® N O oA W N =

- o ©

Train for Truth, Keep the Skills: Binary
Retrieval-Augmented Reward Mitigates Hallucinations

Anonymous Author(s)
Affiliation
Address

email

Abstract

Language models often generate factually incorrect information unsupported by
their training data, a phenomenon known as extrinsic hallucination. This trustwor-
thiness problem is particularly critical for deployment in high-stakes domains such
as healthcare, education, and public policy. Existing mitigation approaches often
degrade performance on open-ended generation and downstream tasks, limiting
their real-world applicability. We propose an online reinforcement learning method
using a novel binary retrieval-augmented reward (RAR) to address this tradeoff.
Unlike continuous reward schemes, our approach assigns a reward of one only
when the model’s output is entirely factually correct, and zero otherwise. We
evaluate our method on Qwen3 reasoning models across diverse tasks. For open-
ended generation, binary RAR achieves a 39.3% reduction in hallucination rates,
substantially outperforming both supervised training and continuous-reward RL
baselines. In short-form question answering, the model learns calibrated abstention,
strategically outputting “I don’t know” when faced with insufficient parametric
knowledge. This yields 44.4% and 21.7% fewer incorrect answers on POPQA and
GPQA, respectively. Crucially, these factuality gains come without performance
degradation on instruction following, math, or code, whereas continuous-reward
RL, despite improving factuality, induces quality regressions.
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Figure 1: Overview of Binary Retrieval-Augmented Reward (Binary RAR). Left: Reinforcement
learning with Binary RAR assigns a binary reward based on retrieval-verified factual correctness.
Right: Binary RAR achieves the best hallucination—utility tradeoff among all post-training baselines.
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1 Introduction

Large language models (LMs) have transformed how people seek and process information, demon-
strating remarkable capabilities in knowledge memorization and problem-solving [[Chatterji et al.,
2025|. However, their growing societal impact has heightened concerns about a critical reliability
issue: extrinsic hallucination, where models generate seemingly plausible but factually incorrect
information [Kalai et al.| [2025] L1 et al., 2024a]. This trustworthiness problem is especially pressing
as recent state-of-the-art reasoning models exhibit higher rates of hallucination [Yao et al., 2025}
Song et al., [2025]], and as foundation models are increasingly deployed in safety-critical applications,
including clinical decision support, educational content generation, and policy analysis [Freyer et al.}
2024].

Simply scaling up pre-training cannot resolve hallucination since pre-training optimizes next-token
likelihood without enforcing factual correctness in generation [Kalai et al., 2025 [Wen et al., [2025].
Recent post-training efforts have explored several directions: supervised fine-tuning on carefully
curated responses that consider the model’s ability and express uncertainty when appropriate [Newman
et al., 2025, Zhang et al.| 2024], direct preference optimization (DPO) with factuality-focused
preference pairs [Tian et al., 2024} [Lin et al., 2024} |Gu et al.,2025]], and reinforcement learning (RL)
with continuous factuality rewards [Liang et al.| 2024, [Chen et al.| 2025]. However, these approaches
face a critical challenge: reducing hallucination often comes at the cost of overall utility. Models may
generate less informative responses [Su et al., 2025| Wu et al.| 2025]], abstain excessively regardless
of question difficulty [[Cheng et al.,|2024, Brahman et al., 2024], or degrade in general capabilities
like instruction following [Lin et al.| 2024]. We target continual post-training on fully trained models
to mitigate hallucinations without degrading overall utility across varied tasks, including instruction
following, knowledge retention, reasoning, and coding.

In this paper, we address this hallucination-utility tradeoff through a novel approach: online RL
with binary retrieval-augmented rewards (RAR; left). Unlike prior works using continuous
factuality scores that can be vulnerable to reward hacking, we propose a simple binary signal:
r € {0,1} with » = 0 if any information in the output contradicts the retrieved documents, and
r = 1 otherwise. To compute RAR, we retrieve candidate evidence from the web and evaluate the
factual correctness of an LM’s response in the rollout based on these documents, identifying conflicts
rather than verifying based on a ground-truth answer. This design choice is inspired by successful
applications of binary rewards in mathematical reasoning and coding tasks [Lambert et al., 2025,
Shao et al.| |2024]]. Our approach offers several key advantages. First, the binary reward structure
inherently resists reward hacking by avoiding partial credit for stylistic changes that may mislead
continuous scoring functions. Second, our single unified reward applies to both long-form generation
and short-form question answering. Third, the framework naturally encourages appropriate abstention
through RL’s downweighting of incorrect answers, thereby upweighting abstention behavior inherited
from the fully trained base model.

We train Qwen3 [Qwen-Team), 2025[ reasoning models (4B and 8B) with our Binary RAR method
and evaluate them on four hallucination benchmarks and ten general capability benchmarks, showing
that Binary RAR effectively addresses the hallucination—utility tradeoff. As shown in[Figure | right,
in long-form generation, we reduce hallucination rates from 76.2 to 45.8, substantially outperforming
DPO (66.9) and concurrent RL work with continuous VeriScore rewards (51.7; proposed by [Chen et al.
2025)). Crucially, we achieve this while maintaining general capabilities: ALPACAEVAL [Dubois et al.,
2024]) score remains largely stable (-1.4%), whereas continuous reward baselines show significant
degradation (-22.8%). For short-form question answering, where Qwen3-8B models rarely abstain
even when prompted to do so, our RL method reduces the hallucination rate from 60.6 to 27.6
while preserving accuracy when the model is asked to make its best guess. Similar patterns hold
across model scales: on Qwen3-4B, binary RAR achieves 43.0% relative hallucination reduction
in long-form generation, surpassing VeriScore at 29.1%. These results indicate that optimizing a
binary, retrieval-verified signal yields larger hallucination reduction with fewer side effects on general
capabilities compared to continuous factuality rewards.

Through detailed analysis, we find that models trained with Binary RAR retain informativeness while
eliminating incorrect content selectively. In long-form generation, they maintain nearly the same
number of correct claims but substantially reduce false ones, indicating improved precision rather
than loss of detail. In short-form question answering, the models mostly retain their accuracy while
largely reducing incorrect answers and increasing abstention, showing more controlled and calibrated
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response behavior. Our case studies further reveal that continuous reward formulations are vulnerable
to stylistic biases and noise from retrieval or verification, whereas Binary RAR remains robust to
these factors. Overall, these results establish online RL with Binary RAR as a stable and effective
approach to enhance factual reliability without compromising general capability.

