

000 001 002 003 004 005 FRAYED ROPE AND LONG INPUTS: 006 A GEOMETRIC PERSPECTIVE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 Rotary Positional Embedding (RoPE) is a widely adopted technique for encoding
012 position in language models, which, while effective, causes performance break-
013 down when input length exceeds training length. Prior analyses assert (rightly)
014 that long inputs cause channels to rotate “out of distribution,” but it is not clear
015 how extra rotation relates to or causes pathological behavior. Through empirical
016 analysis we advance a unified geometric understanding of attention behavior with
017 RoPE. We find that attention induces tight clustering of separated key and query
018 latent point clouds, allowing for creation of sink tokens: placeholders that allow
019 attention heads to avoid token mixing when not required. RoPE applied to longer
020 inputs damages this key/query cluster separation, producing pathological behav-
021 ior by inhibiting sink token functionality. From this geometric perspective, we
022 propose RoPE-ID (In Distribution), a straightforward modification that allows at-
023 tention layers to generalize to longer inputs out of the box: apply RoPE with high
024 frequency to a subset of channels. We demonstrate the effectiveness of RoPE-ID
025 for extended inputs using 1B and 3B parameter Transformers on the LongBench
026 and RULER information retrieval benchmarks.

027 1 INTRODUCTION 028

029 Transformer models form the backbone of modern large language models (LLMs), enabling them
030 to capture complex dependencies across long sequences. The attention mechanism in transformers
031 maps inputs into queries, keys, and values: queries and keys determine token relevance through sim-
032 ilarity scores, while values provide the content to be aggregated. This separation allows the model to
033 learn both where to attend and what information to extract, producing context-aware representations
034 that drive the success of transformers in natural language processing and beyond.

035 To enhance the interaction between queries and keys, positional encoding is used to distinguish token
036 order, constituting a fundamental component of transformer design. Rotary Positional Embedding
037 (RoPE) (Su et al., 2023) has emerged as the predominant approach and is now implemented in
038 most state-of-the-art LLMs, including LLaMA (Grattafiori et al., 2024), GPT (OpenAI et al., 2025),
039 and DeepSeek (DeepSeek-AI et al., 2025). However, a key limitation of RoPE is performance
040 degradation when input length exceeds training context. Most attempts to analyze and address this
041 issue attribute the failure to channels rotating “out of distribution,” leading to frequency rescaling as
042 a workaround (Chen et al., 2023; bloc97, 2023b;a; Peng et al., 2023; Ding et al., 2024).

043 Another important phenomenon in transformers is the attention sink, which has been shown to in-
044 fluence long-context generalization (Xiao et al., 2023). The attention sink, typically the first input
045 token, possesses little semantic meaning but consistently large attention scores. Its presence is con-
046 sidered crucial to prevent over-mixing of information, and empirical evidence shows that attention
047 sinks must be preserved when extending context lengths (Xiao et al., 2023; Han et al., 2024).

048 The relationship between attention, RoPE, and attention sinks – three seemingly disconnected con-
049 cepts – is the focus of this paper. We propose a unified geometric perspective, based on analysis of
050 popular LLM families including LLaMA, Gemma (Team et al., 2024), and Olmo (Groeneveld et al.,
051 2024). We find that, contrary to the common intuition of attention as a soft nearest-neighbor lookup,
052 queries and keys form tight clusters with minimal overlap, while the sink token resides near the
053 origin (Fig. 1, left). Within the training context length, this separation ensures that the sink token,
with its small norm, naturally absorbs the majority of attention weight. Beyond the training context,

054 RoPE disperses and overlaps the query/key clusters. This geometric disruption prevents the sink
 055 token from functioning, leading to long-context performance breakdowns (Fig. 1, right).
 056

057 To address this, we propose RoPE-ID (RoPE
 058 In Distribution), a simple yet effective plug-
 059 in replacement for RoPE. RoPE-ID combines
 060 high-frequency RoPE channels with RoPE-
 061 free channels to preserve stable query-key
 062 cluster geometry and sink token functional-
 063 ity. RoPE-free channels lower-bound the
 064 degree of cluster overlap, while high-frequency
 065 RoPE channels encode position while avoid-
 066 ing out-of-distribution effects. We validate
 067 RoPE-ID with trained 1B- and 3B-parameter
 068 decoder models, evaluated on the LongBench
 069 and RULER benchmarks, demonstrating strong
 070 context length generalization and improve-
 071 ments over prior tuning-free methods.

2 BACKGROUND AND RELATED WORK

072 **Position Encoding** techniques can be broadly divided into two categories: absolute position em-
 073 beddings (APE) and relative position embeddings (RPE). APE directly injects position information
 074 into latent representations using token-index-dependent vectors, in a fixed sinusoidal (Vaswani et al.,
 075 2023) or learnable form (Devlin et al., 2019). APE exhibits limited generalization beyond the train-
 076 ing context length, which RPE addresses by encoding distances between token pairs rather than
 077 their absolute indices. Notable RPE approaches include T5’s relative bias (Raffel et al., 2023) and
 078 Alibi (Press et al., 2022), which add position-dependent linear biases to attention logits, and RoPE
 079 (Rotary Position Embeddings) (Su et al., 2023), which encodes relative distance as latent angular
 080 displacement and has since become the de facto standard for LLMs.

081 The key insight behind RoPE is that relative position, through properties of rotation, decomposes
 082 into independent key and query transformations. RoPE encodes relative position via angular dis-
 083 placement proportional to token distance, interposing a block-diagonal matrix of 2×2 rotations into
 084 the key/query dot product. Each submatrix has a constant frequency θ scaling token distance m :

$$085 \mathbf{R}_\Theta^m = \begin{pmatrix} \cos m\theta_1 & -\sin m\theta_1 & \cdots & 0 & 0 \\ \sin m\theta_1 & \cos m\theta_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2} \\ 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix} \quad (1)$$

086 In practice, this decomposes into independent rotations on query q_i and key k_j at positions i, j :

$$087 \text{RoPE}(\langle q_i, k_j \rangle) = q_i R_\Theta^{i-j} k_j^\top = q_i R_\Theta^i R_\Theta^{-j} k_j^\top = q_i R_\Theta^i (k_j R_\Theta^j)^\top = \langle r(q_i, i), r(k_j, j) \rangle \quad (2)$$

088 where $r(\cdot, i)$ represents rotation by R_Θ^i . Understanding the impact of this progressive rotation on
 089 latent keys and queries is crucial to understanding out-of-distribution failures on long contexts.

090 **Context Length Extension:** As large language models are increasingly applied to long-context
 091 tasks, substantial research has focused on extending their usable sequence lengths without retrain-
 092 ing. Although RPEs such as RoPE are designed to improve long-context generalization, extend-
 093 ing beyond the training length often results in performance degradation. To address this, Position
 094 Interpolation (PI) (Chen et al., 2023) linearly interpolates position indices within the pre-trained
 095 sequence length. NTK-by-parts (bloc97, 2023b) and NTK-aware (bloc97, 2023a) introduce non-
 096 linear interpolation schemes inspired by Neural Tangent Kernel dynamics. These methods scale
 097 RoPE frequencies based on three groups of frequency dimensions and the target sequence length,
 098 and outperform simple PI. YaRN (Yet Another RoPE Extension) (Peng et al., 2023) further inte-
 099 grates previous NTK-based approaches with temperature scaling on attention logits, achieving a $2 \times$

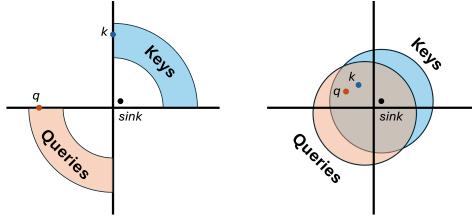


Figure 1: A 2D diagram of our observed latent geometry. **Left:** Keys and queries cluster tightly into opposing point clouds with negative dot products. The sink token has small norm and therefore the greatest dot product. Assigned key/query pair q, k are aligned orthogonally, allowing their dot product to approach and exceed the sink’s. **Right:** Beyond the training length, RoPE causes key/query clouds to disperse and overlap, introducing spurious alignment. Sink token no longer functions.

108 context window extension without fine-tuning. More recently, LongRoPE (Ding et al., 2024) employs
 109 evolutionary search to optimize the frequency rescale factors for each dimension. LongRoPE
 110 extends context window to beyond 2 million tokens, albeit with multi-step long-context fine-tuning.
 111 Here we focus on tuning-free generalization and leave tuning to future work.

112 Some studies find that RoPE’s low-frequency components induce high-norm semantic bands, which
 113 become unstable in long contexts (Barbero et al., 2024b) or hinder the encoding of semantic in-
 114 formation (Chen et al., 2024). They propose limiting RoPE to a subset of channels, finding this
 115 improves performance. Our analysis provides novel perspective and caveats for this technique.
 116

117 **Sink Tokens**, or attention sinks, refer to tokens with disproportionately high attention despite a lack
 118 of semantic meaning (Xiao et al., 2023). This phenomenon is widely observed in LLMs and plays a
 119 critical role in preserving model behavior, especially in long contexts (Xiao et al., 2023; Han et al.,
 120 2024; Yang et al., 2024). The sink is usually the first token of a sequence, i.e. the $\langle \text{bos} \rangle$ begin-
 121 ning-of-sequence token (Xiao et al., 2023; Cancedda, 2024), and has also been linked to massive acti-
 122 vations observed across LLMs (Sun et al., 2024). Gu et al. (2025) systematically investigate when
 123 and how attention sinks emerge during pretraining, and Barbero et al. (2025) provide theoretical and
 124 empirical evidence that attention sinks prevent over-mixing of information, to avoid representation
 125 collapse (Barbero et al., 2024a). In this work we relate sink tokens to RoPE and attention geometry,
 126 pinpointing the sink token as the failure mechanism for transformers in long contexts.
 127

3 ANALYSIS

130 We perform a geometric analysis of attention with RoPE, showing that keys and queries cluster
 131 tightly in opposing directions, while RoPE inhibits this behavior, with clusters dispersing and over-
 132 lapping over time. Alongside small sink token ℓ_2 norm, these separated clusters produce a learned
 133 bias toward the sink. However, as RoPE disperses and overlaps key and query clusters, this mech-
 134 anism becomes tenuous. We claim that the breakdown of transformers in long contexts is a breakdown
 135 of the sink token: past the training length, models begin attending to the wrong token(s) by default.

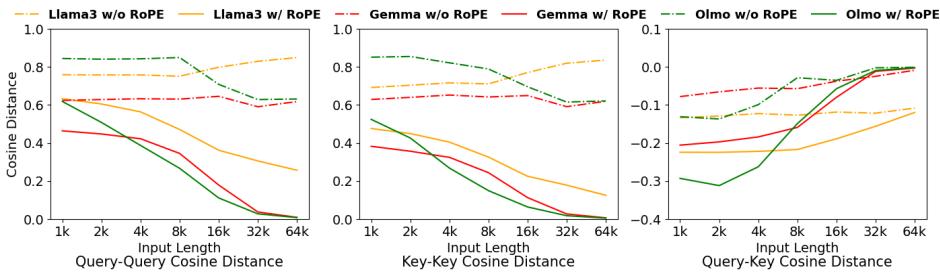
136 Analysis is conducted on Llama3-8B-Instruct, with additional trials on Olmo-7b and Gemma-7b for
 137 verification. When not otherwise specified, the relevant model is Llama3. Input text is drawn from
 138 the WikiText2 dataset (Merity et al., 2016). Further details are provided in A.4.

3.1 KEY/QUERY CLUSTERING

142 An intuitive understanding of the attention operation is that it functions as a soft nearest-neighbor
 143 lookup. A query is oriented in latent space to align with one or more contextually relevant key
 144 vectors, and the degree of alignment defines the mixing ratios for corresponding values. The curse
 145 of dimensionality ensures that random IID latent points are orthogonal by default, so directional
 146 alignment in high-dimensional space is difficult. Thus we can imagine that keys and queries form
 147 overlapping point clouds around the origin. Key/query matching is accomplished by high directional
 148 alignment: activated pairs should have large, positive dot products. Keys and non-matching queries,
 149 meanwhile, should be orthogonal, with small dot products, to keep retrieval discriminative.

150 This model of attention, while intuitive, is also wrong, at least for RoPE models. Instead of overlap-
 151 ping clouds on the origin, keys and queries form tight clusters away from the origin, with minimal
 152 overlap. Further, such clusters are generally *unaligned* directionally, with the origin sitting between
 153 the clusters. Fig. 2 shows the mean intra- and inter-cluster pairwise cosine distances (ℓ_2 -normalized
 154 dot products) for keys and queries, averaged over layers and heads. Before RoPE, intra-cluster dis-
 155 tances (key-key and query-query), bounded to ± 1 , are generally close to 1. Key and query point
 156 clouds are situated within a tight arc - i.e. in small clusters displaced from the origin. At the same
 157 time, these clusters are largely aligned *against* each other, with negative mean key-query dot product
 158 in Fig. 2 (right). This paints an entirely different picture of attention: instead of overlapped point
 159 clouds, envision keys and queries in opposing quadrants. Queries avoid attending to most keys via
 160 negative dot products. If a query and key land on aligned quadrant boundaries, though, the resulting
 161 zero dot product exceeds the baseline and yields a large attention weight. Softmax shift-invariance
 ensures that this arrangement (negative baseline and orthogonal “aligned” pairs) produces identical
 mixing behavior to the original conception (orthogonal baseline and positive products for aligned

162 pairs). Fig. 1 (left) illustrates the proposed geometry. In practice, key/query clusters are not *directly*
 163 across the origin (dot products in Fig. 2 (right) are negative but small), but the intuition holds.
 164

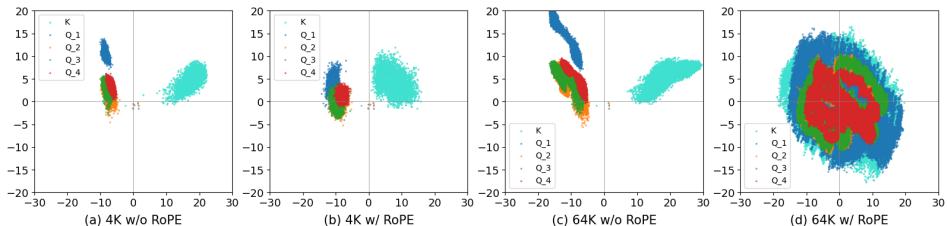


174 Figure 2: Effect of RoPE across context length on pairwise angular distances within heads for
 175 Llama3-8B, Gemma-7B and OLMo-7B.

