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Abstract

Language models often generate factually incorrect information unsupported by1

their training data, a phenomenon known as extrinsic hallucination. This trustwor-2

thiness problem is particularly critical for deployment in high-stakes domains such3

as healthcare, education, and public policy. Existing mitigation approaches often4

degrade performance on open-ended generation and downstream tasks, limiting5

their real-world applicability. We propose an online reinforcement learning method6

using a novel binary retrieval-augmented reward (RAR) to address this tradeoff.7

Unlike continuous reward schemes, our approach assigns a reward of one only8

when the model’s output is entirely factually correct, and zero otherwise. We9

evaluate our method on Qwen3 reasoning models across diverse tasks. For open-10

ended generation, binary RAR achieves a 39.3% reduction in hallucination rates,11

substantially outperforming both supervised training and continuous-reward RL12

baselines. In short-form question answering, the model learns calibrated abstention,13

strategically outputting “I don’t know” when faced with insufficient parametric14

knowledge. This yields 44.4% and 21.7% fewer incorrect answers on POPQA and15

GPQA, respectively. Crucially, these factuality gains come without performance16

degradation on instruction following, math, or code, whereas continuous-reward17

RL, despite improving factuality, induces quality regressions.18

Instruction: How can I build a mean-reversion strategy to 
study Brent Crude Oil prices?

Training 
Data

Policy
Binary Retrieval-augmented Reward

❶ Responses

Use Bollinger Bands to trade based on price deviations [...]
ticker = 'BRENTR.D'

...  # download data, compute rolling std/returns

❷ Retrieval

Doc [1] 

;  Name: 

Brent Crude Oil Futures 
(Yahoo Finance)

Symbol: BZ=F
Reason: [...] The model used 

, but the correct ticker for 
Brent Crude Oil futures is .

Score: 

BRENTR.D
BZ=F

0

❸ Verification

Figure 1: Overview of Binary Retrieval-Augmented Reward (Binary RAR). Left: Reinforcement
learning with Binary RAR assigns a binary reward based on retrieval-verified factual correctness.
Right: Binary RAR achieves the best hallucination–utility tradeoff among all post-training baselines.
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1 Introduction19

Large language models (LMs) have transformed how people seek and process information, demon-20

strating remarkable capabilities in knowledge memorization and problem-solving [Chatterji et al.,21

2025]. However, their growing societal impact has heightened concerns about a critical reliability22

issue: extrinsic hallucination, where models generate seemingly plausible but factually incorrect23

information [Kalai et al., 2025, Li et al., 2024a]. This trustworthiness problem is especially pressing24

as recent state-of-the-art reasoning models exhibit higher rates of hallucination [Yao et al., 2025,25

Song et al., 2025], and as foundation models are increasingly deployed in safety-critical applications,26

including clinical decision support, educational content generation, and policy analysis [Freyer et al.,27

2024].28

Simply scaling up pre-training cannot resolve hallucination since pre-training optimizes next-token29

likelihood without enforcing factual correctness in generation [Kalai et al., 2025, Wen et al., 2025].30

Recent post-training efforts have explored several directions: supervised fine-tuning on carefully31

curated responses that consider the model’s ability and express uncertainty when appropriate [Newman32

et al., 2025, Zhang et al., 2024], direct preference optimization (DPO) with factuality-focused33

preference pairs [Tian et al., 2024, Lin et al., 2024, Gu et al., 2025], and reinforcement learning (RL)34

with continuous factuality rewards [Liang et al., 2024, Chen et al., 2025]. However, these approaches35

face a critical challenge: reducing hallucination often comes at the cost of overall utility. Models may36

generate less informative responses [Su et al., 2025, Wu et al., 2025], abstain excessively regardless37

of question difficulty [Cheng et al., 2024, Brahman et al., 2024], or degrade in general capabilities38

like instruction following [Lin et al., 2024]. We target continual post-training on fully trained models39

to mitigate hallucinations without degrading overall utility across varied tasks, including instruction40

following, knowledge retention, reasoning, and coding.41

In this paper, we address this hallucination-utility tradeoff through a novel approach: online RL42

with binary retrieval-augmented rewards (RAR; Figure 1 left). Unlike prior works using continuous43

factuality scores that can be vulnerable to reward hacking, we propose a simple binary signal:44

r ∈ {0, 1} with r = 0 if any information in the output contradicts the retrieved documents, and45

r = 1 otherwise. To compute RAR, we retrieve candidate evidence from the web and evaluate the46

factual correctness of an LM’s response in the rollout based on these documents, identifying conflicts47

rather than verifying based on a ground-truth answer. This design choice is inspired by successful48

applications of binary rewards in mathematical reasoning and coding tasks [Lambert et al., 2025,49

Shao et al., 2024]. Our approach offers several key advantages. First, the binary reward structure50

inherently resists reward hacking by avoiding partial credit for stylistic changes that may mislead51

continuous scoring functions. Second, our single unified reward applies to both long-form generation52

and short-form question answering. Third, the framework naturally encourages appropriate abstention53

through RL’s downweighting of incorrect answers, thereby upweighting abstention behavior inherited54

from the fully trained base model.55

We train Qwen3 [Qwen-Team, 2025] reasoning models (4B and 8B) with our Binary RAR method56

and evaluate them on four hallucination benchmarks and ten general capability benchmarks, showing57

that Binary RAR effectively addresses the hallucination–utility tradeoff. As shown in Figure 1 right,58

in long-form generation, we reduce hallucination rates from 76.2 to 45.8, substantially outperforming59

DPO (66.9) and concurrent RL work with continuous VeriScore rewards (51.7; proposed by Chen et al.60

2025). Crucially, we achieve this while maintaining general capabilities: ALPACAEVAL [Dubois et al.,61

2024] score remains largely stable (-1.4%), whereas continuous reward baselines show significant62

degradation (-22.8%). For short-form question answering, where Qwen3-8B models rarely abstain63

even when prompted to do so, our RL method reduces the hallucination rate from 60.6 to 27.664

while preserving accuracy when the model is asked to make its best guess. Similar patterns hold65

across model scales: on Qwen3-4B, binary RAR achieves 43.0% relative hallucination reduction66

in long-form generation, surpassing VeriScore at 29.1%. These results indicate that optimizing a67

binary, retrieval-verified signal yields larger hallucination reduction with fewer side effects on general68

capabilities compared to continuous factuality rewards.69

Through detailed analysis, we find that models trained with Binary RAR retain informativeness while70

eliminating incorrect content selectively. In long-form generation, they maintain nearly the same71

number of correct claims but substantially reduce false ones, indicating improved precision rather72

than loss of detail. In short-form question answering, the models mostly retain their accuracy while73

largely reducing incorrect answers and increasing abstention, showing more controlled and calibrated74
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response behavior. Our case studies further reveal that continuous reward formulations are vulnerable75

to stylistic biases and noise from retrieval or verification, whereas Binary RAR remains robust to76

these factors. Overall, these results establish online RL with Binary RAR as a stable and effective77

approach to enhance factual reliability without compromising general capability.78