2 RL with Binary Retrieval-Augmented Reward

Our goal is to reduce hallucination while preserving the general capabilities of a fully trained LM.
We focus on extrinsic hallucination, defined as content that cannot be verified using reliable sources,
since it remains a major challenge in long-form generation. Previous post-training methods such as
SFT and DPO improve factuality through offfine learning from fixed datasets from human or model
outputs. However, they cannot adapt to new errors that emerge as the model evolves. We instead
adopt an online RL approach that evaluates and updates the model using rewards computed on its
own rollouts. To enable efficient factuality supervision, we introduce a binary retrieval-augmented
reward (Binary RAR; Figure[) that focuses on determining whether the response contains errors,
with KL regularization to control drift.

This section presents the training objective and algorithmic setup (§2.1)), defines and motivates the
binary reward with retrieval and verification (§2.2), and describes the dataset curation (§2.3).

2.1 Preliminaries and Training Objective

The application of RL to LMs frames the training process as an optimization problem. Given a
prompt x, an LM 7y generates a response y according to a policy my(y | «). The goal is to train
the policy to maximize a reward function r(z,y), which assigns a scalar score to the generated
response. To prevent the fine-tuned model from deviating excessively from its original capabilities,
the optimization is typically constrained by a Kullback-Leibler (KL) divergence term against a
reference model 7;. The objective is formally expressed as:

max E op [r(2.y) = BDir(mo(- | 2) | mer(- | ) | M

o y~mo (-|z)
where D is the prompt dataset and 3 controls the strength of the KL penalty.

Several algorithms exist to optimize this objective. Among them, Group Relative Policy Optimization
(GRPO; [Shao et al.|[2024) has become a popular choice for LM post-training due to its stability
and computational efficiency [DeepSeek-Al et al., 2025]. GRPO removes the critic model, which
is typically as large as the policy model, and estimates the baseline from group scores instead.
Specifically, for each prompt 2, GRPO samples a group of outputs y, ..., y,, from the old policy myjq
and optimizes the policy model g by maximizing:

[y

max E
o {widie 1~m,m(x>[ Z Iyz Z
t <t (2)
o molyi |yt ) o moly [y )
— ot A clip| ——— 2 1 — €, A ) —B8D ref) | 5
min 22 s cip(FEEAS T - 1+ €) ) - D
where € and 3 are hyperparameters, and the advantage A; and KL penalty Dk, are defined as:
Ai _ 7”(%1/1’) _mean[r(xayl)v'~'7T($7yn)] (3)
std[r(z,y1), o, (2, Yn) ]
Tref\Yi | T Tref(Yi | T
Dt (o || ) = 0L o Tl | 2) g “
To(yi | x) To(yi | x)

We adopt GRPO as the default RL algorithm for our experiments.

2.2 Binary Retrieval-Augmented Reward

Overview. Our reward design targets hallucination reduction in both long-form and short-form
generation. For long-form generation, we expect models to produce responses with minimal factual
errors while maintaining high quality (e.g., as measured by an automatic LM judge). For short-form
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tasks, we expect models to acknowledge “I do not know” when they lack knowledge and to provide
correct answers when possible. Overall, our goal is to downweight any response containing incorrect
information while preserving correct or abstaining responses. We assign low scores to incorrect
outputs and use an appropriate KL coefficient to retain the probability of correct answers from the
base model. This corresponds to the reward and KL terms in Equation [I]

Pipeline. We define the factual correctness of an instruction-response pair (x, y) as the consistency
between the response and web documents. A pair is considered correct if all information in y is
supported by evidence. We introduce a binary retrieval-augmented reward r(z, y) € {0, 1} as follows
and use this binary RAR as a proxy for true factual correctness in the RL training left).

* Retrieval. A datastore DS = {d;}, consists of reliable documents that are preprocessed,
chunked, and indexed by a retriever R. To verify factuality, we retrieve the top k relevant documents
for each (x,y) pair based on similarity R(y, d), denoted as C'(z,y). These documents serve as
evidence for verification.

* Verification. To check correctness, an LM verifier takes (x,y, C(z,y)) as input and determines
whether contradictions exist between the response and retrieved documents. The verifier focuses
solely on contradictions, given the context of . Formally,

o) = {

We then optimize the KL-constrained RL objective (Equation [2) with this binary retrieval-
augmented reward. This approach avoids the complexity of continuous reward design and provides

a cleaner, less noisy training signal. Prompting details are given in[Appendix D}

1 if no contradictions are found between (z, y) and C(z,y),
0 otherwise.

&)

2.3 Efficiency Considerations for Training Scalability

Retrieval and Pre-caching Strategy. Both retrieval and verification are computationally intensive,
and computing reward r(x, y) can easily become the bottleneck of RL training. To improve efficiency,
we adopt a pre-caching strategy. During dataset preparation, we pre-cache a set of relevant documents
DS cache (x) for each prompt x in the training set D. At training time, we retrieve C'(z, y) from this
cached subset rather than from the full datastore DS. To build DS ,ene (), we query the Google
Search API using the ground-truth response to retrieve up to 10 potentially relevant web pages, which
we crawl and parse using a rule-based Python pipeline. Instances with fewer than three retrieved
documents are discarded, as sparse evidence is often insufficient for reliable verification. Each
selected training prompt is thus paired with a compact, verified document set DS ,che () indexed by
a BM2S5 retriever. Using a pre-caching strategy, we may not capture all possible information during
training, but including relevant documents for each instance ensures a high chance that retrieved
evidence will reveal contradictions in incorrect model outputs.

Verification without Claim Decomposition. Instead of extracting and verifying individual claims
(as done in VeriScore), we detect contradictions by comparing the entire response with the retrieved
documents in a single LM forward pass. This avoids repeated document processing and greatly
reduces computation compared to concurrent work using VeriScore as a factuality reward [Chen et al.}
20235]]. Binary RAR achieves a 2 x—4x throughput improvement depending on response length, using
four replicas of Qwen3-32B as the verifier on a cluster of 8 NVIDIA H100 GPUs.