177 3.1.1 THE IMPACT OF ROPE ON CLUSTERING

179 RoPE sends points through a predetermined trajectory of orbits around the origin, so any tightly-
 180 clustered point cloud, displaced from the origin, should inevitably disperse. This is indeed the case
 181 for transformers: Fig. 2 shows that RoPE decreases intra-cluster alignment, with further decrease
 182 over time as points spiral further away. The model compensates for this by positioning key/query
 183 clusters such that RoPE misaligns them *further*: key-query dot product *also* decreases, and does not
 184 rise until after the training length (2k for Olmo, 8k Llama/Gemma). Meanwhile, the clusters without
 185 RoPE mostly maintain their behavior across context lengths. It thus appears that RoPE weakens the
 186 clustering, but does not eliminate it until the training context length is exceeded.

187 Fig. 3 illustrates this visually, by taking a PCA “snapshot” of the point clouds without RoPE at
 188 time $t = 4096$, and applying the same projection with RoPE and at time $t = 65536$ (more plots are
 189 available in A.12). Prior observations are confirmed visually: in the first and third views, points form
 190 tight clusters displaced from the origin, and key and query clusters are located across from each other
 191 (with four queries per key cloud due to GQA (Ainslie et al., 2023)). RoPE causes clusters within
 192 training length to disperse slightly, but at length 64k eliminates cluster separation entirely (in this
 193 projection). The exact impact of this overlap in key/query clouds is discussed in § 3.2, but it is clear
 194 that query-key “alignment” works differently at length 64k compared to the other scenarios.



202 Figure 3: 2D PCA projections of Llama3 representations under different context lengths and RoPE
 203 settings (3rd key head of layer 21 and its queries). RoPE at long contexts destroys cluster separation.
 204

206 3.1.2 A SINGULAR VALUE PERSPECTIVE ON CLUSTERING

207 While the visual analysis is striking, it only captures a 2D projection of a 128-dimensional latent
 208 space. Similarly, Fig. 2 reports pairwise relationships, an incomplete picture of global behavior. We
 209 therefore corroborate our findings with a holistic analysis based on singular values. In an attention
 210 head, the set of key or query vectors forms an $n \times d$ matrix, where n is sequence length and d is head
 211 width. Singular values of this matrix correspond to the principal components of the point cloud,
 212 an ordered set of directions maximizing variance along the earliest directions up to orthogonality
 213 constraints. When singular values are equal, variance is constant in all directions, and the point
 214 cloud forms a ball around the origin. Unequal values indicate uneven spread. In practice, the first
 215 singular value (FSV) of key and query clusters (before RoPE) is large, accounting for over 75% of
 total cluster variance on average for Llama3. Fig. 4 (left) plots the distribution across individual

heads and layers, and the degree of variance covered by the first principal component ranges from about half to nearly all of it. Thus the majority of spread around the origin occurs in a single direction: either the cluster is a long thin needle, or the point cloud is displaced along this direction, and otherwise clustered tightly. Given the intra-cluster dot products in Fig. 2, the latter is the case.

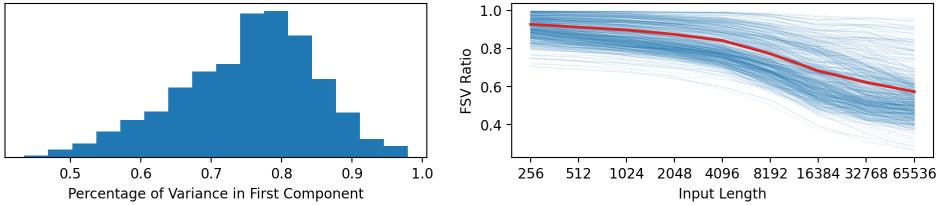


Figure 4: **Left:** Histogram across layers and heads showing the percentage of variance (relative to origin) explained by the first principal component of latent key/query clusters in Llama3. **Right:** Ratio of first singular value before and after RoPE, as a function of input length. Blue lines plot individual key/query heads, red plots the average trend. RoPE shrinks the first singular value, causing clusters to disperse, but impact accelerates beyond the training length.

When RoPE is applied, we expect principal components to skew more evenly: RoPE throws channel pairs through decorrelated rotations (ensured by irrational frequency ratios), so in the limit, a point cloud under RoPE maps to a shell of IID points orbiting the origin. In practice, this behavior does start to appear: FSV shrinks as sequence length increases¹. Fig. 4 (right) shows the ratio of the FSV before and after RoPE. In all cases, the FSV decreases when RoPE is applied, but the decrease is limited for much of the training context, falling almost linearly up to length 4k (in log space, so really decaying exponentially). The decrease is more aggressive for inputs above the 8k training length. This implies that cluster means drift toward the origin as RoPE is applied over longer sequences.

At the same time, Proposition 1 (with proof in A.1) shows that RoPE preserves the sum of the point cloud matrix’s squared singular values. This is relevant because, as the FSV falls due to RoPE, other singular values (representing other principal components) must grow to compensate. We thus demonstrate analytically that clusters expand and disperse as RoPE pulls them to the origin, exactly as depicted in Fig. 3.

Proposition 1. *Let $X \in \mathbb{R}^{n \times d}$ be a key or query matrix, with each row corresponding to a token. Then applying RoPE preserves the sum of squared singular values of X , i.e., $\sum_{i=1}^{\min\{n,d\}} \sigma_i(X)^2 = \sum_{i=1}^{\min\{n,d\}} \sigma_i(r(X))^2$, where $r(X)$ denotes the application of RoPE to X .*

3.2 SINK TOKENS

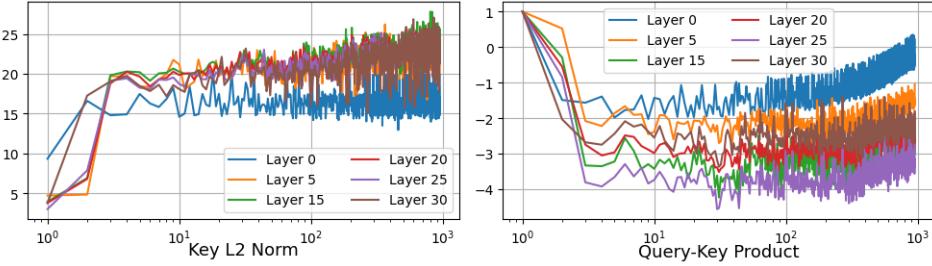
Latent keys and queries cluster tightly into unaligned point clouds, and RoPE causes the point clouds to disperse and overlap over time, particularly when input length exceeds training length. But how does this produce out-of-distribution behavior in the attention mechanism itself, and for a transformer model as a whole? We claim that the effect of clustering is mediated by the sink token.

Prior work establishes that transformers attend heavily to the first token, regardless of input (Xiao et al., 2023). Prevailing wisdom is that this prevents over-mixing: information retrieval is not always useful, so attention heads must formulate a null operation (Barbero et al., 2025). Softmax normalizes attention scores to sum to 1, so heads cannot avoid attending. Instead, they “sink” attention into a placeholder key conveying no information – in practice the first token, typically a beginning-of-sequence indicator. When an attention head does perform meaningful information retrieval, it borrows weight from the sink token and reallocates it to the chosen key, as shown in A.2.

Under the intuitive overlapping-clouds model of latent keys/queries, sink token behavior is hard to reconcile. How can a single embedding align to *all* directions by default? Why not default to the current token – where keys and queries, projections of the same input, are easy to align – as in Mamba and other linear attention layers? (Gu & Dao, 2023; Katharopoulos et al., 2020) Our observations help to explain this behavior. Same-token key-query self-alignment is difficult to

¹We account for the variable sequence length and its effect on singular value magnitude by computing the singular values as the eigenvalues of $\frac{XX^\top}{n}$, where the point cloud matrix $X \in \mathbb{R}^{n \times d}$.

270 consistently impose when keys and queries are distant. It is easier to assign a sink, and place its key
 271 near the origin, granting it a near-zero dot product with all queries. When average key-query product
 272 is negative, the sink becomes the most-attended by default. This is borne out in practice: key vectors
 273 for the first input token have unusually small ℓ_2 norm, as shown in Fig. 5 (left). Smaller norm
 274 produces larger dot products, as shown in Fig. 5 (right), which displays the average dot product of
 275 each key across subsequent queries, normalized by the largest product in the set. In this case, that's
 276 consistently the sink token, with recency bias responsible for the later upward trend.



277
 278 Figure 5: **Left:** Key ℓ_2 norm across layers over time. Sink token is consistently small. **Right:** Keys
 279 have low dot product against subsequent queries in expectation, except for the first and most recent
 280 tokens. Scores are normalized by the highest value, in this case always the sink.

291 3.2.1 THE IMPACT OF ROPE ON SINK TOKENS

292 Within the training context length, key and query clusters are separated to the point that a sink
 293 token with small key norm can absorb the majority of attention weight. Beyond the training length,
 294 however, RoPE causes clusters to disperse and overlap. When this happens, key and query points
 295 begin to obtain positive dot products. This stops the sink token from functioning, and we claim this
 296 is the cause of out-of-distribution behavior when transformers are exposed to long inputs.

297 Fig. 6 illustrates this behavior in Llama3. The left-hand plot captures the attention weight allocated
 298 to the sink token as a function of input length. The share of attention weight (with RoPE applied)
 299 varies widely but stably within the training length of 8k, but then falls sharply, decaying to zero over
 300 time as clusters progressively overlap and highly-aligned point pairs accumulate. Meanwhile,
 301 the activation of the sink token without RoPE stays roughly constant. We hypothesize that the activation
 302 starts off lower within the training length due to the observation in Fig. 2 (right): key/query clouds
 303 are more opposed *after* applying RoPE, lowering the average dot product relative to the sink. In any
 304 case, it is clear that RoPE causes catastrophic collapse of sink token weight for long inputs.

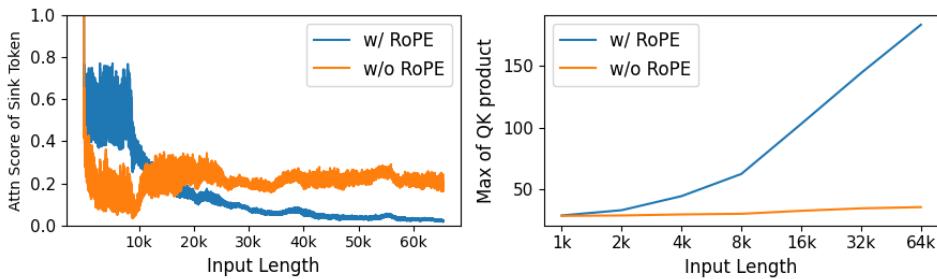
305 Fig. 6 (right) confirms that the decay in sink token attention weight is a function of key/query cluster
 306 overlap. As two point clouds approach the origin and disperse, the chance for high directional
 307 alignment between point pairs increases, and so the maximum dot pairwise product should increase
 308 as well. In practice, the maximum key/query dot product across all keys, per-query, does rise steadily
 309 over sequence length when RoPE is applied. Without RoPE, cluster behavior is stable over time,
 310 and so too, therefore, is the maximum degree of alignment between key and query points.

313 3.2.2 A UNIFIED THEORY OF ROPE ATTENTION

314 We now establish a unified geometric understanding of attention, RoPE, and sink tokens. The shift-
 315 invariance of softmax induces keys and queries to gather into opposing clouds across the origin. Sink
 316 tokens are implemented by positioning the first key near the origin, making that key's dot product
 317 with any query small. Because the clusters are opposed, average key/query dot product is negative,
 318 defaulting attention to the sink and mixing tokens only in the case of particularly aligned pairs.

319 RoPE complicates this arrangement by spinning points around and across the origin. Some channel
 320 pairs rotate much faster than others, but over time more and more channel pairs drift meaning-
 321 fully from their original locations. Eventually all channels shift into orbit, transforming previously
 322 well-separated key and query clusters into dispersed, overlapping balls. This produces positive dot
 323 products between keys and queries, overwhelming the small, but previously dominant sink token

324 logit. Transformers with RoPE fail on long inputs because they effectively lose access to the sink
 325 token, broadcasting an excess of information from the wrong tokens forward through time.
 326



327
 328 Figure 6: **Left:** Sink token attention weight vs. input length. With RoPE, sink-token attention decays
 329 to zero beyond the training length; without RoPE it remains stable. **Right:** Maximum Query–Key
 330 dot product vs. input length. The max QK product increases with length only when RoPE is active.
 331
 332

333 4 METHOD

334 Insight into RoPE’s out-of-distribution behavior informs mitigation techniques. We want to encode
 335 relative position efficiently via rotation, but must still ensure that key and query point clouds remain
 336 separated through time, preserving sink token functionality. Many scaling techniques exist that
 337 (perhaps unintentionally) follow this heuristic. PI (Chen et al., 2023) and YaRN (Peng et al., 2023),
 338 for example, both limit the degree of drift in low-frequency channels to that seen during training.
 339 This maintains the separation of key and query clusters in those channels over extended contexts.
 340

341 Training a new model from scratch offers greater design freedom. (Barbero et al., 2024b) suggest
 342 that information is better preserved when RoPE is limited to a fraction of channels, as positional and
 343 contextual information can be embedded in the RoPE subspace, while long-term semantic content
 344 can be allocated to the stable RoPE-free subspace. However, we still expect this approach to fail on
 345 extended contexts, as low-frequency channels still exist, reproducing the issues observed in § 3.
 346

347 An obvious solution is to directly eliminate the low frequencies: raise the lowest value enough to
 348 complete a full cycle within the training length. This ensures that clusters “finish” drifting to the
 349 origin, as they devolve into uncorrelated rotations – overlapping shells around the origin – that the
 350 model can expect to persist indefinitely. Phrased differently, channel pairs with RoPE cannot rotate
 351 “out of distribution” if the entire rotation arc is covered. Liu et al. (2024) make this exact suggestion,
 352 but limit their evaluation to perplexity. Perplexity is improved by the newfound stability over long
 353 contexts, but it does not capture the loss of distant information through several cycles of uncorrelated
 354 rotation. Long-context information retrieval is likely difficult in this setting.
 355

