
Published as a conference paper at ICLR 2026

GRAPH-THEORETIC INTRINSIC REWARD: GUIDING
RL WITH EFFECTIVE RESISTANCE

Jatin Chauhan†, Shivam Bhardwaj†, Aditya Saibewar, Aditya Ramesh,
Sadbhavana Babar & Manohar Kaul
Fujitsu Research ∗

ABSTRACT

Exploration of dynamic environments with sparse rewards is a significant chal-
lenge in Reinforcement Learning, often leading to inefficient exploration and brit-
tle policies. To address this, we introduce a novel graph-based intrinsic reward
using Effective Resistance, a metric from spectral graph theory. This reward for-
mulation guides the agent to seek configurations that are directly correlated to
successful goal reaching states. We provide theoretical guarantees, proving that
our method not only learns a robust policy but also achieves faster convergence
by serving as a variance reduction baseline to the standard discounted reward for-
mulation. We perform extensive empirical analysis across several challenging
environments to demonstrate that our approach significantly outperforms state-of-
the-art baselines, demonstrating improvements of up to 59% in success rate, 56%
in timesteps taken to reach the goal, and 4 times more accumulated reward. We
augment all of the supporting lemmas and theoretically motivated hyperparameter
choices with corresponding experiments.

1 INTRODUCTION

Training policies in sparse-reward settings has been a longstanding challenge, which has now be-
come mainstream with increasing deployments of autonomous agents in real world. Initial series of
works focused on leveraging meticulously engineered dense reward functions to guide the learning
process (Schulman et al., 2017; Barto, 2021), which achieved success in tasks ranging from simple
pathfinding to complex motor control (Schulman et al., 2017; Barto, 2021). However, the reliance on
such dense rewards inherently limits the scalability (Cao et al., 2024; Antonyshyn & Givigi, 2024).
On the contrary, in the sparse reward setting the agent receives a positive signal only upon reaching
a distant goal, with no intermediate feedback to guide its exploration. This credit assignment prob-
lem often renders simple exploration strategies, such as ϵ-greedy action selection or unstructured
noise, rather ineffective as the agent is unlikely to encounter the reward achieving state through
random behavior (Pitis et al., 2020). To overcome this, intrinsic motivation based methods have
garnered much attention and success recently (Achiam & Sastry, 2017; Xudong et al., 2024), which
typically generate a dense reward signal to encourage meaningful exploration. These signals are
often based on information-theoretic concepts like novelty, curiosity, or surprise (Achiam & Sastry,
2017; Pathak et al., 2017; Burda et al., 2018). These methods however have caveats. Most of these
methods provide empirical validation, however fail to justify the algorithms with theoretical guar-
antees. Furthermore, methods like (Xudong et al., 2024), albeit better than their predecessors like
Hindsight Experience Replay (HER) (Andrychowicz et al., 2018) and MEGA (Pitis et al., 2020),
further require policies pretrained via Behavioral Cloning to operate well, which can be expensive
in many situations. Other methods such as the Surprise Based notion of (Achiam & Sastry, 2017)
focus on model-based RL where the transition probabilities are modeled explicitly, which is highly
non-trivial (Viano et al., 2021).

Accounting for all these factors, we introduce a novel principled approach to intrinsic motivation
for goal-conditioned RL with roots in spectral graph theory. We model the agent’s perception of
its dynamic environment, where all entities move arbitrarily, as a graph that evolves over time.

∗† denotes Equal Contribution. Email Correspondence: {chauhan.jatin, shivam.bhardwaj, saibewar.aditya,
aditya.ramesh, sadbhavana.babar, kaul.manohar}@fujitsu.com

1

Published as a conference paper at ICLR 2026

The nodes of this graph characterize all the objects (including the agent and the goal) whereas the
weighted edges describe the vicinity relative to the agent’s sensors. As the primary contribution of
this work, we propose to use the Effective Resistance between the agent and goal nodes as
intrinsic reward. Intuitively, effective resistance quantifies the information flow between two nodes
in a network, considering all possible paths between them (Evans & Francis, 2021). These possible
paths naturally account for all the objects present within the agent’s sensing radii. A decrease in
this resistance signifies that the goal has become more structurally accessible within the agent’s
perceived map that may not be quantified by using simpler metrics such as Euclidean distance.
We emphasize that our proposed formulation is broadly applicable to goal-conditioned RL, where
the observable (fully or partially) state space can be decomposed to extract the entities of interest
in order to construct any graph. We provide detailed discussion of such settings in section A.14.
Furthermore, we focus on sparse and constrained environments since such settings serve as more
interesting and challenging test cases in real world. We demonstrate this via an illustration in figure 1
where the agent to goal relative distance remains same but the second configurations makes the task
success much more feasible by providing better pathways to the agent. In both cases, evolution of
Euclidean distance cannot provide any meaningful signal whereas the change in Effective Resistance
provides a dense reward signal to update the policy. Furthermore, contrary to the inefficiencies of
the aforementioned methods in the literature, our method does not require any pre-training and the
whole process is on-policy. We also do not restrict ourselves to explicit model-based formulation
either, thus generalising our contribution.

AGENT

OBS 4

GOAL

Euclidean Distance

= 0.8

Effective

Resistance =

1.12

OBS 2

OBS 3
OBS 5

OBS 1

AGENT

GOAL

OBS 1

OBS 3

OBS 2

OBS 4

OBS 5

OBS 8

OBS 6

OBS 7

Euclidean

Distance =

0.8

Effective

Resistance =

0.93

Figure 1: An illustrative example showing two
configurations - (a) first where the agent’s path
is bottlenecked resulting in a denser local graph
(section 3.2) and a higher effective resistance
value identifying it as a less sought after config-
uration, (b) second with lower Effective Resis-
tance where the agent can navigate through var-
ious pathways. In both cases, the Euclidean dis-
tance remains same and the direct path to the goal
is obstructed, thus any such metric does not pro-
vide meaningful signal.

We provide various theoretical results for the
time evolution of the effective resistance (Reff)
in correspondence to the state configuration rel-
ative to the agent. This translates to the evolu-
tion of graph connectivity (generated over the
state) showing that as theReff reduces, the con-
nectivity improves. We also characterize vari-
ous lemmas in section 4 on its effect on the gra-
dients of the policy and improved goal visibil-
ity. Additionally, we show that our formulation
serves as a variance reduction baseline leading
to improved sample complexity and faster con-
vergence.

Our contributions in this work are thus four-
fold. First, we formalize the use of effective re-
sistance as a surprise-based intrinsic reward for
goal-conditioned reinforcement learning. Sec-
ond, we provide theoretical guarantees for our
method, proving that it leads to robust navi-
gation policies and faster convergence. Third,
we conduct extensive evaluations on a suite
of challenging navigation tasks with sparse re-
wards from the Safety Gym library by (Ji et al.,
2024), outperforming state-of-the-art baselines
by upto 59% in success rate in achieving the goal, 56% in timesteps taken to achieve the goal as
the trajectories unfold, and 4× better reward. Fourth, we provide a detailed and rigorous empirical
validation of all theoretical claims, especially including the principled selection of key hyperparam-
eters.