3 Experimental Setup

3.1 Benchmarking the Hallucination-Utility Trade-off

We curate an evaluation suite that includes four datasets for hallucination evaluation and ten datasets
for utility evaluation, spanning math, code, general chat, and instruction following. Our objective
is to minimize hallucination errors while avoiding performance degradation on utility benchmarks
relative to the original LM.

Hallucination Evaluation We assess hallucination behavior in both long-form generation and
short-form question answering using the following datasets: BIOGRAPHY [Min et al., [2023]] and
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WILDHALLUCINATION [Zhao et al., [2024]] for long-form generation, and POPQA [Mallen et al.,
2023l and GPQA [Rein et al., 2024 for short-form question answering that requires substantial
factual knowledge. We report the hallucination rate as the primary metric, following the definition
used in|OpenAl|[2025]. For long-form generation, the hallucination rate is computed as the proportion
of incorrect claims among all extracted atomic claims, which is equivalent to one minus the factual
precision in FactScore [Min et al., 2023]]. We use gpt-4.1 to extract claims with a customized
prompt, retrieve the top 10 document chunks (each 100 words) associated with the prompt entity,
and use gpt-4.1-mini to verify whether each claim is supported by the retrieved evidence. For
short-form QA, we explicitly instruct the model to answer with “I don’t know” when uncertain.
The hallucination rate is measured as the percentage of incorrect answers. On POPQA, the model
produces short answers that are judged by gpt-4. 1 as correct, incorrect, or abstaining. On GPQA,
we perform exact matching against the correct multiple-choice option or the “I don’t know” string.

Utility Evaluation We evaluate the retention of general utility after continued finetuning. For
knowledge retention, we revisit POPQA and GPQA under a no-abstention setup, where the model is
prompted to provide an answer (i.e., make its best guess). Accuracy is measured against the ground-
truth answers using the same judging method as in the hallucination evaluation. Beyond factual
knowledge, we test broader capabilities on eight additional benchmarks: ALPACAEVAL [Dubois et al.,
2024]], ARENAHARD [Li et al., [2025]], and IFEVAL [Zhou et al., 2023] for instruction following;
BBH [Suzgun et al.,|[2023]], GSM8K [Cobbe et al.,[2021]], and MINERVA [Lewkowycz et al., [2022]]
for reasoning; and HUMANEVAL [Chen et al.| [2021]] and MBPP [Austin et al.| 2021]] for code
generation. We follow each benchmark’s official evaluation protocol. Full details are provided in

Append

3.2 Dataset Curation

Curating high-quality and diverse prompts is essential for effective RL training [[Kimi-Team et al.|
2025]]. We aim to reduce hallucination across diverse knowledge domains and instruction types by
using natural prompts that reflect realistic user interactions. We build upon WildChat [Zhao et al.|
2024], a large collection of natural instruction-response pairs from human interactions with OpenAl
models. From this dataset, we automatically identify examples whose responses contain verifiable
factual content. We use the OpenAl gpt-4.1 model with a detailed classification prompt to select

suitable examples (see [Appendix D).

3.3 Baselines

We perform continual RL fine-tuning on Qwen3-8B and Qwen3-4B, two reasoning LMs. We compare
our method against diverse non-RL and RL baselines with different reward signals. For non-RL
methods, we apply supervised fine-tuning (SFT) and direct preference optimization (DPO) to the
base reasoning models [Tian et al., [2024] [Lin et al., 2024} |Chen et al., [2025]]. For each model, we
generate eight responses and evaluate their factuality using the VeriScore pipeline[] Specifically, we
extract verifiable claims from each response, verify them against pre-cached documents, and compute
the percentage of correct claims. For SFT, we fine-tune on the most factual response per instance.
For DPO, we construct preference pairs using the two responses with the largest factuality gap and a
length difference below 10%, to prevent “length hacking” [Chen et al., |2025|]. For RL-based baselines,
we consider different reward functions. We first use LM Judge, which rates overall response quality
on a 0-10 scale, following common practice [Gunjal et al., 2025]. We also test VeriScore [Song
et al., 2024 as an RL reward, following concurrent work [[Chen et al.,|2025]]. To compute VeriScore,
we apply BM25 for retrieval, split documents into 256-token chunks (using the Qwen3 tokenizer),
and retrieve the top 4 chunks per claim for verification. Both claim extraction and verification use
Qwen3-32B.

'We do not apply SFT or DPO with binary RAR because many prompts yield binary (zero or one) rewards,
which makes data generation inefficient.
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Long-form (Hallucination Rate |) Short-form (Hallucination Rate |)

Models BIOGRAPHY  WILDHALLU AVG POPQA GPQA AVG
Qwen3-8B 76.2 47.6 61.9 71.2 50.0 60.6
+ SFT 75.3 46.5 60.9 70.4 50.0 60.2
+ DPO 66.9 39.8 53.4 65.2 49.1 57.2
+ RL (LM Judge) 80.4 50.3 65.4 68.8 48.0 58.4
+ RL (VeriScore) 51.7 29.5 40.6 43.6 41.1 423
+ RL (Binary RAR) 45.8 29.2 37.5 26.8 28.3 27.6
Qwen3-4B 81.9 50.5 66.2 82.2 55.1 68.7
+ SFT 78.9 48.7 63.8 83.8 54.1 69.2
+DPO 73.4 439 58.7 82.6 54.5 68.5
+ RL (LM Judge) 82.6 53.7 68.1 80.4 54.0 67.2
+ RL (VeriScore) 61.1 32.6 46.9 73.0 51.3 62.2
+ RL (Binary RAR) 46.5 28.9 37.7 46.6 37.3 41.9

Table 1: Factuality results comparing different training methods on long-form generation and
short-form question answering tasks. We report FactScore precision for long-form generation and
hallucination rate for short-form question answering. Binary RAR achieves the best hallucination
reduction, showing the highest factual precision and the lowest hallucination rate in short-form
question answering.

4 Main Results

4.1 Results on Hallucination Reduction

summarizes hallucination rates across long-form generation and short-form question an-
swering. The base Qwen3-8B model exhibits substantial hallucination, producing 61.9% incorrect
claims in long-form generation and 60.6% incorrect answers in short-form QA. Qwen3-4B shows
even higher hallucination rates, consistent with prior evidence that smaller models retain less factual
knowledge [Mallen et al.,2023]]. Our proposed approach, RL with Binary RAR, achieves the largest
hallucination reduction among all methods, surpassing SFT, DPO, and alternative RL variants.