356 We hypothesize that *combining* high RoPE frequency and partial application is crucial for general-
 357 ization to long contexts. Both changes are required for stable, discriminative behavior: key/query
 358 clusters fully merge in the RoPE channel subspace, but preserve sink token functionality via contin-
 359 ued separation in RoPE-free subspace. We name this approach RoPE-ID (In Distribution). Fig. 7
 360 (left) repeats the singular value analysis from Fig. 4 on a synthetic point cloud, for RoPE-ID and
 361 three baselines: RoPE with base frequency $\theta = 500k$, high-frequency RoPE with $\theta = 652$ (the
 362 lowest frequency to complete a cycle in 4k steps), and standard RoPE over half the channels. Base
 363 RoPE decays the FSV, pulling the cluster to the origin (and dispersing it) as input length increases.
 364 Applying RoPE to half the channels mitigates but does not resolve the issue: FSV still falls out of
 365 distribution after 4k tokens. High frequency RoPE dodges the issue by decaying within the train-
 366 ing length to nearly zero, making further decay impossible. This produces stable behavior on long
 367 inputs, but preserves little information from the original embedding. Meanwhile, RoPE-ID lower-
 368 bounds FSV decay, maintaining cluster separation and sink token functionality by construction.
 369

370 4.1 IMPLEMENTATION

371 We apply RoPE to half the channels of each attention head, and adjust RoPE frequencies to attain
 372 desired behaviors. RoPE frequencies interpolate exponentially between 1 and $\frac{1}{\theta}$, where θ is the base
 373

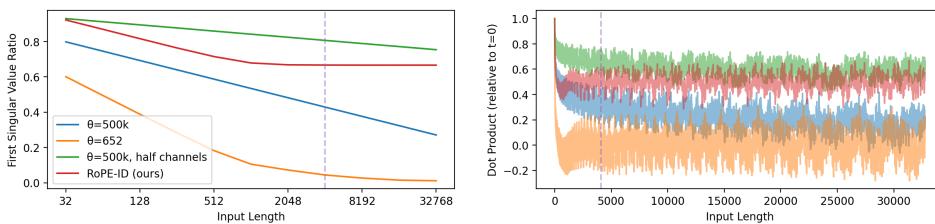


Figure 7: Expected RoPE behavior for our proposed method and three baselines. Dotted line indicates hypothetical training length of 4k and head dimension is 128. **Left:** Repeats the Fig. 4 singular value ratio before/after RoPE, for a synthetic point cloud of ones vectors. **Right:** Long-term RoPE decay for the same techniques, showing similar behaviors.

frequency hyperparameter. We adjust the low end of this scale to two full rotations per training length, as one rotation may still preserve correlation between low frequency channels (i.e. some decay still occurs after the purple line in the high frequency curve of Fig. 7 (left)). Maximum rotation speed is set to one cycle every 32 tokens, to better preserve information over short windows.

Taking a softmax over many IID logits increases the denominator but not the numerator, resulting in the mixture distribution becoming artificially smoother over time. We account for this via temperature scaling based on input length, borrowing from (Peng et al., 2023). Details, code and further discussion for RoPE-ID can be found in A.3. We evaluate both with and without temperature scale.

To evaluate RoPE-ID, we pretrain example 1B- and 3B-parameter decoders. Models use the Llama3 tokenizer and Dolma v1.7 dataset (Soldaini et al., 2024), reweighted per (Chu et al., 2024). Training proceeds over 21 billion tokens, with hyperparameter and architecture details provided in A.4.

5 RESULTS

We compare RoPE-ID against four baselines. First is a vanilla decoder with RoPE base frequency 500k, which we expect to fail beyond the training length. Second and third are approaches from § 4: increase RoPE frequency so that all channel pairs complete a rotation, or apply the original RoPE on half the channels per head. The former should yield stable, but poor, performance over context lengths, while the latter should mitigate but not prevent performance degradation. Tuning-free extension of the vanilla model using YaRN (Peng et al., 2023) with default hyperparameters acts as a state-of-the-art comparison. Across several benchmarks, our method is comparable to or outperforms all baselines, while generalizing gracefully out of the box, requiring no model adjustment.

Table 1: Average RULER benchmark scores by sequence length. Highest average score for each sequence length and model size is in **bold**; runner-up is underlined.

Method	Llama-1B			Llama-3B		
	4k	8k	16k	4k	8k	16k
RoPE	39.72	0.01	0.03	<u>46.19</u>	0.14	0.01
High frequency	16.04	7.60	2.37	28.02	14.31	5.14
HalfRoPE	43.07	0.14	0	51.28	0.4	0.03
YaRN	40.24	<u>35.55</u>	<u>30.25</u>	43.90	45.09	40.14
RoPE-ID	39.15	29.71	14.29	44.86	37.51	21.95
RoPE-ID (scaling)	39.15	35.64	<u>30.83</u>	44.86	<u>43.39</u>	42.0

RULER (Hsieh et al., 2024) measures long context performance on a number of synthetic tasks, such as needle-in-a-haystack retrieval and word counting. Table 1 shows that baselines perform as expected: RoPE and HalfRoPE perform well at 4k training length (with HalfRoPE even delivering a boost from its improved semantic encoding), but immediately fall to near-zero performance beyond that. High frequency RoPE degrades less in comparison, but also starts from a much lower score at 4k, as RoPE is scrambling stored information aggressively. YaRN delivers robust extrapolation to lengths 8k and 16k, without major penalty to baseline performance at 4k. Meanwhile, RoPE-ID with

temperature scaling is comparable to YaRN with slight gains for longer sequences. It is marginally the strongest evaluated approach overall, but clearly surpasses RoPE-ID without temperature scaling, so we omit the non-scaled version from further analysis. A full breakdown of scores by task is provided in A.5.

LongBench (Bai et al., 2024) corroborates our RULER results, with reported averages over five task categories: single document question-answering, multi-document question-answering, few-shot learning, code completion and summarization. We exclude non-English tasks as our models are trained on English data. A full breakdown of scores is provided in A.6. Results in Table 2 mirror Table 1: RoPE and HalfRoPE drop immediately after 4k, with HalfRoPE delivering a small boost within 4k. High frequency performs stably but poorly, while YaRN is able to bring up performance for long inputs. Our method trails YaRN at 3B scale, but is superior at 1B. We conclude that RoPE-ID successfully generalizes to longer inputs out of the box.

Table 2: LongBench scores, averaged over 14 English tasks, by sequence length. Highest average score for each sequence length and model size is in **bold**; runner-up is underlined.

Method	Llama-1B			Llama-3B		
	4k	8k	16k	4k	8k	16k
RoPE	14.61	8.23	8.73	<u>18.62</u>	11.36	10.42
High frequency	11.8	11.44	11.04	14.19	13.82	13.78
HalfRoPE	<u>15.38</u>	8.73	8.86	19.42	10.7	10.62
YaRN	14.84	14.54	<u>14.09</u>	15.87	19.29	19.63
RoPE-ID (scaling)	15.83	15.83	15.80	15.92	<u>17.13</u>	17.94

Commonsense Reasoning tasks act as a sanity check in Table 3. Model scores are all similar: RoPE frequency and number of channels have little impact on expressivity within the training length. To the degree that scores differ, RoPE-ID is in the top-3 for all tasks and settings.

Table 3: Standard evaluation of common sense reasoning tasks

Method	Llama-1B				Llama-3B			
	ARC-C	HellaSwag	PIQA	Avg.	ARC-C	HellaSwag	PIQA	Avg.
RoPE	25.77	44.00	69.26	46.34	29.18	53.95	72.74	51.96
High frequency	25.17	42.99	69.26	45.81	29.61	53.32	71.87	51.60
HalfRoPE	26.45	44.00	68.77	46.41	32.17	53.87	72.03	52.69
YaRN	25.60	41.89	68.61	45.37	29.10	52.46	72.20	51.25
RoPE-ID	25.60	43.58	68.88	46.02	30.03	53.95	72.25	52.08

Reapplying Analysis from § 3.1 confirms that our trained models obey our geometric framework. We recreate Fig. 2 and 3 for baseline and RoPE-ID models in A.7. Our 1B example decoder mirrors the behavior of established LLMs, while RoPE-ID behaves as expected, delivering stable, and stably separated, key and query clusters over time.

6 DISCUSSION

From empirical analysis we develop a unified understanding of attention geometry and long-context failure modes. Keys and queries form tight clusters in opposing directions, allowing sink tokens to absorb attention weight by default via small ℓ_2 norm. RoPE inhibits this behavior by merging and dispersing the point clouds, particularly beyond the training length. Overlapped point clouds inflate key/query alignment, preventing the sink token from functioning. From this understanding, we produce stable model behavior by applying RoPE with high frequency to a fraction of channels, and demonstrate strong long-context performance on downstream tasks out of the box.

Beyond RoPE-ID, other approaches based on this analysis are possible (e.g., applying high frequency RoPE to a fraction of *heads*, or manually injected sink tokens as in Hymba (Dong et al., 2025)). It is also possible to combine RoPE-ID with inference-time model adjustments. We leave this, as well as long-context fine-tuning of RoPE-ID models, to future work.

Reproducibility: Code for RoPE-ID is provided in A.3 with training details in A.4. Empirical analysis techniques are straightforward, and evaluation uses standard benchmarks.

486 REFERENCES
487

488 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
489 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
490 points. *arXiv preprint arXiv:2305.13245*, 2023.

491 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
492 Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
493 titask benchmark for long context understanding, 2024. URL <https://arxiv.org/abs/2308.14508>.

494 Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G. M. Araújo,
495 Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information
496 over-squashing in language tasks, 2024a. URL <https://arxiv.org/abs/2406.04267>.

497 Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar
498 Veličković. Round and round we go! what makes rotary positional encodings useful? *arXiv
499 preprint arXiv:2410.06205*, 2024b.

500 Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein,
501 Petar Veličković, and Razvan Pascanu. Why do llms attend to the first token? *arXiv preprint
502 arXiv:2504.02732*, 2025.

503 bloc97. Tk-aware scaled rope allows llama models to have extended (8k+) con-
504 text size without any fine-tuning and minimal perplexity degradation., 2023a. URL
505 https://www.reddit.com/r/LocalLLaMA/comments/141z7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.

506 bloc97. Add ntk-aware interpolation "by parts" correction, 2023b. URL <https://github.com/jquesnelle/scaled-rope/pull/1>.

507 Nicola Cancedda. Spectral filters, dark signals, and attention sinks, 2024. URL <https://arxiv.org/abs/2402.09221>.

508 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
509 of large language models via positional interpolation, 2023. URL <https://arxiv.org/abs/2306.15595>.

510 Yuhan Chen, Ang Lv, Jian Luan, Bin Wang, and Wei Liu. Hope: A novel positional encoding
511 without long-term decay for enhanced context awareness and extrapolation, 2024. URL <https://arxiv.org/abs/2410.21216>.

512 Linsong Chu, Divya Kumari, Tri Dao, Albert Gu, Raghu Ganti, Dakshi Agrawal, Mudhakar
513 Srivatsa, Davis Wertheimer, Yu Chin Fabian Lim, Antoni Viros, Nelson Gonzalez, Tuan
514 HoangTrong, Ofir Arxiv, Yotam Perlitz, Michal Shmueli, Haochen Shen, Minjia Zhang, Gabe
515 Goodhart, Naigang Wang, Nick Hill, Joshua Rosenkranz, Chi-Chun Liu, Adnan Hoque, Chih-
516 Chieh Yang, Sukriti Sharma, Anh Uong, Jay Gala, Syed Zawad, and Ryan Gordon. Bamba:
517 Inference-efficient hybrid mamba2 model. <https://huggingface.co/blog/bamba#bamba-inference-efficient-hybrid-mamba2-model-%F0%9F%90%8D>, Decem-
518 ber 2024. Accessed: 2025-05-06.

519 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
520 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
521 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
522 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
523 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
524 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
525 Junxiao Song, Kai Dong, Kai Hu, Kai ge Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
526 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
527 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
528 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
529 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,

540 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
 541 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
 542 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
 543 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
 544 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
 545 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
 546 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
 547 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
 548 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
 549 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
 550 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
 551 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
 552 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
 553 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
 554 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
 555 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhusu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 556 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
 557 <https://arxiv.org/abs/2412.19437>.

558 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 559 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

560

561 Yiran Ding, Li Lyyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
 562 Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. *arXiv*
 563 preprint [arXiv:2402.13753](https://arxiv.org/abs/2402.13753), 2024.

564

565 Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, ZIJIA CHEN, Ameya Sunil Mahabalesh-
 566 warkar, Shih-Yang Liu, Matthijs Van keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Celine
 567 Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language
 568 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 569 <https://openreview.net/forum?id=Alztozypga>.

570 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

571

572 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 573 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 574 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 575 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 576 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 577 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 578 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 579 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 580 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 581 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 582 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 583 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 584 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 585 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 586 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 587 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 588 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 589 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 590 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 591 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 592 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 593 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar
 Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan

594 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 595 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 596 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 597 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 598 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 599 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 600 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 601 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 602 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 603 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 604 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 605 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 606 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 607 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 608 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 609 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 610 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 611 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 612 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 613 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 614 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 615 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 616 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 617 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 618 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 619 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 620 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 621 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 622 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 623 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 624 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 625 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 626 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 627 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 628 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 629 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 630 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 631 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 632 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 633 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 634 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 635 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 636 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 637 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 638 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 639 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 640 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 641 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 642 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 643 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 644 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 645 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 646 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 647 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj

648 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
649 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
650 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
651 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
652 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
653 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
654 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
655 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
656 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
657 <https://arxiv.org/abs/2407.21783>.

658 Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
659 Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
660 science of language models. *arXiv preprint arXiv:2402.00838*, 2024.

661 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
662 preprint arXiv:2312.00752*, 2023.

664 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
665 Min Lin. When attention sink emerges in language models: An empirical view, 2025.

667 Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
668 infinite: Zero-shot extreme length generalization for large language models, 2024. URL <https://arxiv.org/abs/2308.16137>.

670 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
671 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
672 models?, 2024. URL <https://arxiv.org/abs/2404.06654>.

674 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
675 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-
676 chine learning*, pp. 5156–5165. PMLR, 2020.

677 Xiaoran Liu, Hang Yan, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of roPE-based
678 extrapolation. In *The Twelfth International Conference on Learning Representations*, 2024. URL
679 <https://openreview.net/forum?id=J07k0SJ5V6>.

681 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
682 models. *arXiv preprint arXiv:1609.07843*, 2016.

684 OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
685 Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
686 Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai
687 Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin
688 Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam
689 Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec
690 Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina
691 Kofman, Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc,
692 James Park Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin,
693 Jordan Liss, Lily Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCal-
694 lum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu,
695 Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ash-
696 ley Pantuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic
697 Peran, Dmitry Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo
698 Raso, Hongyu Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh
699 Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song,
700 Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric
701 Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery,
Cedric Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech
Zaremba, Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-
120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.

