
{λt+1},t0

max
{∥wt−w̃t∥}

T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
,︸ ︷︷ ︸

worst privacy︸ ︷︷ ︸
tight privacy lower bound

s.t. ∥wt+1 − w̃t+1∥ ≤ (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

(34)
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Based on the above analysis, this problem can be directly transformed into a privacy minimization782

problem when the interpolation sequence reaches the maximum stability error. Therefore, we just783

need to solve the following problem:784

min
{λt+1},t0

T−1∑
t=t0

λ2
t+1 (γt∥wt − w̃t∥+ γt)

2
,

s.t. ∥wt+1 − w̃t+1∥ = (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

(35)

It is important to note that this upper bound condition is usually loose because the probability that the785

interpolation terms simultaneously reach their maximum deviation is very low. This is merely the786

theoretical worst-case privacy scenario.787

Then we solve the minimization problem. By considering the worst stability conditions, we can788

provide the relationship between the gaps and coefficients λt+1 as:789

∥wt+1 − w̃t+1∥ = ρt∥wt − w̃t∥+ γt − λt+1 (ρt∥wt − w̃t∥+ γt) .

Expanding it from t = t0 to T , we have:790

0 = ∥wT − w̃T ∥ =

(
T−1∏
t=t0

ρt

)
∥wt0 − w̃t0∥+

T−1∑
t=t0

 T−1∏
j=t+1

ρj

 [γt − λt+1 (ρt∥wt − w̃t∥+ γt)] .

Due to the term λt+1 (ρt∥wt − w̃t∥+ γt) being part of the analytical form of the minimization791

objective, we preserve the integrity of this algebraic form and only split it from the perspectives of792

coefficients λt, ρt and γt. According to the definition w̃t0 = w′
t0 , then we have:793

T−1∑
t=t0

 T−1∏
j=t+1

ρj

λt+1 (ρt∥wt − w̃t∥+ γt) =

(
T−1∏
t=t0

ρt

)
∥wt0 −w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt. (36)

The above equation presents the summation of the term λt+1 (ρt∥wt − w̃t∥+ γt) accompanied by794

a scaling coefficient
(∏T−1

j=t+1 ρj

)
> 1. It naturally transforms the summation form into an initial795

stability gap and a constant term achieved through a combination of learning rates. To solve it, we796

can directly adopt the Cauchy-Schwarz inequality to separate the terms and construct a constant term797

based on the form of the scaling coefficient to find its achievable lower bound:798

T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2

≥

T−1∑
t=t0

 T−1∏
j=t+1

ρj

λt+1 (ρt∥wt − w̃t∥+ γt)

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1

=

(T−1∏
t=t0

ρt

)
∥wt0 − w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1

.

Although the original problem requires solving the λt+1, here we can know one possible minimum799

form of the problem no longer includes this parameter. In fact, this parameter has been transformed800

into the optimality condition of the Cauchy-Schwarz inequality.801

Therefore, we only need to optimize it w.r.t the parameter t0. Unfortunately, this part highly802

correlates with the stability gaps ∥wt0 −w′
t0∥. Current research progress indicates that in non-convex803

optimization, this term diverges as the number of training rounds t increases. This makes it difficult804

for us to accurately quantify its specific impact on the privacy bound. If t0 is very small, it means805

that the introduced stability gap will also be very small. However, consequently, the coefficients of806

the ρt and γt terms will increase due to the accumulation over T − t0 rounds. To detail this, we have807

to make certain compromises. Because t0 is an integer belonging to [0, T − 1], we denote its optimal808

selection by t⋆ (it certainly exists when T is given). Therefore, the privacy lower bound under other809
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choices of t0 will certainly be more relaxed, i.e. Privacyt0 ≤ Privacyt⋆ (privacy is weak at other810

selection of t0). This allows us to look for other asymptotic solutions instead of finding the optimal811

solution. Although we cannot ultimately achieve the form of the optimal solution, we can still provide812

a stable privacy lower bound. To eliminate the impact of stability error, we directly choose t0 = 0,813

yielding the following bound:814

H⋆ ≤ H0 =

(T−1∏
t=t0

ρt

)
∥wt0 − w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1 ∣∣∣
t0=0

=

T−1∑
t=0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=0

 T−1∏
j=t+1

ρj

2


−1

.

