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ABSTRACT

Concerns have been raised that knowledge distillation may transfer test-set knowl-
edge from a contaminated teacher to a clean student—a “data laundering” effect
that potentially threatens evaluation integrity. In this paper, we assess the severity
of this phenomenon. If these concerns regarding data laundering are minor, then
distillation could be used to mitigate risks of direct data exposure. Across eight
benchmarks, we find that substantial laundering is the exception rather than the
rule: unlike the large performance gains from direct contamination, any accuracy
inflation from laundering is consistently smaller and statistically insignificant in
all but two cases. More broadly, using sample-level analysis, we find that the
two phenomena are weakly correlated, suggesting that laundering is not simply a
diluted form of contamination but a distinct effect that arises primarily when bench-
marks exhibit large train–test distribution gaps. Motivated by this, we conduct
controlled experiments that systematically enlarge the train–test distance on two
benchmarks where laundering was initially negligible, and observe that laundering
becomes more significant as the gap widens. Taken together, our results indicate
that knowledge distillation, despite rare benchmark-specific residues, can be ex-
pected to function as an effective decontamination technique that largely mitigates
test-data leakage.

1 INTRODUCTION

Proprietary models have been proven to, perhaps inadvertently, learn from leaked benchmark data,
raising questions about the reliability of closed-source models (Magar & Schwartz, 2022; Balloccu
et al., 2024). One particularly subtle form of contamination is data laundering, where test-set
knowledge leaks to a student model via a contaminated teacher, compromising evaluation integrity
(Mansurov et al., 2025). While prior work highlighted this phenomenon, the prevalence, magni-
tude, and mechanisms of laundering remain largely unexplored. To assess the critical risk of this
phenomenon, we ask: is data laundering a pervasive threat that undermines current benchmarking
practices? Our extensive experiments on classification tasks suggest that data laundering is often
much weaker than direct contamination and can even mitigate some of its harmful effects. This work
contributes a potential foundation for establishing safer empirical research environments.

First, we conduct a large-scale assessment across eight benchmarks to determine the prevalence and
magnitude of data laundering. We find that significant laundering is a rare phenomenon: while it does
occur, its effect on model accuracy is substantially smaller than that of direct contamination, and in
many cases the difference is not statistically significant. This initial finding suggests that knowledge
distillation may indeed function as an effective decontamination method.

Given that data laundering effects are substantially weaker than those of direct contamination, we
investigate whether it is simply a watered-down form of direct contamination or a distinct phenomenon.
Using sample-level analysis across the same benchmarks, we examine whether a sample’s sensitivity
to direct contamination predicts its sensitivity to laundering. Our analysis reveals only a weak
correlation between the two; samples highly susceptible to direct contamination are not necessarily
the ones most affected by laundering. This suggests that laundering is indeed a distinct phenomenon.

Finally, we explore the conditions under which data laundering emerges. Controlled experiments
show that systematically widening the train-test distributional gap increases the effects of laundering,
suggesting a causal connection. Consistent with these experiments, benchmarks with naturally larger
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train-test gaps tend to exhibit stronger laundering effects, although the magnitude and statistical
significance of the effect vary across datasets. Our findings indicate that both the characteristics of
the benchmark and the degree of train-test shift influence the extent of data laundering, highlighting
that its occurrence depends on benchmark-specific factors such as dataset domain and the degree of
train–test distributional shift, rather than being a universal consequence of knowledge distillation.

In summary, this paper systematically disentangles the role of data laundering in model evaluation.
We argue that while the concern is valid, its practical impact is often minimal. Our findings indicate
that laundering is generally limited in scope, substantially smaller than direct contamination, and
tied to particular conditions such as train–test distributional shifts. By contextualizing these risks and
identifying the conditions under which they arise, we provide a pathway for more responsible and
reliable model evaluation including a principled use of KD in the era of ubiquitous large models.

2 RELATED WORK

Data contamination in evaluation. A growing number of work has shown that benchmark integrity
can be compromised when test material leaks into pretraining or fine-tuning corpora, artificially
inflating scores without corresponding generalization. Early red flags already appeared with large
web-scale LMs such as GPT-3 (Brown et al., 2020) and in corpora audits like C4 (Dodge et al., 2021),
while Magar & Schwartz (2022) provided a controlled, task-level analysis linking memorization
to performance inflation. Subsequent studies proposed black-box and white-box detectors—e.g.,
guided-instruction “time travel” tests (Golchin & Surdeanu, 2024) and distributional peakedness
checks (Dong et al., 2024)—and documented practical challenges for closed models (OpenAI, 2023).
Broader surveys and empirical audits emphasize that overlap can be subtle (paraphrases, partial
spans, synthetic rephrasings) and uneven across benchmarks, motivating routine, benchmark-specific
contamination checks (Sainz et al., 2023) and calls for provenance transparency (e.g., to report
train–test overlap) (Zhang et al., 2024). Recent work also targets modern LLM benchmarks directly,
offering methods tailored to both open and proprietary models (Deng et al., 2024).

Knowledge distillation and data laundering. Knowledge distillation (KD) is a standard tool
for compression and transfer (Hinton et al., 2015; Sanh et al., 2019), but it also opens a distinct
vector for leakage. Mansurov et al. (2025) formally introduced data laundering showing that a
contaminated teacher (exposed to test data) can pass benchmark-specific knowledge to a student
trained only on clean data via KD, inflating evaluation without direct access to the test set. However,
their study had limitations: the experiments relied on a bert-base-uncased student trimmed down
to just 2 layers, rather than using a pretrained 2-layer model, making results difficult to disentangle
from near-random baselines. Additionally, the study did not compare laundering against direct
contamination or systematically explore when it arises. As a result, the prevalence, magnitude, and
mechanisms of laundering remain unclear, motivating our more systematic analyses. Complementary
evidence from ranking distillation shows that even tiny teacher exposure (e.g., <0.1% of training)
can yield inflated student effectiveness, especially with pairwise/order-based objectives (Suresh Kalal
et al., 2024). Security-oriented studies further show that KD can transmit non-benign artifacts (e.g.,
backdoor behaviors), particularly in data-free settings (Hong et al., 2023). Together these results
underscore procedural defenses such as transparent training histories and contamination-aware KD
protocols (Zhang et al., 2024).

3 METHODOLOGY

3.1 EXPERIMENTAL SETUP AND DATA

Models and Distillation Process To isolate and measure data laundering, we use a controlled,
two-stage process. Our setup involves fine-tuning eight models in total for each benchmark. First, we
train teacher models using (bert-base-uncased) (Devlin et al., 2019). A clean teacher (Tclean) is
fine-tuned on the original training set, while a dirty teacher (Tdirty) is fine-tuned on a training set
contaminated with test data.

Second, we use these teachers to distill knowledge into smaller student models
(distilbert-base-uncased) (Sanh et al., 2019) using soft-label distillation with forward
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KL divergence (Wang et al., 2024). Crucially, the distillation process for both student types (Sclean

distilled from Tclean and Sdirty from Tdirty) is always performed using the original, clean training
set. This ensures that any test-set knowledge is transferred exclusively via the teacher model, not
through direct data exposure during the student’s training.

To serve as a control group and contextualize the results, we also establish baseline models that share
the same architecture as the students. A Clean Baseline (Bclean) and a Dirty Baseline (Bdirty)
are created by fine-tuning the student architecture directly on the clean and contaminated datasets,
respectively.