702 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
 703 extension of large language models, 2023. URL <https://arxiv.org/abs/2309.00071>.
 704

705 Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 706 enables input length extrapolation, 2022. URL <https://arxiv.org/abs/2108.12409>.
 707

708 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 709 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 710 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.
 711

712 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
 713 Ben Beglin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of
 714 three trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*,
 2024.

715 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 716 hanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.
 717

718 Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
 719 models, 2024. URL <https://arxiv.org/abs/2402.17762>.
 720

721 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashti, Surya Bhupatiraju, Shreya
 722 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 723 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

724 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 725 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.
 726

727 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 728 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

729

730 Shuai Yang, Yuying Ge, Yang Li, Yukang Chen, Yixiao Ge, Ying Shan, and Yingcong Chen. Seed-
 731 story: Multimodal long story generation with large language model, 2024. URL <https://arxiv.org/abs/2407.08683>.
 732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**757 **A.1 PROOF OF PROPOSITION 1**758 *Proof.* First, a standard result in linear algebra (Golub & Van Loan, 2013) shows that

759
$$\sum_{i=1}^{\min\{n,d\}} \sigma_i(X)^2 = \|X\|_F^2 := \sum_{i=1}^n \sum_{j=1}^d X_{i,j}^2,$$

760 where $\|\cdot\|_F$ denotes the Frobenius norm. Similarly,

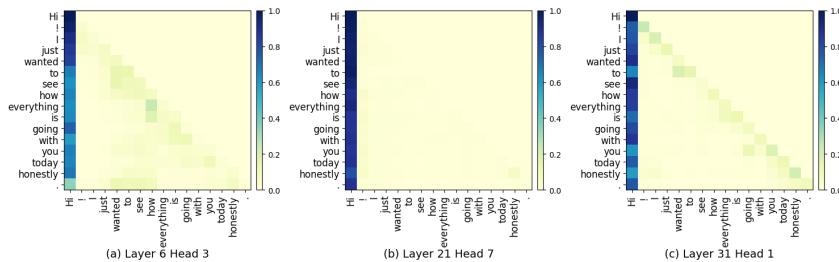
761
$$\sum_{i=1}^{\min\{n,d\}} \sigma_i(r(X))^2 = \|r(X)\|_F^2 = \sum_{i=1}^n \sum_{j=1}^d r(X)_{i,j}^2.$$

762 Therefore, it suffices to show that for any fixed token index i , $\sum_{j=1}^d X_{i,j}^2 = \sum_{j=1}^d r(X)_{i,j}^2$. By the
763 definition of RoPE, $\forall 1 \leq l \leq d/2$, we have

764
$$[r(X)_{i,2l-1}, r(X)_{i,2l}] = [\cos(i\theta_l)X_{i,2l-1} - \sin(i\theta_l)X_{i,2l}, \sin(i\theta_l)X_{i,2l-1} + \cos(i\theta_l)X_{i,2l}],$$

765 and it is easy to see that $r(X)_{i,2l-1}^2 + r(X)_{i,2l}^2 = X_{i,2l-1}^2 + X_{i,2l}^2$. Finally,

766
$$\sum_{j=1}^d X_{i,j}^2 = \sum_{l=1}^{d/2} X_{i,2l-1}^2 + X_{i,2l}^2 = \sum_{l=1}^{d/2} r(X)_{i,2l-1}^2 + r(X)_{i,2l}^2 = \sum_{j=1}^d r(X)_{i,j}^2,$$

767 which completes the proof. \square 768 **A.2 ATTENTION MAP AND SINK TOKEN VISUALIZATION**769 Figure 8: Attention patterns of three heads in LLaMA3-8B. Sink token behavior is clearly observed,
770 even when performing non-trivial token mixing.771 **A.3 IMPLEMENTATION DETAILS**772 In our approach we apply RoPE to half the channels of each attention head, and adjust the RoPE
773 frequencies to attain desired behaviors. Standard RoPE frequencies interpolate exponentially be-
774 tween 1 and $\frac{1}{\theta}$, where θ is the base frequency hyperparameter, typically $10k$ or $500k$. We adjust
775 both endpoints of this interpolated scale. First, we must ensure that all frequencies are high enough
776 to complete at least one rotation within our training length of 4k tokens. We set two full rotations
777 as the minimum, as one rotation may not be sufficient to fully eliminate correlation between low
778 frequency channels (i.e. some decay still occurs in the high frequency curve of Fig. 7 (Left), even
779 after the slowest channel pair finishes a full rotation at the purple line). We therefore update the
780 minimum frequency scale value from $\frac{1}{\theta}$ to $\frac{4\pi}{4096}$. Second, we also pull the maximum frequency scale of
781 1 toward a more conservative value. Since we apply RoPE to only a fraction of available channels,
782 it is important that the channels be discriminative. RoPE’s fastest channel pair completes a cycle in
783 $2\pi \approx 6$ tokens, after which information is effectively lost, as it becomes impossible to disentangle
784 relative position modulo 2π from content. An effective 6-token window is very aggressive, so we
785 pull back the max frequency to $\frac{2\pi}{32}$, completing a cycle in 32 tokens.

810 While applying high-frequency RoPE to a fraction of channels ensures stable clustering and sink
 811 token behavior for long inputs, out-of-distribution behavior can still occur via the softmax activation.
 812 Key/query dot products are stable over time by construction, so taking a softmax over an increasing
 813 number of IID key/query pairs will increase the softmax denominator, without a corresponding
 814 increase to the numerator. The result is the mixture distribution becoming smoother than expected
 815 over time. We account for this by introducing temperature scaling based on input length, borrowing
 816 from (Peng et al., 2023). The adjustment is $(1 + 0.1 * \ln(\min(4096, n)))^2$, where 4096 is the training
 817 length and n is the given input length.

818 Example code for this approach in HuggingFace Transformers is provided below.
 819

820 **Codeblock 1: Modification of scaling factor within the attention_interface**

```
821 1 # src/transformers/models/llama/modeling_llama.py
822 2
823 3 class LlamaAttention(nn.Module):
824 4     ...
825 5     def forward(...):
826 6         ...
827 7         attn_output, attn_weights = attention_interface(
828 8             self,
829 9             query_states,
830 10            key_states,
831 11            value_states,
832 12            attention_mask,
833 13            dropout=0.0 if not self.training else self.attention_dropout,
834 14            scaling=self.scaling \
835 15            * (0.1 * math.log(max(current_position, 4096) / 4096) + 1)**2,
836 16            **kwargs,
837 17        )
838 18
```

836 **Codeblock 2: Modification of modeling_rope_utils with our method**

```
838 1 # src/transformers/modeling_rope_utils.py
839 2
840 3 ROPE_INIT_FUNCTIONS = {
841 4     ...
842 5     "ourmethod": _compute_our_method_parameters,
843 6 }
844 7
845 8 def _compute_our_method_parameters(
846 9     config, device, seq_len = None, **rope_kwargs
847 10 ) :
848 11     if config is not None and len(rope_kwargs) > 0:
849 12         raise ValueError(...)
850 13     if len(rope_kwargs) > 0:
851 14         base = rope_kwargs["base"]
852 15         dim = rope_kwargs["dim"]
853 16     elif config is not None:
854 17         base = config.rope_theta
855 18         partial_rotary_factor = config.partial_rotary_factor \
856 19             if hasattr(config, "partial_rotary_factor") else 1.0
857 20         head_dim = getattr(config, "head_dim", None) \
858 21             or config.hidden_size // config.num_attention_heads
859 22         dim = int(head_dim * partial_rotary_factor)
860 23
861 24     attention_factor = 1.0 # Unused in this type of RoPE
862 25
863 26     logstart = math.log(2 * math.pi / base) # 1 cycle in ratio steps
864 27     logend = math.log(4 * math.pi / 4096) # 2 cycles in 4k steps
865 28     pos = torch.arange(0, dim // 2, device=device) / (dim // 2 - 1)
866 29     logfreq = pos * (logend - logstart) + logstart
867 30     inv_freq = logfreq.exp()
868 31     return inv_freq, attention_factor
```

```

864
865
866     Codeblock 3: Applying RoPE to only half the channels
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
# src/transformers/models/llama/modeling_llama.py
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)

    q_quartile_size = q.shape[-1] // 4
    q1, q2, q3, q4 = torch.split(q, \
        split_size_or_sections=q_quartile_size, dim=-1)
    k_quartile_size = k.shape[-1] // 4
    k1, k2, k3, k4 = torch.split(k, \
        split_size_or_sections=k_quartile_size, dim=-1)

    q_rot = torch.cat((q1, q3), dim=-1)
    k_rot = torch.cat((k1, k3), dim=-1)

    q_rot_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
    k_rot_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)

    q1_updated, q3_updated = torch.split(q_rot_embed, \
        split_size_or_sections=q_quartile_size, dim=-1)
    k1_updated, k3_updated = torch.split(k_rot_embed, \
        split_size_or_sections=k_quartile_size, dim=-1)

    q_embed = torch.cat((q1_updated, q2, q3_updated, q4), dim=-1)
    k_embed = torch.cat((k1_updated, k2, k3_updated, k4), dim=-1)

    return q_embed, k_embed

```

A.4 TRAINING, MODEL, AND EVALUATION DETAILS

Evaluation: During evaluation, we take care to avoid inducing out-of-distribution behavior not related to extended context length. In particular, we report point cloud behaviors “with” and “without” RoPE. Both cases are drawn from the same single forward pass from a given model, with the model unaltered and RoPE applied. Strictly speaking, these point clouds come from *after* and *before* the application of RoPE, respectively. This keeps observations within-distribution, even when discussing un-RoPEd point clouds inside of a RoPE-using model. Performing the actual attention without RoPE would cascade errors through the model.

Training: Model training proceeds over 21 billion tokens, with a context length of 4096 and half a million tokens per minibatch. All models are trained across 16 NVIDIA A100s in parallel. We employ a learning rate of $3e-4$, with warmup over 2k steps and cosine decay. Optimizer is AdamW with $\lambda = (.9, .95)$ and weight decay 0.1. Model architecture follows Llama3, with details provided in Table 4.

Table 4: Model architectures used for pretraining and evaluation

Parameters	1B	3B
Vocab	128256	128256
Width	1280	2048
Layers	32	48
Heads	16	16
KV heads	4	4
Head dim	80	128
Inner dim	4096	7168

918

A.5 RULER BENCHMARK

919

920

921
922 Table 5: Performance of different methods on the RULER benchmark. Highest average score for
923 each sequence length and model size is in **bold**; runner-up is underlined.

Method	Seq.	N-S1	N-S2	N-S3	N-MK1	N-MK2	N-MK3	N-MV	N-MQ	VT	CWE	FWE	QA-1	QA-2	Avg.	
1B Models																
RoPE	4k	100	100	96.6	73.6	2.4	3.4	23.45	24.65	10.24	21.76	27.4	22.67	10.24	39.72	
	8k	0	0	0	0	0	0	0	0	0	0	0	0.13	0	0.01	
	16k	0	0	0	0	0	0	0	0	0	0	0	0.4	0	0.03	
High Frequency	4k	42	44.8	35	37.4	0.2	3.6	7.05	4.85	0	0.1	1	16.95	15.6	16.04	
	8k	18.8	15.6	15	19.4	0	0.4	6.35	1.2	0	0.04	2.87	6.13	13	7.60	
	16k	9	3	1	3	0	0	1.2	0.1	0	0	0.2	4.73	8.6	2.37	
HalfRoPE	4k	100	100	96	76.4	22	17.2	12.2	10.95	3.88	48.72	27.73	22.42	22.4	43.07	
	8k	0	0	0	0	0	0	0	0	0	0	0.07	1.6	0.2	0.14	
	16k	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
YaRN	4k	100	100	96.6	73.6	2.4	3.4	23.45	24.65	10.24	21.76	27.4	22.67	17	40.24	
	8k	97.6	92.2	92.4	62	1.6	1.8	22.2	23.1	21.8	2.8	17.07	11.57	16	<u>35.55</u>	
	16k	99.8	85.8	68	44.2	1.6	1.4	20.35	17.7	18.24	0.34	12	11.07	12.8	<u>30.25</u>	
RoPE-ID	4k	100	100	85.6	62	3	2.6	29.7	30.85	0.52	12.12	35.4	27.52	19.6	39.15	
	8k	100	100	33.4	40.4	0.2	0.6	21.8	20.55	11.44	2.44	29.33	10.28	15.8	29.71	
	16k	96.4	19.4	1.2	14.2	0	0	9.65	2.1	2.36	0	20.33	8.73	11.4	14.29	
RoPE-ID (Scaling)	4k	100	100	85.6	62	3	2.6	29.7	30.85	0.52	12.12	35.4	27.52	19.6	39.15	
	8k	100	100	70.6	50.8	1.4	1.2	26.3	34.55	12.8	6.16	33.13	11.02	15.4	35.64	
	16k	100	98.6	37	40.8	1.2	0.4	29.95	23.5	6.64	0.38	32.13	15.82	14.4	30.83	
3B Models																
RoPE	4k	100	100	93.4	56	7.2	3.8	39.55	53.55	12.96	41.28	36.07	30.25	26.4	46.19	
	8k	0	0	0	0	0	0	0	0	0	0	0.07	1.8	0	0.14	
	16k	0	0	0	0	0	0	0	0	0	0	0	0.13	0	0.01	
High Frequency	4k	59.8	57.4	47.8	26.89	40.6	18.4	18.4	17.6	0	13.9	13.2	29.53	20.8	28.02	
	8k	27.8	24.4	25.6	23.8	1.8	4.8	17.45	15.4	0	10.72	8.2	9.4	16.6	14.31	
	16k	8.8	9.2	5.2	7.8	0	0.4	7.65	2.05	0	1.58	5.53	7.27	11.4	5.14	
HalfRoPE	4k	100	100	99.6	85	5.6	4.6	58.9	55.7	15.8	44	38.4	33.4	25.6	51.28	
	8k	0	0	0	0	0	0	0	0	0	0	0.82	3.2	0.93	0.2	0.40
	16k	0	0	0	0	0	0	0	0	0	0	0	0	0.13	0.2	0.03
YaRN	4k	100	98.2	91.8	57.2	9.8	4.8	64.3	38.6	20.88	14.66	21.27	28	21.2	43.90	
	8k	100	100	98.6	71	1.8	4.4	42.25	60.25	20.32	13.94	29.8	17.18	26.6	45.09	
	16k	100	99.8	92.6	63.4	7.2	1.4	34.55	47.65	11.76	8.66	18.8	15.82	20.2	40.14	
RoPE-ID	4k	100	100	97.8	77.4	9.4	8.4	28.2	37.25	12.84	13.18	42.27	30.88	25.6	44.86	
	8k	100	99	88.6	45.4	0.6	1.8	23.7	36.5	13.4	6.54	36.4	14.28	21.4	37.51	
	16k	73.6	73.4	13.2	32.2	0	0.2	8.25	8.4	18.72	3.72	26.8	12.87	14	21.95	
RoPE-ID (Scaling)	4k	100	100	97.8	77.4	9.4	8.4	28.2	37.25	12.84	13.18	42.27	30.88	25.6	44.86	
	8k	100	100	96	55.8	6.6	3.4	43.4	48.9	20.6	12.36	37	15.62	24.4	<u>43.39</u>	
	16k	90.8	99.2	86	59.6	7.2	0.4	48	42.4	36.56	10.24	31.07	17.07	17.4	42.0	