2 RELATED WORK

Our work builds upon two primary pillars of reinforcement learning research: goal-conditioned
reinforcement learning (GCRL) or goal-conditioned policy optimization (GCPO) and intrinsic mo-
tivation for exploration. GCRL extends the standard RL framework by training policies that can
generalize across a wide range of goals (Liu et al., 2022; Nasiriany et al., 2019), making it a core
component of hierarchical agents and unsupervised skill discovery (Pitis et al., 2020). A key enabler
for GCRL in sparse-reward settings has been Hindsight Experience Replay (HER) (Andrychowicz

2

Published as a conference paper at ICLR 2026

et al., 2017), which relabels failed trajectories to create dense learning signals. While effective,
HER-based methods are predominantly off-policy and struggle with certain task structures, such as
those with non-Markovian rewards where a single state cannot be treated as a hindsight goal (Xu
et al., 2025). (Xudong et al., 2024) recently proposed a formulation for trajectory selection that im-
proves over previous works in this setting. They also provide a detailed summary of this line of work
and as a recent SOTA method, we have used it as a baseline in our work. Our on-policy approach
circumvents this limitation while still addressing the core challenge of exploration in multi-goal
settings.

To tackle the exploration problem in sparse-reward tasks, researchers have proposed various forms of
intrinsic motivation to generate dense rewards. These methods encourage an agent to explore based
on information-theoretic concepts like novelty, learning progress, or surprise (Achiam & Sastry,
2017; Pathak et al., 2017). Surprise, in particular, has been formulated as the divergence between
an agent’s learned world model and the true environment dynamics, incentivizing the agent to visit
unfamiliar states (Burda et al., 2018). Another line of work focuses on maximizing the entropy of the
achieved state or goal distribution, encouraging broad exploration of the agent’s capabilities (Pitis
et al., 2020). Unlike methods that model transition probabilities directly (Achiam & Sastry, 2017;
Liu et al., 2022) or sample goals from a learned density such as (Pitis et al., 2020), our approach uses
the structural properties of a dynamically generated graph from the state configuration relative to the
agent in order to create an intrinsic reward that naturally for all possible pathways and all instances
in the environment.

3 METHODOLOGY

3.1 PRELIMINARIES

MDP formulation: We model the task as MDP defined by the tuple M = (S,A,P, R, γ). The
state space S consists of observations st ∈ RN , with the actions at ∈ RN̂ (see section A.2 for
details).The transition probabilities, P(st+1|st, at), are unknown, which is the case for majority
of practical environments. The reward function R(st, at) is a composition of an extrinsic and an
intrinsic signal with γ being the discount factor. The extrinsic reward, rext(t), is sparse, providing
a positive reward only for reaching the goal (which may never happen (Vasan et al., 2024; Hare,
2019)) along with a negative cost for situations such as collision with other dynamic objects in the
environment. The intrinsic reward, rint(t), is a dense signal we design to guide the agent. The total
reward at time t is a combination of both with a weighting hyperparameter α

rtotal(t) = rext(t) + α · rint(t) (1)

Problem Statement: We use the standard objective in RL, where the aim is to find the opti-
mal parameters θ for the policy πθ(at|st) that maximize the expected discounted reward θ∗ =

argmaxθ Eζ∼πθ

[∑T
t=0 γ

trtotal(t)
]

where the trajectory ζ = (s0, a0, s1, a1, . . .) is generated by
executing the policy πθ. The core challenge lies in the sparsity of rext(t), which makes exploration
difficult and renders standard algorithms ineffective as shown in section 5.

3.2 INTRINSIC REWARD VIA EFFECTIVE RESISTANCE

Intrinsic rewards have been shown to encourage learning, proving especially beneficial for environ-
ments with sparse rewards (Devidze et al., 2022). Furthermore, the combination of intrinsic and
(sparse) extrinsic rewards improves overall learning by balancing such exploration behavior and
task-specific goal achievement during the policy update (Zheng et al., 2024).

We ground our intrinsic reward in Effective Resistance (Chung, 1997). Unlike trivial metrics such as
Euclidean distance which doesn’t provide an effective signal as discussed earlier, the brittle Shortest
Path Distance (Goldberg & Harrelson, 2005) which is susceptible to single-point failures or coarse
global measures like Algebraic Connectivity (Fiedler, 1973), effective resistance provides a goal-
oriented, pairwise metric that holistically considers the all available paths. This property yields
a dense signal that promotes reliable navigation as we have proved in Theorem 1 and validated
empirically in section 5. We now discuss the graph construction from the state vector st needed to
compute this metric.

3

Published as a conference paper at ICLR 2026

Graph Construction: A key component of our methodology is the transformation of the high-
dimensional state vector st into a weighted, undirected time evolving graph Gt = (Vt, Et,Wt).
The state vector st characterizes the environment’s topology in a localized neighborhood w.r.t to
the agent’s (such as LiDAR), providing a very broadly applicable egocentric framework (Liu et al.,
2023b). Additionally, other variants of graph formulation from the state vector st have also been
shown to work remarkably well for some RL settings such as DQN (Waradpande et al., 2021).
In Gt, the vertex set Vt includes nodes representing the agent, the goal, and distinct objects or
object clusters. The edge set Et and their corresponding weights Wt represent the connectivity
and proximity between these entities. Our graph construction algorithm consists of the following
steps - (i) construction of nodes of similar object categories (clusters) with a separate single node
for the agent (egocentric formulation) in line 6, (ii) connecting the agent node to the remaining
nodes in line 11, (iii) introducing intra and selective inter-cluster connectivity (in line 24). The
complete details are provided in Algorithm 1. The specific design choices for this graph construction
(Algorithm 1) are not arbitrary and we provide a detailed rationale in Appendix A.5.1, an analytical
derivation for the clustering threshold τ in Appendix A.5.3 and a full empirical sensitivity analysis
in Appendix A.9.