SFT and DPO Provide Limited Hallucination Reduction. SFT and DPO applied to responses
with high VeriScore yield only modest improvements in factuality. On Qwen3-8B, hallucination
reduction is small for both long-form (SFT: -1.0; DPO: -8.5) and short-form (SFT: -0.4; DPO: -3.4)
settings. These methods rely on an offline dataset collected once with the base model. Consequently,
factual errors remain in both SFT labels and DPO preferred sequences even after the model evolves,
limiting their effectiveness.

Binary RAR Outperforms Other RL Rewards. Among all RL-based approaches, Binary RAR
delivers the most consistent and substantial reduction in hallucination. On Qwen3-8B, it lowers
long-form hallucination from 61.9 to 37.5 (-24.4) and short-form from 60.6 to 27.6 (-33.0). On
Qwen3-4B, hallucination rates drop from 66.2 to 37.7 (long-form) and from 68.7 to 41.9 (short-
form), outperforming all baselines. Binary RAR’s discrete factual reward penalizes any incorrect
content regardless of phrasing or verbosity, preventing reward hacking and maintaining general
response quality. By contrast, RL with the continuous VeriScore reward achieves moderate factuality
improvement (long-form: -21.3; short-form: -18.3) but remains unstable due to sensitivity to output
style and verifier noise. Optimizing for a general LM-judge reward further increases long-form
hallucination (65.4), suggesting that optimizing for broad instruction-following or stylistic quality
can conflict with factual accuracy.

Models Learn Abstention Behavior. A notable emergent pattern is that RL training encourages
models to abstain when uncertain. In short-form question answering, 20%-50% of responses that were
previously incorrect are replaced by “I do not know,” while correct responses are largely preserved.
In long-form generation, models explicitly acknowledge uncertainty about specific entities or facts.
We analyze these abstention strategies in detail in
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Instruction Following Knowledge Reasoning Coding

ALPACA-  ARENA- HUMAN-

Models EVAL HARD IFEvaAL PoPQA GPQA BBH GSMS8K MINERVA EVAL MBPP AVG
Qwen3-8B 54.7 18.7 87.2 20.2 48.2 62.4 92.8 80.7 83.5 67.4 61.6
+ SFT 55.7 174 86.9 20.4 479 59.4 91.6 82.0 83.8 67.0 61.2
+ DPO 53.0 18.3 84.5 18.6 475 623 90.8 82.1 86.7 67.8 61.2
+ RL (LM Judge) 55.0 18.0 82.2 19.2 52.2 63.1 88.1 71.7 83.8 66.3 60.6
+ RL (VeriScore) 422 14.9 88.7 19.6 47.7 61.4 922 79.0 834 66.9 59.6
+ RL (Binary RAR) 53.9 17.9 85.2 20.6 48.8 66.4 93.4 82.3 86.1 67.6 62.2
Qwen3-4B 41.7 12.6 86.1 16.4 44.2 60.9 91.1 82.8 85.5 65.7 58.7
+ SFT 41.2 8.2 82.6 152 435 59.6 914 83.6 832 65.6 574
+DPO 39.6 11.0 81.9 15.8 44.0 63.7 90.1 82.7 85.8 66.3 58.1
+RL (LM Judge) 423 115 74.3 16.0 435 58.1 87.0 82.1 85.9 66.2 56.7
+ RL (VeriScore) 384 11.7 86.0 15.4 40.8 59.1 90.8 82.5 84.5 66.2 57.5
+ RL (Binary RAR) 43.0 12,5 84.7 16.4 42.6 58.5 90.7 83.8 84.6 65.0 58.2

Table 2: General capability results across ten benchmarks covering instruction following
(ALPACAEVAL, ARENAHARD, IFEVAL), knowledge (POPQA, GPQA), reasoning (BBH, GSM8K,
MINERVA), and coding (HUMANEVAL, MBPP). We color each cell based on the relative change
compared to the base model, where deeper red indicates larger degradation.

4.2 Results on General Capabilities Preservation

reports performance across ten benchmarks spanning instruction following, knowledge
retention, reasoning, and coding. Binary RAR not only reduces hallucination but also best preserves
general capabilities. On Qwen3-8B, RL with Binary RAR achieves an average score of 62.2 ,
matching the base model’s 61.6. In contrast, RL with VeriScore shows clear degradation (59.6).

Open-Ended Chat is Sensitive to Hallucination Reduction. We find that ALPACAEVAL and
ARENAHARD are the most sensitive benchmarks to hallucination reduction methods. Both use an LM
judge to approximate human preference for long-form outputs, capturing aspects such as relevance,
helpfulness, and completeness of the generated responses. When trained with VeriScore-based RL,
the model shows substantial performance drops on ALPACAEVAL (54.7—42.2) and ARENAHARD
(18.7—14.9). This degradation suggests that continuous rewards such as VeriScore are prone to
reward hacking, where the model over-optimizes the proxy signal at the cost of overall response
quality. In contrast, RL with Binary RAR preserves scores on these benchmarks, indicating stronger
robustness against such overfitting. We analyze this behavior in more detail in § [A]

Knowledge Retention Despite Abstention. To test whether abstention behavior corresponds to
knowledge loss, we evaluate models in a no-abstention setup, where they must always provide
an answer. Binary RAR maintains or slightly improves accuracy (POPQA: 20.2—20.6; GPQA:
48.2—48.8), showing that abstention reflects improved uncertainty calibration rather than forgetting
factual knowledge.

Reasoning and Coding Remain Intact. Across reasoning and coding benchmarks, all methods
show minimal performance change. This stability likely arises because the factuality-oriented training
data contains little overlap with these domains, and success in math or code tasks mainly depends on
structured reasoning rather than factual recall.

5 Analysis

We next analyze why Binary RAR improves factuality without degrading utility. We examine changes
in output informativeness (§5.1), abstention mechanisms (§5.2), and sensitivity to reward design and
KL regularization (§5.3).