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 A.6 LONGBENCH BENCHMARK
973

974 14 English Tasks for 5 Different Categories used for evaluation:

975 **Single Document QA:** NarrativeQA, Qasper, and MultiFieldQA-en976 **Multi-Document QA:** 2WikiMultihopQA, HotpotQA, MuSiQue977 **Summarization:** GovReport, MultiNews, QMSum978 **Few-shot Learning:** SAMSUM, TREC, TriviaQA979 **Code Completion:** LCC, RepoBench-P980
981
982 Table 6: Performance of different methods on LongBench, averaged by task type. Highest total
983 average score for each sequence length and model size is in **bold**; runner-up is underlined.
984

Methods	Seq.	Single-Doc QA	Multi-Doc QA	Summarization	Few-Shot Learning	Code	Avg.
1B Models							
RoPE	4k	6.65	4.32	14.22	27.27	23.55	14.61
	8k	4.53	1.69	11.48	7.55	19.75	8.23
	16k	4.84	2.08	12.74	8.19	19.33	8.73
High Frequency	4k	5.26	4.22	12.97	19.3	19.96	11.8
	8k	5.31	4.22	12.61	17.61	20.47	11.44
	16k	5.2	3.92	12.49	16.71	19.77	11.04
HalfRoPE	4k	6.94	4.72	16.07	28.73	22.99	15.38
	8k	4.96	1.94	15.89	6.78	16.77	8.73
	16k	5.25	2	16.17	6.5	17.17	8.86
YaRN	4k	6.86	4.35	14.94	28.07	22.54	14.84
	8k	6.83	4.77	15.29	26.76	21.33	<u>14.54</u>
	16k	6.78	5.18	15.26	25.59	19.42	<u>14.09</u>
RoPE-ID (scaling)	4k	6.71	4.80	14.61	31.68	24.11	15.83
	8k	7.18	5.23	14.69	31.39	23.11	15.83
	16k	7.01	5.35	15.40	30.55	23.12	15.80
3B Models							
RoPE	4k	7.32	4.81	14.79	35.13	37.28	<u>18.62</u>
	8k	5.19	2.57	13	11.03	31.84	11.36
	16k	5.12	2.51	11.67	11.22	27.15	10.42
High Frequency	4k	5.42	4.52	12.61	25.85	26.69	14.19
	8k	5.82	4.6	12.64	23.06	27.58	13.82
	16k	5.93	4.51	12.51	22.7	28.02	13.78
HalfRoPE	4k	7.75	4.81	17.14	40.68	30.4	19.42
	8k	5.13	2.23	16.81	9.84	23.89	10.7
	16k	4.99	2.23	16.11	10.87	23.03	10.62
YaRN	4k	6.5	4.96	15.2	29.74	26.50	<u>15.87</u>
	8k	7.96	5.46	15.57	40.30	31.12	19.29
	16k	8	5.94	16.45	42	28.81	19.63
RoPE-ID (scaling)	4k	7.71	5.23	13.51	32.83	22.50	15.92
	8k	8.52	5.65	14.55	36.37	22.24	<u>17.13</u>
	16k	8.96	6.23	15.90	37.93	22.03	<u>17.94</u>

1010
1011 A.7 REPEATED ANALYSIS FOR TRAINED MODELS
10121013
1014 We repeat our original analysis on our trained 1B models (baseline and RoPE-ID). Our baseline
1015 model exhibits the same behavior observed in state of the art LLMs, while our RoPE-ID model
1016 exhibits the desired stable behavior and consistent clustering across sequence lengths.
1017
1018
1019
1020
1021
1022
1023
1024
1025

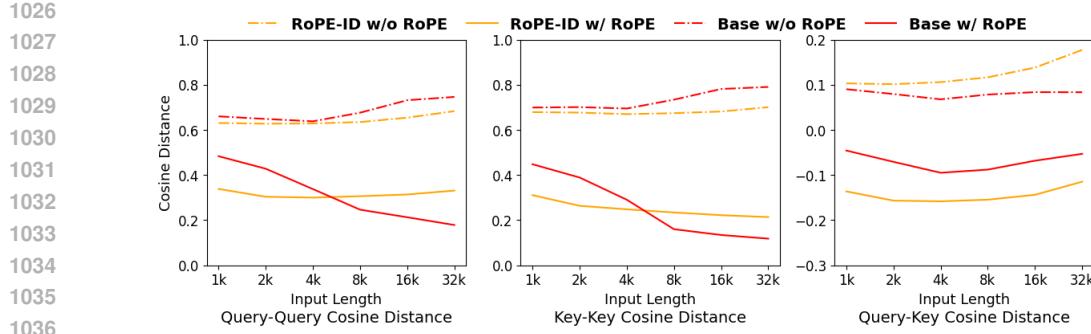


Figure 9: Pairwise angular distances within- and between-clusters for our trained models. Base model matches prior LLM observations, including an inflection point for key-query product with RoPE at the training length (4k). RoPE-ID maintains stable behavior over time.

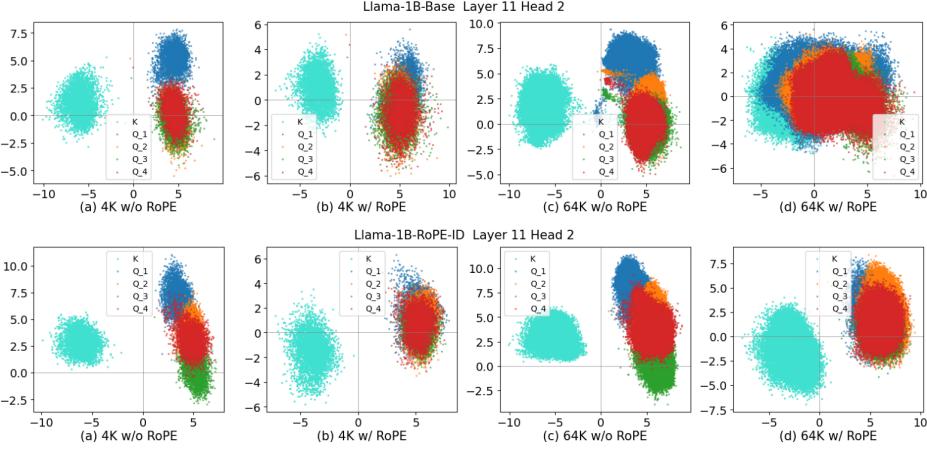


Figure 10: Clustering behavior for our trained models. Vanilla transformer (top) matches prior LLM observations; RoPE-ID (bottom) maintains stable cluster separation.

A.8 ROPE-ID HYPERPARAMETER ABLATIONS

We perform additional ablations on the hyperparameters of RoPE-ID, namely the high and low frequencies, the number of channels with RoPE applied, and the degree of temperature scaling. We train several additional 1B demo models using the same training procedure, and report average scores from the RULER benchmark.

We observe a consistent general trend: reducing the number of high-frequency channels improves performance, especially on shorter contexts. However, the model eventually reaches a threshold beyond which length generalization drops sharply. We hypothesize that without enough high-frequency channels, the model instead learns to encode position based on learned patterns of latent drift, which do not generalize to longer contexts. This explains the patterns observed in Table 8 and Fig. 11, where decreasing the number of RoPE channels, and increasing the wavelength of the highest frequency, gradually improves performance, until triggering a catastrophic collapse at longer contexts. We conclude that our hyperparameter choices for channel fraction and highest frequency (50% of channels, shortest wavelength 32) represent a safe middle-ground.

Halving the wavelength of the lowest frequency is highly beneficial, showing that one period is indeed not sufficient to decorrelate all rotating channels. This aligns with Fig. 7, where the orange curve (RoPE with high enough frequency to complete one period) still performs some FSV decay beyond the training length. Meanwhile, RoPE-ID, the red curve, holds the FSV ratio constant beyond the training length.

The impact of temperature scaling, shown in Table 8, is minimal. Here we raise and lower the exponent of the YaRN temperature scaling formula, and find that the default value of 2 works fine.

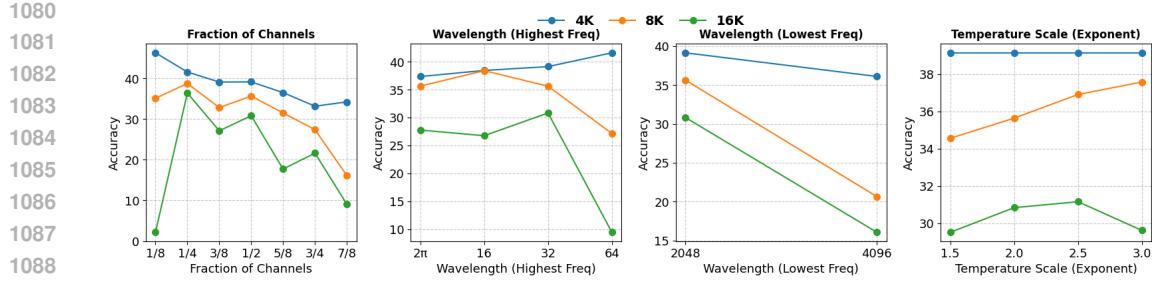


Figure 11: Llama 1B ablation studies with average RULER scores on the y-axis. The x-axis of the 4 plots cover fraction of channels, wavelength (high frequency), wavelength (low frequency) and temperature scaling, respectively. The color coded legend represents context lengths 4k, 8k and 16k.

Table 7: RULER scores for LlaMA 1B models up to 128k context length, where experiments cover tuning with YaRN, RoPE-ID, and RoPE-ID + YaRN.

Llama-1B Models			
Fine-Tuning	YaRN	RoPE-ID	RoPE-ID + YaRN
4K	43.29	39.49	47.09
8K	39.27	35.81	41.94
16K	34.55	30.63	38.59
32K	32.74	30.66	36.16
64K	21.90	27.34	31.48
128K	12.25	19.78	29.23

A.9 LONG-CONTEXT FINE-TUNING WITH ROPE-ID

While our analysis focuses on RoPE-ID as a tuning-free approach to length generalization, we can also combine it with fine-tuning to further extend the effective context length. Here we take our trained Llama 1B models and tune them to 128k context length in stages: first, we load the 4k model checkpoint and apply any relevant RoPE frequency scaling. Then, we continue pretraining for 5k steps, with sequence length increased to 32k. The total tokens per batch is held constant at 500k, and learning rate warms up over 250 steps until it reaches the final LR of the previous checkpoint ($3e - 5$), where it is held constant. We then repeat the process for another 5k steps, going from 32k sequence length to 128k.

We extend three models in this fashion: first, we apply YaRN scaling to the baseline RoPE model during each jump in sequence length. Second, we tune the RoPE-ID model with no adjustment to RoPE frequencies. Third, we tune the RoPE-ID model, but with YaRN-style scaling also applied. YaRN cannot be applied directly to RoPE-ID models as the default YaRN hyperparameters do not work for such high frequencies. We therefore set the scaling thresholds to the highest and lowest frequencies and interpolate in-between (the highest frequency is unchanged, and the lowest frequency scales up by L'/L , where L' , L are the new and old sequence lengths, respectively).

Results for RULER are given in Table 7 and Fig. 12. The tuned RoPE-ID model exhibits better length generalization at context length 64k and above. Notably, the combination of RoPE-ID and YaRN-style scaling achieves superior performance at all context lengths, compared to either method alone.

A.10 ADDITIONAL CLUSTERING ANALYSIS

Here we repeat the analysis performed in Fig. 2 for other distance and clustering metrics. Fig. 13 shows inter- and intra-cluster alignment as measured by dot product rather than cosine distance, better reflecting the actual attention logits. This introduces noise, as embedding norms can shift over time without affecting clustering behavior, and cosine distance is norm-invariant whereas dot

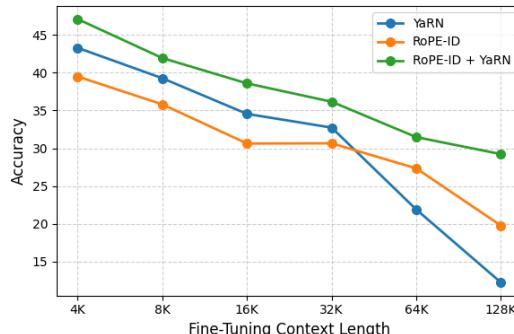
1134
 1135 Table 8: RULER scores for LLaMA 1B ablations as function of fraction of channels, wavelength,
 1136 and temperature scaling

Llama-1B Models			
Fraction of Channels	4K	8K	16K
1/8	46.30	35.12	2.18
1/4	41.59	38.75	36.41
3/8	39.11	32.83	27.12
1/2	39.15	35.64	30.83
5/8	36.52	31.52	17.72
3/4	33.17	27.40	21.63
7/8	34.23	16.11	9.05

Wavelength (Highest Freq)	4K	8K	16K
2π	37.37	35.66	27.77
16	38.46	36.52	26.76
32	39.15	35.64	30.84
64	41.62	27.16	9.46

Wavelength (Lowest Freq)	4K	8K	16K
2048	39.15	35.64	30.83
4096	36.11	20.66	16.07

Temperature Scale (Exponent)	4K	8K	16K
1.5	39.15	34.56	29.51
2.0	39.15	35.64	30.83
2.5	39.15	36.91	31.15
3.0	39.15	37.58	29.61



1165
 1166 Figure 12: A plot of average RULER scores from Table 7 better visualizing overall trends. Y-axis
 1167 represents average RULER scores and x-axis is context length.

