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ABSTRACT

Rotary Positional Embedding (RoPE) is a widely adopted technique for encoding
position in language models, which, while effective, causes performance break-
down when input length exceeds training length. Prior analyses assert (rightly)
that long inputs cause channels to rotate “out of distribution,” but it is not clear
how extra rotation relates to or causes pathological behavior. Through empirical
analysis we advance a unified geometric understanding of attention behavior with
RoPE. We find that attention induces tight clustering of separated key and query
latent point clouds, allowing for creation of sink tokens: placeholders that allow
attention heads to avoid token mixing when not required. RoPE applied to longer
inputs damages this key/query cluster separation, producing pathological behav-
ior by inhibiting sink token functionality. From this geometric perspective, we
propose RoPE-ID (In Distribution), a straightforward modification that allows at-
tention layers to generalize to longer inputs out of the box: apply RoPE with high
frequency to a subset of channels. We demonstrate the effectiveness of RoPE-ID
for extended inputs using 1B and 3B parameter Transformers on the LongBench
and RULER information retrieval benchmarks.

1 INTRODUCTION

Transformer models form the backbone of modern large language models (LLMs), enabling them
to capture complex dependencies across long sequences. The attention mechanism in transformers
maps inputs into queries, keys, and values: queries and keys determine token relevance through sim-
ilarity scores, while values provide the content to be aggregated. This separation allows the model to
learn both where to attend and what information to extract, producing context-aware representations
that drive the success of transformers in natural language processing and beyond.

To enhance the interaction between queries and keys, positional encoding is used to distinguish token
order, constituting a fundamental component of transformer design. Rotary Positional Embedding
(RoPE) (Su et al., 2023) has emerged as the predominant approach and is now implemented in
most state-of-the-art LLMs, including LLaMA (Grattafiori et al., 2024), GPT (OpenAI et al., 2025),
and DeepSeek (DeepSeek-AI et al., 2025). However, a key limitation of RoPE is performance
degradation when input length exceeds training context. Most attempts to analyze and address this
issue attribute the failure to channels rotating “out of distribution,” leading to frequency rescaling as
a workaround (Chen et al., 2023; bloc97, 2023b;a; Peng et al., 2023; Ding et al., 2024).

Another important phenomenon in transformers is the attention sink, which has been shown to in-
fluence long-context generalization (Xiao et al., 2023). The attention sink, typically the first input
token, possesses little semantic meaning but consistently large attention scores. Its presence is con-
sidered crucial to prevent over-mixing of information, and empirical evidence shows that attention
sinks must be preserved when extending context lengths (Xiao et al., 2023; Han et al., 2024).

The relationship between attention, RoPE, and attention sinks – three seemingly disconnected con-
cepts – is the focus of this paper. We propose a unified geometric perspective, based on analysis of
popular LLM families including LLaMA, Gemma (Team et al., 2024), and Olmo (Groeneveld et al.,
2024). We find that, contrary to the common intuition of attention as a soft nearest-neighbor lookup,
queries and keys form tight clusters with minimal overlap, while the sink token resides near the
origin (Fig. 1, left). Within the training context length, this separation ensures that the sink token,
with its small norm, naturally absorbs the majority of attention weight. Beyond the training context,
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RoPE disperses and overlaps the query/key clusters. This geometric disruption prevents the sink
token from functioning, leading to long-context performance breakdowns (Fig. 1, right).

Figure 1: A 2D diagram of our observed latent ge-
ometry. Left: Keys and queries cluster tightly into
opposing point clouds with negative dot products.
The sink token has small norm and therefore the
greatest dot product. Assigned key/query pair q, k
are aligned orthogonally, allowing their dot prod-
uct to approach and exceed the sink’s. Right: Be-
yond the training length, RoPE causes key/query
clouds to disperse and overlap, introducing spuri-
ous alignment. Sink token no longer functions.

To address this, we propose RoPE-ID (RoPE
In Distribution), a simple yet effective plug-
in replacement for RoPE. RoPE-ID combines
high-frequency RoPE channels with RoPE-
free channels to preserve stable query-key
cluster geometry and sink token functional-
ity. RoPE-free channels lower-bound the de-
gree of cluster overlap, while high-frequency
RoPE channels encode position while avoid-
ing out-of-distribution effects. We validate
RoPE-ID with trained 1B- and 3B-parameter
decoder models, evaluated on the LongBench
and RULER benchmarks, demonstrating strong
context length generalization and improve-
ments over prior tuning-free methods.

2 BACKGROUND
AND RELATED WORK

Position Encoding techniques can be broadly divided into two categories: absolute position em-
beddings (APE) and relative position embeddings (RPE). APE directly injects position information
into latent representations using token-index-dependent vectors, in a fixed sinusoidal (Vaswani et al.,
2023) or learnable form (Devlin et al., 2019). APE exhibits limited generalization beyond the train-
ing context length, which RPE addresses by encoding distances between token pairs rather than
their absolute indices. Notable RPE approaches include T5’s relative bias (Raffel et al., 2023) and
Alibi (Press et al., 2022), which add position-dependent linear biases to attention logits, and RoPE
(Rotary Position Embeddings) (Su et al., 2023), which encodes relative distance as latent angular
displacement and has since become the de facto standard for LLMs.

The key insight behind RoPE is that relative position, through properties of rotation, decomposes
into independent key and query transformations. RoPE encodes relative position via angular dis-
placement proportional to token distance, interposing a block-diagonal matrix of 2×2 rotations into
the key/query dot product. Each submatrix has a constant frequency θ scaling token distance m:

Rm
Θ =


cosmθ1 − sinmθ1 · · · 0 0
sinmθ1 cosmθ1 · · · 0 0

...
...

. . .
...

...
0 0 · · · cosmθd/2 − sinmθd/2
0 0 · · · sinmθd/2 cosmθd/2

 (1)

In practice, this decomposes into independent rotations on query qi and key kj at positions i, j:

RoPE(⟨qi, kj⟩) = qiR
i−j
Θ k⊤j = qiR

i
ΘR

−j
Θ k⊤j = qiR

i
Θ(kjR

j
Θ)

⊤ = ⟨r(qi, i), r(kj , j)⟩ (2)

where r(·, i) represents rotation by Ri
Θ. Understanding the impact of this progressive rotation on

latent keys and queries is crucial to understanding out-of-distribution failures on long contexts.

Context Length Extension: As large language models are increasingly applied to long-context
tasks, substantial research has focused on extending their usable sequence lengths without retrain-
ing. Although RPEs such as RoPE are designed to improve long-context generalization, extend-
ing beyond the training length often results in performance degradation. To address this, Position
Interpolation (PI) (Chen et al., 2023) linearly interpolates position indices within the pre-trained
sequence length. NTK-by-parts (bloc97, 2023b) and NTK-aware (bloc97, 2023a) introduce non-
linear interpolation schemes inspired by Neural Tangent Kernel dynamics. These methods scale
RoPE frequencies based on three groups of frequency dimensions and the target sequence length,
and outperform simple PI. YaRN (Yet Another RoPE Extension) (Peng et al., 2023) further inte-
grates previous NTK-based approaches with temperature scaling on attention logits, achieving a 2×

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

context window extension without fine-tuning. More recently, LongRoPE (Ding et al., 2024) em-
ploys evolutionary search to optimize the frequency rescale factors for each dimension. LongRoPE
extends context window to beyond 2 million tokens, albeit with multi-step long-context fine-tuning.
Here we focus on tuning-free generalization and leave tuning to future work.

Some studies find that RoPE’s low-frequency components induce high-norm semantic bands, which
become unstable in long contexts (Barbero et al., 2024b) or hinder the encoding of semantic in-
formation (Chen et al., 2024). They propose limiting RoPE to a subset of channels, finding this
improves performance. Our analysis provides novel perspective and caveats for this technique.