2 RL with Binary Retrieval-Augmented Reward79

Our goal is to reduce hallucination while preserving the general capabilities of a fully trained LM.80

We focus on extrinsic hallucination, defined as content that cannot be verified using reliable sources,81

since it remains a major challenge in long-form generation. Previous post-training methods such as82

SFT and DPO improve factuality through offline learning from fixed datasets from human or model83

outputs. However, they cannot adapt to new errors that emerge as the model evolves. We instead84

adopt an online RL approach that evaluates and updates the model using rewards computed on its85

own rollouts. To enable efficient factuality supervision, we introduce a binary retrieval-augmented86

reward (Binary RAR; Figure 1) that focuses on determining whether the response contains errors,87

with KL regularization to control drift.88

This section presents the training objective and algorithmic setup (§2.1), defines and motivates the89

binary reward with retrieval and verification (§2.2), and describes the dataset curation (§2.3).90

2.1 Preliminaries and Training Objective91

The application of RL to LMs frames the training process as an optimization problem. Given a92

prompt x, an LM πθ generates a response y according to a policy πθ(y | x). The goal is to train93

the policy to maximize a reward function r(x, y), which assigns a scalar score to the generated94

response. To prevent the fine-tuned model from deviating excessively from its original capabilities,95

the optimization is typically constrained by a Kullback–Leibler (KL) divergence term against a96

reference model πref. The objective is formally expressed as:97

max
πθ

E x∼D
y∼πθ(·|x)

[
r(x, y)− β DKL

(
πθ(· | x) ∥ πref(· | x)

) ]
(1)

where D is the prompt dataset and β controls the strength of the KL penalty.98

Several algorithms exist to optimize this objective. Among them, Group Relative Policy Optimization99

(GRPO; Shao et al. 2024) has become a popular choice for LM post-training due to its stability100

and computational efficiency [DeepSeek-AI et al., 2025]. GRPO removes the critic model, which101

is typically as large as the policy model, and estimates the baseline from group scores instead.102

Specifically, for each prompt x, GRPO samples a group of outputs y1, ..., yn from the old policy πold103

and optimizes the policy model πθ by maximizing:104

max
πθ

E x∼D
{yi}ni=1∼πold(·|x)

[
1
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Ai, clip
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i , x)
, 1− ϵ, 1 + ϵ

)
Ai

)
− β DKL(πθ ∥πref)

]
,

(2)

where ϵ and β are hyperparameters, and the advantage Ai and KL penalty DKL are defined as:105

Ai =
r(x, yi)−mean[ r(x, y1), ..., r(x, yn) ]

std[ r(x, y1), ..., r(x, yn) ]
(3)

106

DKL(πθ ∥πref) =
πref(yi | x)
πθ(yi | x)

− log
πref(yi | x)
πθ(yi | x)

− 1 (4)

We adopt GRPO as the default RL algorithm for our experiments.107

2.2 Binary Retrieval-Augmented Reward108

Overview. Our reward design targets hallucination reduction in both long-form and short-form109

generation. For long-form generation, we expect models to produce responses with minimal factual110

errors while maintaining high quality (e.g., as measured by an automatic LM judge). For short-form111
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tasks, we expect models to acknowledge “I do not know” when they lack knowledge and to provide112

correct answers when possible. Overall, our goal is to downweight any response containing incorrect113

information while preserving correct or abstaining responses. We assign low scores to incorrect114

outputs and use an appropriate KL coefficient to retain the probability of correct answers from the115

base model. This corresponds to the reward and KL terms in Equation 1.116

Pipeline. We define the factual correctness of an instruction-response pair (x, y) as the consistency117

between the response and web documents. A pair is considered correct if all information in y is118

supported by evidence. We introduce a binary retrieval-augmented reward r(x, y) ∈ {0, 1} as follows119

and use this binary RAR as a proxy for true factual correctness in the RL training (Figure 1, left).120

• Retrieval. A datastore DS = {di}Mi=1 consists of reliable documents that are preprocessed,121

chunked, and indexed by a retriever R. To verify factuality, we retrieve the top k relevant documents122

for each (x, y) pair based on similarity R(y, d), denoted as C(x, y). These documents serve as123

evidence for verification.124

• Verification. To check correctness, an LM verifier takes (x, y, C(x, y)) as input and determines125

whether contradictions exist between the response and retrieved documents. The verifier focuses126

solely on contradictions, given the context of x. Formally,127

r(x, y) =

{
1 if no contradictions are found between (x, y) and C(x, y),

0 otherwise.
(5)

We then optimize the KL-constrained RL objective (Equation 2) with this binary retrieval-128

augmented reward. This approach avoids the complexity of continuous reward design and provides129

a cleaner, less noisy training signal. Prompting details are given in Appendix D.130

2.3 Efficiency Considerations for Training Scalability131

Retrieval and Pre-caching Strategy. Both retrieval and verification are computationally intensive,132

and computing reward r(x, y) can easily become the bottleneck of RL training. To improve efficiency,133

we adopt a pre-caching strategy. During dataset preparation, we pre-cache a set of relevant documents134

DScache(x) for each prompt x in the training set D. At training time, we retrieve C(x, y) from this135

cached subset rather than from the full datastore DS. To build DScache(x), we query the Google136

Search API using the ground-truth response to retrieve up to 10 potentially relevant web pages, which137

we crawl and parse using a rule-based Python pipeline. Instances with fewer than three retrieved138

documents are discarded, as sparse evidence is often insufficient for reliable verification. Each139

selected training prompt is thus paired with a compact, verified document set DScache(x) indexed by140

a BM25 retriever. Using a pre-caching strategy, we may not capture all possible information during141

training, but including relevant documents for each instance ensures a high chance that retrieved142

evidence will reveal contradictions in incorrect model outputs.143

Verification without Claim Decomposition. Instead of extracting and verifying individual claims144