1168
 1169 products are not. This also introduces large differences between different models. Nevertheless,
 1170 overall trends are roughly the same.

1171
 1172 Fig. 14 directly quantifies the degree of clustering, using Silhouette Score (left) and Davies-Bouldin
 1173 Index (right) in Llama3-8B. Results again mirror Fig. 2: clustering is consistent across sequence
 1174 lengths prior to RoPE (and even increases beyond the training length), but falls over time once
 1175 RoPE is applied (Silhouette Score decreases, while Davies-Bouldin Index increases as sequences
 1176 become long). We conclude that clusters are behaving as described in the main paper.

1177
 1178 Fig. 15 shows the correlation between Geometric Structure and Stable Rank. To further investigate
 1179 the impact of RoPE, we visualize the PCA projections of Key and Query states, explicitly annotated

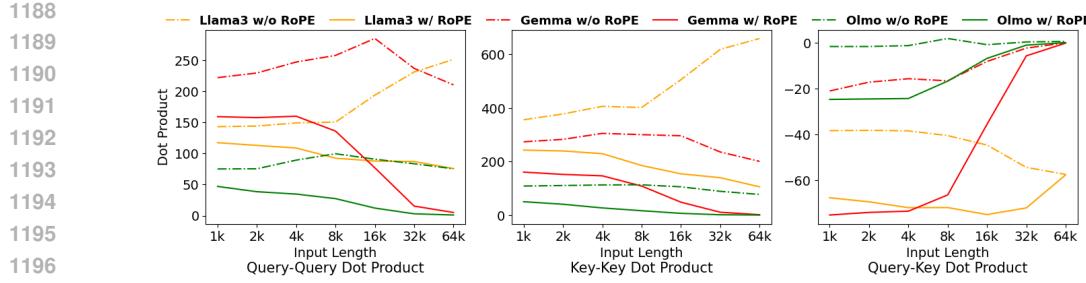


Figure 13: Mean of the pairwise dot product of query and key values across all heads for Llama3-8B, Gemma-7B and OLMo-7B which showcases the effect of RoPE across various context lengths showing similar trend as Fig. 2

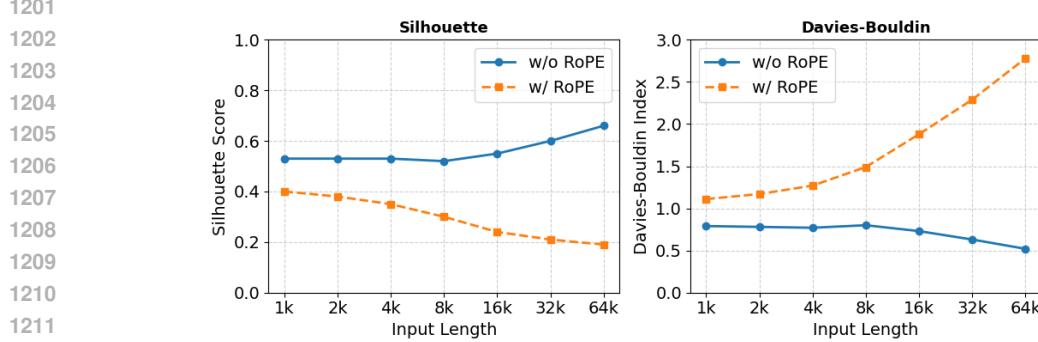


Figure 14: Silhouette Score (left) and Davies-Bouldin Index (right) showcasing the effect of RoPE on Internal Representation Clustering for Llama3-8B-Instruct. Lower Silhouette Score and higher Davies-Bouldin Index represents more overlap.

with their corresponding stable ranks. Crucially, the quantitative analysis is consistent with the visual phenomenon: the stable rank precipitates a sharp rise (from ~ 1.1 to ~ 7.1). The simultaneity of cluster dispersion and rank inflation provides strong evidence that RoPE acts as a destabilizing factor, destroying the intrinsic low-dimensional geometric structure of the Key/Query states during inference extrapolation.

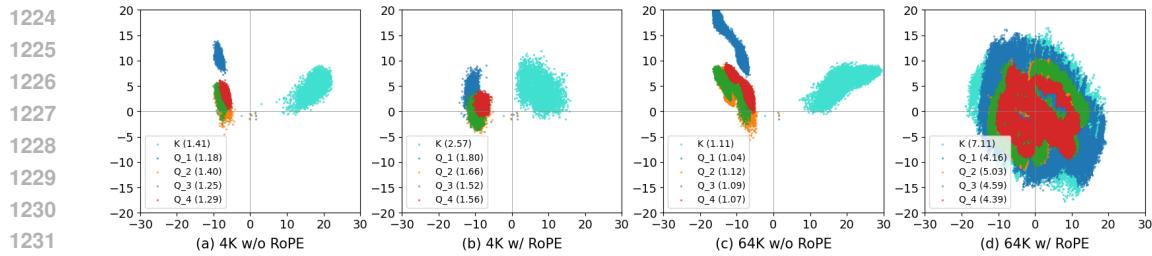


Figure 15: 2D PCA projections of Llama3 representations and their Stable Rank under different context lengths and RoPE settings (same as Figure 3). RoPE at long contexts destroys cluster separation and significantly inflates the stable rank.

Figure 16 presents the stable rank of the K matrices, averaged across all layers of Llama3-8B-Instruct, with context lengths varying from 1k to 64k. The error bars indicate the standard deviation across layers. When RoPE is applied (blue line), the stable rank increases monotonically as the context length extends. Beyond the training length (8k), the stable rank is significantly higher than the baseline.

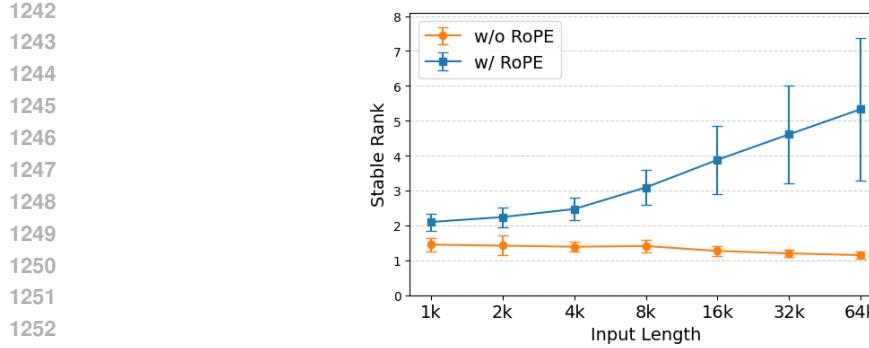


Figure 16: The stable rank of Key states across varying input lengths (1k to 64k). The plot compares the stable rank with and without RoPE. We report the mean stable rank of Key across all layers. Error bars denote standard deviation.

A.11 ADDITIONAL THEORETICAL ANALYSIS: STABLE RANK

Let us first fix the notations: $\mathcal{R}(\mathbf{X})$ denotes the application of RoPE to a key/query matrix $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\top \in \mathbb{R}^{n \times d}$. Specifically, $\mathcal{R}(\mathbf{X}) := [\mathbf{R}_1 \mathbf{x}_1, \dots, \mathbf{R}_n \mathbf{x}_n]^\top \in \mathbb{R}^{n \times d}$, where $\mathbf{R}_j = \text{diag}(\mathbf{R}_{j,\theta_1}, \dots, \mathbf{R}_{j,\theta_{d/2}}) \in \mathbb{R}^{d \times d}$ with $\mathbf{R}_{j,\theta_k} = \begin{bmatrix} \cos(j\theta_k) & -\sin(j\theta_k) \\ \sin(j\theta_k) & \cos(j\theta_k) \end{bmatrix} \in \mathbb{R}^{2 \times 2}$ and $\theta_k = \theta^{-2(k-1)/d}$ for all $1 \leq k \leq d/2$. For any $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^{(k)} := [x_{2k-1}, x_{2k}]^\top \in \mathbb{R}^2$ denotes the subvector in the k^{th} rotation plane. $\|\cdot\|_2$ denotes the Euclidean or ℓ_2 norm of a vector or denotes the spectral norm of a matrix, and $\|\cdot\|_F$ denotes the Frobenius matrix norm. The stable rank of a matrix \mathbf{X} is defined as $\text{sr}(\mathbf{X}) := \frac{\|\mathbf{X}\|_F^2}{\|\mathbf{X}\|_2^2}$. Finally, \odot denotes the element-wise product.

Lemma 1. For any $\mathbf{X} \in \mathbb{R}^{n \times d}$, applying RoPE preserves its Frobenius norm, i.e., $\|\mathcal{R}(\mathbf{X})\|_F = \|\mathbf{X}\|_F$.

Proof of Lemma 1. Since $\|\mathbf{X}\|_F^2 = \sum_{j=1}^n \|\mathbf{x}_j\|_2^2$ and $\|\mathcal{R}(\mathbf{X})\|_F^2 = \sum_{j=1}^n \|\mathbf{R}_j \mathbf{x}_j\|_2^2$, it suffices to show that for all j , $\|\mathbf{x}_j\|_2^2 = \|\mathbf{R}_j \mathbf{x}_j\|_2^2$. Since every diagonal block of \mathbf{R}_j is a 2×2 rotation matrix, \mathbf{R}_j is also a rotation matrix and thus norm preserving, which completes the proof. \square

Theorem 1. Suppose $\mathbf{X} = \mathbf{u} \mathbf{v}^\top \in \mathbb{R}^{n \times d}$, where $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{v} \in \mathbb{R}^d$ and $\|\mathbf{v}\|_2 = 1$. If $\forall j$, $u_j = \Theta(1)$, and $\mathbf{u} \odot \mathbf{u}$ has sublinear growth of total variation in the sequence length n , i.e., $\sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2| = o(n)$, then as n increases, we have

$$\frac{\|\mathcal{R}(\mathbf{X})\|_2}{\|\mathbf{X}\|_2} = \frac{1}{\sqrt{2}} \max_{1 \leq k \leq d/2} \alpha_k + o(1)$$

where $\alpha_k := \|\mathbf{v}^{(k)}\|_2 = \sqrt{v_{2k-1}^2 + v_{2k}^2}$ satisfying $\max_k \alpha_k \in [\sqrt{2/d}, 1]$.

Remark 1. The assumption that $\sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2| = o(n)$ implies that the sequence $\{u_j^2\}$ must exhibit a certain degree of monotonicity. Indeed, if $\{u_j^2\}$ is strictly monotonic, then $\sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2| = \Theta(1)$. In contrast, if $\{u_j^2\}$ is highly oscillatory, then $\sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2| = \Theta(n)$, which violates the assumption.

Proof of Theorem 1. The pre-RoPE spectral norm

$$\|\mathbf{X}\|_2 = \sqrt{\lambda_{\max}(\mathbf{X}^\top \mathbf{X})} = \|\mathbf{u}\|_2 \sqrt{\lambda_{\max}(\mathbf{v} \mathbf{v}^\top)} = \|\mathbf{u}\|_2 \|\mathbf{v}\|_2 = \|\mathbf{u}\|_2 = \Theta(\sqrt{n}),$$

where $\lambda_{\max}(\cdot)$ denotes the largest eigenvalue.

In what follows, we estimate the growth of post-RoPE spectral norm, i.e., $\sqrt{\lambda_{\max}(\mathcal{R}(\mathbf{X})^\top \mathcal{R}(\mathbf{X}))}$. Since $\|\mathbf{v}^{(k)}\|_2 = \alpha_k$, due to rational invariance, without loss of generality, we assume $\mathbf{v}^{(k)} = [\alpha_k, 0]$ for simplicity.

Consider the Gram matrix $\mathbf{G} := \mathcal{R}(\mathbf{X})^\top \mathcal{R}(\mathbf{X}) \in \mathbb{R}^{d \times d}$, since $\mathcal{R}(\mathbf{X}) = [u_1 \mathbf{R}_1 \mathbf{v}, \dots, u_n \mathbf{R}_n \mathbf{v}]^\top \in \mathbb{R}^{n \times d}$, we have

$$\begin{aligned} \mathbf{G} &= \mathcal{R}(\mathbf{X})^\top \mathcal{R}(\mathbf{X}) = [u_1 \mathbf{R}_1 \mathbf{v}, \dots, u_n \mathbf{R}_n \mathbf{v}] \begin{bmatrix} u_1 (\mathbf{R}_1 \mathbf{v})^\top \\ \vdots \\ u_n (\mathbf{R}_n \mathbf{v})^\top \end{bmatrix} = \sum_{j=1}^n u_j^2 (\mathbf{R}_j \mathbf{v}) (\mathbf{R}_j \mathbf{v})^\top \\ &= \sum_{j=1}^n u_j^2 \begin{bmatrix} \mathbf{R}_{j,\theta_1} \mathbf{v}^{(1)} \\ \vdots \\ \mathbf{R}_{j,\theta_{d/2}} \mathbf{v}^{(d/2)} \end{bmatrix} [(\mathbf{R}_{j,\theta_1} \mathbf{v}^{(1)})^\top, \dots, (\mathbf{R}_{j,\theta_{d/2}} \mathbf{v}^{(d/2)})^\top], \end{aligned}$$

Diagonal Blocks of \mathbf{G} . For $1 \leq k \leq d/2$, the k^{th} diagonal block of \mathbf{G} is given by

$$\mathbf{G}_{k,k} = \sum_{j=1}^n u_j^2 (\mathbf{R}_{j,\theta_k} \mathbf{v}^{(k)}) (\mathbf{R}_{j,\theta_k} \mathbf{v}^{(k)})^\top \in \mathbb{R}^{2 \times 2}.$$