Effective Resistance: For two nodes u, v ∈ Vt, effective resistance measures the potential differ-
ence between them when a unit of current is injected at u and removed at v. It is computed via the
Moore-Penrose pseudoinverse, L+

t , of the graph’s Laplacian matrix Lt:

Reff(u, v;Gt) = (eu − ev)TL+
t (eu − ev) (2)

where eu is the standard basis vector for node u. We refer to Reff(u, v;Gt) as Reff(t) hereon. We
define the agent’s intrinsic reward based on the change in effective resistance between the agent
node A and the goal node g. Let 1goal(t) be the indicator function for goal being present in agent’s
sensing radii and thereby its node in Vt. The intrinsic reward rint(t) is defined as:

rint(t) =


− (Reff(A, g;Gt+1)−Reff(A, g;Gt)) if 1goal(t+ 1) = 1goal(t) = 1

−β if 1goal(t) = 1,1goal(t+ 1) = 0

+β if 1goal(t) = 0,1goal(t+ 1) = 1

0 otherwise

where β ≫ 0 is a hyperparameter penalizing goal loss and rewarding goal recovery. Since our rint
formulation is generic, it can be augmented with any standard RL algorithm (we use PPO in our
case, see section A.5.2 for all the experimental details). We highlight that the graph construction in
our method is focused on guiding the reward formulation, whereas the actions are predicted using
st as input to πθ(at|st).
We distinguish our analytic formulation from recent approaches in Quasimetric Learning (Wang
et al., 2023; Liu et al., 2024), which learn distance metrics from interaction data. While such meth-
ods offer flexibility, we emphasize that our effective resistance-based approach leverages the strong
inductive bias of spectral graph theory. This grants our method immediate structural interpretabil-
ity and theoretical guarantees without the high sample complexity required to learn a metric from
scratch. We provide a detailed comparison of these paradigms in Appendix A.17.

4 THEORETICAL RESULTS

Overview of Assumptions: We provide an informal version of our assumptions here, with the
formal ones stated in appendix A.1. We assume a bounded sensing range for the agent, along with
bounded motions of all objects. Any practical environment has limits on the velocity of objects, thus
these assumptions are fairly practical. For sample complexity results, we have basic assumptions
over smoothness of πθ(·|·), which are common in the literature (section A.1.4).
Lemma 1 (Effective Resistance and Connectivity Relationship). Under standard assumptions on
the environment and graph construction (Assumptions 1-5 in the appendix), for any connected graph
Gt containing the agent and goal, the temporal derivatives satisfy:

dReff(t)

dt
· dκ(Gt)

dt
≤ −C1

∣∣∣∣dκ(Gt)dt

∣∣∣∣2
for some constant C1 > 0, where Reff defined in eq 2 and κ is the algebraic connectivity, ie the
second smallest eigenvalue of the laplacian which we assume to be unique for simplicity.

4

Published as a conference paper at ICLR 2026

This lemma provides the crucial insight for our intrinsic reward: decreasing effective resistance is
mathematically linked to increasing graph connectivity. This allows us to useReff as a dense reward
signal to guide the agent towards better configurations. While proven here, directly using κ has two
caveats though: (i) it provides only a coarse, environment-wide connectivity without focusing on
the agent-goal topology, (ii) more importantly, we empirically observed that the variations in κ are
much noisier in contrast toReff as demonstrated in sections A.7, A.8.1.

Lemma 2 (Bounded Connectivity Change). Under the same assumptions, the change in algebraic
connectivity between consecutive timesteps is bounded:

|κ(Gt+1)− κ(Gt)| ≤ δmax

where δmax is a constant dependent on agent/object velocities and graph size bounds. We also show
that κ(Gt) is Lipschitz continuous with respect to time in corollary 2

This result allows for relatively stable policy optimization.

Lemma 3 (Policy Updates). The intrinsic reward rint(t) is positively correlated with the one-step
change in algebraic connectivity, ∆κ(t) = κ(Gt+1)− κ(Gt).

These supporting results culminate in our main theorem, which states that a policy optimized with
our intrinsic reward is guaranteed to be robust.

Theorem 1 (Connectivity Preservation and Robust Navigation). Under our stated assumptions, a
policy π∗ that maximizes the expected return with our effective resistance-based intrinsic reward is
(ϵ, δ, T)-robust. Specifically:

1. Connectivity Preservation: The policy avoids actions that drastically reduce connectivity
in expectation.

2. Robust Navigation: For a sufficiently large penalty/reward β on goal visibility loss/gain,
robustness (definition 5) of π∗ as the policy that reaches the goal with high probability
while maintaining both goal visibility and graph connectivity, which we have also shown
to hold very well empirically in sections A.8.1 and A.8.2

Corollary 1 (Practical Policy Design). For effective implementation, the goal visibility penalty β
should be set to dominate the extrinsic reward, and the intrinsic reward weight α should be scaled
relative to the environment’s dynamics.

All these results culminate in the hyperparameter choices detailed in appendix A.6 along with em-
pirical justifications of the lemmas in subsequent appendix sections A.7, A.7.1, A.8, A.8.2

4.1 IMPROVED SAMPLE COMPLEXITY

Lemma 4 (Variance Reduction via Intrinsic Reward). The policy gradient for our combined objec-
tive (rtotal) is an almost unbiased estimator for the extrinsic-only objective. Furthermore, rint(t)
acts as a variance reduction baseline, which coupled with the sample complexity results from (Yuan
et al., 2022) shows that policies trained with our formulation can achieve substantially faster con-
vergence at

Utotal = O(U(2− 2ρ))

where Utotal is the number gradient updates for our formulation and U are gradient updates for
vanilla PPO, ρ is correlation coefficient between the Q function at at, st and negative of −αReff(t)

This result becomes particularly impactful in sparse reward settings where the extrinsic reward
exhibits higher variance by default. The formal analysis is presented in Appendix A.1.

5 EXPERIMENTS

Environments Used: We use Safety-Gymnasium (Ji et al., 2024) library as it provides sophisticated
environments that serve as a great test suite.

5

Published as a conference paper at ICLR 2026

• Navigation: The agent needs to navigate to the goal button. There are multiple obstacles
that move arbitrarily in the environment thus hindering navigation. There are 3 difficulty
levels - Level 0, Level 1 and Level 2 with increasing number of obstacles. We mark these
environments as Navigation-Level-0, Navigation-Level-1 and Navigation-Level-2 respec-
tively in the experiments hereafter.

• Building: This environment requires the agent to proficiently operate multiple machines
within a construction site, while concurrently evading other robots and obstacles present
in the area. Similar to the Navigation environment, we experiment on all three difficulty
levels and report the numbers with same nomenclature.

• Fading: This environment requires the agent to reach the goal position, ensuring it steers
clear of hazardous areas. However, the goal linearly disappears after 150 steps of the
environment refresh, which provides an interesting and albeit unique challenge. Following
a similar setup, we have three difficulty levels in this environment as well.

A visual representation of each of these environments is provided in section A.3

Reward Sparsity: In order to thoroughly assess the algorithms in a sparse reward setting, we utilize
the default reward provided by the environments but at every K steps (with K = 25 following
works like (Memarian et al., 2021) for sparse reward settings). Thus, in the total reward formulation
discussed in section 3.1 we have rext(t) = rext(t)×1[t%K = 0]. This default environment reward
is simply the difference of the agent to goal relative distance between timestep t and t + 1, ie,
rext ≥ 0 if the agent moves closer to the goal (or stays at same distance) and negative otherwise.
Another aspect that makes this reward setting more challenging is that this rext(t) which is received
at timestep t is a local reward of improvement between state t and t+1 and not between t and t−K,
thus providing a good testbed for high sparsity settings. We scale this reward by a factor of 10 to
incorporate a noticeable rext for the gradient estimations and policy updates.