Sink Tokens, or attention sinks, refer to tokens with disproportionately high attention despite a lack
of semantic meaning (Xiao et al., 2023). This phenomenon is widely observed in LLMs and plays a
critical role in preserving model behavior, especially in long contexts (Xiao et al., 2023; Han et al.,
2024; Yang et al., 2024). The sink is usually the first token of a sequence, i.e. the ⟨bos⟩ beginning-
of-sequence token (Xiao et al., 2023; Cancedda, 2024), and has also been linked to massive acti-
vations observed across LLMs (Sun et al., 2024). Gu et al. (2025) systematically investigate when
and how attention sinks emerge during pretraining, and Barbero et al. (2025) provide theoretical and
empirical evidence that attention sinks prevent over-mixing of information, to avoid representation
collapse (Barbero et al., 2024a). In this work we relate sink tokens to RoPE and attention geometry,
pinpointing the sink token as the failure mechanism for transformers in long contexts.

3 ANALYSIS

We perform a geometric analysis of attention with RoPE, showing that keys and queries cluster
tightly in opposing directions, while RoPE inhibits this behavior, with clusters dispersing and over-
lapping over time. Alongside small sink token ℓ2 norm, these separated clusters produce a learned
bias toward the sink. However, as RoPE disperses and overlaps key and query clusters, this mecha-
nism becomes tenuous. We claim that the breakdown of transformers in long contexts is a breakdown
of the sink token: past the training length, models begin attending to the wrong token(s) by default.

Analysis is conducted on Llama3-8B-Instruct, with additional trials on Olmo-7b and Gemma-7b for
verification. When not otherwise specified, the relevant model is Llama3. Input text is drawn from
the Wikitext2 dataset (Merity et al., 2016). Further details are provided in A.4.

3.1 KEY/QUERY CLUSTERING

An intuitive understanding of the attention operation is that it functions as a soft nearest-neighbor
lookup. A query is oriented in latent space to align with one or more contextually relevant key
vectors, and the degree of alignment defines the mixing ratios for corresponding values. The curse
of dimensionality ensures that random IID latent points are orthogonal by default, so directional
alignment in high-dimensional space is difficult. Thus we can imagine that keys and queries form
overlapping point clouds around the origin. Key/query matching is accomplished by high directional
alignment: activated pairs should have large, positive dot products. Keys and non-matching queries,
meanwhile, should be orthogonal, with small dot products, to keep retrieval discriminative.

This model of attention, while intuitive, is also wrong, at least for RoPE models. Instead of overlap-
ping clouds on the origin, keys and queries form tight clusters away from the origin, with minimal
overlap. Further, such clusters are generally unaligned directionally, with the origin sitting between
the clusters. Fig. 2 shows the mean intra- and inter-cluster pairwise cosine distances (ℓ2-normalized
dot products) for keys and queries, averaged over layers and heads. Before RoPE, intra-cluster dis-
tances (key-key and query-query), bounded to ±1, are generally close to 1. Key and query point
clouds are situated within a tight arc - i.e. in small clusters displaced from the origin. At the same
time, these clusters are largely aligned against each other, with negative mean key-query dot product
in Fig. 2 (right). This paints an entirely different picture of attention: instead of overlapped point
clouds, envision keys and queries in opposing quadrants. Queries avoid attending to most keys via
negative dot products. If a query and key land on aligned quadrant boundaries, though, the resulting
zero dot product exceeds the baseline and yields a large attention weight. Softmax shift-invariance
ensures that this arrangement (negative baseline and orthogonal “aligned” pairs) produces identical
mixing behavior to the original conception (orthogonal baseline and positive products for aligned
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pairs). Fig. 1 (left) illustrates the proposed geometry. In practice, key/query clusters are not directly
across the origin (dot products in Fig. 2 (right) are negative but small), but the intuition holds.

Figure 2: Effect of RoPE across context length on pairwise angular distances within heads for
Llama3-8B, Gemma-7B and OLMo-7B.

3.1.1 THE IMPACT OF ROPE ON CLUSTERING

RoPE sends points through a predetermined trajectory of orbits around the origin, so any tightly-
clustered point cloud, displaced from the origin, should inevitably disperse. This is indeed the case
for transformers: Fig. 2 shows that RoPE decreases intra-cluster alignment, with further decrease
over time as points spiral further away. The model compensates for this by positioning key/query
clusters such that RoPE misaligns them further: key-query dot product also decreases, and does not
rise until after the training length (2k for Olmo, 8k Llama/Gemma). Meanwhile, the clusters without
RoPE mostly maintain their behavior across context lengths. It thus appears that RoPE weakens the
clustering, but does not eliminate it until the training context length is exceeded.

Fig. 3 illustrates this visually, by taking a PCA “snapshot” of the point clouds without RoPE at
time t = 4096, and applying the same projection with RoPE and at time t = 65536 (more plots are
available in A.12). Prior observations are confirmed visually: in the first and third views, points form
tight clusters displaced from the origin, and key and query clusters are located across from each other
(with four queries per key cloud due to GQA (Ainslie et al., 2023)). RoPE causes clusters within
training length to disperse slightly, but at length 64k eliminates cluster separation entirely (in this
projection). The exact impact of this overlap in key/query clouds is discussed in § 3.2, but it is clear
that query-key “alignment” works differently at length 64k compared to the other scenarios.

Figure 3: 2D PCA projections of Llama3 representations under different context lengths and RoPE
settings (3rd key head of layer 21 and its queries). RoPE at long contexts destroys cluster separation.

3.1.2 A SINGULAR VALUE PERSPECTIVE ON CLUSTERING

While the visual analysis is striking, it only captures a 2D projection of a 128-dimensional latent
space. Similarly, Fig. 2 reports pairwise relationships, an incomplete picture of global behavior. We
therefore corroborate our findings with a holistic analysis based on singular values. In an attention
head, the set of key or query vectors forms an n×d matrix, where n is sequence length and d is head
width. Singular values of this matrix correspond to the principal components of the point cloud,
an ordered set of directions maximizing variance along the earliest directions up to orthogonality
constraints. When singular values are equal, variance is constant in all directions, and the point
cloud forms a ball around the origin. Unequal values indicate uneven spread. In practice, the first
singular value (FSV) of key and query clusters (before RoPE) is large, accounting for over 75% of
total cluster variance on average for Llama3. Fig. 4 (left) plots the distribution across individual
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heads and layers, and the degree of variance covered by the first principal component ranges from
about half to nearly all of it. Thus the majority of spread around the origin occurs in a single
direction: either the cluster is a long thin needle, or the point cloud is displaced along this direction,
and otherwise clustered tightly. Given the intra-cluster dot products in Fig. 2, the latter is the case.

Figure 4: Left: Histogram across layers and heads showing the percentage of variance (relative to
origin) explained by the first principal component of latent key/query clusters in Llama3. Right:
Ratio of first singular value before and after RoPE, as a function of input length. Blue lines plot in-
dividual key/query heads, red plots the average trend. RoPE shrinks the first singular value, causing
clusters to disperse, but impact accelerates beyond the training length.

When RoPE is applied, we expect principal components to skew more evenly: RoPE throws channel
pairs through decorrelated rotations (ensured by irrational frequency ratios), so in the limit, a point
cloud under RoPE maps to a shell of IID points orbiting the origin. In practice, this behavior does
start to appear: FSV shrinks as sequence length increases 1. Fig. 4 (right) shows the ratio of the FSV
before and after RoPE. In all cases, the FSV decreases when RoPE is applied, but the decrease is
limited for much of the training context, falling almost linearly up to length 4k (in log space, so really
decaying exponentially). The decrease is more aggressive for inputs above the 8k training length.
This implies that cluster means drift toward the origin as RoPE is applied over longer sequences.

At the same time, Proposition 1 (with proof in A.1) shows that RoPE preserves the sum of the point
cloud matrix’s squared singular values. This is relevant because, as the FSV falls due to RoPE,
other singular values (representing other principal components) must grow to compensate. We thus
demonstrate analytically that clusters expand and disperse as RoPE pulls them to the origin, exactly
as depicted in Fig. 3.
Proposition 1. Let X ∈ Rn×d be a key or query matrix, with each row corresponding to a token.
Then applying RoPE preserves the sum of squared singular values of X , i.e.,

∑min{n,d}
i=1 σi(X)2 =∑min{n,d}

i=1 σi(r(X))2, where r(X) denotes the application of RoPE to X .