Recall that

$$\mathbf{R}_{j,\theta_k} = \begin{bmatrix} \cos(j\theta_k) & -\sin(j\theta_k) \\ \sin(j\theta_k) & \cos(j\theta_k) \end{bmatrix},$$

we have $\mathbf{R}_{j,\theta_k} \mathbf{v}^{(k)} = \alpha_k [\cos(j\theta_k), \sin(j\theta_k)]^\top$, and thus

$$\begin{aligned} \mathbf{G}_{k,k} &= \alpha_k^2 \sum_{j=1}^n u_j^2 \begin{bmatrix} \cos^2(j\theta_k) & \cos(j\theta_k) \sin(j\theta_k) \\ \cos(j\theta_k) \sin(j\theta_k) & \sin^2(j\theta_k) \end{bmatrix} \\ &= \frac{\alpha_k^2}{2} \sum_{j=1}^n u_j^2 \begin{bmatrix} 1 + \cos(2j\theta_k) & \sin(2j\theta_k) \\ \sin(2j\theta_k) & 1 - \cos(2j\theta_k) \end{bmatrix} \\ &= \frac{\alpha_k^2}{2} \|\mathbf{u}\|_2^2 \mathbf{I}_2 + \mathbf{E}_{k,k}, \end{aligned}$$

where

$$\mathbf{E}_{k,k} := \frac{\alpha_k^2}{2} \sum_{j=1}^n u_j^2 \begin{bmatrix} \cos(2j\theta_k) & \sin(2j\theta_k) \\ \sin(2j\theta_k) & -\cos(2j\theta_k) \end{bmatrix}.$$

Off-Diagonal Blocks of \mathbf{G} . Similarly, for $k \neq l$, the $(k, l)^{\text{th}}$ block is

$$\begin{aligned} \mathbf{E}_{k,l} &:= \mathbf{G}_{k,l} = \sum_{j=1}^n u_j^2 (\mathbf{R}_{j,\theta_k} \mathbf{v}^{(k)}) (\mathbf{R}_{j,\theta_l} \mathbf{v}^{(l)})^\top \\ &= \alpha_k^2 \sum_{j=1}^n u_j^2 \begin{bmatrix} \cos(j\theta_k) \cos(j\theta_l), \cos(j\theta_k) \sin(j\theta_l) \\ \sin(j\theta_k) \cos(j\theta_l), \sin(j\theta_k) \sin(j\theta_l) \end{bmatrix} \\ &= \frac{\alpha_k^2}{2} \sum_{j=1}^n u_j^2 \begin{bmatrix} \cos(j(\theta_k + \theta_l)) + \cos(j(\theta_k - \theta_l)), \sin(j(\theta_k + \theta_l)) - \sin(j(\theta_k - \theta_l)) \\ \sin(j(\theta_k + \theta_l)) + \sin(j(\theta_k - \theta_l)), -\cos(j(\theta_k + \theta_l)) + \cos(j(\theta_k - \theta_l)) \end{bmatrix} \end{aligned}$$

Therefore,

$$\mathbf{G} = \frac{\|\mathbf{u}\|_2^2}{2} \text{diag}(\alpha_1^2 \mathbf{I}_2, \dots, \alpha_{d/2}^2 \mathbf{I}_2) + \mathbf{E}.$$

Bounding $\lambda_{\max}(\mathbf{G})$. We want to show that \mathbf{E} is a subleading term and is entry-wise $o(n)$. Note that $\alpha_k \leq 1$, for any entry of $\mathbf{E}_{k,k}$, $\forall k$, it is upper bounded by

$$\sqrt{\left(\sum_{j=1}^n u_j^2 \cos(2j\theta_k) \right)^2 + \left(\sum_{j=1}^n u_j^2 \sin(2j\theta_k) \right)^2} = \left| \sum_{j=1}^n u_j^2 e^{2j\theta_k i} \right|.$$

1350 Denoting $S_j := \sum_{t=1}^j e^{2t\theta_k i}$ and using Abel's summation formula, we have
 1351

$$\begin{aligned} 1352 \quad \left| \sum_{j=1}^n u_j^2 e^{2j\theta_k i} \right| &= \left| u_n^2 S_n - \sum_{j=1}^{n-1} (u_{j+1}^2 - u_j^2) S_j \right| \\ 1353 \quad &\leq u_n^2 |S_n| + \max_{1 \leq j \leq n-1} |S_j| \sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2|, \\ 1354 \quad &\end{aligned}$$

1355 where $|S_j| = |e^{2\theta_k i}|^{\frac{1-e^{2j\theta_k i}}{1-e^{2\theta_k i}}} \leq \frac{2}{|1-e^{2\theta_k i}|} = \frac{1}{|\sin(\theta_k)|} = O(1)$ for all j , since $\theta_k = \theta^{-2(k-1)/d} \in$
 1356 $[\frac{1}{\theta}, 1]$ is an irrational multiple of π . Moreover, we have assumed $\sum_{j=1}^{n-1} |u_{j+1}^2 - u_j^2| = o(n)$, so
 1357 $\left| \sum_{j=1}^n u_j^2 e^{2j\theta_k i} \right| = o(n)$.

1358 Similarly, for any entry of the off-diagonal block $\mathbf{E}_{k,l}$, we can also show that it is upper bounded by
 1359

$$\left| \sum_{j=1}^n u_j^2 e^{j(\theta_k + \theta_l)i} \right| + \left| \sum_{j=1}^n u_j^2 e^{j(\theta_k - \theta_l)i} \right| = o(n),$$

1360 since $(\theta_k \pm \theta_l)/2$ are still irrational multiples of π .
 1361

1362 By Weyl's inequality, we have
 1363

$$\frac{\|\mathbf{u}\|_2^2}{2} \max_k \alpha_k^2 - \|\mathbf{E}\|_2 \leq \lambda_{\max}(\mathbf{G}) \leq \frac{\|\mathbf{u}\|_2^2}{2} \max_k \alpha_k^2 + \|\mathbf{E}\|_2.$$

1364 Note that since d is fixed, $\|\mathbf{E}\|_2 \leq \|\mathbf{E}\|_F = o(dn) = o(n)$, and thus
 1365

$$\lambda_{\max}(\mathbf{G}) = \frac{\|\mathbf{u}\|_2^2}{2} \max_k \alpha_k^2 + o(n).$$

1366 Finally, since $\|\mathbf{u}\|_2 = \Theta(\sqrt{n})$, we have
 1367

$$\frac{\|\mathcal{R}(\mathbf{X})\|_2}{\|\mathbf{X}\|_2} = \frac{\sqrt{\lambda_{\max}(\mathbf{G})}}{\|\mathbf{u}\|_2} = \frac{1}{\sqrt{2}} \max_{1 \leq k \leq d/2} \alpha_k + o(1).$$

1368 \square
 1369

1370 **Theorem 2.** Suppose $\mathbf{X} = \mathbf{u}\mathbf{v}^\top \in \mathbb{R}^{n \times d}$, where $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{v} \in \mathbb{R}^d$ and $\|\mathbf{v}\|_2 = 1$. Under the same
 1371 assumptions on \mathbf{u} as in Theorem 1, we have
 1372

$$\lim_{n \rightarrow \infty} \frac{\text{sr}(\mathcal{R}(\mathbf{X}))}{\text{sr}(\mathbf{X})} = \frac{2}{\max_{1 \leq k \leq d/2} \alpha_k^2} \in [2, d],$$

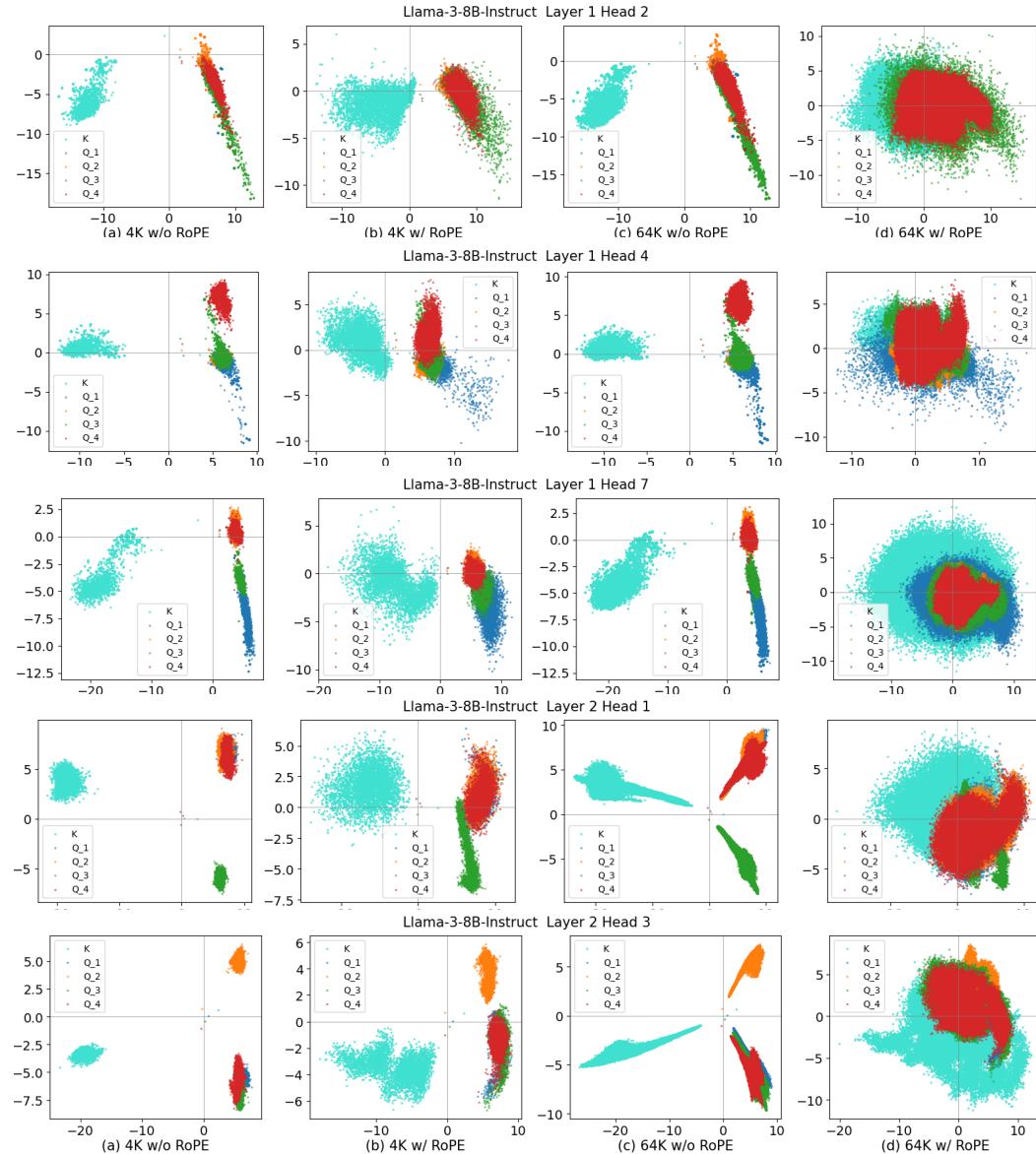
1373 where $\alpha_k := \|\mathbf{v}^{(k)}\|_2$.
 1374

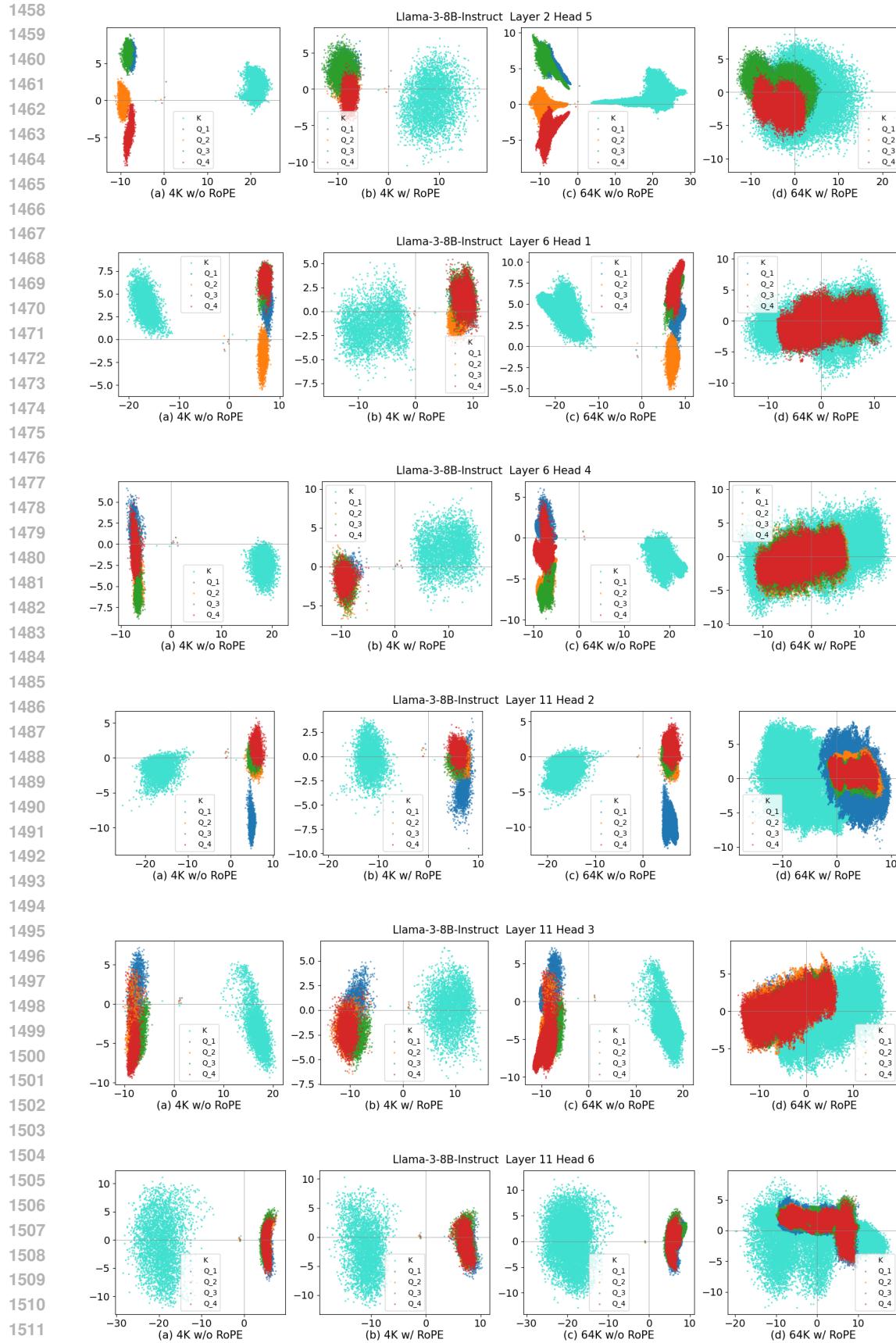
1375 *Proof of Theorem 2.* Using Lemma 1 and Theorem 1, we have
 1376