Baselines - To perform an extensive evaluation of our method against the literature, we implement 6
baselines as follows. PPO (Schulman et al., 2017): which is the core algorithm that is being used to
train most practical algorithms, especially the recent success of RL (Stiennon et al., 2022). PPO +
Ent (Schulman et al., 2017): is the variation of PPO that explicitly incorporates the entropy loss over
the action distribution obtained from the policy network, ie, πθ(·|st). SRL (Surprise RL) (Achiam
& Sastry, 2017): is one of the initial works which proposed two different notions of surprise based
intrinsic motivation by modeling the state transition probabilities explicitly via a separate network.
These are added to the extrinsic reward rext(t) with some weighting factor. The first one is the
transition probability of st+1 given current state and action pair as Pϕ′(st+1|at, st) (where the dy-
namics model ϕ′ is parametrized as Gaussian MLP Regressor) whereas the second method learns a
stream of the dynamics models ϕ′ at different timesteps and then considers the intrinsic reward as
Pϕt

(st+1|at, st)−Pϕt−z
(st+1|at, st) for iteration difference z. We call the first version as SRL-Std

for standard and the second version as SRL-Diff. NGU (Badia et al., 2020): proposed an episodic
memory based intrinsic reward formulation. They construct an explicit explicit embedding model
that is trained simultaneously, which however also leads to larger number of parameters across the
pipeline in comparison to the other methods. AIM (Durugkar et al., 2021): constructs the intrinsic
reward via the Wass-1 distance between a policy’s state visitation distribution and a specific target
distribution. We use the continuous state/action extension as discussed in their work. MEGA (Pitis
et al., 2020): which is a goal conditioned RL algorithm that defines a distribution over the goals and
enforces the exploration of the sparsely explored areas of the goal distribution. We implement the
algorithm under the PPO setup to make it on-policy in order to perform a more pronounced compari-
son and leverage the policy improvements over the course of training. GCPO (Xudong et al., 2024):
is a recent on-policy goal conditioned RL methodology which pretrains a goal conditioned policy
via Behavioral Cloning and then perform an online self-curriculum style update to select goals from
the MEGA based distribution fit and sampling from it to fine-tune further. Algorithm 1 of their
work (Xudong et al., 2024) details the procedure. This method is on-policy by design.

Evaluation Methodology: We trained each of the models 5 times and then evaluated all the trained
policies by rolling each of those 5 for 200 new episodes in the corresponding environments, thus
providing a total of 1000 evaluation episodes in total and accounting for induced randomness due to
initialization. For the main results in next section we compare the - (i) The percentage of successful
episodes for each method where success is defined as the agent reaching the goal ; (ii) The median
number of timesteps taken to reach the goal (the maximum number of timesteps per episode is

6

Published as a conference paper at ICLR 2026

1000 as default setting in the Safety Gym library) along with the 25th% and 75th% marks; (iii)
The median environment reward obtained by each agent across the episodes. This is computed by
considering the average reward in each episode and then computing the median across the 1000
evaluation episodes (this implicitly takes the episode length into consideration and thus provides a
default normalization). We provide the core results and convergence analysis here with the parameter
selection discussion in A.6, evolution of rint during navigation in A.7, graph algorithm analysis
in A.9, A.12, runtime analysis of the methods in A.11.

5.1 MAIN RESULTS

Success rate: Based on the results provided in figure 2, we notice a consistent outperformance of
our method against the baselines, particularly in the more challenging settings. For example, at
Navigation-level-2, our approach achieves a success rate of 55.5%, representing an absolute im-
provement of 16.8 percentage points over the strongest baseline (GCPO at 38.7%). At Building-
level-2, our method reaches 88.4%, improving over GCPO by 32.7 points and more than double the
performance of SRL-Std (38.8%). Even in moderately difficult tasks, such as Navigation-level-1
and Building-level-1, our method improves success rates to 99.6% and 99.2%, compared to the best
baseline scores of 84.0% and 86.4%, respectively. On the easiest tasks (difficulty 0), performance
across methods is already near ceiling, but our method remains competitive, matching or exceeding
the baselines. A few noteworthy aspects are - (i) the fluctuation of the performance of PPO with
entropy across the difficulty levels, where in some cases it substantially outperforms vanilla PPO,
but much worse in Fading environment potentially due to over exploration while the goal vanishes
in the meantime; (ii) GCPO first pretrains a policy using Behavioral Cloning and then fine tunes in
an on-policy manner over trajectory distributions, whereas our method works from scratch which
further substantiates our claims.

0 1 2
Difficulty Level

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Navigation

0 1 2
Difficulty Level

Building

0 1 2
Difficulty Level

Fading

PPO PPO+Ent SRL-Std SRL-Diff MEGA GCPO NGU AIM Ours

Figure 2: Success rate (% of successful episodes out of the 1000) during evaluation for all methods
across Navigation (left), Building (center) and Fading (right) environments.

0 1 2
Difficulty Level

0.00

0.01

0.02

0.03

M
ed

ia
n

R
ew

ar
d

Navigation

0 1 2
Difficulty Level

Building

0 1 2
Difficulty Level

Fading

PPO PPO+Ent SRL-Std SRL-Diff MEGA GCPO NGU AIM Ours

Figure 3: Median Reward during evaluation for all methods across Navigation (left), Building (cen-
ter) and Fading (right) environments. The plots contain the 25th% and 75th% ticks.

Median Normalized Reward: The results are provided in figure 3. Across all the environments,
our method achieves consistently higher normalized rewards, with particularly pronounced gains

7

Published as a conference paper at ICLR 2026

in the more difficult settings. For example, at Navigation-level-2, our method reaches a median
normalized reward of 0.0068, compared to 0.0017 for GCPO (a 4× improvement) and this reward
is near-zero or negative values for all other baselines. Notably, our 25th percentile (−0.0017) is
better than the median of PPO+Ent (−0.0018) and the PPO variants. Similarly, in Building-level-
2, our approach yields 0.0134, which more than triples GCPO (0.0041) and surpasses the upper
quartile of every baseline, while their medians often remain close to zero or negative. In Building-
level-1, our method reaches 0.0281, nearly doubling GCPO (0.0155) and lying well above the 75th

percentile of all other methods, indicating a robust shift of the entire reward distribution. Even
in moderately difficult environments such as Navigation-level-1 and Fading-level-1, our method
maintains the highest scores (0.0249 and 0.0284, respectively), with our lower quartiles exceeding
the medians of most baselines (e.g., our 25th percentile 0.0201 at Navigation-level-1 surpasses the
median of SRL-Std at 0.0050). On the easiest tasks (difficulty 0), all methods perform similarly, but
our method consistently outperforms (e.g., 0.0309 at Navigation-level-0 vs 0.0293 for GCPO).