3.2 SINK TOKENS

Latent keys and queries cluster tightly into unaligned point clouds, and RoPE causes the point clouds
to disperse and overlap over time, particularly when input length exceeds training length. But how
does this produce out-of-distribution behavior in the attention mechanism itself, and for a trans-
former model as a whole? We claim that the effect of clustering is mediated by the sink token.

Prior work establishes that transformers attend heavily to the first token, regardless of input (Xiao
et al., 2023). Prevailing wisdom is that this prevents over-mixing: information retrieval is not always
useful, so attention heads must formulate a null operation (Barbero et al., 2025). Softmax normalizes
attention scores to sum to 1, so heads cannot avoid attending. Instead, they “sink” attention into
a placeholder key conveying no information – in practice the first token, typically a beginning-
of-sequence indicator. When an attention head does perform meaningful information retrieval, it
borrows weight from the sink token and reallocates it to the chosen key, as shown in A.2.

Under the intuitive overlapping-clouds model of latent keys/queries, sink token behavior is hard
to reconcile. How can a single embedding align to all directions by default? Why not default
to the current token – where keys and queries, projections of the same input, are easy to align
– as in Mamba and other linear attention layers? (Gu & Dao, 2023; Katharopoulos et al., 2020)
Our observations help to explain this behavior. Same-token key-query self-alignment is difficult to

1We account for the variable sequence length and its effect on singular value magnitude by computing the
singular values as the eigenvalues of XX⊤

n
, where the point cloud matrix X ∈ Rn×d.
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consistently impose when keys and queries are distant. It is easier to assign a sink, and place its key
near the origin, granting it a near-zero dot product with all queries. When average key-query product
is negative, the sink becomes the most-attended by default. This is borne out in practice: key vectors
for the first input token have unusually small ℓ2 norm, as shown in Fig. 5 (left). Smaller norm
produces larger dot products, as shown in Fig. 5 (right), which displays the average dot product of
each key across subsequent queries, normalized by the largest product in the set. In this case, that’s
consistently the sink token, with recency bias responsible for the later upward trend.

Figure 5: Left: Key ℓ2 norm across layers over time. Sink token is consistently small. Right: Keys
have low dot product against subsequent queries in expectation, except for the first and most recent
tokens. Scores are normalized by the highest value, in this case always the sink.

3.2.1 THE IMPACT OF ROPE ON SINK TOKENS

Within the training context length, key and query clusters are separated to the point that a sink
token with small key norm can absorb the majority of attention weight. Beyond the training length,
however, RoPE causes clusters to disperse and overlap. When this happens, key and query points
begin to obtain positive dot products. This stops the sink token from functioning, and we claim this
is the cause of out-of-distribution behavior when transformers are exposed to long inputs.

Fig. 6 illustrates this behavior in Llama3. The left-hand plot captures the attention weight allocated
to the sink token as a function of input length. The share of attention weight (with RoPE applied)
varies widely but stably within the training length of 8k, but then falls sharply, decaying to zero over
time as clusters progressively overlap and highly-aligned point pairs accumulate. Meanwhile, the
activation of the sink token without RoPE stays roughly constant. We hypothesize that the activation
starts off lower within the training length due to the observation in Fig. 2 (right): key/query clouds
are more opposed after applying RoPE, lowering the average dot product relative to the sink. In any
case, it is clear that RoPE causes catastrophic collapse of sink token weight for long inputs.

Fig. 6 (right) confirms that the decay in sink token attention weight is a function of key/query cluster
overlap. As two point clouds approach the origin and disperse, the chance for high directional
alignment between point pairs increases, and so the maximum dot pairwise product should increase
as well. In practice, the maximum key/query dot product across all keys, per-query, does rise steadily
over sequence length when RoPE is applied. Without RoPE, cluster behavior is stable over time,
and so too, therefore, is the maximum degree of alignment between key and query points.

3.2.2 A UNIFIED THEORY OF ROPE ATTENTION

We now establish a unified geometric understanding of attention, RoPE, and sink tokens. The shift-
invariance of softmax induces keys and queries to gather into opposing clouds across the origin. Sink
tokens are implemented by positioning the first key near the origin, making that key’s dot product
with any query small. Because the clusters are opposed, average key/query dot product is negative,
defaulting attention to the sink and mixing tokens only in the case of particularly aligned pairs.

RoPE complicates this arrangement by spinning points around and across the origin. Some channel
pairs rotate much faster than others, but over time more and more channel pairs drift meaning-
fully from their original locations. Eventually all channels shift into orbit, transforming previously
well-separated key and query clusters into dispersed, overlapping balls. This produces positive dot
products between keys and queries, overwhelming the small, but previously dominant sink token
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logit. Transformers with RoPE fail on long inputs because they effectively lose access to the sink
token, broadcasting an excess of information from the wrong tokens forward through time.

Figure 6: Left: Sink token attention weight vs. input length. With RoPE, sink-token attention decays
to zero beyond the training length; without RoPE it remains stable. Right: Maximum Query–Key
dot product vs. input length. The max QK product increases with length only when RoPE is active.

4 METHOD

Insight into RoPE’s out-of-distribution behavior informs mitigation techniques. We want to encode
relative position efficiently via rotation, but must still ensure that key and query point clouds remain
separated through time, preserving sink token functionality. Many scaling techniques exist that
(perhaps unintentionally) follow this heuristic. PI (Chen et al., 2023) and YaRN (Peng et al., 2023),
for example, both limit the degree of drift in low-frequency channels to that seen during training.
This maintains the separation of key and query clusters in those channels over extended contexts.

Training a new model from scratch offers greater design freedom. (Barbero et al., 2024b) suggest
that information is better preserved when RoPE is limited to a fraction of channels, as positional and
contextual information can be embedded in the RoPE subspace, while long-term semantic content
can be allocated to the stable RoPE-free subspace. However, we still expect this approach to fail on
extended contexts, as low-frequency channels still exist, reproducing the issues observed in § 3.

An obvious solution is to directly eliminate the low frequencies: raise the lowest value enough to
complete a full cycle within the training length. This ensures that clusters “finish” drifting to the
origin, as they devolve into uncorrelated rotations – overlapping shells around the origin – that the
model can expect to persist indefinitely. Phrased differently, channel pairs with RoPE cannot rotate
“out of distribution” if the entire rotation arc is covered. Liu et al. (2024) make this exact suggestion,
but limit their evaluation to perplexity. Perplexity is improved by the newfound stability over long
contexts, but it does not capture the loss of distant information through several cycles of uncorrelated
rotation. Long-context information retrieval is likely difficult in this setting.

We hypothesize that combining high RoPE frequency and partial application is crucial for general-
ization to long contexts. Both changes are required for stable, discriminative behavior: key/query
clusters fully merge in the RoPE channel subspace, but preserve sink token functionality via contin-
ued separation in RoPE-free subspace. We name this approach RoPE-ID (In Distribution). Fig. 7
(left) repeats the singular value analysis from Fig. 4 on a synthetic point cloud, for RoPE-ID and
three baselines: RoPE with base frequency θ = 500k, high-frequency RoPE with θ = 652 (the
lowest frequency to complete a cycle in 4k steps), and standard RoPE over half the channels. Base
RoPE decays the FSV, pulling the cluster to the origin (and dispersing it) as input length increases.
Applying RoPE to half the channels mitigates but does not resolve the issue: FSV still falls out of
distribution after 4k tokens. High frequency RoPE dodges the issue by decaying within the train-
ing length to nearly zero, making further decay impossible. This produces stable behavior on long
inputs, but preserves little information from the original embedding. Meanwhile, RoPE-ID lower-
bounds FSV decay, maintaining cluster separation and sink token functionality by construction.