5.1 Informativeness in Long-form Generation

Although RL with Binary RAR appears to make model outputs less verbose, a closer examination
reveals that the informativeness of correct content remains largely unchanged. (left) shows
that on the BIOGRAPHY dataset, the total number of claims decreases from 30.0 to 13.6 after Binary
RAR training, yet the number of correct claims remains nearly constant (8.8—8.6). This indicates
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Figure 2: Informativeness in long-form generation. Left: On BIOGRAPHY, Binary RAR cuts the total
number of claims but keeps correct claims nearly the same, showing selective filtering of uncertain
content. Right: On ALPACAEVAL, Binary RAR gives shorter answers with similar win rates, showing
it stays concise without losing quality.
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Figure 3: Abstention behavior in short-form question answering. Binary RAR leads the model to
abstain on uncertain questions rather than producing incorrect answers, preserving accuracy for

attempted ones.

that the model does not simply drop details or shorten text indiscriminately. Instead, it selectively
filters out uncertain statements while preserving confident and factually supported information. In
other words, the reduction in hallucination arises from improved selectivity rather than content loss.

A similar pattern holds when examining the length and win rate on ALPACAEVAL. As shown in
(right), the Binary RAR model generates shorter responses but maintains a comparable win
rate. Its length-controlled win rate (54.7—53.9) and vanilla win rate (59.4—59.3) remain mostly
unchanged. This suggests that Binary RAR learns to produce more concise yet equally effective
outputs and avoids unnecessary verbosity while maintaining the same level of perceived helpfulness
and informativeness.

5.2 Abstention Behavior

Recall that we evaluate short-form question answering under two settings: one that allows abstention,
used for hallucination evaluation (§4.1)), and another that requires forced responses, used for utility
evaluation (§4.2). In the hallucination evaluation, we further categorize the answers into three types:
correct, incorrect, and abstaining, as shown in[Figure 3] The Qwen3-8B model exhibits high error
rates and rarely abstains, even on questions it fails to answer correctly. After Binary RAR training,
the model’s behavior changes substantially: it abstains on 55.2% of POPQA and 27.5% of GPQA
questions. Although the overall accuracy slightly decreases (less than a 15% relative reduction), these
abstentions are not random. The model primarily abstains on questions it would otherwise answer
incorrectly. For questions it attempts to answer, accuracy increases from 22.3% to 40.2% on POPQA
and from 49.4% to 60.9% on GPQA. This indicates that the model strategically chooses to abstain
when uncertain rather than refusing to answer arbitrarily.

In the standard binary reward design for short-form question answering tasks, a score of one is
assigned only when the answer is correct, while zero is given when it is incorrect or expresses
uncertainty. In contrast, binary RAR assigns a score of one when the answer is correct or when the
model explicitly expresses uncertainty, and zero when the answer is incorrect. Since we continue
training from a fully post-trained model such as Qwen3, the initial checkpoint already has the capacity
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and reward designs (right).

to express uncertainty in its output space. Our reward design leverages this ability by encouraging
the model to use uncertainty expressions instead of producing incorrect answers. Empirically, with
a moderate KL penalty, the model maintains the accuracy of the base model. This outcome arises
because the simplest way to maximize reward while minimally altering the model’s behavior is to
preserve correct answers when confident and express uncertainty when uncertain.

5.3 Ablation Studies

We conduct ablation studies to isolate the contributions of KL regularization and reward design to our
core challenge: maintaining hallucination reduction while preserving model utility.

KL Regularization Trade-off. The KL coefficient 5 controls the balance between reward optimiza-
tion and staying close to the base model. (left) reveals a critical failure mode at low 3 values:
the model exploits the binary RAR by producing overly short responses. When 3 = 1073, the model
maximizes reward by generating brief, uninformative outputs that trivially reduce hallucination rates
but degrade the win rate on ALPACAEVAL. This behavior demonstrates that low KL penalties enable
reward hacking. When 3 is increased to 3 x 1073, the stronger constraint to the base model forces the
system to maintain informativeness, preventing degenerate solutions and preserving both factuality
and general capability.

Reward Signal Design. We evaluate three alternative reward schemes to justify the design choices
in binary RAR right). Binary VeriScore: Thresholding VeriScore at 0.5 converts the
continuous reward into binary form. However, this variant remains sensitive to output style, leading
to degraded utility. Conflict-only VeriScore: Using the percentage of non-contradictory claims as
the reward instead of supported claims. This approach reduces noise from retrieval errors since
all responses receive the same reward if all retrieved documents are irrelevant. However, the
model exploits this reward by producing less relevant but factually correct statements, lowering
ALPACAEVAL performance. Rating-based RAR: Replacing the binary score with a 010 factuality
rating from the same LM verifier. This design removes dependence on the claim extraction system,
but the model exploits the verifier’s bias toward certain response styles. Therefore, the effectiveness
of binary RAR arises from evaluating the response as a whole and using a binary correctness reward.

6 Conclusion

We present a reinforcement learning fine-tuning approach using a binary retrieval-augmented reward
(RAR) to mitigate hallucinations in large language models. By verifying outputs against retrieved
evidence and assigning a simple binary score, binary RAR proves more effective than SFT, DPO, or
RL with dense rewards such as VeriScore. RL with binary RAR enables models to reduce factual
errors in long-form generation, abstain when uncertain in short-form question answering, and at
the same time retain knowledge memorization, maintain informativeness, and preserve general
capabilities. These results demonstrate that simple binary rewards provide a practical, robust, and
scalable path toward trustworthy and responsible language models.
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A Qualitative Analysis

To better understand the impact of RL training with Binary RAR, VeriScore, and the LM Judge, we
present a qualitative analysis of the reward signals and the resulting fine-tuned models.

LM Judge Alone Provides Limited Factuality Assessment. presents two responses
to the same instruction along with their evaluations from all three reward models. While the first
response contains a factual error and the second is entirely correct, all three rewards appropriately
assign lower scores to the erroneous response. However, the LM Judge prioritizes detailed elaboration
over factual correctness. When the factual error in the first response is corrected, the Judge only
increases its score by 0.1, suggesting that it values comprehensive coverage more than accuracy. This
limitation highlights why the LM Judge alone is insufficient for ensuring factuality.

VeriScore is Vulnerable to Reward Hacking. As a continuous reward function, VeriScore can
incentivize behaviors that conflict with human preferences. Specifically, models can exploit VeriScore
in two ways: (1) by generating irrelevant information that is factually correct, and (2) by producing
high-level, trivially true statements rather than informative details. [Figure 6]illustrates this behavior
through examples from models trained with Binary RAR versus VeriScore. The model trained with
Binary RAR produces well-structured outputs that contain many details, while the VeriScore-trained
model tends to generate more superficial, higher-level descriptions. This demonstrates that continuous
reward signals, while well-intentioned, can lead to undesirable failure modes.