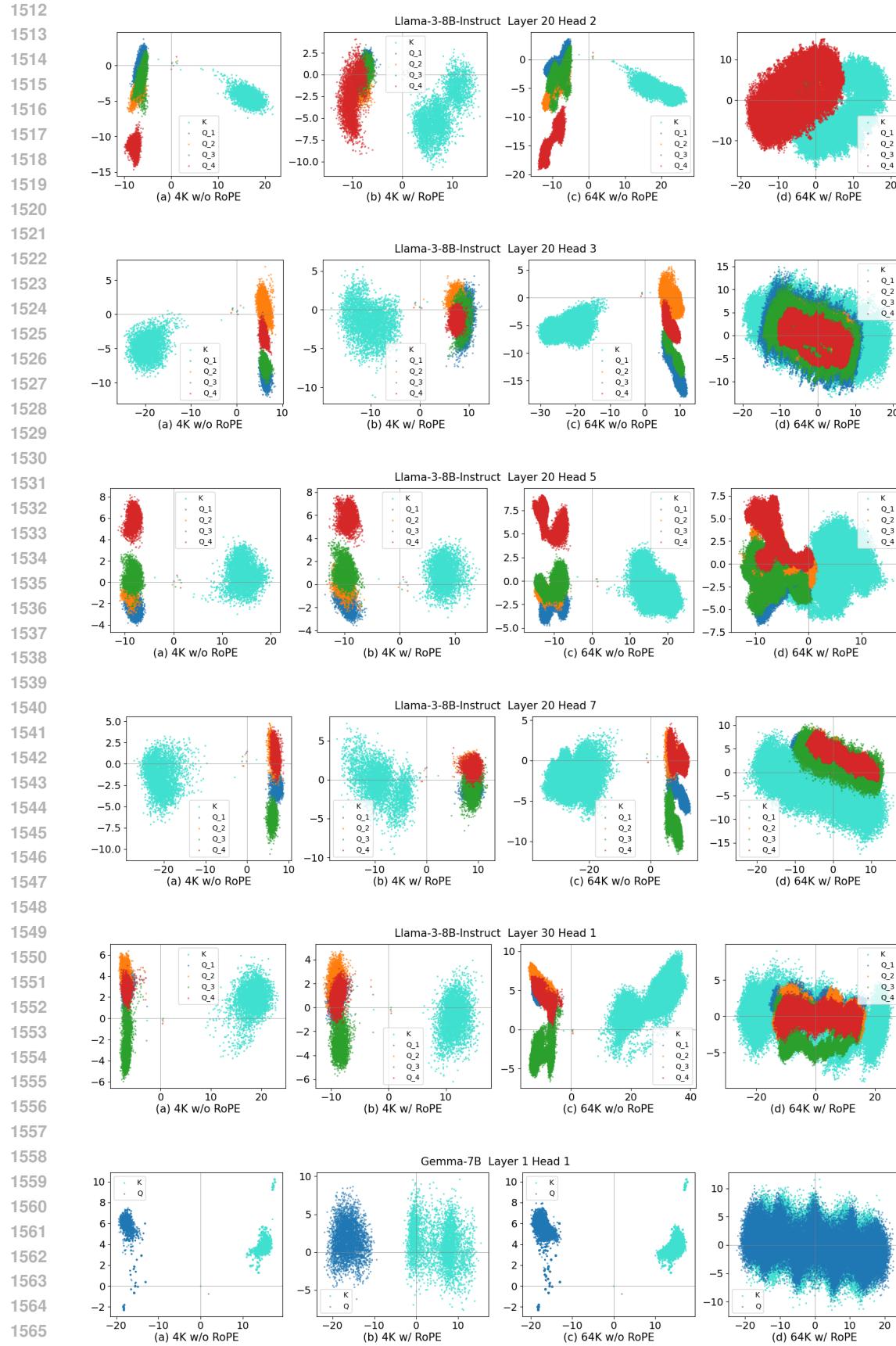
$$\frac{\text{sr}(\mathcal{R}(\mathbf{X}))}{\text{sr}(\mathbf{X})} = \left(\frac{\|\mathcal{R}(\mathbf{X})\|_F}{\|\mathbf{X}\|_F} \right)^2 \left(\frac{\|\mathbf{X}\|_2}{\|\mathcal{R}(\mathbf{X})\|_2} \right)^2 = \frac{2}{\max_{1 \leq k \leq d/2} \alpha_k^2 + o(1)}.$$

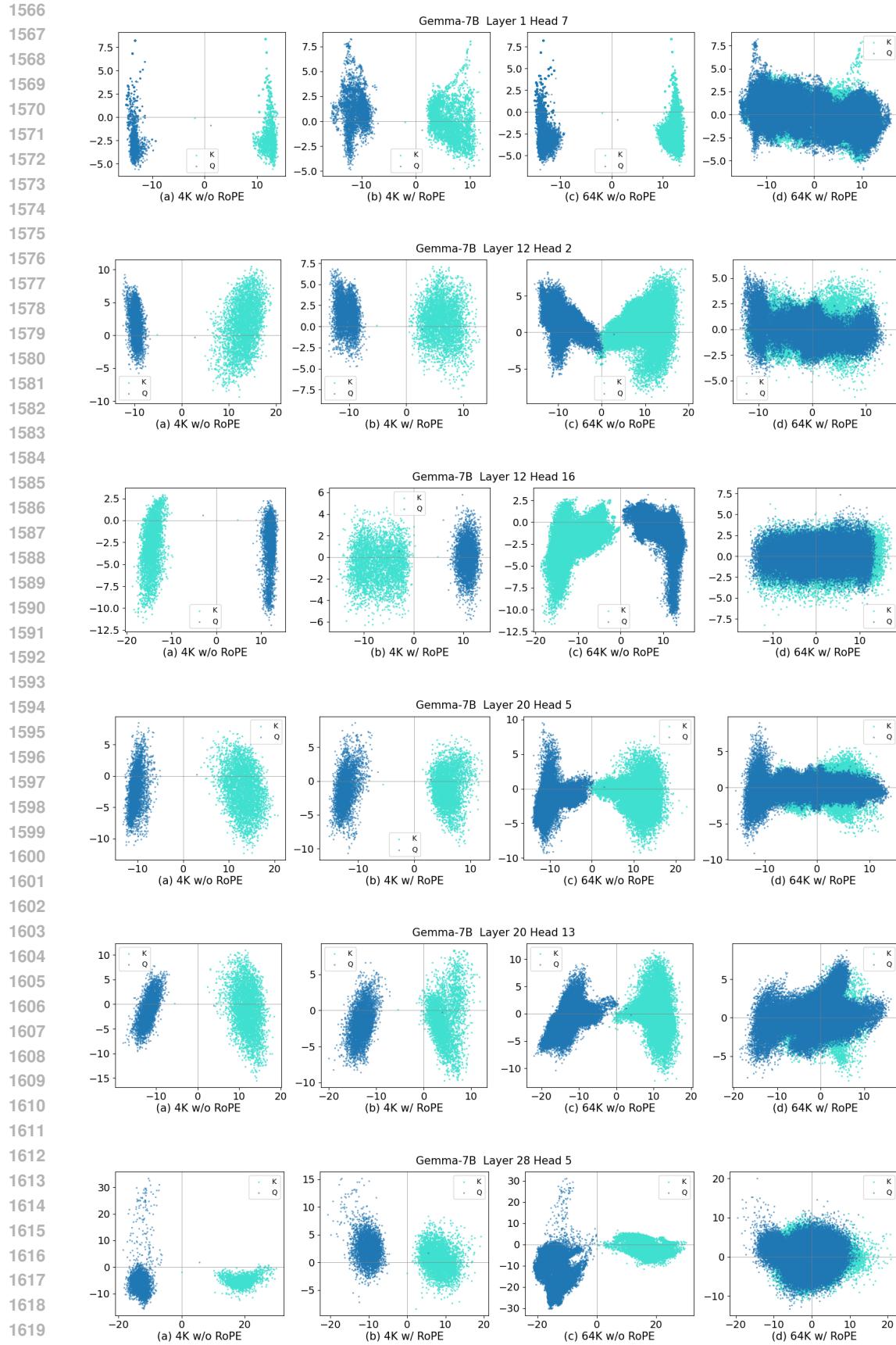
1377 Since $\sum_{k=1}^{d/2} \alpha_k^2 = \|\mathbf{v}\|_2^2 = 1$, we have $\max_k \alpha_k^2 \in [2/d, 1]$. Taking $n \rightarrow \infty$ completes the proof.
 1378 \square
 1379

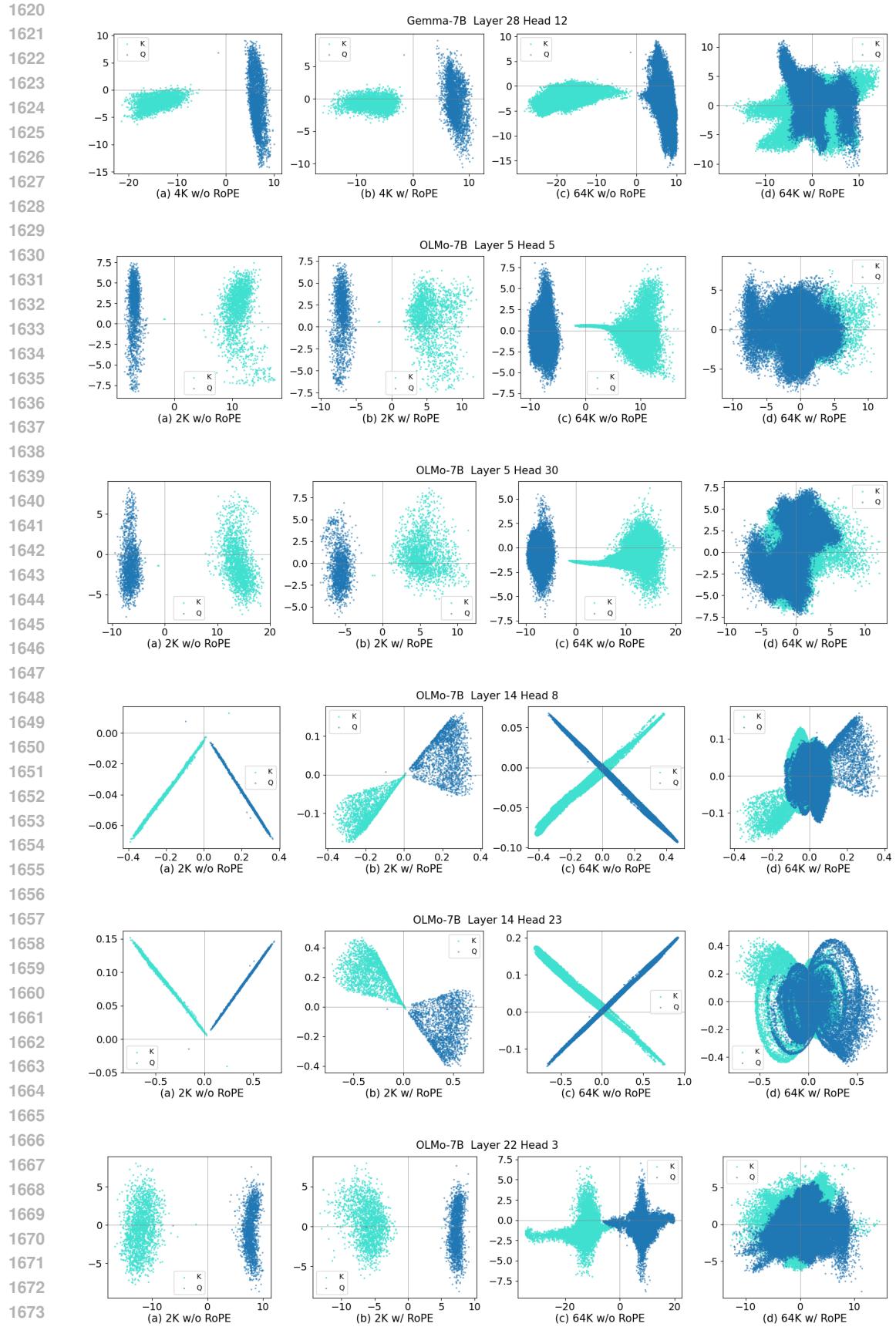
1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
1405 A.12 ADDITIONAL CLUSTER VISUALIZATIONS1406 We repeat Fig. 3 for additional layers and heads. The same general trend can be observed, where
1407 separated clusters disperse and overlap when RoPE is applied at longer contexts. We randomly
1408 sample 16 Key heads and their corresponding Query heads from Llama3-8B-Instruct, and 8 Query-
1409 Key head pairs from Gemma-7b and Olmo-7b.









1674

1675

1676

1677

1678

1679

1680 OLMo-7B Layer 22 Head 14

1681

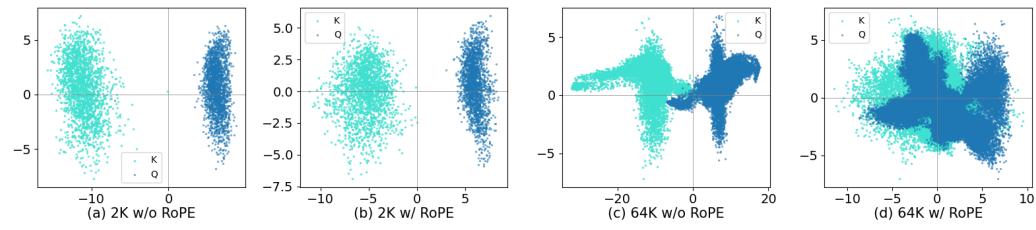
1682

1683

1684

1685

1686



1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698 OLMo-7B Layer 31 Head 6

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

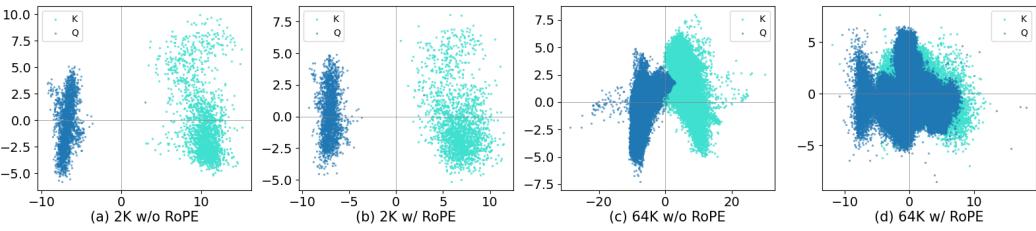
1712

1713

1714

1715

1716



1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