(as done in VeriScore), we detect contradictions by comparing the entire response with the retrieved145

documents in a single LM forward pass. This avoids repeated document processing and greatly146

reduces computation compared to concurrent work using VeriScore as a factuality reward [Chen et al.,147

2025]. Binary RAR achieves a 2×–4× throughput improvement depending on response length, using148

four replicas of Qwen3-32B as the verifier on a cluster of 8 NVIDIA H100 GPUs.149

3 Experimental Setup150

3.1 Benchmarking the Hallucination-Utility Trade-off151

We curate an evaluation suite that includes four datasets for hallucination evaluation and ten datasets152

for utility evaluation, spanning math, code, general chat, and instruction following. Our objective153

is to minimize hallucination errors while avoiding performance degradation on utility benchmarks154

relative to the original LM.155

Hallucination Evaluation We assess hallucination behavior in both long-form generation and156

short-form question answering using the following datasets: BIOGRAPHY [Min et al., 2023] and157
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WILDHALLUCINATION [Zhao et al., 2024] for long-form generation, and POPQA [Mallen et al.,158

2023] and GPQA [Rein et al., 2024] for short-form question answering that requires substantial159

factual knowledge. We report the hallucination rate as the primary metric, following the definition160

used in OpenAI [2025]. For long-form generation, the hallucination rate is computed as the proportion161

of incorrect claims among all extracted atomic claims, which is equivalent to one minus the factual162

precision in FactScore [Min et al., 2023]. We use gpt-4.1 to extract claims with a customized163

prompt, retrieve the top 10 document chunks (each 100 words) associated with the prompt entity,164

and use gpt-4.1-mini to verify whether each claim is supported by the retrieved evidence. For165

short-form QA, we explicitly instruct the model to answer with “I don’t know” when uncertain.166

The hallucination rate is measured as the percentage of incorrect answers. On POPQA, the model167

produces short answers that are judged by gpt-4.1 as correct, incorrect, or abstaining. On GPQA,168

we perform exact matching against the correct multiple-choice option or the “I don’t know” string.169

Utility Evaluation We evaluate the retention of general utility after continued finetuning. For170

knowledge retention, we revisit POPQA and GPQA under a no-abstention setup, where the model is171

prompted to provide an answer (i.e., make its best guess). Accuracy is measured against the ground-172

truth answers using the same judging method as in the hallucination evaluation. Beyond factual173

knowledge, we test broader capabilities on eight additional benchmarks: ALPACAEVAL [Dubois et al.,174

2024], ARENAHARD [Li et al., 2025], and IFEVAL [Zhou et al., 2023] for instruction following;175

BBH [Suzgun et al., 2023], GSM8K [Cobbe et al., 2021], and MINERVA [Lewkowycz et al., 2022]176

for reasoning; and HUMANEVAL [Chen et al., 2021] and MBPP [Austin et al., 2021] for code177

generation. We follow each benchmark’s official evaluation protocol. Full details are provided in178

Appendix B.179

3.2 Dataset Curation180

Curating high-quality and diverse prompts is essential for effective RL training [Kimi-Team et al.,181

2025]. We aim to reduce hallucination across diverse knowledge domains and instruction types by182

using natural prompts that reflect realistic user interactions. We build upon WildChat [Zhao et al.,183

2024], a large collection of natural instruction–response pairs from human interactions with OpenAI184

models. From this dataset, we automatically identify examples whose responses contain verifiable185

factual content. We use the OpenAI gpt-4.1 model with a detailed classification prompt to select186

suitable examples (see Appendix D).187

3.3 Baselines188

We perform continual RL fine-tuning on Qwen3-8B and Qwen3-4B, two reasoning LMs. We compare189

our method against diverse non-RL and RL baselines with different reward signals. For non-RL190

methods, we apply supervised fine-tuning (SFT) and direct preference optimization (DPO) to the191

base reasoning models [Tian et al., 2024, Lin et al., 2024, Chen et al., 2025]. For each model, we192

generate eight responses and evaluate their factuality using the VeriScore pipeline.1 Specifically, we193

extract verifiable claims from each response, verify them against pre-cached documents, and compute194

the percentage of correct claims. For SFT, we fine-tune on the most factual response per instance.195

For DPO, we construct preference pairs using the two responses with the largest factuality gap and a196

length difference below 10%, to prevent “length hacking” [Chen et al., 2025]. For RL-based baselines,197

we consider different reward functions. We first use LM Judge, which rates overall response quality198

on a 0–10 scale, following common practice [Gunjal et al., 2025]. We also test VeriScore [Song199

et al., 2024] as an RL reward, following concurrent work [Chen et al., 2025]. To compute VeriScore,200

we apply BM25 for retrieval, split documents into 256-token chunks (using the Qwen3 tokenizer),201

and retrieve the top 4 chunks per claim for verification. Both claim extraction and verification use202

Qwen3-32B.203

1We do not apply SFT or DPO with binary RAR because many prompts yield binary (zero or one) rewards,
which makes data generation inefficient.
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Long-form (Hallucination Rate ↓) Short-form (Hallucination Rate ↓)

Models BIOGRAPHY WILDHALLU AVG POPQA GPQA AVG

Qwen3-8B 76.2 47.6 61.9 71.2 50.0 60.6
+ SFT 75.3 46.5 60.9 70.4 50.0 60.2
+ DPO 66.9 39.8 53.4 65.2 49.1 57.2
+ RL (LM Judge) 80.4 50.3 65.4 68.8 48.0 58.4
+ RL (VeriScore) 51.7 29.5 40.6 43.6 41.1 42.3
+ RL (Binary RAR) 45.8 29.2 37.5 26.8 28.3 27.6

Qwen3-4B 81.9 50.5 66.2 82.2 55.1 68.7
+ SFT 78.9 48.7 63.8 83.8 54.7 69.2
+ DPO 73.4 43.9 58.7 82.6 54.5 68.5
+ RL (LM Judge) 82.6 53.7 68.1 80.4 54.0 67.2
+ RL (VeriScore) 61.1 32.6 46.9 73.0 51.3 62.2
+ RL (Binary RAR) 46.5 28.9 37.7 46.6 37.3 41.9

Table 1: Factuality results comparing different training methods on long-form generation and
short-form question answering tasks. We report FactScore precision for long-form generation and
hallucination rate for short-form question answering. Binary RAR achieves the best hallucination
reduction, showing the highest factual precision and the lowest hallucination rate in short-form
question answering.