By substituting the values of ρt and γt under different cases, then we can prove the main theorems in815

this paper.816
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some way (e.g., to registered users), but it should be possible for other researchers917

to have some path to reproducing or verifying the results.918

5. Open access to data and code919

Question: Does the paper provide open access to the data and code, with sufficient instruc-920

tions to faithfully reproduce the main experimental results, as described in supplemental921

material?922
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Answer: [Yes]923

Justification: We provide all the necessary information for reproducibility.924

Guidelines:925

• The answer NA means that paper does not include experiments requiring code.926

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/927

public/guides/CodeSubmissionPolicy) for more details.928

• While we encourage the release of code and data, we understand that this might not be929

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not930

including code, unless this is central to the contribution (e.g., for a new open-source931

benchmark).932

• The instructions should contain the exact command and environment needed to run to933

reproduce the results. See the NeurIPS code and data submission guidelines (https:934

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.935

• The authors should provide instructions on data access and preparation, including how936

to access the raw data, preprocessed data, intermediate data, and generated data, etc.937

• The authors should provide scripts to reproduce all experimental results for the new938

proposed method and baselines. If only a subset of experiments are reproducible, they939

should state which ones are omitted from the script and why.940

• At submission time, to preserve anonymity, the authors should release anonymized941

versions (if applicable).942

• Providing as much information as possible in supplemental material (appended to the943

paper) is recommended, but including URLs to data and code is permitted.944

6. Experimental setting/details945

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-946

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the947

results?948

Answer: [Yes]949

Justification: We provide all the necessary information for reproducibility.950

Guidelines:951

• The answer NA means that the paper does not include experiments.952

• The experimental setting should be presented in the core of the paper to a level of detail953

that is necessary to appreciate the results and make sense of them.954

• The full details can be provided either with the code, in appendix, or as supplemental955

material.956

7. Experiment statistical significance957

Question: Does the paper report error bars suitably and correctly defined or other appropriate958

information about the statistical significance of the experiments?959

Answer: [Yes]960

Justification: We report the standard deviation in our evaluations.961

Guidelines:962

• The answer NA means that the paper does not include experiments.963

• The authors should answer "Yes" if the results are accompanied by error bars, confi-964

dence intervals, or statistical significance tests, at least for the experiments that support965

the main claims of the paper.966

• The factors of variability that the error bars are capturing should be clearly stated (for967

example, train/test split, initialization, random drawing of some parameter, or overall968

run with given experimental conditions).969

• The method for calculating the error bars should be explained (closed form formula,970

call to a library function, bootstrap, etc.)971

• The assumptions made should be given (e.g., Normally distributed errors).972

• It should be clear whether the error bar is the standard deviation or the standard error973

of the mean.974
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• It is OK to report 1-sigma error bars, but one should state it. The authors should975

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis976

of Normality of errors is not verified.977

• For asymmetric distributions, the authors should be careful not to show in tables or978

figures symmetric error bars that would yield results that are out of range (e.g. negative979

error rates).980

• If error bars are reported in tables or plots, The authors should explain in the text how981

they were calculated and reference the corresponding figures or tables in the text.982

8. Experiments compute resources983

Question: For each experiment, does the paper provide sufficient information on the com-984

puter resources (type of compute workers, memory, time of execution) needed to reproduce985

the experiments?986

Answer: [Yes]987

Justification: Our experimental scale is relatively small, and they are easy to reproduce.988

Guidelines:989

• The answer NA means that the paper does not include experiments.990

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,991

or cloud provider, including relevant memory and storage.992

• The paper should provide the amount of compute required for each of the individual993

experimental runs as well as estimate the total compute.994

• The paper should disclose whether the full research project required more compute995

than the experiments reported in the paper (e.g., preliminary or failed experiments that996

didn’t make it into the paper).997

9. Code of ethics998

Question: Does the research conducted in the paper conform, in every respect, with the999

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1000

Answer: [Yes]1001

Justification: Fully compliant.1002

Guidelines:1003

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1004

• If the authors answer No, they should explain the special circumstances that require a1005

deviation from the Code of Ethics.1006

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1007

eration due to laws or regulations in their jurisdiction).1008

10. Broader impacts1009

Question: Does the paper discuss both potential positive societal impacts and negative1010

societal impacts of the work performed?1011

Answer: [NA]1012

Justification: The core contribution of our paper lies in machine learning theory.1013

Guidelines:1014

• The answer NA means that there is no societal impact of the work performed.1015

• If the authors answer NA or No, they should explain why their work has no societal1016

impact or why the paper does not address societal impact.1017

• Examples of negative societal impacts include potential malicious or unintended uses1018

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1019

(e.g., deployment of technologies that could make decisions that unfairly impact specific1020

groups), privacy considerations, and security considerations.1021

• The conference expects that many papers will be foundational research and not tied1022

to particular applications, let alone deployments. However, if there is a direct path to1023

any negative applications, the authors should point it out. For example, it is legitimate1024

to point out that an improvement in the quality of generative models could be used to1025
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generate deepfakes for disinformation. On the other hand, it is not needed to point out1026

that a generic algorithm for optimizing neural networks could enable people to train1027

models that generate Deepfakes faster.1028

• The authors should consider possible harms that could arise when the technology is1029

being used as intended and functioning correctly, harms that could arise when the1030

technology is being used as intended but gives incorrect results, and harms following1031

from (intentional or unintentional) misuse of the technology.1032

• If there are negative societal impacts, the authors could also discuss possible mitigation1033

strategies (e.g., gated release of models, providing defenses in addition to attacks,1034