4.1 IMPLEMENTATION

We apply RoPE to half the channels of each attention head, and adjust RoPE frequencies to attain
desired behaviors. RoPE frequencies interpolate exponentially between 1 and 1

θ , where θ is the base
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Figure 7: Expected RoPE behavior for our proposed method and three baselines. Dotted line indi-
cates hypothetical training length of 4k and head dimension is 128. Left: Repeats the Fig. 4 singular
value ratio before/after RoPE, for a synthetic point cloud of ones vectors. Right: Long-term RoPE
decay for the same techniques, showing similar behaviors.

frequency hyperparameter. We adjust the low end of this scale to two full rotations per training
length, as one rotation may still preserve correlation between low frequency channels (i.e. some
decay still occurs after the purple line in the high frequency curve of Fig. 7 (left)). Maximum rotation
speed is set to one cycle every 32 tokens, to better preserve information over short windows.

Taking a softmax over many IID logits increases the denominator but not the numerator, resulting in
the mixture distribution becoming artificially smoother over time. We account for this via temper-
ature scaling based on input length, borrowing from (Peng et al., 2023). Details, code and further
discussion for RoPE-ID can be found in A.3. We evaluate both with and without temperature scale.

To evaluate RoPE-ID, we pretrain example 1B- and 3B-parameter decoders. Models use the Llama3
tokenizer and Dolma v1.7 dataset (Soldaini et al., 2024), reweighted per (Chu et al., 2024). Training
proceeds over 21 billion tokens, with hyperparameter and architecture details provided in A.4.

5 RESULTS

We compare RoPE-ID against four baselines. First is a vanilla decoder with RoPE base frequency
500k, which we expect to fail beyond the training length. Second and third are approaches from § 4:
increase RoPE frequency so that all channel pairs complete a rotation, or apply the original RoPE
on half the channels per head. The former should yield stable, but poor, performance over context
lengths, while the latter should mitigate but not prevent performance degradation. Tuning-free ex-
tension of the vanilla model using YaRN (Peng et al., 2023) with default hyperparameters acts as
a state-of-the-art comparison. Across several benchmarks, our method is comparable to or outper-
forms all baselines, while generalizing gracefully out of the box, requiring no model adjustment.

Table 1: Average RULER benchmark scores by sequence length. Highest average score for each
sequence length and model size is in bold; runner-up is underlined.

Llama-1B Llama-3B
Method 4k 8k 16k 4k 8k 16k

RoPE 39.72 0.01 0.03 46.19 0.14 0.01
High frequency 16.04 7.60 2.37 28.02 14.31 5.14
HalfRoPE 43.07 0.14 0 51.28 0.4 0.03
YaRN 40.24 35.55 30.25 43.90 45.09 40.14

RoPE-ID 39.15 29.71 14.29 44.86 37.51 21.95
RoPE-ID (scaling) 39.15 35.64 30.83 44.86 43.39 42.0

RULER (Hsieh et al., 2024) measures long context performance on a number of synthetic tasks,
such as needle-in-a-haystack retrieval and word counting. Table 1 shows that baselines perform as
expected: RoPE and HalfRoPE perform well at 4k training length (with HalfRoPE even delivering a
boost from its improved semantic encoding), but immediately fall to near-zero performance beyond
that. High frequency RoPE degrades less in comparison, but also starts from a much lower score at
4k, as RoPE is scrambling stored information aggressively. YaRN delivers robust extrapolation to
lengths 8k and 16k, without major penalty to baseline performance at 4k. Meanwhile, RoPE-ID with
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temperature scaling is comparable to YaRN with slight gains for longer sequences. It is marginally
the strongest evaluated approach overall, but clearly surpasses RoPE-ID without temperature scal-
ing, so we omit the non-scaled version from further analysis. A full breakdown of scores by task is
provided in A.5.

LongBench (Bai et al., 2024) corroborates our RULER results, with reported averages over five
task categories: single document question-answering, multi-document question-answering, few-shot
learning, code completion and summarization. We exclude non-English tasks as our models are
trained on English data. A full breakdown of scores is provided in A.6. Results in Table 2 mirror
Table 1: RoPE and HalfRoPE drop immediately after 4k, with HalfRoPE delivering a small boost
within 4k. High frequency performs stably but poorly, while YaRN is able to bring up performance
for long inputs. Our method trails YaRN at 3B scale, but is superior at 1B. We conclude that RoPE-
ID successfully generalizes to longer inputs out of the box.

Table 2: LongBench scores, averaged over 14 English tasks, by sequence length. Highest average
score for each sequence length and model size is in bold; runner-up is underlined.

Llama-1B Llama-3B
Method 4k 8k 16k 4k 8k 16k

RoPE 14.61 8.23 8.73 18.62 11.36 10.42
High frequency 11.8 11.44 11.04 14.19 13.82 13.78
HalfRoPE 15.38 8.73 8.86 19.42 10.7 10.62
YaRN 14.84 14.54 14.09 15.87 19.29 19.63
RoPE-ID (scaling) 15.83 15.83 15.80 15.92 17.13 17.94

Commonsense Reasoning tasks act as a sanity check in Table 3. Model scores are all similar: RoPE
frequency and number of channels have little impact on expressivity within the training length. To
the degree that scores differ, RoPE-ID is in the top-3 for all tasks and settings.

Table 3: Standard evaluation of common sense reasoning tasks
Llama-1B Llama-3B

Method ARC-C HellaSwag PIQA Avg. ARC-C HellaSwag PIQA Avg.
RoPE 25.77 44.00 69.26 46.34 29.18 53.95 72.74 51.96
High frequency 25.17 42.99 69.26 45.81 29.61 53.32 71.87 51.60
HalfRoPE 26.45 44.00 68.77 46.41 32.17 53.87 72.03 52.69
YaRN 25.60 41.89 68.61 45.37 29.10 52.46 72.20 51.25
RoPE-ID 25.60 43.58 68.88 46.02 30.03 53.95 72.25 52.08

Reapplying Analysis from § 3.1 confirms that our trained models obey our geometric framework.
We recreate Fig. 2 and 3 for baseline and RoPE-ID models in A.7. Our 1B example decoder mirrors
the behavior of established LLMs, while RoPE-ID behaves as expected, delivering stable, and stably
separated, key and query clusters over time.

6 DISCUSSION

From empirical analysis we develop a unified understanding of attention geometry and long-context
failure modes. Keys and queries form tight clusters in opposing directions, allowing sink tokens
to absorb attention weight by default via small ℓ2 norm. RoPE inhibits this behavior by merging
and dispersing the point clouds, particularly beyond the training length. Overlapped point clouds
inflate key/query alignment, preventing the sink token from functioning. From this understanding,
we produce stable model behavior by applying RoPE with high frequency to a fraction of channels,
and demonstrate strong long-context performance on downstream tasks out of the box.

Beyond RoPE-ID, other approaches based on this analysis are possible (e.g., applying high fre-
quency RoPE to a fraction of heads, or manually injected sink tokens as in Hymba (Dong et al.,
2025)). It is also possible to combine RoPE-ID with inference-time model adjustments. We leave
this, as well as long-context fine-tuning of RoPE-ID models, to future work.

Reproducibility: Code for RoPE-ID is provided in A.3 with training details in A.4. Empirical
analysis techniques are straightforward, and evaluation uses standard benchmarks.
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over-squashing in language tasks, 2024a. URL https://arxiv.org/abs/2406.04267.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. First, a standard result in linear algebra (Golub & Van Loan, 2013) shows that

min{n,d}∑
i=1

σi(X)2 = ∥X∥2F :=

n∑
i=1

d∑
j=1

X2
i,j ,

where ∥ · ∥F denotes the Frobenius norm. Similarly,

min{n,d}∑
i=1

σi(r(X))2 = ∥r(X)∥2F =

n∑
i=1

d∑
j=1

r(X)2i,j .

Therefore, it suffices to show that for any fixed token index i,
∑d

j=1 X
2
i,j =

∑d
j=1 r(X)2i,j . By the

definition of RoPE, ∀1 ≤ l ≤ d/2, we have

[r(X)i,2l−1, r(X)i,2l] = [cos(iθl)Xi,2l−1 − sin(iθl)Xi,2l, sin(iθl)Xi,2l−1 + cos(iθl)Xi,2l] ,

and it is easy to see that r(X)2i,2l−1 + r(X)2i,2l = X2
i,2l−1 +X2

i,2l. Finally,

d∑
j=1

X2
i,j =

d/2∑
l=1

X2
i,2l−1 +X2

i,2l =

d/2∑
l=1

r(X)2i,2l−1 + r(X)2i,2l =

d∑
j=1

r(X)2i,j ,

which completes the proof.