0 1 2
Difficulty Level

102

103

M
ed

ia
n

Ti
m

es
te

ps
 (l

og
 sc

al
e)

Navigation

0 1 2
Difficulty Level

Building

0 1 2
Difficulty Level

Fading

PPO PPO+Ent SRL-Std SRL-Diff MEGA GCPO NGU AIM Ours

Figure 4: Median Number of Timesteps per episode during evaluation for all methods across Nav-
igation (left), Building (center) and Fading (right) environments. The plots contain the 25th% and
75th% ticks

0 1 2
Difficulty Level

2000

4000

6000

L
os

s P
la

te
au

 It
er

at
io

n

Navigation

0 1 2
Difficulty Level

Building

0 1 2
Difficulty Level

Fading

PPO PPO+Ent SRL-Std SRL-Diff MEGA GCPO Ours

Figure 5: Comparison of the loss plateau iterations across the methods.

Median Timesteps to reach the goal: The results are provided in figure 4. While difficulty level 0
across the environments is relatively easier for all the methods, the levels 1 and 2 provide a vivid dif-
ference in the performance of the methods. For instance, at Navigation-level-2, our method requires
a median of 242 steps, which almost half of GCPO (467) and far below Surprise RL variants at 769
and 881. Our median of 242 lies even below the 25th percentile of GCPO which is at 258. Sim-
ilarly, at Building-level-2, our method achieves 168 steps, whereas the next best (GCPO) requires
384, again placing our median earlier than the 25th percentile of all other methods. In Building-
level-1, our approach achieves a median of 77 steps, compared to GCPO’s 124 and MEGA’s 156,
with our 75th percentile (116.25) still lower than the median of the baselines. Even in moderately
difficult settings, such as Navigation-level-1 and Fading-level-1, our method reduces the median
steps to 87 and 73 respectively, with improvements of around 26% and 15% over GCPO (118 and
86), while remaining well below the lower quartiles of SRL variants (121 and 86). On the easiest
levels (difficulty 0), where performance across methods is already near-optimal, our method still

8

Published as a conference paper at ICLR 2026

achieves the lowest or near-lowest medians (e.g., 53 steps at Fading-level-0 vs. GCPO’s 56). At
the highest difficulty Fading-level-2, our method again demonstrates clear advantage, reducing the
median to 248 compared to 543 (MEGA) to 1000 for other methods, with our 25th percentile (85)
substantially earlier than GCPO’s 315. Furthermore, the median and at times the 25th percentile
timesteps hit the maximum limit of 1000 for the harder environment in some of the baselines, thus
justifying the efficacy of our proposed intrinsic reward mechanism and its role in achieving the tasks.
Furthermore, these significant performance improvements are achieved with high computational ef-
ficiency, incurring only a marginal runtime overhead (1.1x-1.25x vs. PPO) per episode training,
as shown in our detailed runtime analysis in Appendix A.10, A.11. This is however completely
counterbalanced by much faster training convergence of our method as seen in figure 5

5.2 CONVERGENCE ANALYSIS

In order to empirically justify the claim in lemma 4, we perform two analysis here - (i) comparison
of the training iterations at which the loss plateaus across the respective methods ; (ii) the correlation
of our proposed Reff (negative sign as discussed in the lemma) against the learned value function
V π during evaluation phase of the same 1000 episodes (once the trained has completed, since it is
much less practical to discuss about the learned value function otherwise). While our theoretical
claims are offered for PG since it is harder to characterize PPO style algorithms, we still observe that
our results hold well. We also point to remark 7 about the reason for computing these correlations
against the value function.

Navigation Building Fading
Environment

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Sp
ea

rm
an

 C
or

re
la

tio
n

p = 7.75e-41

p=1.9e-25
p = 3.21e-12

p=7.2e-09

p = 1.63e-18
p=3.2e-12

Level 0
Level 1

Figure 6: Spearman Correlation coefficients be-
tween the value function and −Reff.

The bar plots for plateau iterations are provided
in figure 5. Uniformly across all settings, we
observe a faster convergence than PPO, espe-
cially for easier environments where the corre-
lations in figure 6 are higher (with negligible p-
values). For the easier level-0 difficulty across
the environments, GCPO and SRL-Std also ex-
hibit faster convergence. However we note
that GCPO leverages a pretrained policy during
training which substantially increases its over-
all time. Furthermore, similar to the main re-
sults discussed earlier, PPO+Ent exhibits vary-
ing behavior against PPO in convergence as
well. For Navigation and Building environ-
ments, we also note some of the baselines ex-
hibiting very delayed convergence towards end
of training iterations for levels 1 and 2. Quantitatively characterizing, for eg over Building-level-0
PPO has plateau at 1636 whereas ours at 576 thus the ratio of 0.35 whereas the corresponding cor-
relation value of 2 − 2ρ = 0.38, thus providing a very strong justification of lemma 4. We observe
similar behavior for other environment and difficulty levels as well, albeit with some margin of er-
ror as discussed in remark 7 and accounting for the difficulty of approximation of the value and Q
functions (Moon et al., 2023; Engstrom et al., 2020).

6 CONCLUSION

We introduce a novel intrinsic reward formulation based on the notion of “Effective Resistance”
from spectral graph theory. By providing extensive empirical results guided by the theoretical con-
tributions, we show that this formulation works well across a diverse suite of tasks and only incurs
a marginal increase in the runtime over baseline PPO but provides much faster convergence during
training. We further conduct experiments to discuss the behavior of trained policies over the evolu-
tion of our intrinsic reward, goal visibility during navigation and analysis of key hyperparameters.
We expect to drive the community’s attention to graph based formulations, such as the one proposed
in this work, as these provide a higher degree of interpretability as described earlier in figure 1 along
with the performance improvements.

9

Published as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Adhering to the guidelines, we have provided all the relevant implementation details in section A.5.
For the theoretical results, all the relevant assumptions, definitions and proofs are detailed in sec-
tion A.1

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning, 2017. URL https://arxiv.org/abs/1703.01732.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay, 2018.
URL https://arxiv.org/abs/1707.01495.

Luka Antonyshyn and Sidney Givigi. Deep model-based reinforcement learning for predictive
control of robotic systems with dense and sparse rewards. Journal of Intelligent & Robotic
Systems, 110(3):100, 2024. ISSN 1573-0409. doi: 10.1007/s10846-024-02118-y. URL
https://doi.org/10.1007/s10846-024-02118-y.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies, 2020. URL https:
//arxiv.org/abs/2002.06038.

Nikhil Barhate. Minimal pytorch implementation of proximal policy optimization. https://
github.com/nikhilbarhate99/PPO-PyTorch, 2021.

Andrew G Barto. Reinforcement learning: An introduction. by richard’s sutton. SIAM Rev, 6(2):
423, 2021.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli-
gence Research, 15:319–350, November 2001. ISSN 1076-9757. doi: 10.1613/jair.806.

Béla Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Enhancing
reinforcement learning with dense rewards from language model critic. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 9119–9138, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.515. URL
https://aclanthology.org/2024.emnlp-main.515/.