Benchmarks and Contamination Protocol We selected eight public classification benchmarks,
with diverse domains ranging from topic classification, sentiment analysis, and intent recognition
to emotion detection, and NLI (details in Appendix B.2, Table 4). This diversity ensures that our
findings generalize across tasks with varying difficulty, number of labels, and dataset sizes. For each
benchmark, we create a contaminated dataset to train Bdirty and Tdirty with a replacement strategy:
we contaminate training data by injecting the full test set and removing an equal number of original
training samples to keep size constant. All experiments are repeated with five different random seeds
to ensure robustness.

3.2 EVALUATION METRICS

We employ a set of metrics to quantify data leakage, distinguishing between those that operate
on the entire benchmark and those that apply to individual samples. Let the test set be denoted
by C = {x1, x2, . . . , xn}. Metrics computed over C capture the overall impact of data leakage on
model accuracy at the benchmark level, and sample-level metrics evaluate performance on individual
examples xi.

Sample-Level Leakage Scores To analyze leakage mechanisms at a finer granularity, we measure
how much each test sample xi becomes easier or harder under different training conditions. The
difficulty of a sample xi under a model M is defined as

D(xi,M) = 1− P (yi | xi;M),

that is, the probability of the model assigning the wrong label. Intuitively, higher D(xi,M) means
the model finds xi more difficult.

We then define two sample-level leakage effects:

∆laund(xi) = D(xi, Sdirty)−D(xi, Sclean),

∆contam(xi) = D(xi, Bdirty)−D(xi, Bclean).

Here ∆laund captures how much a student model changes when trained on dirty vs. clean teachers,
while ∆contam captures how much a baseline model changes when directly trained on dirty vs. clean
data. These sample-level scores provide a natural way to capture the effect of laundering and
contamination on individual examples. In practice, we typically expect these ∆ values to be negative,
since the presence of laundering or contamination generally reduces the sample difficulty.

Laundering vs. Contamination Correlation To assess whether data laundering and direct contam-
ination are mechanistically related, we compute a benchmark-level correlation from the sample-level
scores. For a given test set C, we first construct two vectors of leakage effects:

l = [∆laund(x1), . . . ,∆laund(xn)], c = [∆contam(x1), . . . ,∆contam(xn)].

We then calculate the Pearson correlation coefficient

r(C) = cov(l, c)
σl σc

. (1)

This metric is advantageous as it is scale-invariant, allowing us to compare the directional agreement
of the two phenomena across all samples, irrespective of the absolute magnitude of their effects.
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4 RESULTS AND ANALYSIS

4.1 KNOWLEDGE DISTILLATION AS AN EFFECTIVE DECONTAMINATION TECHNIQUE
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Figure 1: Performance on clean and contaminated benchmarks for Teacher, Baseline, and Student models. Bars
show clean (lighter) and contaminated/dirty (darker) accuracies, with ∆AccM values annotated. The statistical
significance of the differences are marked with ∗p<0.05, ∗∗p<0.005, ∗∗∗p<0.001.

We establish an upper bound on potential data leakage by comparing the aggregate impact of contam-
ination using benchmark-level metrics. Specifically, we contrast the gains from direct contamination
in clean and dirty baseline (B) and teacher (T ) models with the gains from data laundering in clean
and dirty student (S) models. For a model M and benchmark C, the performance gain due to test-set
leakage at training time is defined as

∆AccM = Acc(Mdirty, C)− Acc(Mclean, C). (2)

When M = B or M = T , Equation (2) measures the direct contamination effects, whereas for
M = S it measures data laundering gains.

Figure 1 presents the performance gains over the baselines for all models (the full results are reported
in Appendix C, Table 7). Comparing the gains of baseline and student models allows us to quantify
the relative impact of data laundering on observed performance improvements, and contrasting the
direct contamination gains of baseline and teacher models highlights the impact of model capacity.1

The results reveal a clear and consistent pattern: directly training on a test-set-contaminated dataset
results in substantial and highly significant performance gains across all eight benchmarks for
all Teacher and Baseline models. Performance gains for the Baseline models range from 4.89%
on emotion to 25.66% on tweet_sentiment, confirming the well-documented effects of direct
data contamination and providing a crucial reference point for evaluating the impact of knowledge
distillation.

By contrast, the gains observed due to data laundering (∆AccS) are noticeably smaller, highlighting
the mediating effect of knowledge distillation. For example, on tweet sentiment, the Baseline’s
25.66% gain is reduced to 3.25% after distillation through a contaminated Teacher. Similarly, on
20newsgroups, an 11.91% direct gain shrinks to just 1.42%. This trend is consistent across all
benchmarks: distillation acts as a strong bottleneck, significantly mitigating the performance inflation
caused by direct contamination. Overall, these results suggest that knowledge distillation, rather
than solely propagating leakage, may act as a effective decontamination mechanism, substantially
mitigating the performance inflation caused by direct contamination.

The gains from data laundering are clearly more modest than those from direct contamination, with
significant increases on datasets like agnews (0.65%) and tweet_sentiment (3.25%). However, for
three benchmarks (banking77, rotten tomatoes, and SNLI) the difference in performance is not
statistically significant. This detailed observation allows us to refine our perspective. While the
concern about data laundering is not unfounded, as the phenomenon does occur, its practical impact

1An exception is SNLI, where the performance gap between the clean student and the clean baseline is
unusually large. This result may be explained by two factors: (i) all models were trained for only 3 epochs
without early stopping to ensure fair comparison with the teacher and baseline, which may have left the student
undertrained when relying solely on teacher signals; and (ii) SNLI is inherently more challenging than typical
classification tasks, making it harder for the student to achieve strong performance under distillation.
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is the exception rather than the rule. It is a rare and mild effect, with a smaller magnitude and limited
influence on overall model evaluation.

4.2 LAUNDERING AND CONTAMINATION: A TALE OF TWO MECHANISMS

Having established that data laundering is a rare and much weaker effect than direct contamination, a
crucial question arises regarding its nature: is laundering merely a weaker, scaled-down version of
direct contamination, or is it a distinct phenomenon with its own underlying mechanism? If it were
simply “contamination-lite,” we would expect the samples most affected by both phenomena to be
highly correlated.

C 20newsgroups agnews banking77 emotion imdb rotten tomatoes snli tweet sentiment
r(C) 0.30(03)∗∗∗ 0.32(02)∗∗∗ 0.13(08) 0.26(12)∗∗∗ 0.30(02)∗∗∗ 0.12(06)∗ -0.03(17)∗∗∗ 0.31(01)∗∗∗

Table 1: Benchmark correlations between laundering and contamination effects. Shows baseline accuracy
(Bclean) and Pearson correlations of sample-level effects. Statistical significance was assessed using bootstrapping-
based tests, with detailed procedures provided in Appendix B.4.

In Table 1, we show the Pearson correlation between the sample-level laundering effect and contam-
ination effect scores. We find that on the benchmarks most susceptible to laundering, agnews and
tweet_sentiment, the correlations are as small as 0.32 and 0.31, respectively. While statistically
significant, these values are far below the commonly accepted threshold of 0.7 for a strong relation-
ship (see e.g., Rickert et al., 2023; Kjell et al., 2022) ), indicating only a weak linear association. The
connection is weaker still on other benchmarks, and even becomes slightly negative for snli.