A.2 ATTENTION MAP AND SINK TOKEN VISUALIZATION

Figure 8: Attention patterns of three heads in LLaMA3-8B. Sink token behavior is clearly observed,
even when performing non-trivial token mixing.

A.3 IMPLEMENTATION DETAILS

In our approach we apply RoPE to half the channels of each attention head, and adjust the RoPE
frequencies to attain desired behaviors. Standard RoPE frequencies interpolate exponentially be-
tween 1 and 1

θ , where θ is the base frequency hyperparameter, typically 10k or 500k. We adjust
both endpoints of this interpolated scale. First, we must ensure that all frequencies are high enough
to complete at least one rotation within our training length of 4k tokens. We set two full rotations
as the minimum, as one rotation may not be sufficient to fully eliminate correlation between low
frequency channels (i.e. some decay still occurs in the high frequency curve of Fig. 7 (Left), even
after the slowest channel pair finishes a full rotation at the purple line). We therefore update the min-
imum frequency scale value from 1

θ to 4π
4096 . Second, we also pull the maximum frequency scale of

1 toward a more conservative value. Since we apply RoPE to only a fraction of available channels,
it is important that the channels be discriminative. RoPE’s fastest channel pair completes a cycle in
2π ≈ 6 tokens, after which information is effectively lost, as it becomes impossible to disentangle
relative position modulo 2π from content. An effective 6-token window is very aggressive, so we
pull back the max frequency to 2π

32 , completing a cycle in 32 tokens.
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While applying high-frequency RoPE to a fraction of channels ensures stable clustering and sink
token behavior for long inputs, out-of-distribution behavior can still occur via the softmax activation.
Key/query dot products are stable over time by construction, so taking a softmax over an increasing
number of IID key/query pairs will increase the softmax denominator, without a corresponding
increase to the numerator. The result is the mixture distribution becoming smoother than expected
over time. We account for this by introducing temperature scaling based on input length, borrowing
from (Peng et al., 2023). The adjustment is (1+0.1∗ ln(min(4096, n)))2, where 4096 is the training
length and n is the given input length.

Example code for this approach in HuggingFace Transformers is provided below.

Codeblock 1: Modification of scaling factor within the attention interface
1 # src/transformers/models/llama/modeling_llama.py
2

3 class LlamaAttention(nn.Module):
4 ...
5 def forward(...):
6 ...
7 attn_output, attn_weights = attention_interface(
8 self,
9 query_states,

10 key_states,
11 value_states,
12 attention_mask,
13 dropout=0.0 if not self.training else self.attention_dropout,
14 scaling=self.scaling \
15 * (0.1 * math.log(max(current_position, 4096) / 4096) + 1)**2,
16 **kwargs,
17 )

Codeblock 2: Modification of modeling rope utils with our method
1 # src/transformers/modeling_rope_utils.py
2

3 ROPE_INIT_FUNCTIONS = {
4 ...
5 "ourmethod": _compute_our_method_parameters,
6 }
7

8 def _compute_our_method_parameters(
9 config, device, seq_len = None, **rope_kwargs

10 ):
11 if config is not None and len(rope_kwargs) > 0:
12 raise ValueError(...)
13 if len(rope_kwargs) > 0:
14 base = rope_kwargs["base"]
15 dim = rope_kwargs["dim"]
16 elif config is not None:
17 base = config.rope_theta
18 partial_rotary_factor = config.partial_rotary_factor \
19 if hasattr(config, "partial_rotary_factor") else 1.0
20 head_dim = getattr(config, "head_dim", None) \
21 or config.hidden_size // config.num_attention_heads
22 dim = int(head_dim * partial_rotary_factor)
23

24 attention_factor = 1.0 # Unused in this type of RoPE
25

26 logstart = math.log(2 * math.pi / base) # 1 cycle in ratio steps
27 logend = math.log(4 * math.pi / 4096) # 2 cycles in 4k steps
28 pos = torch.arange(0, dim // 2, device=device) / (dim // 2 - 1)
29 logfreq = pos * (logend - logstart) + logstart
30 inv_freq = logfreq.exp()
31 return inv_freq, attention_factor
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Codeblock 3: Applying RoPE to only half the channels

1 # src/transformers/models/llama/modeling_llama.py
2

3 def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
4 cos = cos.unsqueeze(unsqueeze_dim)
5 sin = sin.unsqueeze(unsqueeze_dim)
6

7 q_quartile_size = q.shape[-1] // 4
8 q1, q2, q3, q4 = torch.split(q, \
9 split_size_or_sections=q_quartile_size, dim=-1)

10 k_quartile_size = k.shape[-1] // 4
11 k1, k2, k3, k4 = torch.split(k, \
12 split_size_or_sections=k_quartile_size, dim=-1)
13

14 q_rot = torch.cat((q1, q3), dim=-1)
15 k_rot = torch.cat((k1, k3), dim=-1)
16

17 q_rot_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
18 k_rot_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
19

20 q1_updated, q3_updated = torch.split(q_rot_embed, \
21 split_size_or_sections=q_quartile_size, dim=-1)
22 k1_updated, k3_updated = torch.split(k_rot_embed, \
23 split_size_or_sections=k_quartile_size, dim=-1)
24

25 q_embed = torch.cat((q1_updated, q2, q3_updated, q4), dim=-1)
26 k_embed = torch.cat((k1_updated, k2, k3_updated, k4), dim=-1)
27

28

29 return q_embed, k_embed

A.4 TRAINING, MODEL, AND EVALUATION DETAILS

Evaluation: During evaluation, we take care to avoid inducing out-of-distribution behavior not
related to extended context length. In particular, we report point cloud behaviors “with” and “with-
out” RoPE. Both cases are drawn from the same single forward pass from a given model, with the
model unaltered and RoPE applied. Strictly speaking, these point clouds come from after and be-
fore the application of RoPE, respectively. This keeps observations within-distribution, even when
discussing un-RoPEd point clouds inside of a RoPE-using model. Performing the actual attention
without RoPE would cascade errors through the model.

Training: Model training proceeds over 21 billion tokens, with a context length of 4096 and half
a million tokens per minibatch. All models are trained across 16 NVIDIA A100s in parallel. We
employ a learning rate of 3e−4, with warmup over 2k steps and cosine decay. Optimizer is AdamW
with λ = (.9, .95) and weight decay 0.1. Model architecture follows Llama3, with details provided
in Table 4.

Table 4: Model architectures used for pretraining and evaluation
Parameters 1B 3B

Vocab 128256 128256
Width 1280 2048
Layers 32 48
Heads 16 16

KV heads 4 4
Head dim 80 128
Inner dim 4096 7168
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A.5 RULER BENCHMARK

Table 5: Performance of different methods on the RULER benchmark. Highest average score for
each sequence length and model size is in bold; runner-up is underlined.

Method Seq. N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 N-MV N-MQ VT CWE FWE QA-1 QA-2 Avg.