Minjun Choi, Junhyeong Ryu, Yongseok Son, Sungrae Cho, and Jeongyeup Paek. Lidar-based local-
ization for autonomous vehicles - survey and recent trends. In 2024 15th International Conference
on Information and Communication Technology Convergence (ICTC), pp. 456–460, 2024. doi:
10.1109/ICTC62082.2024.10827346.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Charles J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, 1987.

10

https://arxiv.org/abs/1703.01732
https://arxiv.org/abs/1707.01495
https://doi.org/10.1007/s10846-024-02118-y
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch
https://arxiv.org/abs/1606.01540
https://aclanthology.org/2024.emnlp-main.515/

Published as a conference paper at ICLR 2026

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for
reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 8622–8636.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/486c0401c56bf7ec2daa9eba58907da9-Paper.pdf.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo, 2020. URL https://arxiv.org/abs/2005.12729.

E. J. Evans and A. E. Francis. Algorithmic techniques for finding resistance distances on structured
graphs, 2021. URL https://arxiv.org/abs/2108.07942.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):
298–305, 1973.

Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets graph
theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’05, pp. 156–165, USA, 2005. Society for Industrial and Applied Mathematics. ISBN
0898715857.

Joshua Hare. Dealing with sparse rewards in reinforcement learning. arXiv preprint
arXiv:1910.09281, 2019.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: A unified safe reinforcement
learning benchmark, 2024. URL https://arxiv.org/abs/2310.12567.

Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world, 2020. URL
https://arxiv.org/abs/2002.03329.

Sining Li and Ahad N. Zehmakan. Graph-based generalization of galam model: Convergence
time and influential nodes. Physics, 5(4):1094–1108, 2023. ISSN 2624-8174. doi: 10.3390/
physics5040071. URL https://www.mdpi.com/2624-8174/5/4/71.

You Li and Javier Ibanez-Guzman. Lidar for autonomous driving: The principles, challenges, and
trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4):
50–61, July 2020. ISSN 1558-0792. doi: 10.1109/msp.2020.2973615. URL http://dx.
doi.org/10.1109/MSP.2020.2973615.

Yunge Li and Lanyu Xu. Panoptic perception for autonomous driving: A survey, 2024. URL
https://arxiv.org/abs/2408.15388.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning, 2023a. URL https://arxiv.
org/abs/2306.03310.

Grace Liu, Michael Tang, and Benjamin Eysenbach. A single goal is all you need: Skills and explo-
ration emerge from contrastive rl without rewards, demonstrations, or subgoals. arXiv preprint
arXiv:2408.05804, 2024.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Xiaotian Liu, Hector Palacios, and Christian Muise. Egocentric planning for scalable embodied task
achievement, 2023b. URL https://arxiv.org/abs/2306.01295.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark
for language-conditioned policy learning for long-horizon robot manipulation tasks, 2022. URL
https://arxiv.org/abs/2112.03227.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/486c0401c56bf7ec2daa9eba58907da9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/486c0401c56bf7ec2daa9eba58907da9-Paper.pdf
https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2108.07942
https://arxiv.org/abs/2310.12567
https://arxiv.org/abs/2002.03329
https://www.mdpi.com/2624-8174/5/4/71
http://dx.doi.org/10.1109/MSP.2020.2973615
http://dx.doi.org/10.1109/MSP.2020.2973615
https://arxiv.org/abs/2408.15388
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.01295
https://arxiv.org/abs/2112.03227

Published as a conference paper at ICLR 2026

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments, 2021. URL https://arxiv.org/
abs/2103.04529.

Pawel Miera, Hubert Szolc, and Tomasz Kryjak. Lidar-based drone navigation with reinforcement
learning, 2023. URL https://arxiv.org/abs/2307.14313.

Seungyong Moon, JunYeong Lee, and Hyun Oh Song. Rethinking value function learning for gener-
alization in reinforcement learning, 2023. URL https://arxiv.org/abs/2210.09960.

Ofir Nachum, Mohammad Norouzi, George Tucker, and Dale Schuurmans. Smoothed action value
functions for learning gaussian policies, 2018. URL https://arxiv.org/abs/1803.
02348.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in neural information processing systems, 32, 2019.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl, 2025. URL https://arxiv.org/abs/2410.20092.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 7750–7761. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/pitis20a.html.

Theodore S. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall PTR,
2nd edition, 2002.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
https://arxiv.org/abs/2009.01325.

Gautham Vasan, Yan Wang, Fahim Shahriar, James Bergstra, Martin Jagersand, and A. Rupam
Mahmood. Revisiting sparse rewards for goal-reaching reinforcement learning, 2024. URL
https://arxiv.org/abs/2407.00324.

Luca Viano, Yu-Ting Huang, Parameswaran Kamalaruban, Adrian Weller, and Volkan Cevher. Ro-
bust inverse reinforcement learning under transition dynamics mismatch. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Process-
ing Systems, 2021. URL https://openreview.net/forum?id=t8HduwpoQQv.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. In International Conference on Machine Learning, pp.
36411–36430. PMLR, 2023.

Vikram Waradpande, Daniel Kudenko, and Megha Khosla. Graph-based state representation for
deep reinforcement learning, 2021. URL https://arxiv.org/abs/2004.13965.

Guangtong Xu, Tianyue Wu, Zihan Wang, Qianhao Wang, and Fei Gao. Flying on point clouds with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.00496.

Gong Xudong, Feng Dawei, Kele Xu, Bo Ding, and Huaimin Wang. Goal-conditioned on-policy re-
inforcement learning. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=KP7EUORJYI.

12

https://arxiv.org/abs/2103.04529
https://arxiv.org/abs/2103.04529
https://arxiv.org/abs/2307.14313
https://arxiv.org/abs/2210.09960
https://arxiv.org/abs/1803.02348
https://arxiv.org/abs/1803.02348
https://arxiv.org/abs/2410.20092
https://proceedings.mlr.press/v119/pitis20a.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2407.00324
https://openreview.net/forum?id=t8HduwpoQQv
https://arxiv.org/abs/2004.13965
https://arxiv.org/abs/2503.00496
https://openreview.net/forum?id=KP7EUORJYI

Published as a conference paper at ICLR 2026

Rui Yuan, Robert M. Gower, and Alessandro Lazaric. A general sample complexity analysis of
vanilla policy gradient, 2022. URL https://arxiv.org/abs/2107.11433.

Xiao-Dong Zhang. The laplacian eigenvalues of graphs: a survey, 2011. URL https://arxiv.
org/abs/1111.2897.

Xiang Zheng, Xingjun Ma, Chao Shen, and Cong Wang. Constrained intrinsic motivation for rein-
forcement learning. arXiv preprint arXiv:2407.09247, 2024.