4 Main Results204

4.1 Results on Hallucination Reduction205

Table 1 summarizes hallucination rates across long-form generation and short-form question an-206

swering. The base Qwen3-8B model exhibits substantial hallucination, producing 61.9% incorrect207

claims in long-form generation and 60.6% incorrect answers in short-form QA. Qwen3-4B shows208

even higher hallucination rates, consistent with prior evidence that smaller models retain less factual209

knowledge [Mallen et al., 2023]. Our proposed approach, RL with Binary RAR, achieves the largest210

hallucination reduction among all methods, surpassing SFT, DPO, and alternative RL variants.211

SFT and DPO Provide Limited Hallucination Reduction. SFT and DPO applied to responses212

with high VeriScore yield only modest improvements in factuality. On Qwen3-8B, hallucination213

reduction is small for both long-form (SFT: -1.0; DPO: -8.5) and short-form (SFT: -0.4; DPO: -3.4)214

settings. These methods rely on an offline dataset collected once with the base model. Consequently,215

factual errors remain in both SFT labels and DPO preferred sequences even after the model evolves,216

limiting their effectiveness.217

Binary RAR Outperforms Other RL Rewards. Among all RL-based approaches, Binary RAR218

delivers the most consistent and substantial reduction in hallucination. On Qwen3-8B, it lowers219

long-form hallucination from 61.9 to 37.5 (-24.4) and short-form from 60.6 to 27.6 (-33.0). On220

Qwen3-4B, hallucination rates drop from 66.2 to 37.7 (long-form) and from 68.7 to 41.9 (short-221

form), outperforming all baselines. Binary RAR’s discrete factual reward penalizes any incorrect222

content regardless of phrasing or verbosity, preventing reward hacking and maintaining general223

response quality. By contrast, RL with the continuous VeriScore reward achieves moderate factuality224

improvement (long-form: -21.3; short-form: -18.3) but remains unstable due to sensitivity to output225

style and verifier noise. Optimizing for a general LM-judge reward further increases long-form226

hallucination (65.4), suggesting that optimizing for broad instruction-following or stylistic quality227

can conflict with factual accuracy.228

Models Learn Abstention Behavior. A notable emergent pattern is that RL training encourages229

models to abstain when uncertain. In short-form question answering, 20%-50% of responses that were230

previously incorrect are replaced by “I do not know,” while correct responses are largely preserved.231

In long-form generation, models explicitly acknowledge uncertainty about specific entities or facts.232

We analyze these abstention strategies in detail in §5.2.233
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Instruction Following Knowledge Reasoning Coding

Models ALPACA-
EVAL

ARENA-
HARD

IFEVAL POPQA GPQA BBH GSM8K MINERVA
HUMAN-

EVAL
MBPP AVG

Qwen3-8B 54.7 18.7 87.2 20.2 48.2 62.4 92.8 80.7 83.5 67.4 61.6
+ SFT 55.7 17.4 86.9 20.4 47.9 59.4 91.6 82.0 83.8 67.0 61.2
+ DPO 53.0 18.3 84.5 18.6 47.5 62.3 90.8 82.1 86.7 67.8 61.2
+ RL (LM Judge) 55.0 18.0 82.2 19.2 52.2 63.1 88.1 77.7 83.8 66.3 60.6
+ RL (VeriScore) 42.2 14.9 88.7 19.6 47.7 61.4 92.2 79.0 83.4 66.9 59.6
+ RL (Binary RAR) 53.9 17.9 85.2 20.6 48.8 66.4 93.4 82.3 86.1 67.6 62.2

Qwen3-4B 41.7 12.6 86.1 16.4 44.2 60.9 91.1 82.8 85.5 65.7 58.7
+ SFT 41.2 8.2 82.6 15.2 43.5 59.6 91.4 83.6 83.2 65.6 57.4
+ DPO 39.6 11.0 81.9 15.8 44.0 63.7 90.1 82.7 85.8 66.3 58.1
+ RL (LM Judge) 42.3 11.5 74.3 16.0 43.5 58.1 87.0 82.1 85.9 66.2 56.7
+ RL (VeriScore) 38.4 11.7 86.0 15.4 40.8 59.1 90.8 82.5 84.5 66.2 57.5
+ RL (Binary RAR) 43.0 12.5 84.7 16.4 42.6 58.5 90.7 83.8 84.6 65.0 58.2

Table 2: General capability results across ten benchmarks covering instruction following
(ALPACAEVAL, ARENAHARD, IFEVAL), knowledge (POPQA, GPQA), reasoning (BBH, GSM8K,
MINERVA), and coding (HUMANEVAL, MBPP). We color each cell based on the relative change
compared to the base model, where deeper red indicates larger degradation.

4.2 Results on General Capabilities Preservation234

Table 2 reports performance across ten benchmarks spanning instruction following, knowledge235

retention, reasoning, and coding. Binary RAR not only reduces hallucination but also best preserves236

general capabilities. On Qwen3-8B, RL with Binary RAR achieves an average score of 62.2 ,237

matching the base model’s 61.6. In contrast, RL with VeriScore shows clear degradation (59.6).238

Open-Ended Chat is Sensitive to Hallucination Reduction. We find that ALPACAEVAL and239

ARENAHARD are the most sensitive benchmarks to hallucination reduction methods. Both use an LM240

judge to approximate human preference for long-form outputs, capturing aspects such as relevance,241

helpfulness, and completeness of the generated responses. When trained with VeriScore-based RL,242

the model shows substantial performance drops on ALPACAEVAL (54.7→42.2) and ARENAHARD243

(18.7→14.9). This degradation suggests that continuous rewards such as VeriScore are prone to244

reward hacking, where the model over-optimizes the proxy signal at the cost of overall response245

quality. In contrast, RL with Binary RAR preserves scores on these benchmarks, indicating stronger246

robustness against such overfitting. We analyze this behavior in more detail in § A.247

Knowledge Retention Despite Abstention. To test whether abstention behavior corresponds to248

knowledge loss, we evaluate models in a no-abstention setup, where they must always provide249

an answer. Binary RAR maintains or slightly improves accuracy (POPQA: 20.2→20.6; GPQA:250

48.2→48.8), showing that abstention reflects improved uncertainty calibration rather than forgetting251

factual knowledge.252

Reasoning and Coding Remain Intact. Across reasoning and coding benchmarks, all methods253

show minimal performance change. This stability likely arises because the factuality-oriented training254

data contains little overlap with these domains, and success in math or code tasks mainly depends on255

structured reasoning rather than factual recall.256

5 Analysis257

We next analyze why Binary RAR improves factuality without degrading utility. We examine changes258

in output informativeness (§5.1), abstention mechanisms (§5.2), and sensitivity to reward design and259