1B Models

RoPE
4k 100 100 96.6 73.6 2.4 3.4 23.45 24.65 10.24 21.76 27.4 22.67 10.24 39.72
8k 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.01

16k 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0.03

High Frequency
4k 42 44.8 35 37.4 0.2 3.6 7.05 4.85 0 0.1 1 16.95 15.6 16.04
8k 18.8 15.6 15 19.4 0 0.4 6.35 1.2 0 0.04 2.87 6.13 13 7.60

16k 9 3 1 3 0 0 1.2 0.1 0 0 0.2 4.73 8.6 2.37

HalfRoPE
4k 100 100 96 76.4 22 17.2 12.2 10.95 3.88 48.72 27.73 22.42 22.4 43.07
8k 0 0 0 0 0 0 0 0 0 0 0.07 1.6 0.2 0.14

16k 0 0 0 0 0 0 0 0 0 0 0 0 0 0

YaRN
4k 100 100 96.6 73.6 2.4 3.4 23.45 24.65 10.24 21.76 27.4 22.67 17 40.24
8k 97.6 92.2 92.4 62 1.6 1.8 22.2 23.1 21.8 2.8 17.07 11.57 16 35.55

16k 99.8 85.8 68 44.2 1.6 1.4 20.35 17.7 18.24 0.34 12 11.07 12.8 30.25

RoPE-ID
4k 100 100 85.6 62 3 2.6 29.7 30.85 0.52 12.12 35.4 27.52 19.6 39.15
8k 100 100 33.4 40.4 0.2 0.6 21.8 20.55 11.44 2.44 29.33 10.28 15.8 29.71

16k 96.4 19.4 1.2 14.2 0 0 9.65 2.1 2.36 0 20.33 8.73 11.4 14.29

RoPE-ID (Scaling)
4k 100 100 85.6 62 3 2.6 29.7 30.85 0.52 12.12 35.4 27.52 19.6 39.15
8k 100 100 70.6 50.8 1.4 1.2 26.3 34.55 12.8 6.16 33.13 11.02 15.4 35.64

16k 100 98.6 37 40.8 1.2 0.4 29.95 23.5 6.64 0.38 32.13 15.82 14.4 30.83
3B Models

RoPE
4k 100 100 93.4 56 7.2 3.8 39.55 53.55 12.96 41.28 36.07 30.25 26.4 46.19
8k 0 0 0 0 0 0 0 0 0 0 0.07 1.8 0 0.14

16k 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.01

High Frequency
4k 59.8 57.4 47.8 26.89 40.6 18.4 18.4 17.6 0 13.9 13.2 29.53 20.8 28.02
8k 27.8 24.4 25.6 23.8 1.8 4.8 17.45 15.4 0 10.72 8.2 9.4 16.6 14.31

16k 8.8 9.2 5.2 7.8 0 0.4 7.65 2.05 0 1.58 5.53 7.27 11.4 5.14

HalfRoPE
4k 100 100 99.6 85 5.6 4.6 58.9 55.7 15.8 44 38.4 33.4 25.6 51.28
8k 0 0 0 0 0 0 0 0 0 0.82 3.2 0.93 0.2 0.40

16k 0 0 0 0 0 0 0 0 0 0 0 0.13 0.2 0.03

YaRN
4k 100 98.2 91.8 57.2 9.8 4.8 64.3 38.6 20.88 14.66 21.27 28 21.2 43.90
8k 100 100 98.6 71 1.8 4.4 42.25 60.25 20.32 13.94 29.8 17.18 26.6 45.09

16k 100 99.8 92.6 63.4 7.2 1.4 34.55 47.65 11.76 8.66 18.8 15.82 20.2 40.14

RoPE-ID
4k 100 100 97.8 77.4 9.4 8.4 28.2 37.25 12.84 13.18 42.27 30.88 25.6 44.86
8k 100 99 88.6 45.4 0.6 1.8 23.7 36.5 13.4 6.54 36.4 14.28 21.4 37.51

16k 73.6 73.4 13.2 32.2 0 0.2 8.25 8.4 18.72 3.72 26.8 12.87 14 21.95

RoPE-ID (Scaling)
4k 100 100 97.8 77.4 9.4 8.4 28.2 37.25 12.84 13.18 42.27 30.88 25.6 44.86
8k 100 100 96 55.8 6.6 3.4 43.4 48.9 20.6 12.36 37 15.62 24.4 43.39

16k 90.8 99.2 86 59.6 7.2 0.4 48 42.4 36.56 10.24 31.07 17.07 17.4 42.0
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A.6 LONGBENCH BENCHMARK

14 English Tasks for 5 Different Categories used for evaluation:

Single Document QA: NarrativeQA, Qasper, and MultiFieldQA-en
Multi-Document QA: 2WikiMultihopQA, HotpotQA, MuSiQue
Summarization: GovReport, MultiNews, QMSum
Few-shot Learning: SAMSum, TREC, TriviaQA
Code Completion: LCC, RepoBench-P

Table 6: Performance of different methods on LongBench, averaged by task type. Highest total
average score for each sequence length and model size is in bold; runner-up is underlined.

Methods Seq. Single-Doc QA Multi-Doc QA Summarization Few-Shot Learning Code Avg.
1B Models

RoPE
4k 6.65 4.32 14.22 27.27 23.55 14.61
8k 4.53 1.69 11.48 7.55 19.75 8.23

16k 4.84 2.08 12.74 8.19 19.33 8.73

High Frequency
4k 5.26 4.22 12.97 19.3 19.96 11.8
8k 5.31 4.22 12.61 17.61 20.47 11.44

16k 5.2 3.92 12.49 16.71 19.77 11.04

HalfRoPE
4k 6.94 4.72 16.07 28.73 22.99 15.38
8k 4.96 1.94 15.89 6.78 16.77 8.73

16k 5.25 2 16.17 6.5 17.17 8.86

YaRN
4k 6.86 4.35 14.94 28.07 22.54 14.84
8k 6.83 4.77 15.29 26.76 21.33 14.54

16k 6.78 5.18 15.26 25.59 19.42 14.09

RoPE-ID (scaling)
4k 6.71 4.80 14.61 31.68 24.11 15.83
8k 7.18 5.23 14.69 31.39 23.11 15.83

16k 7.01 5.35 15.40 30.55 23.12 15.80
3B Models

RoPE

4k 7.32 4.81 14.79 35.13 37.28 18.62
8k 5.19 2.57 13 11.03 31.84 11.36

16k 5.12 2.51 11.67 11.22 27.15 10.42

High Frequency
4k 5.42 4.52 12.61 25.85 26.69 14.19
8k 5.82 4.6 12.64 23.06 27.58 13.82

16k 5.93 4.51 12.51 22.7 28.02 13.78

HalfRoPE
4k 7.75 4.81 17.14 40.68 30.4 19.42
8k 5.13 2.23 16.81 9.84 23.89 10.7

16k 4.99 2.23 16.11 10.87 23.03 10.62

YaRN
4k 6.5 4.96 15.2 29.74 26.50 15.87
8k 7.96 5.46 15.57 40.30 31.12 19.29

16k 8 5.94 16.45 42 28.81 19.63

RoPE-ID (scaling)
4k 7.71 5.23 13.51 32.83 22.50 15.92
8k 8.52 5.65 14.55 36.37 22.24 17.13

16k 8.96 6.23 15.90 37.93 22.03 17.94

A.7 REPEATED ANALYSIS FOR TRAINED MODELS

We repeat our original analysis on our trained 1B models (baseline and RoPE-ID). Our baseline
model exhibits the same behavior observed in state of the art LLMs, while our RoPE-ID model
exhibits the desired stable behavior and consistent clustering across sequence lengths.
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Figure 9: Pairwise angular distances within- and between-clusters for our trained models. Base
model matches prior LLM observations, including an inflection point for key-query product with
RoPE at the training length (4k). RoPE-ID maintains stable behavior over time.

Figure 10: Clustering behavior for our trained models. Vanilla transformer (top) matches prior LLM
observations; RoPE-ID (bottom) maintains stable cluster separation.

A.8 ROPE-ID HYPERPARAMETER ABLATIONS

We perform additional ablations on the hyperparameters of RoPE-ID, namely the high and low
frequencies, the number of channels with RoPE applied, and the degree of temperature scaling.
We train several additional 1B demo models using the same training procedure, and report average
scores from the RULER benchmark.

We observe a consistent general trend: reducing the number of high-frequency channels improves
performance, especially on shorter contexts. However, the model eventually reaches a threshold
beyond which length generalization drops sharply. We hypothesize that without enough high-
frequency channels, the model instead learns to encode position based on learned patterns of latent
drift, which do not generalize to longer contexts. This explains the patterns observed in Table 8
and Fig. 11, where decreasing the number of RoPE channels, and increasing the wavelength of the
highest frequency, gradually improves performance, until triggering a catastrophic collapse at longer
contexts. We conclude that our hyperparameter choices for channel fraction and highest frequency
(50% of channels, shortest wavelength 32) represent a safe middle-ground.