Yongle Zou, Binlong Wu, Xinglin Wan, and Peipei Meng. A survey of lidar-based 3d slam in
indoor degraded scenarios. In 2024 6th International Conference on Frontier Technologies of
Information and Computer (ICFTIC), pp. 856–861, 2024. doi: 10.1109/ICFTIC64248.2024.
10912938.

Markel Zubia, Thiago D. Simão, and Nils Jansen. Robust transfer of safety-constrained reinforce-
ment learning agents. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=rvXdGL4pCJ.

13

https://arxiv.org/abs/2107.11433
https://arxiv.org/abs/1111.2897
https://arxiv.org/abs/1111.2897
https://openreview.net/forum?id=rvXdGL4pCJ

Published as a conference paper at ICLR 2026

A APPENDIX

A.1 DETAILS OF THEORETICAL ANALYSIS

This section provides the formal assumptions, definitions, remarks, and complete proofs for the
theoretical results presented in Section 4.

A.1.1 CORE ASSUMPTIONS

Assumption 1 (Bounded Sensing Range). The agent has a fixed sensing radius R > 0. Objects
beyond distance R from the agent are not included in the graph Gt. The environment is bounded:
agent and objects are confined to a domain Ω ⊂ R2 with diameter D < ∞. This ensures finite
graph sizes and well-defined computational procedures.
Assumption 2 (Consistent Graph Construction). At each timestep t, the graph Gt = (Vt, Et,Wt) is
constructed deterministically relative to the agent using a fixed rule:

• All objects within radius R are connected to the agent

• Edge weights represent the notion of vicinity/closeness, which we assume ∈ (0, 1]

• The goal is included if it is within R
Assumption 3 (Bounded Object Dynamics). All objects (including the goal) move with bounded
velocity: ∥vobj(t)∥ ≤ Vmax. The agent’s velocity is similarly bounded: ∥vA(t)∥ ≤ vmax. This
prevents arbitrary changes in graph structure. This assumption is realistic for any practical envi-
ronment.
Assumption 4 (Connected Goal Path). There exists at least one continuous path from any reachable
agent position to the goal through free space when both are in the sensing range. This ensures the
task is well-posed, as otherwise
Assumption 5 (Graph Size Bounds). The number of nodes in Gt is bounded: nmin ≤ |Vt| ≤ nmax

for all t. This ensures computational tractability.
Assumption 6 (Goal Visibility Model). The probability of maintaining goal visibility is a monoton-
ically increasing function of the graph’s current algebraic connectivity. We model this relationship
as:

E[1goal(t+ 1)|Gt] ≥ 1− exp(−C4κ(Gt))
for some constant C4 > 0. This is justified as higher connectivity, which implies both a greater
likelihood of maintaining proximity (via lower effective resistance) and a lower likelihood of goal
path occlusion due to a greater number of redundant pathways. This exponential form is a standard
modeling choice in network reliability and percolation theory (Colbourn, 1987; Bollobás, 2001).
Remark 1 (Justification for Assumption 6). This assumption formalizes the intuitive link between
the abstract graph connectivity and the tangible task objective of maintaining goal visibility. The
justification rests on two physical components of visibility: proximity and occlusion, both of which
are positively influenced by higher algebraic connectivity (κ).

1. Proximity: A policy that is incentivized to increase connectivity will naturally favor actions
that maintain proximity to the goal. As established in Lemma 1, high algebraic connectivity
(κ) corresponds to low effective resistance (Reff), and our intrinsic reward encourages the
agent to minimize this resistance, thus reducing the “difficulty” of paths to the goal.

2. Occlusion: A more connected graph implies the existence of more redundant pathways
between the agent and the goal. In the physical environment, this translates to having
more alternative lines-of-sight, which reduces the probability of total occlusion by dynamic
obstacles.

Given that the probabilities of maintaining proximity and avoiding occlusion are monotonically
increasing functions of κ, their product (the probability of maintaining visibility) is also monoton-
ically increasing. The exponential form 1 − exp(−C4κ) is a standard modeling choice for such
phenomena because it respects probability bounds [0, 1], captures the intuitive notion of diminish-
ing returns, and is mathematically tractable. This functional form is well-established in related

14

Published as a conference paper at ICLR 2026

fields such as network reliability analysis (Colbourn, 1987), wireless communication (Rappaport,
2002), and graph connectivity studies (Bollobás, 2001), validating its appropriateness for modeling
connectivity-dependent events.

A.1.2 KEY DEFINITIONS

Definition 1 (Graph Laplacian). For graph Gt = (Vt, Et,Wt) with n nodes, the Laplacian matrix
L(t) ∈ Rn×n is defined as:

Lij(t) =


∑

k ̸=i wik(t) if i = j

−wij(t) if (i, j) ∈ Et

0 otherwise

The Laplacian is the core of graph theory (Zhang, 2011).
Definition 2 (Effective Resistance). For nodes i and j in graph Gt, the effective resistance is:

Reff(i, j;Gt) = (ei − ej)TL+(t)(ei − ej)
where ek is the k-th standard basis vector. This measures the “difficulty” of information flow be-
tween nodes i and j.
Definition 3 (Algebraic Connectivity). The algebraic connectivity of graph Gt is:

κ(Gt) = λ2(L(t))

where λ2 is the second-smallest eigenvalue of the Laplacian. Higher values indicate better connec-
tivity. For disconnected graphs, κ(Gt) = 0.
Definition 4 (Edge weights wi,j). The edge weights in Wt are a function of the state/observation
vector st, ie,

wi,j(t) = hi,j(st)

described via algorithm 1. Here, we loosely define the function via indexing (i, j) , but based on the
aforementioned assumptions, all such hi,j

1. are continuous

2. Lipschitz w.r.t to the input st thus

|hi,j(st)− hi,j(st′)| ≤ L̂|st − st′ |
and since the change is the state vectors is also bounded, we have that

|hi,j(st)− hi,j(st′)| ≤ L̄|t− t′|

where L̂ and L̄ are the respective Lipschitz constants

3. bounded between (0, 1] (notice 0 exclusive as discussed previously)
Definition 5 (Robust Navigation Policy). A policy π is (ϵ, δ, T)-robust if:

1. It reaches the goal with probability ≥ 1− ϵ within T steps

2. It maintains goal visibility: Eτ∼π[
∑T

t=0 1goal(t)] ≥ (1− δ)T

3. It preserves connectivity: Eτ∼π[κ(Gt)] ≥ δ for all t

This definition captures both task success and structural stability.

A.1.3 PROOFS FOR MAIN RESULTS

Hereafter, we denote Reff as the Effective Resistance between agent and goal node, ie, Reff(t) =
Reff(A, g;Gt)
Lemma 1: Under Assumptions 1-5, the temporal derivatives of effective resistance and connectivity
satisfy:

dReff(t)

dt
· dκ(Gt)

dt
≤ −C1|

dκ(Gt)
dt
|2

.

15

Published as a conference paper at ICLR 2026

Proof. The proof establishes the inverse relationship between the rates of change of effective resis-
tance and algebraic connectivity by analyzing the time derivative of the spectral decomposition of
Reff.