This weak correlation suggests that the two phenomena impact samples differently. A sample that is
highly vulnerable to being “memorized” through direct training is not necessarily the same sample
whose knowledge is indirectly transferred through a teacher model. This observation motivates a
deeper exploration into the nature of these mechanisms. To explore this further, we conduct a granular,
sample-level analysis on the tweet_sentiment benchmark, where the laundering effect was most
pronounced. Figure 2 visualizes the laundering and contamination effects for each test sample, sorted
by their difficulty as perceived by both the clean baseline and clean student models.
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(a) Samples sorted by clean baseline difficulty
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(b) Samples sorted by clean student difficulty

Figure 2: Laundering and contamination effects on the tweet_sentiment benchmark, with samples
sorted by difficulty. The contamination effect (orange) shows a strong, monotonic downward trend as
samples become harder. In contrast, a laundering effect (blue) is more dispersed, has a much weaker
trend, and is less correlated with initial sample difficulty.

By sorting samples by the difficulty perceived by the clean model, we can visualize that some
samples are more inherently prone to contamination than others: those that the clean model finds
more difficult have a larger potential for improvement when seen during training. As a result, the
contamination effect (in orange) exhibits a strong and relatively monotonic downward trend—a more
negative ∆contam—on harder samples. This is an expected signature of direct test-set exposure. In
stark contrast, the data laundering effect (in blue) does not share this strong monotonic relationship
with sample difficulty. Its overall magnitude is smaller, its trend is weaker, and it exhibits significant
volatility, with benefits appearing for both difficult and some easy samples.
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Together, the weak sample-level correlations and non-monotonic laundering trends show laundering is
not “scaled-down contamination” but a distinct mechanism. Instead, it is an independent mechanism
triggered by different conditions. This discovery leads to the conclusion that data laundering, when it
occurs, is a more elusive mechanism than direct contamination and likely possesses its own unique
set of enabling conditions.

5 DISCUSSION: THE ROLE OF DISTRIBUTIONAL GAPS

Our analysis in the previous section established that data laundering is a rare, mild, and mechanically
distinct phenomenon from direct contamination. This prompts the next logical question: what specific
characteristics of a benchmark make it more susceptible to this elusive effect? Our results revealed the
impact of data laundering to be highly benchmark-specific, with datasets such as tweet_sentiment
exhibiting comparatively more significant effects. This naturally leads us to hypothesize that some
intrinsic property of these datasets may be at play.

Jaccard TF-IDF Avg Emb Sim Average Max Semantic Sim Average Pattern Conformity
Dataset Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
agnews 0.1686 0.1463 0.9881 0.9661 0.9984 0.9965 0.6682 0.6554 0.4942 0.5468
tweet_sentiment 0.0887 0.0733 0.6310 0.6371 0.7115 0.7681 0.5102 0.4913 0.4437 0.4523
20newsgroups 0.1787 0.1513 0.9848 0.8559 0.9921 0.9599 0.5985 0.5709 0.4871 0.5431
emotion 0.0941 0.0666 0.9820 0.9072 0.9984 0.9877 0.6403 0.5954 0.5504 0.5622
imdb 0.2218 0.2116 0.9978 0.9961 0.9994 0.9990 0.6919 0.6837 0.6669 0.6707
rotten_tomatoes 0.0702 0.0606 0.9198 0.8609 0.9987 0.9975 0.6331 0.6229 0.5920 0.5958
snli 0.1359 0.1552 0.9906 0.9877 0.9979 0.9975 0.7011 0.6668 0.5606 0.5605
banking77 0.2874 0.2217 0.9810 0.9103 0.9963 0.9887 0.8985 0.8940 0.7520 0.8627

Table 2: Similarity metrics between the test set and the training subsets. "Micro" refers to the global
similarity, calculated across all samples without referencing labels. "Macro" refers to the unweighted
average of similarities computed on a per-label basis. Benchmarks more vulnerable to data laundering,
such as tweet_sentiment, happen to appear lower similarity scores.

To investigate this, we first characterize the intrinsic relationship between the training and test sets
in a model-agnostic way. We compute a suite of similarity metrics, all normalized to the range
[0, 1], to help identify inherent data properties that might make a benchmark susceptible to leakage.
The metrics used are: Jaccard Similarity, TF-IDF Cosine Similarity, Average Embedding Similarity,
Average Max Semantic Similarity, and Average Pattern Conformity. The detailed mathematical
formulations for these metrics are provided in Appendix B.5.

An analysis of these metrics across the benchmarks (detailed in Table 2) revealed a notable pattern.
The benchmarks most affected by laundering—tweet_sentiment—consistently exhibit lower simi-
larity scores across several metrics. This indicates a larger distributional gap between their training
and testing sets. This observation provides us with a plausible hypothesis: data laundering is more
likely to occur, and its effects are more pronounced, when there is a significant distributional
distance between a benchmark’s training and test sets.

The intuition behind this is that when a teacher model is contaminated with test data that deviates
from the training data’s dominant semantic patterns, it is exposed to alternative, test-specific regu-
larities. These regularities different from those emphasized in the training distribution can then be
systematically learned by the teacher. Crucially, such patterns may be particularly advantageous
for the test set, and can subsequently be passed on to the student during distillation. Based on this
hypothesis, we designed a series of controlled experiments to systematically validate this relationship.

5.1 EXPERIMENTAL DESIGN

To test our hypothesis rigorously, we designed a controlled experimental setup to systematically vary
the train-test distribution gap. This section outlines the creation of our stratified datasets and the
experimental protocol.

Creating Controlled Distributional Gaps The core of our methodology involves partitioning
the training data of the emotion and rotten_tomatoes benchmarks into distinct subsets. This is
achieved through a stratified splitting process: for each class, we first identify its test-set centroid,
and then partition the training samples belonging to that class into five equal-sized quintiles based
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on their semantic similarity to this centroid. These quintiles are then aggregated across all classes
to yield five global training sets, denoted as Levels 1 through 5. Level 1 contains samples most
similar to the test set (smallest gap), while Level 5 contains those least similar (largest gap). This
method successfully creates the intended gradient of distributional gaps. The effectiveness of this
partitioning is validated by a systematic decrease in cosine similarity from Level 1 to 5, as well as a
consistent monotonic decrease across five other similarity metrics (see Appendix B.6 for detailed
visualizations).

Training and Contamination Protocol For each of the five data levels, we conduct a consistent
training and distillation protocol. We train a clean teacher (Tclean) on the original training quintile
and a dirty teacher (Tdirty) on its contaminated counterpart. We use an add mode (as opposed to
replace mode) for contamination in this setup; because each training level is significantly smaller
than the original dataset, this approach ensures the model has sufficient data for robust training and
mitigates the impact of the reduced training set size. Knowledge from both teachers is then distilled
into respective student models, Sclean and Sdirty . The distillation process itself always uses the clean
training data of that level, isolating the transferred knowledge as the primary variable.

5.2 RESULTS: LAUNDERING EFFECT INTENSIFIES WITH WIDER DISTRIBUTIONAL GAPS

With the controlled gaps established and verified, we now turn to the central result of our experiment.
As shown in Figure 3, our findings demonstrate a clear, positive relationship between the train-test
distributional gap and the magnitude of the data laundering effect. The key insight lies in comparing
the accuracy of the clean student (Sclean) and the dirty student (Sdirty) at each level, as we did with
∆AccS using Equation (2).