Halving the wavelength of the lowest frequency is highly beneficial, showing that one period is in-
deed not sufficient to decorrelate all rotating channels. This aligns with Fig. 7, where the orange
curve (RoPE with high enough frequency to complete one period) still performs some FSV de-
cay beyond the training length. Meanwhile, RoPE-ID, the red curve, holds the FSV ratio constant
beyond the training length.

The impact of temperature scaling, shown in Table 8, is minimal. Here we raise and lower the
exponent of the YaRN temperature scaling formula, and find that the default value of 2 works fine.
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Figure 11: Llama 1B ablation studies with average RULER scores on the y-axis. The x-axis of the
4 plots cover fraction of channels, wavelength (high frequency), wavelength (low frequency) and
temperature scaling, respectively. The color coded legend represents context lengths 4k, 8k and
16k.

Table 7: RULER scores for LlaMA 1B models up to 128k context length, where experiments cover
tuning with YaRN, RoPE-ID, and RoPE-ID + YaRN.

Llama-1B Models

Fine-Tuning YaRN RoPE-ID RoPE-ID
+ YaRN

4K 43.29 39.49 47.09
8K 39.27 35.81 41.94

16K 34.55 30.63 38.59
32K 32.74 30.66 36.16
64K 21.90 27.34 31.48
128K 12.25 19.78 29.23

A.9 LONG-CONTEXT FINE-TUNING WITH ROPE-ID

While our analysis focuses on RoPE-ID as a tuning-free approach to length generalization, we can
also combine it with fine-tuning to further extend the effective context length. Here we take our
trained Llama 1B models and tune them to 128k context length in stages: first, we load the 4k model
checkpoint and apply any relevant RoPE frequency scaling. Then, we continue pretraining for 5k
steps, with sequence length increased to 32k. The total tokens per batch is held constant at 500k,
and learning rate warms up over 250 steps until it reaches the final LR of the previous checkpoint
(3e− 5), where it is held constant. We then repeat the process for another 5k steps, going from 32k
sequence length to 128k.

We extend three models in this fashion: first, we apply YaRN scaling to the baseline RoPE model
during each jump in sequence length. Second, we tune the RoPE-ID model with no adjustment to
RoPE frequencies. Third, we tune the RoPE-ID model, but with YaRN-style scaling also applied.
YaRN cannot be applied directly to RoPE-ID models as the default YaRN hyperparameters do not
work for such high frequencies. We therefore set the scaling thresholds to the highest and lowest fre-
quencies and interpolate in-between (the highest frequency is unchanged, and the lowest frequency
scales up by L′/L, where L′, L are the new and old sequence lengths, respectively).

Results for RULER are given in Table 7 and Fig. 12. The tuned RoPE-ID model exhibits better
length generalization at context length 64k and above. Notably, the combination of RoPE-ID and
YaRN-style scaling achieves superior performance at all context lengths, compared to either method
alone.

A.10 ADDITIONAL CLUSTERING ANALYSIS

Here we repeat the analysis performed in Fig. 2 for other distance and clustering metrics. Fig. 13
shows inter- and intra-cluster alignment as measured by dot product rather than cosine distance,
better reflecting the actual attention logits. This introduces noise, as embedding norms can shift
over time without affecting clustering behavior, and cosine distance is norm-invariant whereas dot
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Table 8: RULER scores for LlaMA 1B ablations as function of fraction of channels, wavelength,
and temperature scaling

Llama-1B Models

Fraction of
Channels 4K 8K 16K

1/8 46.30 35.12 2.18
1/4 41.59 38.75 36.41
3/8 39.11 32.83 27.12
1/2 39.15 35.64 30.83
5/8 36.52 31.52 17.72
3/4 33.17 27.40 21.63
7/8 34.23 16.11 9.05

Wavelength
(Highest Freq) 4K 8K 16K

2π 37.37 35.66 27.77
16 38.46 36.52 26.76
32 39.15 35.64 30.84
64 41.62 27.16 9.46

Wavelength
(Lowest Freq) 4K 8K 16K

2048 39.15 35.64 30.83
4096 36.11 20.66 16.07

Temperature Scale
(Exponent) 4K 8K 16K

1.5 39.15 34.56 29.51
2.0 39.15 35.64 30.83
2.5 39.15 36.91 31.15
3.0 39.15 37.58 29.61

Figure 12: A plot of average RULER scores from Table 7 better visualizing overall trends. Y-axis
represents average RULER scores and x-axis is context length.

products are not. This also introduces large differences between different models. Nevertheless,
overall trends are roughly the same.

Fig. 14 directly quantifies the degree of clustering, using Silhouette Score (left) and Davies-Bouldin
Index (right) in Llama3-8B. Results again mirror Fig. 2: clustering is consistent across sequence
lengths prior to RoPE (and even increases beyond the training length), but falls over time once
RoPE is applied (Silhouette Score decreases, while Davies-Bouldin Index increases as sequences
become long). We conclude that clusters are behaving as described in the main paper.

Fig. 15 shows the correlation between Geometric Structure and Stable Rank. To further investigate
the impact of RoPE, we visualize the PCA projections of Key and Query states, explicitly annotated
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Figure 13: Mean of the pairwise dot product of query and key values across all heads for Llama3-
8B, Gemma-7B and OLMo-7B which showcases the effect of RoPE across various context lengths
showing similar trend as Fig. 2

Figure 14: Silhouette Score (left) and Davies-Bouldin Index (right) showcasing the effect of RoPE
on Internal Representation Clustering for Llama3-8B-Instruct. Lower Silhouette Score and higher
Davies-Bouldin Index represents more overlap.

with their corresponding stable ranks. Crucially, the quantitative analysis is consistent with the
visual phenomenon: the stable rank precipitates a sharp rise (from ∼ 1.1 to ∼ 7.1). The simultaneity
of cluster dispersion and rank inflation provides strong evidence that RoPE acts as a destabilizing
factor, destroying the intrinsic low-dimensional geometric structure of the Key/Query states during
inference extrapolation.

Figure 15: 2D PCA projections of Llama3 representations and their Stable Rank under different
context lengths and RoPE settings (same as Figure 3). RoPE at long contexts destroys cluster sepa-
ration and significantly inflates the stable rank.

Figure 16 presents the stable rank of the K matrices, averaged across all layers of Llama3-8B-
Instruct, with context lengths varying from 1k to 64k. The error bars indicate the standard deviation
across layers. When RoPE is applied (blue line), the stable rank increases monotonically as the
context length extends. Beyond the training length (8k), the stable rank is significantly higher than
the baseline.
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Figure 16: The stable rank of Key states across varying input lengths (1k to 64k). The plot compares
the stable rank with and without RoPE. We report the mean stable rank of Key across all layers.
Error bars denote standard deviation.

A.11 ADDITIONAL THEORETICAL ANALYSIS: STABLE RANK

Let us first fix the notations: R(X) denotes the application of RoPE to a key/query matrix
X = [x1, . . . ,xn]

⊤ ∈ Rn×d. Specifically, R(X) := [R1x1, . . . ,Rnxn]
⊤ ∈ Rn×d, where

Rj = diag(Rj,θ1 , . . . ,Rj,θd/2) ∈ Rd×d with Rj,θk =

[
cos(jθk) − sin(jθk)
sin(jθk) cos(jθk)

]
∈ R2×2 and

θk = θ−2(k−1)/d for all 1 ≤ k ≤ d/2. For any x ∈ Rd, x(k) := [x2k−1, x2k]
⊤ ∈ R2 denotes

the subvector in the kth rotation plane. ∥ ·∥2 denotes the Euclidean or ℓ2 norm of a vector or denotes
the spectral norm of a matrix, and ∥ · ∥F denotes the Frobenius matrix norm. The stable rank of a
matrix X is defined as sr(X) :=

∥X∥2
F

∥X∥2
2

. Finally, ⊙ denotes the element-wise product.

Lemma 1. For any X ∈ Rn×d, applying RoPE preserves its Frobenius norm, i.e., ∥R(X)∥F =
∥X∥F .