KL regularization (§5.3).260

5.1 Informativeness in Long-form Generation261

Although RL with Binary RAR appears to make model outputs less verbose, a closer examination262

reveals that the informativeness of correct content remains largely unchanged. Figure 2 (left) shows263

that on the BIOGRAPHY dataset, the total number of claims decreases from 30.0 to 13.6 after Binary264

RAR training, yet the number of correct claims remains nearly constant (8.8→8.6). This indicates265
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Figure 2: Informativeness in long-form generation. Left: On BIOGRAPHY, Binary RAR cuts the total
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content. Right: On ALPACAEVAL, Binary RAR gives shorter answers with similar win rates, showing
it stays concise without losing quality.
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Figure 3: Abstention behavior in short-form question answering. Binary RAR leads the model to
abstain on uncertain questions rather than producing incorrect answers, preserving accuracy for
attempted ones.

that the model does not simply drop details or shorten text indiscriminately. Instead, it selectively266

filters out uncertain statements while preserving confident and factually supported information. In267

other words, the reduction in hallucination arises from improved selectivity rather than content loss.268

A similar pattern holds when examining the length and win rate on ALPACAEVAL. As shown in269

Figure 2 (right), the Binary RAR model generates shorter responses but maintains a comparable win270

rate. Its length-controlled win rate (54.7→53.9) and vanilla win rate (59.4→59.3) remain mostly271

unchanged. This suggests that Binary RAR learns to produce more concise yet equally effective272

outputs and avoids unnecessary verbosity while maintaining the same level of perceived helpfulness273

and informativeness.274

5.2 Abstention Behavior275

Recall that we evaluate short-form question answering under two settings: one that allows abstention,276

used for hallucination evaluation (§4.1), and another that requires forced responses, used for utility277

evaluation (§4.2). In the hallucination evaluation, we further categorize the answers into three types:278

correct, incorrect, and abstaining, as shown in Figure 3. The Qwen3-8B model exhibits high error279

rates and rarely abstains, even on questions it fails to answer correctly. After Binary RAR training,280

the model’s behavior changes substantially: it abstains on 55.2% of POPQA and 27.5% of GPQA281

questions. Although the overall accuracy slightly decreases (less than a 15% relative reduction), these282

abstentions are not random. The model primarily abstains on questions it would otherwise answer283

incorrectly. For questions it attempts to answer, accuracy increases from 22.3% to 40.2% on POPQA284

and from 49.4% to 60.9% on GPQA. This indicates that the model strategically chooses to abstain285

when uncertain rather than refusing to answer arbitrarily.286

In the standard binary reward design for short-form question answering tasks, a score of one is287

assigned only when the answer is correct, while zero is given when it is incorrect or expresses288

uncertainty. In contrast, binary RAR assigns a score of one when the answer is correct or when the289

model explicitly expresses uncertainty, and zero when the answer is incorrect. Since we continue290

training from a fully post-trained model such as Qwen3, the initial checkpoint already has the capacity291
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Figure 4: Hallucination–utility tradeoff scatter plot for ablations on different KL coefficients (left)
and reward designs (right).

to express uncertainty in its output space. Our reward design leverages this ability by encouraging292

the model to use uncertainty expressions instead of producing incorrect answers. Empirically, with293

a moderate KL penalty, the model maintains the accuracy of the base model. This outcome arises294

because the simplest way to maximize reward while minimally altering the model’s behavior is to295

preserve correct answers when confident and express uncertainty when uncertain.296

5.3 Ablation Studies297

We conduct ablation studies to isolate the contributions of KL regularization and reward design to our298

core challenge: maintaining hallucination reduction while preserving model utility.299

KL Regularization Trade-off. The KL coefficient β controls the balance between reward optimiza-300

tion and staying close to the base model. Figure 4 (left) reveals a critical failure mode at low β values:301

the model exploits the binary RAR by producing overly short responses. When β = 10−3, the model302

maximizes reward by generating brief, uninformative outputs that trivially reduce hallucination rates303

but degrade the win rate on ALPACAEVAL. This behavior demonstrates that low KL penalties enable304

reward hacking. When β is increased to 3×10−3, the stronger constraint to the base model forces the305

system to maintain informativeness, preventing degenerate solutions and preserving both factuality306

and general capability.307

Reward Signal Design. We evaluate three alternative reward schemes to justify the design choices308

in binary RAR (Figure 4, right). Binary VeriScore: Thresholding VeriScore at 0.5 converts the309

continuous reward into binary form. However, this variant remains sensitive to output style, leading310

to degraded utility. Conflict-only VeriScore: Using the percentage of non-contradictory claims as311

the reward instead of supported claims. This approach reduces noise from retrieval errors since312

all responses receive the same reward if all retrieved documents are irrelevant. However, the313

model exploits this reward by producing less relevant but factually correct statements, lowering314

ALPACAEVAL performance. Rating-based RAR: Replacing the binary score with a 0–10 factuality315

rating from the same LM verifier. This design removes dependence on the claim extraction system,316

but the model exploits the verifier’s bias toward certain response styles. Therefore, the effectiveness317

of binary RAR arises from evaluating the response as a whole and using a binary correctness reward.318

6 Conclusion319

We present a reinforcement learning fine-tuning approach using a binary retrieval-augmented reward320

(RAR) to mitigate hallucinations in large language models. By verifying outputs against retrieved321

evidence and assigning a simple binary score, binary RAR proves more effective than SFT, DPO, or322

RL with dense rewards such as VeriScore. RL with binary RAR enables models to reduce factual323

errors in long-form generation, abstain when uncertain in short-form question answering, and at324

the same time retain knowledge memorization, maintain informativeness, and preserve general325

capabilities. These results demonstrate that simple binary rewards provide a practical, robust, and326

scalable path toward trustworthy and responsible language models.327
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A Qualitative Analysis559

To better understand the impact of RL training with Binary RAR, VeriScore, and the LM Judge, we560

present a qualitative analysis of the reward signals and the resulting fine-tuned models.561

LM Judge Alone Provides Limited Factuality Assessment. Figure 5 presents two responses562

to the same instruction along with their evaluations from all three reward models. While the first563

response contains a factual error and the second is entirely correct, all three rewards appropriately564

assign lower scores to the erroneous response. However, the LM Judge prioritizes detailed elaboration565

over factual correctness. When the factual error in the first response is corrected, the Judge only566

increases its score by 0.1, suggesting that it values comprehensive coverage more than accuracy. This567

limitation highlights why the LM Judge alone is insufficient for ensuring factuality.568