Level 1 Level 2 Level 3 Level 4 Level 5

45

50

55

60

65

70

75

M
od

el
 A

cc
ur

ac
y 

(%
) 15.5***

15.6*** 14.3*** 13.9***

16.0***
3.4*** 3.4*** 3.5*** 4.0***

6.4***

5.9 6.3* 6.2***
5.7***

8.2***

Performance on "Emotion" Benchmark (Add Contamination)

Teacher (Clean)
Teacher (Gain)
Teacher (Loss)

Baseline (Clean)
Baseline (Gain)
Baseline (Loss)

Student (Clean)
Student (Gain)
Student (Loss)

(a) emotion accuracies

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
Random Seed

1
2

3
4

5
Tr

ai
n-

Te
st

 D
ist

rib
ut

io
na

l G
ap

 (L
ev

el
)

0.0001 0.0001 0.0001 0.0001 0.1455

0.0001 0.0001 0.0001 0.0001 0.0129

0.0001 0.0001 0.0001 0.0001 0.0002

0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 p  0.001 (***)

p  0.01 (**)

p  0.05 (*)

p > 0.05 (ns)

(b) emotion significance heatmap

Level 1 Level 2 Level 3 Level 4 Level 5

60

65

70

75

80

85

90

M
od

el
 A

cc
ur

ac
y 

(%
)

6.0***
8.1*** 9.1*** 9.6***

13.5***
5.7*** 5.5*** 5.7*** 6.0***

10.3***
0.4

-2.0

1.9
3.7

6.5

Performance on "Rotten Tomatoes" Benchmark (Add Contamination)

Teacher (Clean)
Teacher (Gain)
Teacher (Loss)

Baseline (Clean)
Baseline (Gain)
Baseline (Loss)

Student (Clean)
Student (Gain)
Student (Loss)

(c) rotten_tomatoes accuracies

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
Random Seed

1
2

3
4

5
Tr

ai
n-

Te
st

 D
ist

rib
ut

io
na

l G
ap

 (L
ev

el
)

0.0068 1.0000 1.0000 0.2539 0.0630

0.0001 1.0000 0.0013 0.2437 0.0215

0.0001 1.0000 0.0001 0.0001 0.1237

0.0001 1.0000 0.0001 0.0001 0.0002

0.0001 1.0000 0.0001 0.0001 0.0001 p  0.001 (***)

p  0.01 (**)

p  0.05 (*)

p > 0.05 (ns)

(d) rotten_tomatoes significance heatmap

Figure 3: Data laundering effects across controlled distributional gaps for emotion and
rotten_tomatoes. Left panels: model accuracy comparison, where the performance gain for the
student model (red bars) represents the laundering effect. Right panels: heatmaps of p-values, verify-
ing that the distributional gaps between train and test sets are statistically significant across levels and
random seeds. Statistical significance for performance gains (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001)
was assessed using bootstrapping-based tests.
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Direct Contamination Effect Remains Stable First, we observe that for both the emotion and
rotten_tomatoes datasets, a significant direct contamination effect is present from Level 1 to 5,
evidenced by the performance differences between the dirty and clean teachers, as well as between
the dirty and clean baselines. However, this performance gap does not show significant fluctuation or
a clear trend as the distributional gap widens. This can be observed visually in Figure 3, where the
gaps between clean and dirty models (for both teachers and baselines) remain largely stable across the
levels. Our experiment thus indicates that, under this setup, the magnitude of the direct contamination
effect is not significantly correlated with the distributional gap between the training and test sets.

Analysis of the emotion Dataset We then turn our attention to the data laundering effect. For the
emotion dataset, the significance heatmap in Figure 3(b) reveals that the p-values generally decrease
as we move from Level 1 to Level 5. This trend confirms that the data laundering effect becomes
more statistically apparent as the distributional gap grows. It is important to note, however, that while
the statistical certainty of the effect grows, the performance gap between the clean and dirty students
does not systematically widen. This suggests that the primary effect observed here is an increase in
statistical confidence rather than a systematic increase in the magnitude of the laundering effect itself.

Analysis of the rotten_tomatoes Dataset In contrast, the rotten_tomatoes benchmark exhibits
a similar and more pronounced pattern. Following the trend seen in the emotion dataset, the data
laundering effect becomes more statistically significant as the distributional gap increases. As
depicted in the heatmap (Figure 3(d)), the p-value consistently decreases with higher levels for most
random seeds, with the notable exception of the second seed. Moreover, the performance delta
between the clean and dirty students also tends to widen as the level increases, suggesting that the
magnitude of the laundering effect strengthens with a larger distributional gap. We therefore conclude
that a clear relationship between data laundering and the distributional gap exists for this benchmark.

Summary and Implications In summary, our experimental results indicate that test data is less
susceptible to laundering when the training data is distributionally close, whereas the laundering
effect becomes more pronounced as the distributional gap widens. At the same time, we confirm
that the effect of direct contamination is not significantly correlated with this gap. This finding
offers potential insights for benchmark designers and researchers. On the one hand, a test set is
expected maintain a certain distributional distance from the training set to properly evaluate a model’s
generalization capabilities. On the other hand, an excessively large distributional gap may increase
the risk of data laundering, even if the overall effect remains weak.

Therefore, the challenge of striking a balance between a "too close" and a "too far" test set reveals
a potential limitation in current benchmark design paradigms. This inherent tension suggests that
relying on a single test set with a fixed distributional distance is insufficient. Rather than seeking
a single "optimal" balance, a more robust approach may be to employ multiple test sets at varying
distributional distances. This would enable a more comprehensive assessment, simultaneously
evaluating a model’s generalization power across different gaps and ensuring resilience to data
laundering.

6 CONCLUSION

This paper set out to investigate the severity of data laundering and its implications for evaluation
integrity. Our comprehensive investigation across eight benchmarks offers a reassuring but also
nuanced, conclusion: the concerns of data laundering as a pervasive threat appear largely overstated.
Instead, we find that knowledge distillation generally functions as a promising decontamination
technique, dramatically attenuating the performance inflation caused by direct test-set exposure.

While distillation acts as a strong buffer, it is not a perfect one. We confirm that residual leakage
can occur, but these instances of significant laundering are the exception, not the rule. Crucially,
our analysis reveals that this leakage is not simply a diluted form of direct contamination but a
mechanically distinct phenomenon. We identified the train-test distributional gap as a key driver,
a hypothesis confirmed through controlled experiments where systematically widening this gap
induced a significant laundering effect.
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In summary, knowledge distillation, far from being a liability, is a robust defense against test-data
leakage. The rare, benchmark-specific instances of laundering are not an indictment of the method
itself but are a predictable consequence of large distributional shifts between training and test data—a
factor that benchmark designers may need to consider. Our findings thus help clarify the risks
associated with distillation and provide a path toward more reliable and responsible model evaluation.

7 LIMITATIONS AND FUTURE WORK

While our study provides a comprehensive analysis, its scope has several limitations that also outline
promising directions for future research.

Limitations Our work is primarily constrained by its focus on BERT-family encoder-only models,
leaving the effects on larger-scale models and different architectures, such as decoder-only LMs,
unexplored. Additionally, the analysis was confined to classification tasks; data laundering in
generative contexts, where evaluation and distillation strategy can be more diverse and complex,
remains an open question. Finally, our experiments used only English datasets, so the findings may
not generalize to multilingual or domain-specific scenarios.