Proof of Lemma 1. Since ∥X∥2F =
∑n

j=1 ∥xj∥22 and ∥R(X)∥2F =
∑n

j=1 ∥Rjxj∥22, it suffices to
show that for all j, ∥xj∥22 = ∥Rjxj∥22. Since every diagonal block of Rj is a 2× 2 rotation matrix,
Rj is also a rotation matrix and thus norm preserving, which completes the proof.

Theorem 1. Suppose X = uv⊤ ∈ Rn×d, where u ∈ Rn, v ∈ Rd and ∥v∥2 = 1. If ∀j,
uj = Θ(1), and u ⊙ u has sublinear growth of total variation in the sequence length n, i.e.,∑n−1

j=1 |u2
j+1 − u2

j | = o(n), then as n increases, we have

∥R(X)∥2
∥X∥2

=
1√
2

max
1≤k≤d/2

αk + o(1)

where αk := ∥v(k)∥2 =
√
v22k−1 + v22k satisfying maxk αk ∈ [

√
2/d, 1].

Remark 1. The assumption that
∑n−1

j=1 |u2
j+1 − u2

j | = o(n) implies that the sequence {u2
j} must

exhibit a certain degree of monotonicity. Indeed, if {u2
j} is strictly monotonic, then

∑n−1
j=1 |u2

j+1 −
u2
j | = Θ(1). In contrast, if {u2

j} is highly oscillatory, then
∑n−1

j=1 |u2
j+1 − u2

j | = Θ(n), which
violates the assumption.

Proof of Theorem 1. The pre-RoPE spectral norm

∥X∥2 =
√
λmax(X⊤X) = ∥u∥2

√
λmax(vv⊤) = ∥u∥2∥v∥2 = ∥u∥2 = Θ(

√
n),

where λmax(·) denotes the largest eigenvalue.
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In what follows, we estimate the growth of post-RoPE spectral norm, i.e.,
√

λmax(R(X)⊤R(X)).
Since ∥v(k)∥2 = αk, due to rational invariance, without loss of generality, we assume v(k) =
[αk, 0]

⊤ for simplicity.

Consider the Gram matrix G := R(X)⊤R(X) ∈ Rd×d, since R(X) = [u1R1v, · · · , unRnv]
⊤ ∈

Rn×d, we have

G = R(X)⊤R(X) = [u1R1v, · · · , unRnv]

u1(R1v)
⊤

...
un(Rnv)

⊤

 =

n∑
j=1

u2
j (Rjv)(Rjv)

⊤

=

n∑
j=1

u2
j

 Rj,θ1v
(1)

...
Rj,θd/2v

(d/2)

 [
(Rj,θ1v

(1))⊤, · · · , (Rj,θd/2v
(d/2))⊤

]
,

Diagonal Blocks of G. For 1 ≤ k ≤ d/2, the kth diagonal block of G is given by

Gk,k =
n∑

j=1

u2
j (Rj,θkv

(k))(Rj,θkv
(k))⊤ ∈ R2×2.

Recall that

Rj,θk =

[
cos(jθk) − sin(jθk)
sin(jθk) cos(jθk)

]
,

we have Rj,θkv
(k) = αk[cos(jθk), sin(jθk)]

⊤, and thus

Gk,k = α2
k

n∑
j=1

u2
j

[
cos2(jθk) cos(jθk) sin(jθk)

cos(jθk) sin(jθk) sin2(jθk)

]

=
α2
k

2

n∑
j=1

u2
j

[
1 + cos(2jθk) sin(2jθk)
sin(2jθk) 1− cos(2jθk)

]

=
α2
k

2
∥u∥22 I2 +Ek,k,

where

Ek,k :=
α2
k

2

n∑
j=1

u2
j

[
cos(2jθk) sin(2jθk)
sin(2jθk) − cos(2jθk)

]
.

Off-Diagonal Blocks of G. Similarly, for k ̸= l, the (k, l)th block is

Ek,l :=Gk,l =

n∑
j=1

u2
j (Rj,θkv

(k))(Rj,θlv
(l))⊤

=α2
k

n∑
j=1

u2
j

[
cos(jθk) cos(jθl), cos(jθk) sin(jθl)
sin(jθk) cos(jθl), sin(jθk) sin(jθl)

]

=
α2
k

2

n∑
j=1

u2
j

[
cos(j(θk + θl)) + cos(j(θk − θl)), sin(j(θk + θl))− sin(j(θk − θl))
sin(j(θk + θl)) + sin(j(θk − θl)), − cos(j(θk + θl)) + cos(j(θk − θl))

]

Therefore,

G =
∥u∥22
2

diag
(
α2
1I2, · · · , α2

d/2I2

)
+E.

Bounding λmax(G). We want to show that E is a subleading term and is entry-wise o(n). Note
that αk ≤ 1, for any entry of Ek,k, ∀k, it is upper bounded by√√√√√ n∑

j=1

u2
j cos(2jθk)

2

+

 n∑
j=1

u2
j sin(2jθk)

2

=

∣∣∣∣∣∣
n∑

j=1

u2
je

2jθki

∣∣∣∣∣∣ .
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Denoting Sj :=
∑j

t=1 e
2tθki and using Abel’s summation formula, we have∣∣∣∣∣∣

n∑
j=1

u2
je

2jθki

∣∣∣∣∣∣ =
∣∣∣∣∣∣u2

nSn −
n−1∑
j=1

(u2
j+1 − u2

j )Sj

∣∣∣∣∣∣
≤ u2

n |Sn|+ max
1≤j≤n−1

|Sj |
n−1∑
j=1

|u2
j+1 − u2

j |,

where |Sj | = |e2θki|
∣∣∣ 1−e2jθki

1−e2θki

∣∣∣ ≤ 2
|1−e2θki| =

1
| sin(θk)| = O(1) for all j, since θk = θ−2(k−1)/d ∈

[ 1θ , 1] is an irrational multiple of π. Moreover, we have assumed
∑n−1

j=1 |u2
j+1 − u2

j | = o(n), so∣∣∣∑n
j=1 u

2
je

2jθki
∣∣∣ = o(n).

Similarly, for any entry of the off-diagonal block Ek,l, we can also show that it is upper bounded by∣∣∣∣∣∣
n∑

j=1

u2
je

j(θk+θl)i

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

u2
je

j(θk−θl)i

∣∣∣∣∣∣ = o(n),

since (θk ± θl)/2 are still irrational multiples of π.

By Weyl’s inequality, we have

∥u∥22
2

max
k

α2
k − ∥E∥2 ≤ λmax(G) ≤ ∥u∥22

2
max

k
α2
k + ∥E∥2.

Note that since d is fixed, ∥E∥2 ≤ ∥E∥F = o(dn) = o(n), and thus

λmax(G) =
∥u∥22
2

max
k

α2
k + o(n).

Finally, since ∥u∥2 = Θ(
√
n), we have

∥R(X)∥2
∥X∥2

=

√
λmax(G)

∥u∥2
=

1√
2

max
1≤k≤d/2

αk + o(1).

Theorem 2. Suppose X = uv⊤ ∈ Rn×d, where u ∈ Rn, v ∈ Rd and ∥v∥2 = 1. Under the same
assumptions on u as in Theorem 1, we have

lim
n→∞

sr(R(X))

sr(X)
=

2

max1≤k≤d/2 α
2
k

∈ [2, d],

where αk := ∥v(k)∥2.

Proof of Theorem 2. Using Lemma 1 and Theorem 1, we have

sr(R(X))

sr(X)
=

(
∥R(X)∥F
∥X∥F

)2 ( ∥X∥2
∥R(X)∥2

)2

=
2

max1≤k≤d/2 α
2
k + o(1)

.

Since
∑d/2

k=1 α
2
k = ∥v∥22 = 1, we have maxk α

2
k ∈ [2/d, 1]. Taking n → ∞ completes the proof.
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A.12 ADDITIONAL CLUSTER VISUALIZATIONS

We repeat Fig. 3 for additional layers and heads. The same general trend can be observed, where
separated clusters disperse and overlap when RoPE is applied at longer contexts. We randomly
sample 16 Key heads and their corresponding Query heads from Llama3-8B-Instruct, and 8 Query-
Key head pairs from Gemma-7b and Olmo-7b.
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