Binary RAR Reduces Hallucination While Preserving Detail. [Figure 7|compares outputs from
Qwen3-8B before and after RL fine-tuning with Binary RAR. The base model generates incorrect
information about Connecticut and Rhode Island, whereas the fine-tuned model avoids these errors
while adding relevant examples of states named after royalty. This demonstrates that RL fine-tuning
with Binary RAR effectively reduces factual errors without sacrificing informative content—a crucial
advantage over the alternatives explored above.

Instruction: What is a futures market and when did they become a thing?

Response #1 Response #2

Futures markets are platforms for trading standardized contracts to buy/sell A futures market is a platform where standardized contracts are traded for the

assets at predetermined future dates. They originated in ancient Babylonian delivery of assets at predetermined prices and dates. The first organized futures

markets around 800 BCE, with formalized exchanges emerging in the 19th market emerged in 1848 with the Chicago Board of Trade (CBOT), established to

century, such as the Chicago Board of Trade in 1848. address agricultural price volatility, evolving into the modern derivatives market.
Binary RAR: 0.0 VeriScore: 0.75 LM Judge: 0.6 BinaryRAR:1.0  VeriScore:1.0 LM Judge: 0.7

Reason: The response states Reason: The Al answer correctly Reason: The Al answer is concise and

that futures markets originated oo eCt Claims: 3 defines a futures market [... it ReasonNo  ound #Corract Claims: & provides a clear definition of a futures market
in ancient Babylonian markets incorrectly states that futures markets g along with the correct historical context [...] it
around 800 BCE, which is not originated in ancient Babylonian lacks the broader context and additional
supported by the search results. markets around 800 BCE [..] details provided in the reference answer ...

Figure 5: Comparing Binary RAR, VeriScore, and LM Judge on LM responses. Each reward provides
a score and reason, with green and red highlights marking correct and incorrect facts; Binary RAR
penalizes factual errors most reliably.

Instruction: I'm trying to teach myself to have nicer handwriting. Can you help?

Model #1 (Training with Binary RAR) Model #2 (Training with VeriScore)
Improving your handwriting is a rewarding journey that requires patience, practice, Improving your handwriting is a personal journey that can be both rewarding and
and a structured approach. Here's a step-by-step guide to help you get started, enjoyable. Here are some general steps and considerations to help you on your
tailored to your self-teaching needs: path:
1. Assess Your Current Handwriting 1. Assess Your Current Handwriting: Start by reflecting on your current
« Self-Evaluation: Write a short paragraph or sample text. Note what you like and handwriting. Are there specific aspects you'd like to improve, such as legibility,
dislike (e.g., size, spacing, slant, consistency). consistency, or spacing? Understanding your goals can help you focus your
+ Compare to Models: Use examples of good handwriting (print or cursive) to practice.
identify differences. Look for elements like: 2. Understand the Basics: Handwriting involves more than just writing letters. It
« Consistency: Are letters uniform in size and weight? includes the formation of each letter, spacing between letters and words, and
« Spacing: Are letters and words evenly spaced? the overall flow of writing. Understanding these elements can help you identify

[..] areas.

[.]

Figure 6: Comparing model outputs trained with Binary RAR and VeriScore. The Binary RAR model
gives detailed, structured guidance, while the VeriScore model produces slightly high-level text.
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Instruction: How did US states get their names?

Model #1 (Qwen3-8B) Model #2 (Qwen3-8B RL finetuned with Binary RAR)

[]
2. European Colonial Influence
« Louisiana: Named after King Louis XIV of France.
« Maryland: Named after Henrietta Maria, wife of King Charles | of England.

Many states were named after British or European royalty or their titles, often as a
gesture of loyalty or to honor a monarch.

« Virginia: Named after Queen Elizabeth | (the "Virgin Queen").

« New York: Named after James Stuart, Duke of York (later King James Il).

« New Jersey: Named after John, Earl of Jersey (brother of the Duke of York).

+ Maryland: Named after Henrietta Maria, wife of King Charles | of England.

« Louisiana: Named after King Louis XIV of France.

« Connecticut: Named after the English county of Connecticut.

+ Rhode Island: Named after the Greek island of Rhodes.
[.]

- New York: Named after the Duke of York (James, later King James II).

- New Jersey: Named after the English earl of Jersey.

« Pennsylvania: Named after William Penn, its founder.

- Virginia: Named after Queen Elizabeth | (the "Virgin Queen").

- West Virginia: Named after Virginia, as it was split from the original state.
« Georgia: Named after King George Il of England.

« Washington: Named after George Washington.

Figure 7: Comparing Qwen3-8B before and after RL fine-tuning with Binary RAR. The fine-tuned
model corrects factual errors and keeps relevant details, showing Binary RAR reduces hallucination
without losing details.

B Evaluation Details

We assess hallucination in both long-form generation and short-form question answering using the
following benchmarks:

* BIOGRAPHY [Min et al.| [2023]]: A benchmark consisting of prompts that ask models to write
biographies of specific individuals.

* WILDHALLUCINATION [Zhao et al.,|2024]: A dataset probing factual consistency across diverse
real-world entities, including people, geography, and computing, with emphasis on rare entities.

* POPQA [Mallen et al.,|2023]]: A short-form QA dataset covering entities of varying popularity.
The correctness is judged automatically by a gpt-4.1.

* GPQA [Rein et al.,2024]: A multiple-choice QA dataset covering graduate-level biology, chem-
istry, and physics, where questions and answers are expert-authored.

To measure whether factuality improvements cause regressions in other areas, we evaluate general
capabilities using these benchmarks:

* ALPACAEVAL [Dubois et al.,|2024]: We use version 2 (v2) and report the length-controlled win
rate metric to reduce length bias. The LM judge is gpt-4.1.

* ARENAHARD [Li et al.} 2025]]: We use version 2.0 and report the style-controlled score. To ensure

fair comparison, we add all baselines and our method to the official leaderboard and recompute the
regression for style control.