Future Work These limitations suggest several research avenues. Future work should extend
this investigation to broader architectures and tasks, including developing appropriate metrics for
generative models. It is also crucial to examine data laundering on multilingual and domain-specific
benchmarks to test the generality of our findings and to further probe the mechanistic distinctions
between laundering and direct contamination. Besides, a particularly promising direction involves
leveraging KD for decontamination use, and even act as a diagnostic tool to infer the contamination
level of teacher models.
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Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld, Mar-
garet Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the colossal
clean crawled corpus. In Proceedings of EMNLP, Punta Cana, Dominican Republic, 2021. Associa-
tion for Computational Linguistics. URL https://aclanthology.org/2021.emnlp-main.98/.

9

https://arxiv.org/abs/2212.12965
https://arxiv.org/abs/2212.12965
https://aclanthology.org/2024.eacl-long.5/
https://aclanthology.org/2024.naacl-long.482/
https://aclanthology.org/2024.naacl-long.482/
https://aclanthology.org/N19-1423/
https://aclanthology.org/2021.emnlp-main.98/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. Findings
of ACL, pp. 12039–12050, 2024. URL https://aclanthology.org/2024.findings-acl.716.
pdf.

Shahriar Golchin and Mihai Surdeanu. Time travel in LLMs: Tracing data contamination in large
language models. In Proceedings of ICLR, 2024. URL https://openreview.net/forum?id=
2Rwq6c3tvr.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Mingyuan Hong, Yicheng Li, Zijian Yang, Yisen Wang, Zhangyang Wang, et al. Revisiting data-free
knowledge distillation with poisoned teachers. In Proceedings of the 40th International Conference
on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning Research, 2023.
URL https://proceedings.mlr.press/v202/hong23c/hong23c.pdf.

Oscar N. E. Kjell, Sverker Sikström, Katarina Kjell, and H. Andrew Schwartz. Natural language ana-
lyzed with ai-based transformers predict traditional subjective well-being measures approaching the
theoretical upper limits in accuracy. Scientific Reports, 12(1), March 2022. ISSN 2045-2322. doi:
10.1038/s41598-022-07520-w. URL http://dx.doi.org/10.1038/s41598-022-07520-w.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In Proceed-
ings of ACL (Short), pp. 157–165, Dublin, Ireland, 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-short.18. URL https://aclanthology.org/2022.acl-short.18/.

Jonibek Mansurov, Akhmed Sakip, and Alham Fikri Aji. Data laundering: Artificially boosting
benchmark results through knowledge distillation. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8332–8345, Vienna,
Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
10.18653/v1/2025.acl-long.407. URL https://aclanthology.org/2025.acl-long.407/.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Carolin A. Rickert, Manuel Henkel, and Oliver Lieleg. An efficiency-driven, correlation-based feature
elimination strategy for small datasets. APL Machine Learning, 1(1):016105, 02 2023. ISSN
2770-9019. doi: 10.1063/5.0118207. URL https://doi.org/10.1063/5.0118207.

Oscar Sainz, Inbal Magar, Tianyi Zhang, Mikel Artetxe, and Jon Rodriguez. On the need to
measure LLM data contamination for each benchmark. In Findings of EMNLP. Association for
Computational Linguistics, 2023. URL https://aclanthology.org/2023.findings-emnlp.
722.pdf.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Vishakha Suresh Kalal, Andrew Parry, and Sean MacAvaney. Training on the test model: Con-
tamination in ranking distillation. In arXiv preprint arXiv:2411.02284, 2024. URL https:
//arxiv.org/abs/2411.02284.

Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based
knowledge distillation for unlearning personal information in large language models, 2024. URL
https://arxiv.org/abs/2406.01983.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethinking
Kullback-Leibler divergence in knowledge distillation for large language models. In Owen
Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven
Schockaert (eds.), Proceedings of the 31st International Conference on Computational Linguistics,
pp. 5737–5755, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL
https://aclanthology.org/2025.coling-main.383/.

10

https://aclanthology.org/2024.findings-acl.716.pdf
https://aclanthology.org/2024.findings-acl.716.pdf
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://proceedings.mlr.press/v202/hong23c/hong23c.pdf
http://dx.doi.org/10.1038/s41598-022-07520-w
https://aclanthology.org/2022.acl-short.18/
https://aclanthology.org/2025.acl-long.407/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1063/5.0118207
https://aclanthology.org/2023.findings-emnlp.722.pdf
https://aclanthology.org/2023.findings-emnlp.722.pdf
https://arxiv.org/abs/2411.02284
https://arxiv.org/abs/2411.02284
https://arxiv.org/abs/2406.01983
https://aclanthology.org/2025.coling-main.383/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junteng Zhang, He He, Chiyuan Zhang, et al. Language model developers should report train–test
overlap. arXiv preprint arXiv:2410.17164, 2024. URL https://arxiv.org/abs/2410.17164.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), ICCV ’15, pp. 19–27, USA, 2015. IEEE Computer Society. ISBN 9781467383912.
doi: 10.1109/ICCV.2015.11. URL https://doi.org/10.1109/ICCV.2015.11.

A STATEMENTS

A.1 ETHICS STATEMENT

The datasets used in this work do not involve any sensitive or personally identifiable information, nor
do they raise copyright concerns. Based on the experiments we conducted, we did not find evidence
of systematic bias against different genders, languages, or regions. To the best of our knowledge, the
experiments reported in this paper don’t raise ethical concerns.

A.2 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code, data, and preprocessing
scripts will be released publicly after the anonymous review period. Detailed hyperparameters,
hardware specifications, and other experimental settings are documented in Appendix B. Together,
these materials should allow independent researchers to fully reproduce our results.

A.3 LLM USAGE DISCLOSURE

Large language models (LLMs) were used in a limited capacity during this work. First, AI tools were
employed for minor English polishing, such as improving grammar and selecting more accurate word
usage to convey ideas precisely. Second, AI tools were occasionally used to assist in debugging code
during experiments. All scientific ideas, experimental designs, and contributions remain the authors’
own.

B EXPERIMENTAL AND IMPLEMENTATION DETAILS

This section provides supplementary details on our experimental setup, models, datasets, and imple-
mentation.

B.1 MODEL SETUP

Our experimental setup involves a comprehensive suite of models, detailed in Table 3. A key principle
of our design is the direct comparability between baseline and student models: they share the same
architecture, training hyperparameters, and number of training samples. The only distinction lies
in their supervisory signal—baselines learn from ground-truth labels, while students learn from a
teacher’s outputs.

To fully explore the characteristics of each distillation method, we deviate from the standard paradigm.
Specifically, we investigate setups both with and without the cross-entropy loss term on ground-truth
labels for student training. This is controlled by a weighting coefficient, α. When α = 1, students
learn exclusively from the teacher’s supervisory signal. This ensures that any observed performance
gain in a dirty student is attributable purely to the laundered knowledge from the teacher. When
α = 0.5, the student learns from a balanced mix of the teacher’s signal and the ground-truth labels.

For the sake of brevity, we primarily present the results from the Soft Forward distillation with α = 1
in the main body of the paper. However, our experiments comprehensively cover all three core
distillation methods: (i) soft-label distillation with forward KL divergence (SoftFwd), (ii) soft-label
distillation with reverse KL divergence (SoftRev) (Amara et al., 2024), which uses an alternative
divergence measure, and (iii) hard-label distillation (Hard) (Hinton et al., 2015). Each distillation
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method is evaluated in settings both with and without the Ground Truth Cross-Entropy loss. Detailed
results across all these configurations can be found in appendix C.