VeriScore is Vulnerable to Reward Hacking. As a continuous reward function, VeriScore can569

incentivize behaviors that conflict with human preferences. Specifically, models can exploit VeriScore570

in two ways: (1) by generating irrelevant information that is factually correct, and (2) by producing571

high-level, trivially true statements rather than informative details. Figure 6 illustrates this behavior572

through examples from models trained with Binary RAR versus VeriScore. The model trained with573

Binary RAR produces well-structured outputs that contain many details, while the VeriScore-trained574

model tends to generate more superficial, higher-level descriptions. This demonstrates that continuous575

reward signals, while well-intentioned, can lead to undesirable failure modes.576

Binary RAR Reduces Hallucination While Preserving Detail. Figure 7 compares outputs from577

Qwen3-8B before and after RL fine-tuning with Binary RAR. The base model generates incorrect578

information about Connecticut and Rhode Island, whereas the fine-tuned model avoids these errors579

while adding relevant examples of states named after royalty. This demonstrates that RL fine-tuning580

with Binary RAR effectively reduces factual errors without sacrificing informative content—a crucial581

advantage over the alternatives explored above.582

Instruction: What is a futures market and when did they become a thing?

Response #2

A futures market is a platform where standardized contracts are traded for the 
delivery of assets at predetermined prices and dates.  The first organized futures 
market emerged in 1848 with the Chicago Board of Trade (CBOT), established to 
address agricultural price volatility, evolving into the modern derivatives market.

Response #1

Futures markets are platforms for trading standardized contracts to buy/sell 
assets at predetermined future dates. They originated in ancient Babylonian 
markets around 800 BCE, with formalized exchanges emerging in the 19th 
century, such as the Chicago Board of Trade in 1848.    

Binary RAR: 0.0

Reason: The response states 
that futures markets originated 
in ancient Babylonian markets 
around 800 BCE, which is not 
supported by the search results.

LM Judge: 0.6

Reason: The AI answer correctly 
defines a futures market [...] it 
incorrectly states that futures markets 
originated in ancient Babylonian 
markets around 800 BCE [...]

VeriScore: 0.75


#Correct Claims: 3

#Total Claims: 4

Binary RAR: 1.0


Reason: No 
contradiction found.

LM Judge: 0.7

Reason: The AI answer is concise and 
provides a clear definition of a futures market 
along with the correct historical context [...] it 
lacks the broader context and additional 
details provided in the reference answer [...] 

VeriScore: 1.0


#Correct Claims: 5

#Total Claims: 5

Figure 5: Comparing Binary RAR, VeriScore, and LM Judge on LM responses. Each reward provides
a score and reason, with green and red highlights marking correct and incorrect facts; Binary RAR
penalizes factual errors most reliably.

Instruction: I'm trying to teach myself to have nicer handwriting. Can you help?

Model #2 (Training with VeriScore)

Improving your handwriting is a personal journey that can be both rewarding and 
enjoyable. Here are some general steps and considerations to help you on your 
path:


Assess Your Current Handwriting: Start by reflecting on your current 
handwriting. Are there specific aspects you'd like to improve, such as legibility, 
consistency, or spacing? Understanding your goals can help you focus your 
practice.

Understand the Basics: Handwriting involves more than just writing letters. It 
includes the formation of each letter, spacing between letters and words, and 
the overall flow of writing. Understanding these elements can help you identify 
areas.


[...]

Model #1 (Training with Binary RAR)

Improving your handwriting is a rewarding journey that requires patience, practice, 
and a structured approach. Here's a step-by-step guide to help you get started, 
tailored to your self-teaching needs:

1. Assess Your Current Handwriting


Self-Evaluation: Write a short paragraph or sample text. Note what you like and 
dislike (e.g., size, spacing, slant, consistency).

Compare to Models: Use examples of good handwriting (print or cursive) to 
identify differences. Look for elements like:


Consistency: Are letters uniform in size and weight?

Spacing: Are letters and words evenly spaced?


[...]

Figure 6: Comparing model outputs trained with Binary RAR and VeriScore. The Binary RAR model
gives detailed, structured guidance, while the VeriScore model produces slightly high-level text.
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Instruction: How did US states get their names?

Model #2 (Qwen3-8B RL finetuned with Binary RAR)

[...]

2. European Colonial Influence


Louisiana: Named after King Louis XIV of France.

Maryland: Named after Henrietta Maria, wife of King Charles I of England.

New York: Named after the Duke of York (James, later King James II).

New Jersey: Named after the English earl of Jersey.

Pennsylvania: Named after William Penn, its founder.

Virginia: Named after Queen Elizabeth I (the "Virgin Queen").

West Virginia: Named after Virginia, as it was split from the original state.

Georgia: Named after King George II of England.

Washington: Named after George Washington.

Model #1 (Qwen3-8B)

Many states were named after British or European royalty or their titles, often as a 
gesture of loyalty or to honor a monarch.


Virginia: Named after Queen Elizabeth I (the "Virgin Queen").

New York: Named after James Stuart, Duke of York (later King James II).

New Jersey: Named after John, Earl of Jersey (brother of the Duke of York).

Maryland: Named after Henrietta Maria, wife of King Charles I of England.

Louisiana: Named after King Louis XIV of France.

Connecticut: Named after the English county of Connecticut.

Rhode Island: Named after the Greek island of Rhodes.


[...]



Figure 7: Comparing Qwen3-8B before and after RL fine-tuning with Binary RAR. The fine-tuned
model corrects factual errors and keeps relevant details, showing Binary RAR reduces hallucination
without losing details.