* IFEVAL [Zhou et al.,[2023]]: A benchmark of 500 prompts covering 25 types of verifiable instruc-
tions, designed to test instruction fidelity with objectively checkable outcomes.

* GSMSK [Cobbe et al.,[2021]]: A dataset of grade-school math word problems requiring multi-step
reasoning.

* MINERVA [Lewkowycz et al.| 2022]: A collection of 272 graduate-level quantitative reasoning
problems in STEM fields such as physics and chemistry, requiring domain-specific expertise.

* HUMANEVAL [Chen et al.,[2021]: We use HumanEval+, an augmented version of HumanEval that
adds additional test cases to improve robustness. Each problem includes multiple functional tests.

* MBPP [Austin et al.,2021]: We use BMPP+, an augmented version of MBPP where each instance
is equipped with more test cases.

C Training Details

We perform continual RL fine-tuning on Qwen3-8B and Qwen3-4B, two reasoning LMs. GRPO
serves as the main RL algorithm. We use Qwen3-32B as the verifier to compute binary RAR,
prompting it to identify contradictions between model responses and retrieved documents. The
learning rate is set to 1 x 1075, with KL coefficients of 1 x 102 for Qwen3-8B and 3 x 1073
for Qwen3-4B. To compute binary RAR, we use BM2S5 retrieval with documents chunked into 512
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tokens (using the Qwen3 tokenizer). For each response, we retrieve the top 8 chunks and verify
the response with Qwen3-32B. We apply early stopping to prevent overtraining that could degrade
utility. Specifically, training is stopped if a checkpoint exhibits more than a 10% drop on any utility
benchmark.

RL Fine-tuning. We fine-tune models using reinforcement learning for up to four epochs, with a
batch size of 16 unique prompts and 8 rollouts per prompt. Training typically runs for 2,000 steps,
except for dense VeriScore rewards, where early stopping at 1,000 steps prevents degradation on
utility benchmarks.

SFT and DPO Baselines. For supervised fine-tuning (SFT), one epoch provides the best balance
between stability and performance. Direct preference optimization (DPO) is trained for four epochs
with factuality-driven preference pairs.

D Reward Implementation

Data Curation. We curate instruction—response pairs from the WILDCHAT dataset [Zhao et al.,
2024]) and filter examples with verifiable factual content using gpt-4.1 with a prompt shown in
For each prompt, we pre-cache retrieved documents using the Google Search API, retaining
up to 10 relevant web pages. Instances with fewer than three reliable documents are discarded to
ensure verification quality. The final curation yields diverse, factual prompts spanning entities, events,
and scientific concepts.

Reward Computation. Each instruction—response pair (z, y) is scored by comparing the response
against retrieved documents using a verifier LM. The reward is binary:

(2,1) 1, if no contradictions are found between (x, y) and retrieved evidence,
r(z,y) = .
Y 0, otherwise.

We use Qwen3-32B as the verifier with BM25 retrieval over 512-token chunks (Qwen3 tokenizer).
Eight documents are retrieved per instance. This simple binary signal avoids partial credit and reduces
noise from verifier bias. For efficiency, each prompt’s retrieved set is pre-cached to reduce online
retrieval overhead.

Reward Prompts. Figures[§|and [9]show the full prompts used for binary and rating-based retrieval-
augmented rewards. These templates define the scoring logic, consistency rules, and JSON output
structure for the verifier.

E Related Work

Measuring hallucinations in LM outputs Despite their impressive capabilities across diverse tasks,
L.Ms are prone to hallucination, producing incorrect statements with unwarranted confidence [Mallen
et al., |2023]. The most widely adopted taxonomy distinguishes between two primary types of
hallucination based on their relationship to provided prompts [Ji et al.| 2023a, [Huang et al., 2025,
Bang et al., [2025]|. Intrinsic hallucination is defined as output that is inconsistent with the user’s
prompt or the provided input context. In this paper, we focus on extrinsic hallucination, which refers
to generated output that cannot be verified from the training data. Measuring extrinsic hallucinations in
long-form generation is particularly challenging due to its open-ended nature [|Q1 et al.|; 2025]. Several
distinct approaches have been proposed to automatically identify hallucinated content, including NLI-
based methods [Gao et al.,[2023| Min et al.,|2023} |Song et al.} 2024], QA-based methods [Tian et al.}
2024], uncertainty estimation [Farquhar et al., 2024, |Orgad et al., 2025, and LL.M-as-a-Judge [L1
et al.} [2024b]. Following previous work, we adopt the approach of verifying atomic claims in the
output as our evaluation method for long-form generation, which was first proposed in [Min et al.,
2023]]. Specifically, we decompose a response into atomic, verifiable claims and then check each
claim against related documents.

Reducing hallucination via post-training Many prior works explore mitigation methods at in-
ference time, such as retrieval-augmented generation [Asai et al.| |2024], prompting techniques [Ji
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et al.,|2023b]], and decoding algorithms [Chuang et al., 2024]]. In this work, we study how to fine-tune
models during post-training to mitigate extrinsic hallucination. Supervised fine-tuning (SFT) can
improve factuality by avoiding training on knowledge that the model has not already assimilated
during pre-training, as fine-tuning on unfamiliar knowledge can increase the propensity for halluci-
nation [Newman et al.,[2025| Zhang et al.,[2024]. Similarly, Direct Preference Optimization (DPO)
trains the model to prefer more factual responses over less factual ones [Tian et al., 2024, [Lin et al.,
2024]. This is often achieved by generating response pairs where preferences are determined by
continuous factuality assessment scores. Concurrent with this work, |(Chen et al.|[2025]] combine
offline learning (SFT, DPO) with online RL to enhance base LMs’ factuality using a continuous factu-
ality signal (i.e., VeriScore). However, prior efforts largely emphasize factuality gains while offering
limited assessment of impacts on other LM capabilities. We address this gap with an on-policy RL
method that employs a search-augmented binary reward, improving the factuality of fully trained
LMs without degrading general capabilities.
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Binary Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is factually
correct, even if it doesn’t include every available detail. Omitting information is not a factual error. If a
response contains anything that contradicts the world knowledge shown in the search results, it should
be considered an error and get a low score.