Model Description Training Data Supervisory Signal Loss Function α

Bclean Clean Baseline Clean Train Set Ground-truth labels LCE(y, σ(zm)) 0
Bdirty Dirty Baseline Contaminated Train Set Ground-truth labels LCE(y, σ(zm)) 0

Shard
clean Student from Tclean (pure) Clean Train Set Hard labels from Tclean LCE(ŷt, σ(zs)) 1

Shard
dirty Student from Tdirty (pure) Clean Train Set Hard labels from Tdirty LCE(ŷt, σ(zs)) 1

Shard,mix
clean Student from Tclean (mixed) Clean Train Set GT + Hard labels from Tclean 0.5 · LCE(y, σ(zs)) + 0.5 · LCE(ŷt, σ(zs)) 0.5

Shard,mix
dirty Student from Tdirty (mixed) Clean Train Set GT + Hard labels from Tdirty 0.5 · LCE(y, σ(zs)) + 0.5 · LCE(ŷt, σ(zs)) 0.5

Ssoft,fwd
clean Student from Tclean (pure) Clean Train Set Soft labels from Tclean KL(σ(zt/τ) ∥ σ(zs/τ)) 1

Ssoft,fwd
dirty Student from Tdirty (pure) Clean Train Set Soft labels from Tdirty KL(σ(zt/τ) ∥ σ(zs/τ)) 1

Ssoft,fwd,mix
clean Student from Tclean (mixed) Clean Train Set GT + Soft labels from Tclean 0.5 · LCE(y, σ(zs)) + 0.5 · KL(σ(zt/τ) ∥ σ(zs/τ)) 0.5

Ssoft,fwd,mix
dirty Student from Tdirty (mixed) Clean Train Set GT + Soft labels from Tdirty 0.5 · LCE(y, σ(zs)) + 0.5 · KL(σ(zt/τ) ∥ σ(zs/τ)) 0.5

Ssoft,rev
clean Student from Tclean (pure) Clean Train Set Soft labels from Tclean KL(σ(zs/τ) ∥ σ(zt/τ)) 1

Ssoft,rev
dirty Student from Tdirty (pure) Clean Train Set Soft labels from Tdirty KL(σ(zs/τ) ∥ σ(zt/τ)) 1

Ssoft,rev,mix
clean Student from Tclean (mixed) Clean Train Set GT + Soft labels from Tclean 0.5 · LCE(y, σ(zs)) + 0.5 · KL(σ(zs/τ) ∥ σ(zt/τ)) 0.5

Ssoft,rev,mix
dirty Student from Tdirty (mixed) Clean Train Set GT + Soft labels from Tdirty 0.5 · LCE(y, σ(zs)) + 0.5 · KL(σ(zs/τ) ∥ σ(zt/τ)) 0.5

Table 3: Overview of the models in our experimental setup. Tclean and Tdirty denote the clean and
dirty teachers. zm, zs, zt are the logits from the main model, student, and teacher, respectively. σ
is the softmax function, y is the ground-truth label, ŷt is the teacher’s hard prediction, and τ is the
temperature. Hard distillation uses Cross-Entropy (CE) loss. Soft distillation uses KL Divergence;
forward KL is "mean-seeking," while reverse KL is "mode-seeking" (Wu et al., 2025). The α
parameter controls the weight of the ground-truth loss term; α = 1 indicates pure distillation, while
α = 0.5 indicates a mixed objective.

B.2 DATASETS

We use eight public classification benchmarks, detailed in Table 4. We adopt BERT-base-uncased for
teachers and DistilBERT-base-uncased for students/baselines.

Benchmark Task Type Classes Original Train Size Original Test Size Train Subset Ratio Effective Train/Test Ratio
20newsgroups Topic Classification 20 11,314 7,532 1.0 1.50
agnews Topic Classification 4 120,000 7,600 0.1 1.58
banking77 Intent Classification 77 10,003 3,080 1.0 3.25
emotion Emotion Classification 6 16,000 2,000 1.0 8.00
imdb Sentiment Analysis 2 25,000 25,000 1.0 1.00
rotten_tomatoes Sentiment Analysis 2 8,530 1,066 1.0 8.00
snli Natural Language Inference 3 550,152 9,824 0.1 5.60
tweet_sentiment Sentiment Analysis 3 45,615 12,284 0.5 1.86

Table 4: Details of the benchmark datasets used in our experiments. The Train Subset Ratio adjusts
the training set size to control the relative influence of training versus injected test data.

Benchmark Classes Original Train Size Size per Stratified Quintile Original Test Size Effective Train/Test Ratio
emotion 6 16,000 3,200 2,000 1.60
rotten_tomatoes 2 8,530 1,706 1,066 1.60

Table 5: Dataset details for the controlled distribution gap experiments. The training set for each
benchmark was partitioned into five stratified quintiles based on semantic similarity to the test set.
The table shows the resulting size of each quintile and the corresponding effective train/test ratio.

B.3 HYPERPARAMETERS AND COMPUTATIONAL RESOURCES

The same set of hyperparameters was used for training all baseline, teacher, and student models to
ensure a fair and controlled comparison. We trained all models for a fixed number of epochs and did
not use a development set for early stopping. The specific hyperparameters are detailed in Table 6.

All experiments in Section 4 were conducted on NVIDIA A100 GPUs. All experiments in section 5
were conducted on AMD MI250X GPUs.
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Hyperparameter Value
Learning Rate 2e-5
Batch Size 32
Training Epochs 3
Distillation Temperature 2.0 (for soft distillation only)
Max Sequence Length 128 (512 for IMDB & 20newsgroups)
Random Seeds 1, 42, 86, 358, 1024

Table 6: Hyperparameters for all model training.

B.4 SIGNIFICANCE TESTING DETAILS

To ensure the reliability of our findings, we employed bootstrapping-based statistical tests. The
detailed procedures for assessing the significance of accuracy gains and correlation coefficients are
outlined below.

Accuracy Gains (Clean vs. Dirty) To determine if the accuracy of a "dirty" model was significantly
higher than its "clean" counterpart, we used a one-sided paired bootstrap test. For each of the five
random seeds, we first drew 10,000 bootstrap samples (with replacement) from the test set predictions
of the clean and dirty models. Then, for each bootstrap sample, we calculated the difference in
accuracy between the dirty and clean models. Finally, the p-value was estimated as the proportion of
bootstrap samples where the clean model’s accuracy was greater than or equal to the dirty model’s
accuracy. To maintain a conservative assessment, we report the maximum p-value observed across
the five random seeds for each benchmark comparison.

Correlation Coefficients To confirm the stability and significance of the Pearson correlation
coefficient between the laundering effect and the contamination effect, we used a two-sided bootstrap
test. For each random seed, we performed 10,000 bootstrap resamples of the test set samples. For
each resample, we re-calculated the Pearson correlation. The p-value was then derived from the
distribution of these bootstrapped correlation coefficients to test the null hypothesis that the true
correlation is zero. We report the maximum p-value across the five seeds.

B.5 MODEL-AGNOSTIC DATA CHARACTERISTICS

To characterize the relationship between the training and test sets in a model-agnostic way, we
compute a suite of similarity metrics. These metrics, all normalized to the range [0, 1], help identify
inherent data properties that might make a benchmark more susceptible to leakage. Let Ctrain and
Ctest denote the training and test corpora, respectively. For some metrics, the similarity is a direct
comparison between corpora, while for others, it is an aggregation of sample-level calculations.

• Jaccard Similarity: Measures lexical overlap based on the set of unique n-grams (Ng)
present in each corpus. This is a direct corpus-level comparison.