B Evaluation Details583

We assess hallucination in both long-form generation and short-form question answering using the584

following benchmarks:585

• BIOGRAPHY [Min et al., 2023]: A benchmark consisting of prompts that ask models to write586

biographies of specific individuals.587

• WILDHALLUCINATION [Zhao et al., 2024]: A dataset probing factual consistency across diverse588

real-world entities, including people, geography, and computing, with emphasis on rare entities.589

• POPQA [Mallen et al., 2023]: A short-form QA dataset covering entities of varying popularity.590

The correctness is judged automatically by a gpt-4.1.591

• GPQA [Rein et al., 2024]: A multiple-choice QA dataset covering graduate-level biology, chem-592

istry, and physics, where questions and answers are expert-authored.593

To measure whether factuality improvements cause regressions in other areas, we evaluate general594

capabilities using these benchmarks:595

• ALPACAEVAL [Dubois et al., 2024]: We use version 2 (v2) and report the length-controlled win596

rate metric to reduce length bias. The LM judge is gpt-4.1.597

• ARENAHARD [Li et al., 2025]: We use version 2.0 and report the style-controlled score. To ensure598

fair comparison, we add all baselines and our method to the official leaderboard and recompute the599

regression for style control.600

• IFEVAL [Zhou et al., 2023]: A benchmark of 500 prompts covering 25 types of verifiable instruc-601

tions, designed to test instruction fidelity with objectively checkable outcomes.602

• GSM8K [Cobbe et al., 2021]: A dataset of grade-school math word problems requiring multi-step603

reasoning.604

• MINERVA [Lewkowycz et al., 2022]: A collection of 272 graduate-level quantitative reasoning605

problems in STEM fields such as physics and chemistry, requiring domain-specific expertise.606

• HUMANEVAL [Chen et al., 2021]: We use HumanEval+, an augmented version of HumanEval that607

adds additional test cases to improve robustness. Each problem includes multiple functional tests.608

• MBPP [Austin et al., 2021]: We use BMPP+, an augmented version of MBPP where each instance609

is equipped with more test cases.610

C Training Details611

We perform continual RL fine-tuning on Qwen3-8B and Qwen3-4B, two reasoning LMs. GRPO612

serves as the main RL algorithm. We use Qwen3-32B as the verifier to compute binary RAR,613

prompting it to identify contradictions between model responses and retrieved documents. The614

learning rate is set to 1 × 10−6, with KL coefficients of 1 × 10−3 for Qwen3-8B and 3 × 10−3615

for Qwen3-4B. To compute binary RAR, we use BM25 retrieval with documents chunked into 512616
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tokens (using the Qwen3 tokenizer). For each response, we retrieve the top 8 chunks and verify617

the response with Qwen3-32B. We apply early stopping to prevent overtraining that could degrade618

utility. Specifically, training is stopped if a checkpoint exhibits more than a 10% drop on any utility619

benchmark.620

RL Fine-tuning. We fine-tune models using reinforcement learning for up to four epochs, with a621

batch size of 16 unique prompts and 8 rollouts per prompt. Training typically runs for 2,000 steps,622

except for dense VeriScore rewards, where early stopping at 1,000 steps prevents degradation on623

utility benchmarks.624

SFT and DPO Baselines. For supervised fine-tuning (SFT), one epoch provides the best balance625

between stability and performance. Direct preference optimization (DPO) is trained for four epochs626

with factuality-driven preference pairs.627

D Reward Implementation628

Data Curation. We curate instruction–response pairs from the WILDCHAT dataset [Zhao et al.,629

2024] and filter examples with verifiable factual content using gpt-4.1 with a prompt shown in630

Figure 12. For each prompt, we pre-cache retrieved documents using the Google Search API, retaining631

up to 10 relevant web pages. Instances with fewer than three reliable documents are discarded to632

ensure verification quality. The final curation yields diverse, factual prompts spanning entities, events,633

and scientific concepts.634

Reward Computation. Each instruction–response pair (x, y) is scored by comparing the response635

against retrieved documents using a verifier LM. The reward is binary:636

r(x, y) =

{
1, if no contradictions are found between (x, y) and retrieved evidence,
0, otherwise.

We use Qwen3-32B as the verifier with BM25 retrieval over 512-token chunks (Qwen3 tokenizer).637

Eight documents are retrieved per instance. This simple binary signal avoids partial credit and reduces638

noise from verifier bias. For efficiency, each prompt’s retrieved set is pre-cached to reduce online639

retrieval overhead.640

Reward Prompts. Figures 8 and 9 show the full prompts used for binary and rating-based retrieval-641

augmented rewards. These templates define the scoring logic, consistency rules, and JSON output642

structure for the verifier.643

E Related Work644

Measuring hallucinations in LM outputs Despite their impressive capabilities across diverse tasks,645

LMs are prone to hallucination, producing incorrect statements with unwarranted confidence [Mallen646

et al., 2023]. The most widely adopted taxonomy distinguishes between two primary types of647

hallucination based on their relationship to provided prompts [Ji et al., 2023a, Huang et al., 2025,648

Bang et al., 2025]. Intrinsic hallucination is defined as output that is inconsistent with the user’s649

prompt or the provided input context. In this paper, we focus on extrinsic hallucination, which refers650

to generated output that cannot be verified from the training data. Measuring extrinsic hallucinations in651

long-form generation is particularly challenging due to its open-ended nature [Qi et al., 2025]. Several652

distinct approaches have been proposed to automatically identify hallucinated content, including NLI-653

based methods [Gao et al., 2023, Min et al., 2023, Song et al., 2024], QA-based methods [Tian et al.,654

2024], uncertainty estimation [Farquhar et al., 2024, Orgad et al., 2025], and LLM-as-a-Judge [Li655

et al., 2024b]. Following previous work, we adopt the approach of verifying atomic claims in the656

output as our evaluation method for long-form generation, which was first proposed in [Min et al.,657

2023]. Specifically, we decompose a response into atomic, verifiable claims and then check each658

claim against related documents.659

Reducing hallucination via post-training Many prior works explore mitigation methods at in-660

ference time, such as retrieval-augmented generation [Asai et al., 2024], prompting techniques [Ji661
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et al., 2023b], and decoding algorithms [Chuang et al., 2024]. In this work, we study how to fine-tune662

models during post-training to mitigate extrinsic hallucination. Supervised fine-tuning (SFT) can663

improve factuality by avoiding training on knowledge that the model has not already assimilated664

during pre-training, as fine-tuning on unfamiliar knowledge can increase the propensity for halluci-665

nation [Newman et al., 2025, Zhang et al., 2024]. Similarly, Direct Preference Optimization (DPO)666

trains the model to prefer more factual responses over less factual ones [Tian et al., 2024, Lin et al.,667

2024]. This is often achieved by generating response pairs where preferences are determined by668

continuous factuality assessment scores. Concurrent with this work, Chen et al. [2025] combine669

offline learning (SFT, DPO) with online RL to enhance base LMs’ factuality using a continuous factu-670

ality signal (i.e., VeriScore). However, prior efforts largely emphasize factuality gains while offering671

limited assessment of impacts on other LM capabilities. We address this gap with an on-policy RL672

method that employs a search-augmented binary reward, improving the factuality of fully trained673

LMs without degrading general capabilities.674
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Binary Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is factually
correct, even if it doesn’t include every available detail. Omitting information is not a factual error. If a
response contains anything that contradicts the world knowledge shown in the search results, it should
be considered an error and get a low score.