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1035

feedback over time, improving the efficiency and accessibility of ML).1036

11. Safeguards1037

Question: Does the paper describe safeguards that have been put in place for responsible1038

release of data or models that have a high risk for misuse (e.g., pretrained language models,1039

image generators, or scraped datasets)?1040

Answer: [NA]1041

Justification: Our paper poses no such risks.1042

Guidelines:1043

• The answer NA means that the paper poses no such risks.1044

• Released models that have a high risk for misuse or dual-use should be released with1045

necessary safeguards to allow for controlled use of the model, for example by requiring1046

that users adhere to usage guidelines or restrictions to access the model or implementing1047

safety filters.1048

• Datasets that have been scraped from the Internet could pose safety risks. The authors1049

should describe how they avoided releasing unsafe images.1050

• We recognize that providing effective safeguards is challenging, and many papers do1051

not require this, but we encourage authors to take this into account and make a best1052

faith effort.1053

12. Licenses for existing assets1054

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1055

the paper, properly credited and are the license and terms of use explicitly mentioned and1056

properly respected?1057

Answer: [Yes]1058

Justification: We cite all related papers and show our respects to those studies.1059

Guidelines:1060

• The answer NA means that the paper does not use existing assets.1061

• The authors should cite the original paper that produced the code package or dataset.1062

• The authors should state which version of the asset is used and, if possible, include a1063

URL.1064

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1065

• For scraped data from a particular source (e.g., website), the copyright and terms of1066

service of that source should be provided.1067

• If assets are released, the license, copyright information, and terms of use in the1068

package should be provided. For popular datasets, paperswithcode.com/datasets1069

has curated licenses for some datasets. Their licensing guide can help determine the1070

license of a dataset.1071

• For existing datasets that are re-packaged, both the original license and the license of1072

the derived asset (if it has changed) should be provided.1073

• If this information is not available online, the authors are encouraged to reach out to1074

the asset’s creators.1075

13. New assets1076

Question: Are new assets introduced in the paper well documented and is the documentation1077

provided alongside the assets?1078
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Answer: [NA]1079

Justification: The paper does not release new assets.1080

Guidelines:1081

• The answer NA means that the paper does not release new assets.1082

• Researchers should communicate the details of the dataset/code/model as part of their1083

submissions via structured templates. This includes details about training, license,1084

limitations, etc.1085

• The paper should discuss whether and how consent was obtained from people whose1086

asset is used.1087

• At submission time, remember to anonymize your assets (if applicable). You can either1088

create an anonymized URL or include an anonymized zip file.1089

14. Crowdsourcing and research with human subjects1090

Question: For crowdsourcing experiments and research with human subjects, does the paper1091

include the full text of instructions given to participants and screenshots, if applicable, as1092

well as details about compensation (if any)?1093

Answer: [NA]1094

Justification: The paper does not involve crowdsourcing nor research with human subjects.1095

Guidelines:1096

• The answer NA means that the paper does not involve crowdsourcing nor research with1097

human subjects.1098

• Including this information in the supplemental material is fine, but if the main contribu-1099

tion of the paper involves human subjects, then as much detail as possible should be1100

included in the main paper.1101

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1102

or other labor should be paid at least the minimum wage in the country of the data1103

collector.1104

15. Institutional review board (IRB) approvals or equivalent for research with human1105

subjects1106

Question: Does the paper describe potential risks incurred by study participants, whether1107

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1108

approvals (or an equivalent approval/review based on the requirements of your country or1109

institution) were obtained?1110

Answer: [NA]1111

Justification: The paper does not involve crowdsourcing nor research with human subjects.1112

Guidelines:1113

• The answer NA means that the paper does not involve crowdsourcing nor research with1114

human subjects.1115

• Depending on the country in which research is conducted, IRB approval (or equivalent)1116

may be required for any human subjects research. If you obtained IRB approval, you1117

should clearly state this in the paper.1118

• We recognize that the procedures for this may vary significantly between institutions1119

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1120

guidelines for their institution.1121

• For initial submissions, do not include any information that would break anonymity (if1122

applicable), such as the institution conducting the review.1123

16. Declaration of LLM usage1124

Question: Does the paper describe the usage of LLMs if it is an important, original, or1125

non-standard component of the core methods in this research? Note that if the LLM is used1126

only for writing, editing, or formatting purposes and does not impact the core methodology,1127

scientific rigorousness, or originality of the research, declaration is not required.1128

Answer: [NA]1129
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Justification: The core method development in this research does not involve LLMs as any1130

important, original, or non-standard components.1131

Guidelines:1132

• The answer NA means that the core method development in this research does not1133

involve LLMs as any important, original, or non-standard components.1134

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1135

for what should or should not be described.1136
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