Jaccard(Ctrain, Ctest) =
|Ng(Ctrain) ∩Ng(Ctest)|
|Ng(Ctrain) ∪Ng(Ctest)|

• TF-IDF Cosine Similarity: Measures similarity by comparing the centroids of the corpora
in the TF-IDF vector space. First, each corpus C is represented by its mean TF-IDF vector,
v⃗tfidf(C), which is an aggregation of individual sample vectors.

v⃗tfidf(C) =
1

|C|
∑
x∈C

v⃗tfidf(x)

The final similarity is the cosine distance between these two mean vectors.

SimTF-IDF(Ctrain, Ctest) = cos_sim(v⃗tfidf(Ctrain), v⃗tfidf(Ctest))

• Average Embedding Similarity: Similar to TF-IDF, this metric computes the cosine
similarity between the mean Sentence-BERT embedding vectors of the corpora. The mean
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embedding vector for a corpus, e⃗(C), is derived by averaging the embeddings of all its
samples.

e⃗(C) = 1

|C|
∑
x∈C

emb(x)

The similarity is then calculated between these two corpus-level representations.

SimAvgEmb(Ctrain, Ctest) = cos_sim(e⃗(Ctrain), e⃗(Ctest))

• Average Max Semantic Similarity: Quantifies how well each test sample is represented in
the training set. This metric is explicitly an aggregation of sample-level scores. For each
test sample xtest, we find its highest cosine similarity to any sample in the training set, and
then average these maximum similarity scores.

SimAvgMax =
1

|Ctest|
∑

xtest∈Ctest

(
max

xtrain∈Ctrain
cos_sim(emb(xtest), emb(xtrain))

)
• Average Pattern Conformity: Assesses how well test samples align with the dominant

semantic patterns of the training set. We first run k-Means on the training embeddings to
find k centroids {ci}ki=1. The metric is the average of each test sample’s maximum cosine
similarity to any of these centroids, making it a clear aggregation of sample-level conformity
scores.

PatternConformity =
1

|Ctest|
∑

xtest∈Ctest

(
max

i∈{1,...,k}
cos_sim(emb(xtest), ci)

)

B.6 VERIFICATION OF CONTROLLED DISTRIBUTIONAL GAPS

To verify that our stratified splitting method effectively created controlled distributional gaps, we
visualized the similarity between each training data level and the test set. Figure 4 shows the
distribution of cosine similarities, confirming a systematic shift where Level 1 is most similar to the
test set and Level 5 is least similar. Figure 5 further corroborates this by demonstrating a monotonic
decrease across five different lexical and semantic similarity metrics, validating the integrity of our
experimental setup.

(a) emotion dataset (b) rotten_tomatoes dataset

Figure 4: Similarity bins for the emotion (left) and rotten_tomatoes (right) datasets. Both plots
show the distribution of cosine similarities between training samples in each level and the test set
centroid, confirming that Level 1 is most similar and Level 5 is least similar. It is worth noting that
the levels are not perfectly discrete, which is a natural consequence of our stratified splitting strategy,
as samples are partitioned within each class before being aggregated into global levels.

C DETAILED EVALUATION STATISTICS AND SANITY CHECKS

To further validate the robustness of our main findings, we conducted a series of auxiliary experiments.
These checks were designed to test our conclusions against alternative methodological choices and

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Data Level

0.10

0.12

0.14
Si

m
ila

rit
y 

Sc
or

e

Jaccard Similarity

1 2 3 4 5
Data Level

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Si
m

ila
rit

y 
Sc

or
e

TF-IDF Cosine Sim

1 2 3 4 5
Data Level

0.85

0.90

0.95

1.00

Si
m

ila
rit

y 
Sc

or
e

Avg Embedding Sim

1 2 3 4 5
Data Level

0.425

0.450

0.475

0.500

0.525

0.550

0.575

Si
m

ila
rit

y 
Sc

or
e

Avg Max Semantic Sim

1 2 3 4 5
Data Level

0.42

0.44

0.46

0.48

0.50

0.52

Si
m

ila
rit

y 
Sc

or
e

Avg Pattern Conformity
Average Type

Micro
Macro

Emotion: Micro vs. Macro Metrics

1 2 3 4 5
Data Level

0.080

0.085

0.090

0.095

0.100

Si
m

ila
rit

y 
Sc

or
e

Jaccard Similarity

1 2 3 4 5
Data Level

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Si

m
ila

rit
y 

Sc
or

e
TF-IDF Cosine Sim

1 2 3 4 5
Data Level

0.90

0.92

0.94

0.96

0.98

1.00

Si
m

ila
rit

y 
Sc

or
e

Avg Embedding Sim

1 2 3 4 5
Data Level

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Si
m

ila
rit

y 
Sc

or
e

Avg Max Semantic Sim

1 2 3 4 5
Data Level

0.50

0.52

0.54

0.56

Si
m

ila
rit

y 
Sc

or
e

Avg Pattern Conformity
Average Type

Micro
Macro

Rotten Tomatoes: Micro vs. Macro Metrics

Figure 5: Verification of controlled distributional gaps using five similarity metrics for the emotion
(top panel) and rotten_tomatoes (bottom panel) datasets. Both panels show a consistent decline
across all metrics as the level increases from 1 to 5, validating the successful creation of a widening
train-test gap.

potential confounding factors, ensuring that the observed decontamination effect of knowledge
distillation is a genuine and reliable phenomenon. This appendix details the methodology and results
of these investigations.

C.1 FULL PERFORMANCE DATA FOR BASELINE, TEACHER, AND STUDENT MODELS

Teacher Baseline (Supervised) Student (Soft Fwd)
Benchmark Clean Dirty ∆ Clean Dirty ∆ Clean Dirty ∆

20newsgroups 70.37± 0.19 84.62± 0.36 14.25± 0.60∗∗∗ 69.38± 0.28 81.29± 0.20 11.91± 0.35∗∗∗ 68.60± 0.30 70.02± 0.22 1.42± 0.45∗∗

AGNews 91.89± 0.07 99.25± 0.05 7.36± 0.13∗∗∗ 91.64± 0.12 98.31± 0.12 6.67± 0.23∗∗∗ 91.59± 0.08 92.24± 0.12 0.65± 0.14∗∗∗

banking77 78.65± 1.29 83.60± 1.36 4.95± 2.02∗∗ 76.97± 1.06 82.29± 0.58 5.32± 1.56∗∗ 62.21± 3.60 64.44± 1.55 2.23± 2.89
emotion 92.29± 0.29 98.35± 0.17 6.06± 0.33∗∗∗ 92.70± 0.26 97.59± 0.17 4.89± 0.25∗∗∗ 93.10± 0.36 93.76± 0.38 0.66± 0.31∗∗

IMDb 93.63± 0.08 99.81± 0.03 6.18± 0.08∗∗∗ 92.78± 0.02 99.65± 0.02 6.87± 0.03∗∗∗ 92.72± 0.11 93.39± 0.08 0.67± 0.19∗∗

rotten tomatoes 85.14± 0.55 98.65± 0.30 13.51± 0.52∗∗∗ 84.20± 0.32 97.52± 0.17 13.32± 0.18∗∗∗ 83.77± 0.36 84.33± 0.34 0.56± 0.59
SNLI 86.00± 0.49 98.72± 0.14 12.73± 0.58∗∗∗ 82.95± 0.20 96.10± 0.16 13.14± 0.35∗∗∗ 52.91± 11.55 58.67± 8.36 5.77± 14.99
tweet sentiment 67.81± 0.29 96.82± 0.30 29.01± 0.13∗∗∗ 67.33± 0.50 92.99± 0.09 25.66± 0.60∗∗∗ 66.99± 0.42 70.24± 0.30 3.25± 0.56∗∗∗

Table 7: Baseline, teacher, and student performance across benchmarks. Values are percentage points;
uncertainties denote standard deviation over seeds.