## EVALUATION PROCESS:
1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response
3. Cross-reference each claim against the search results
4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):
- Paraphrasing: Same facts expressed in different words
- Reasonable inferences: Logical conclusions drawn from search results
- Partial information: Incomplete but accurate subsets of available information
- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):
- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages
- Categorical errors: Wrong classifications, locations, names, titles
- Causal errors: Incorrect cause-and-effect relationships
- Timeline errors: Events placed in wrong chronological order
- Attribution errors: Wrong sources, authors, or speakers cited

## SCORING RULES:
Your evaluation will result in a binary score: 0 or 1.
- SCORE 1 (No Contradiction): Assign this score if:
1. The response is fully supported by the document.
2. The response contains information that is NOT in the document, but DOES NOT contradict it.
- SCORE 0 (Contradiction): Assign this score ONLY if you find a clear, factual contradiction between
the response and the supporting document. A contradiction occurs when the response states the
opposite of what the document says (e.g., wrong dates, names, events, or outcomes).

## OUTPUT FORMAT:
You must respond ONLY in a valid JSON format with exactly these two fields:
- "REASONING": A brief explanation for your score.
- For SCORE 0, specify the contradiction (e.g., "The response states the event was in 2022, but the
document says it was in 2023.").
- For SCORE 1, simply state "No contradiction found."
- "SCORE": An integer, either 0 or 1.

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt_text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response_text}
<<< End of the response >>>

Respond in JSON format. {{"REASONING": "[...]", "SCORE": "<your-score>"}}

Figure 8: Prompt for binary fact-checking.
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Rating Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is factually
correct, even if it doesn’t include every available detail. Omitting information is not a factual error. If a
response contains anything that contradicts the world knowledge shown in the search results, it should
be considered an error and get a low score.

## EVALUATION PROCESS:
1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response
3. Cross-reference each claim against the search results
4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):
- Paraphrasing: Same facts expressed in different words
- Reasonable inferences: Logical conclusions drawn from search results
- Partial information: Incomplete but accurate subsets of available information
- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):
- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages
- Categorical errors: Wrong classifications, locations, names, titles
- Causal errors: Incorrect cause-and-effect relationships
- Timeline errors: Events placed in wrong chronological order
- Attribution errors: Wrong sources, authors, or speakers cited

## CONFIDENCE SCORING GUIDE:
- 0-2: Very confident there is a factual error (multiple clear contradictions)
- 3-4: Moderately confident there is a factual error (one clear contradiction)
- 5: Uncertain (ambiguous evidence or unclear from search results)
- 6-7: Moderately confident there is no factual error (mostly accurate with minor concerns)
- 8-10: Very confident there is no factual error (all stated facts are accurate, regardless of completeness)

## OUTPUT FORMAT REQUIREMENTS:
Respond ONLY in valid JSON format with exactly these two fields:
- "REASONING": A concise explanation of your assessment (1-2 sentences max, e.g., "the response
states ... but the search results show ... so there is a factual error" or "no factual error found")
- "SCORE": An integer from 0-10 representing your confidence level

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt_text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response_text}
<<< End of the response >>>

Respond in JSON format. {{"REASONING": "[...]", "SCORE": "<your-score>"}}

Figure 9: Prompt for rating-based fact-checking.
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Claim Extraction for VeriScore Training / FactScore Evaluation

Extract as many fine-grained, atomic, and verifiable factual claims as possible from the response.
Each claim should be a single piece of information that could be looked up in a database, official
documentation, reputable forum, or reliable source such as Wikipedia or scientific literature.

Guidelines for atomic claims:
- Split a sentence that joins different facts using “and,” “or,” or by listing into multiple claims.
- If a claim could be split into multiple smaller, independent statements, do so.
- Replace pronouns (e.g., "he", "she", "it", "they") with the full entity name explicitly stated in the
response. If the entity name is not explicitly mentioned, leave the pronoun unchanged.
- Extract claims EXACTLY as stated, even if the information appears incorrect or false.

Include as claims:
- Statements about the existence, property, function, or relationship of entities, organizations, concepts,
or technologies.
- Claims about names, definitions, features, purposes, or histories.
- Statements about what something does, who runs it, what it is used for, or what it affects.
- For hedged language (“may be,” “might be,” “could be”), extract the factual association, typical
usage, or commonly reported function as long as the claim is traceable to community consensus,
documentation, or reputable user reports.
- If a quotation is present, extract it verbatim with the source if given.
- Claims must stand alone, using names or clear descriptions, not pronouns.

Do not include as claims:
- Personal opinions, suggestions, advice, instructions, or experiences.
- Pure speculation or possibilities that are not reported in any documentation or user discussions.
- Claims from code blocks or pure math derivations.

Extract claims only from the response section, not from the prompt or question. If the re-
sponse does not contain any verifiable factual claims, output an empty list.

Output a JSON list of strings. Each string should be a single atomic factual claim from the
response, clearly stated and verifiable.

>>> Begin of prompt <<<
{prompt_text}
<<< End of prompt >>>

>>> Begin of response <<<
{response_text}
<<< End of response >>>

Facts (as a JSON list of strings):

Figure 10: Prompt for atomic claim extraction.
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Claim Verification for VeriScore Training / FactScore Evaluation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.
Contradicted: A claim is contradicted by the search results if something in the claim is contradicted by
some search results. There should be no search result that supports the same part.
Inconclusive: A claim is inconclusive based on the search results if:
- a part of a claim cannot be verified by the search results,
- a part of a claim is supported and contradicted by different pieces of evidence,
- the entity/person mentioned in the claim has no clear referent (e.g., "the approach", "Emily", "a book").

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

Claim: {claim_text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your answer
should be either "supported", "contradicted", or "inconclusive" without explanation and comments.

Your decision:

Figure 11: Prompt for claim verification.

Dataset Curation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.
Contradicted: A claim is contradicted by the search results if something in the claim is contradicted by
some search results. There should be no search result that supports the same part.
Inconclusive: A claim is inconclusive based on the search results if:
- a part of a claim cannot be verified by the search results,
- a part of a claim is supported and contradicted by different pieces of evidence,
- the entity/person mentioned in the claim has no clear referent (e.g., "the approach", "Emily", "a book").

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

Claim: {claim_text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your answer
should be either "supported", "contradicted", or "inconclusive" without explanation and comments.

Your decision:

Figure 12: Prompt for dataset curation.
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