## EVALUATION PROCESS:

1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response

3. Cross-reference each claim against the search results

4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):

- Paraphrasing: Same facts expressed in different words

- Reasonable inferences: Logical conclusions drawn from search results

- Partial information: Incomplete but accurate subsets of available information

- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):

- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages

- Categorical errors: Wrong classifications, locations, names, titles

- Causal errors: Incorrect cause-and-effect relationships

- Timeline errors: Events placed in wrong chronological order

- Attribution errors: Wrong sources, authors, or speakers cited

## SCORING RULES:

Your evaluation will result in a binary score: 0 or 1.

- SCORE 1 (No Contradiction): Assign this score if:

1. The response is fully supported by the document.

2. The response contains information that is NOT in the document, but DOES NOT contradict it.

- SCORE 0 (Contradiction): Assign this score ONLY if you find a clear, factual contradiction between
the response and the supporting document. A contradiction occurs when the response states the
opposite of what the document says (e.g., wrong dates, names, events, or outcomes).

## OUTPUT FORMAT:

You must respond ONLY in a valid JSON format with exactly these two fields:

- "REASONING": A brief explanation for your score.

- For SCORE 0, specify the contradiction (e.g., "The response states the event was in 2022, but the
document says it was in 2023.").

- For SCORE 1, simply state "No contradiction found."

- "SCORE": An integer, either O or 1.

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt_text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response_text}
<<< End of the response >>>

Respond in JSON format. {{"REASONING": "[...]", "SCORE": "<your-score>"}}

Figure 8: Prompt for binary fact-checking.
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Rating Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is factually
correct, even if it doesn’t include every available detail. Omitting information is not a factual error. If a
response contains anything that contradicts the world knowledge shown in the search results, it should
be considered an error and get a low score.

## EVALUATION PROCESS:

1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response

3. Cross-reference each claim against the search results

4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):

- Paraphrasing: Same facts expressed in different words

- Reasonable inferences: Logical conclusions drawn from search results

- Partial information: Incomplete but accurate subsets of available information

- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):

- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages

- Categorical errors: Wrong classifications, locations, names, titles

- Causal errors: Incorrect cause-and-effect relationships

- Timeline errors: Events placed in wrong chronological order

- Attribution errors: Wrong sources, authors, or speakers cited

## CONFIDENCE SCORING GUIDE:

- 0-2: Very confident there is a factual error (multiple clear contradictions)

- 3-4: Moderately confident there is a factual error (one clear contradiction)

- 5: Uncertain (ambiguous evidence or unclear from search results)

- 6-7: Moderately confident there is no factual error (mostly accurate with minor concerns)

- 8-10: Very confident there is no factual error (all stated facts are accurate, regardless of completeness)

## OUTPUT FORMAT REQUIREMENTS:

Respond ONLY in valid JSON format with exactly these two fields:

- "REASONING": A concise explanation of your assessment (1-2 sentences max, e.g., "the response
states ... but the search results show ... so there is a factual error" or "no factual error found")

- "SCORE": An integer from 0-10 representing your confidence level

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt_text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response_text}

<<< End of the response >>>

Respond in JSON format. {{"REASONING": "[...]", "SCORE": "<your-score>"}}

Figure 9: Prompt for rating-based fact-checking.
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Claim Extraction for VeriScore Training / FactScore Evaluation

Extract as many fine-grained, atomic, and verifiable factual claims as possible from the response.
Each claim should be a single piece of information that could be looked up in a database, official
documentation, reputable forum, or reliable source such as Wikipedia or scientific literature.

Guidelines for atomic claims:

- Split a sentence that joins different facts using “and,” “or,” or by listing into multiple claims.

- If a claim could be split into multiple smaller, independent statements, do so.

- Replace pronouns (e.g., "he", "she", "it", "they") with the full entity name explicitly stated in the
response. If the entity name is not explicitly mentioned, leave the pronoun unchanged.

- Extract claims EXACTLY as stated, even if the information appears incorrect or false.

Include as claims:

- Statements about the existence, property, function, or relationship of entities, organizations, concepts,
or technologies.

- Claims about names, definitions, features, purposes, or histories.

- Statements about what something does, who runs it, what it is used for, or what it affects.

- For hedged language (“may be,” “might be,” “could be”), extract the factual association, typical
usage, or commonly reported function as long as the claim is traceable to community consensus,
documentation, or reputable user reports.

- If a quotation is present, extract it verbatim with the source if given.

- Claims must stand alone, using names or clear descriptions, not pronouns.

Do not include as claims:

- Personal opinions, suggestions, advice, instructions, or experiences.

- Pure speculation or possibilities that are not reported in any documentation or user discussions.
- Claims from code blocks or pure math derivations.

Extract claims only from the response section, not from the prompt or question. If the re-
sponse does not contain any verifiable factual claims, output an empty list.

Output a JSON list of strings. Each string should be a single atomic factual claim from the
response, clearly stated and verifiable.

>>> Begin of prompt <<<
{prompt_text}
<<< End of prompt >>>

>>> Begin of response <<<
{response_text}

<<< End of response >>>

Facts (as a JSON list of strings):

Figure 10: Prompt for atomic claim extraction.
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Claim Verification for VeriScore Training / FactScore Evaluation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.

Contradicted: A claim is contradicted by the search results if something in the claim is contradicted by
some search results. There should be no search result that supports the same part.

Inconclusive: A claim is inconclusive based on the search results if:

- a part of a claim cannot be verified by the search results,

- a part of a claim is supported and contradicted by different pieces of evidence,

- the entity/person mentioned in the claim has no clear referent (e.g., "the approach”, "Emily", "a book").

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

Claim: {claim_text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your answer

should be either "supported", "contradicted", or "inconclusive" without explanation and comments.

Your decision:

Figure 11: Prompt for claim verification.

Dataset Curation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.

Contradicted: A claim is contradicted by the search results if something in the claim is contradicted by
some search results. There should be no search result that supports the same part.

Inconclusive: A claim is inconclusive based on the search results if:

- a part of a claim cannot be verified by the search results,

- a part of a claim is supported and contradicted by different pieces of evidence,

- the entity/person mentioned in the claim has no clear referent (e.g., "the approach”, "Emily", "a book").

>>> Begin of search results <<<
{passages_text}
<<< End of search results >>>

Claim: {claim_text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your answer

should be either "supported”, "contradicted", or "inconclusive" without explanation and comments.

Your decision:

Figure 12: Prompt for dataset curation.
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