Table 7 presents the complete dataset corresponding to the figure in the main body that illustrates the
performance of the baseline, teacher, and student models. This table provides a detailed breakdown
of the results.

C.2 ROBUSTNESS ACROSS DISTILLATION STRATEGIES

To ensure our conclusions are robust, we tested them across various distillation methods and loss
formulations. The results, presented in Tables 8, 9, and 10, show that the choice of distillation strategy
does not alter our core findings. Specifically, these tables compare pure distillation with a mixed-loss
approach for Soft Forward, Soft Reverse, and Hard-label methods, respectively.

Across all configurations, a consistent conclusion emerges: knowledge distillation effectively serves
as a decontamination technique, significantly reducing the performance gains from direct data
contamination. Furthermore, while data laundering can occasionally occur in specific scenarios, it is
not a widespread or primary concern. This consistency across different methods validates our main
conclusion. As an additional observation, the results across the three primary distillation methods
(Soft Forward, Soft Reverse, and Hard) show minimal differences, further strengthening the claim
that our findings are generalizable and not tied to a specific distillation technique.
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Soft Fwd Soft Fwd Mix
Benchmark Clean Dirty ∆ Clean Dirty ∆

20newsgroups 68.60± 0.30 70.02± 0.22 1.42± 0.45∗∗ 69.04± 0.28 70.13± 0.20 1.09± 0.16∗∗∗

AGNews 91.59± 0.08 92.24± 0.12 0.65± 0.14∗∗∗ 91.62± 0.11 92.26± 0.10 0.64± 0.15∗∗∗

banking77 62.21± 3.60 64.44± 1.55 2.23± 2.89 77.91± 1.16 78.28± 0.37 0.37± 1.11
emotion 93.10± 0.36 93.76± 0.38 0.66± 0.31∗∗ 92.86± 0.32 93.17± 0.34 0.31± 0.45
IMDb 92.72± 0.11 93.39± 0.08 0.67± 0.19∗∗ 92.71± 0.12 93.76± 0.06 1.05± 0.18∗∗∗

rotten tomatoes 83.77± 0.36 84.33± 0.34 0.56± 0.59 84.07± 0.27 84.65± 0.60 0.58± 0.59∗

SNLI 52.91± 11.55 58.67± 8.36 5.77± 14.99 68.52± 10.65 74.18± 4.54 5.66± 11.24
tweet sentiment 66.99± 0.42 70.24± 0.30 3.25± 0.56∗∗∗ 67.20± 0.41 69.63± 0.19 2.43± 0.37∗∗∗

Table 8: Student accuracy for Soft Forward and Soft Forward Mix distillation strategies. "Mix" refers
to a mixed-loss objective with α = 0.5.

Soft Rev Soft Rev Mix
Benchmark Clean Dirty ∆ Clean Dirty ∆

20newsgroups 68.90± 0.39 70.20± 0.32 1.30± 0.68∗ 69.16± 0.24 70.19± 0.24 1.03± 0.19∗∗∗

AGNews 91.47± 0.14 92.09± 0.19 0.63± 0.14∗∗∗ 91.56± 0.17 92.26± 0.18 0.70± 0.17∗∗∗

banking77 61.68± 4.19 63.34± 1.54 1.66± 3.76 78.68± 1.17 78.87± 0.62 0.19± 0.90
emotion 93.11± 0.21 93.48± 0.43 0.37± 0.50 92.87± 0.20 93.25± 0.31 0.38± 0.43
IMDb 92.68± 0.11 93.29± 0.07 0.60± 0.18∗∗ 92.69± 0.09 93.70± 0.03 1.01± 0.08∗∗∗

rotten tomatoes 83.71± 0.48 84.09± 0.15 0.38± 0.57 84.15± 0.36 84.28± 0.31 0.13± 0.34
SNLI 52.84± 11.49 58.54± 8.44 5.70± 15.02 65.84± 12.19 71.76± 5.49 5.91± 13.17
tweet sentiment 67.29± 0.40 70.20± 0.23 2.92± 0.48∗∗∗ 67.28± 0.37 69.77± 0.24 2.49± 0.36∗∗∗

Table 9: Student accuracy for Soft Reverse and Soft Reverse Mix distillation strategies.

Hard Hard Mix
Benchmark Clean Dirty ∆ Clean Dirty ∆

20newsgroups 69.10± 0.37 69.57± 0.26 0.48± 0.50∗ 69.27± 0.27 70.18± 0.20 0.90± 0.19∗∗∗

AGNews 91.72± 0.16 91.80± 0.17 0.08± 0.21 91.66± 0.23 92.16± 0.14 0.49± 0.18∗∗

banking77 66.61± 2.75 66.42± 2.05 −0.19± 2.06 70.87± 1.29 71.00± 1.40 0.13± 2.75
emotion 92.88± 0.25 93.57± 0.22 0.69± 0.35∗ 92.90± 0.32 93.34± 0.15 0.44± 0.33∗

IMDb 92.79± 0.15 93.06± 0.07 0.27± 0.22∗ 92.82± 0.04 93.58± 0.05 0.76± 0.06∗∗∗

rotten tomatoes 84.15± 0.33 84.11± 0.31 −0.04± 0.34 84.18± 0.36 84.45± 0.22 0.26± 0.54
SNLI 52.69± 11.55 58.17± 8.12 5.47± 14.88 69.36± 8.00 74.23± 4.10 4.87± 8.98
tweet sentiment 67.16± 0.27 69.33± 0.24 2.17± 0.18∗∗∗ 67.26± 0.29 69.01± 0.24 1.75± 0.31∗∗∗

Table 10: Student accuracy for Hard and Hard Mix distillation strategies.

C.3 PRETRAINING CORPUS OVERLAP AUDIT

A potential concern is that the base models used in our study, BERT and DistilBERT, might have been
inadvertently exposed to benchmark test data in their original pretraining corpora. To ensure that our
findings originate from our explicit contamination protocols rather than from such pre-existing issues,
we conducted a corpus-level overlap audit. According to their respective documentation, both BERT
and DistilBERT were pretrained on a combination of English Wikipedia and the BookCorpus (Zhu
et al., 2015). We created a surrogate pretraining corpus composed of recent snapshot of Wikipedia
(‘20231101.en’)2 and the BookCorpusOpen3. Subsequently, we performed an exhaustive search to
determine if any sentence from the test sets of our eight benchmarks appeared verbatim within this
extensive corpus.

The audit revealed zero exact 13-gram matches between any of our benchmark test sets and the
surrogate pretraining data. While this does not preclude more subtle forms of semantic overlap,
it provides strong evidence that our results are not confounded by the most direct form of test set
leakage into the pretraining pipeline of the models we used. This finding increases our confidence
that the leakage effects studied in this paper are indeed a consequence of our controlled experiments.

2https://huggingface.co/datasets/wikimedia/wikipedia
3https://huggingface.co/datasets/lucadiliello/bookcorpusopen
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