Step 1: Differentiability Framework. As established in the lemma statement, we consider a con-
tinuously evolving graph Gt. As the positions of all nodes are differentiable functions of time,
making the edge weights wij(t) and consequently the Laplacian matrix L(t) differentiable. For
generic graph perturbations, the second eigenvalue κ(t) = λ2(t) is simple (has multiplicity 1),
which ensures that κ(t) and its corresponding eigenvector v2(t) are differentiable functions of time.

Step 2: Spectral Decomposition. Our starting point is the spectral representation of the effective
resistance between the agent node A and the goal node g:

Reff =

n∑
i=2

1

λi(t)
⟨eA − eg, vi(t)⟩2

where λi(t) and vi(t) are the eigenvalues and orthonormal eigenvectors of L(t), respectively. From
this definition,Reff is also differentiable wrt time.

Step 3: Time Derivative Calculation. We now take the total derivative ofReff with respect to time
t. Applying the chain rule to each term in the summation:

dReff

dt
=

n∑
i=2

[
d

dt

(
1

λi(t)

)
· ⟨eA − eg, vi(t)⟩2 +

1

λi(t)
· d
dt

(
⟨eA − eg, vi(t)⟩2

)]
Let’s analyze the derivative of each part:

• The derivative of the eigenvalue term is: d
dt

(
1

λi(t)

)
= − 1

λi(t)2
dλi(t)

dt .

• The derivative of the eigenvector term involves the derivative of the eigenvectors, dvi

dt .

Substituting the first part back, we get:

dReff

dt
=

n∑
i=2

[
− 1

λi(t)2
dλi(t)

dt
⟨eA − eg, vi(t)⟩2

]
+ terms involving

dvi
dt

For graph evolutions in which the dominant effect on the change in resistance comes from the change
in the eigenvalues, particularly the smallest non-zero one, λ2(t) = κ(t), the change in eigenvectors
typically has a smaller impact. Thus, we can approximate the relationship by focusing on the most
significant term in the sum, which is the term for i = 2:

dReff

dt
= − 1

λ2(t)2
dλ2(t)

dt
⟨eA − eg, v2(t)⟩2 +O(ϵ0) = −

1

κ(t)2
dκ(t)

dt
⟨eA − eg, v2(t)⟩2 +O(ϵ0)

for O(ϵ0)

− 1
κ(t)2

dκ(t)
dt ⟨eA−eg,v2(t)⟩2

→ 0

Step 4: Sign Analysis. We now analyze the terms in the relationship derived above to establish the
final inequality. Let’s define a term C(t) = 1

κ(t)2 ⟨eA − eg, v2(t)⟩
2.

• For a connected graph, the algebraic connectivity κ(t) = λ2(t) is strictly positive. There-
fore, 1

κ(t)2 > 0.

• The term ⟨eA − eg, v2(t)⟩2 represents the squared projection of the vector (eA − eg) onto
the Fiedler vector (Fiedler, 1973) v2(t). The vector (eA − eg) is orthogonal to the first
eigenvector v1(t) (the constant vector). For any non-pathological connected graph, (eA −
eg) is not orthogonal to the Fiedler vector v2(t), ensuring that ⟨eA − eg, v2(t)⟩2 > 0 with
high probability.

16

Published as a conference paper at ICLR 2026

Since both components of C(t) are positive, C(t) > 0. Our relationship is thus:

dReff

dt
≈ −C(t)dκ(t)

dt

To arrive at the form in the lemma statement, we multiply both sides by dκ(t)
dt :(

dReff

dt

)(
dκ(t)

dt

)
≈ −C(t)

(
dκ(t)

dt

)2

= −C(t)
∣∣∣∣dκ(t)dt

∣∣∣∣2
Since C(t) is strictly positive and bounded below by some constant C1 over the compact state space
over which we have the possible graph configurations, we obtain:

dReff

dt

dκ(t)

dt
≤ −C1

∣∣∣∣dκ(t)dt

∣∣∣∣2
This establishes the inverse relationship: when connectivity increases (dκdt > 0), effective resistance
decreases (dReff

dt < 0), and vice-versa.

Remark 2. Lemma 1 establishes that higher connectivity directly reduces effective resistance, mak-
ing the goal more accessible. This is intuitive: more connections provide alternative paths, reducing
the “electrical resistance” between agent and goal.

Lemma 2 Under Assumptions 1-5, for any action at:

|κ(Gt+1)− κ(Gt)| ≤ δmax

where δmax = C2 ·∆wmax + k for constants C2, C3 > 0, and k is the maximum number of nodes
that can be added/removed per timestep (we discuss its practicality in section A.6).

Proof. The change in the graph structure from Gt to Gt+1 is a result of two distinct processes:
(1) discrete changes in the graph’s topology as nodes and edges are added or removed, and (2)
continuous changes in edge weights due to the movement of the agent and objects. We will bound
the impact of each process on the algebraic connectivity κ(t) and then combine them.

Case 1: Bounding the Effect of Topological Changes (Node Addition/Removal). This compo-
nent bounds the change in connectivity when the set of vertices Vt changes.

• Bounding the Number of Node Changes (k): Nodes are added or removed when objects
cross the agent’s sensing radius R. By Assumption 3, the agent’s velocity is bounded by
vmax and object velocities are bounded by Vmax. The maximum relative speed between
the agent and any object is thus vmax + Vmax. In a time interval ∆t, the number of objects
that can cross agent’s radial boundary is finite and bounded, as it depends on this maximum
speed and the density of objects in the environment (which is finite by Assumption 5). This
implicitly bounds the value of k by algorithm 1.

• Bounding the Connectivity Change: Standard results in spectral graph theory provide
bounds on the change in κ when k nodes are removed or added. A simple bound is |∆κ| ≤
k · wmax, where wmax is the maximum possible edge weight, with 0 < wi,j ≤ 1 as
discussed earlier.

Combining these, the maximum change in connectivity due to topological changes, which we denote
|∆κ|nodes, is bounded by a constant factor of k:

|∆κ|nodes ≤ k

Case 2: Bounding the Effect of Edge Weight Perturbation. This component bounds the change
in connectivity when the graph topology is fixed but edge weights change due to movement.

• Bounding Weight Changes (∆wmax): As previously discussed, since 0 < wi,j ≤ 1, thus
0 ≤ ∆wmax < 1

17

Published as a conference paper at ICLR 2026

• Applying Matrix Perturbation Theory: By Weyl’s inequality, the change in any eigen-
value of a Hermitian matrix is bounded by the spectral norm of the matrix perturbation.
Applying this to the Laplacian matrix L(t):

|κ(Gt+1)− κ(Gt)| = |λ2(Lt+1)− λ2(Lt)| ≤ ∥Lt+1 − Lt∥2 = ∥∆L∥2

The spectral norm ∥∆L∥2 is itself bounded by a function of ∆wmax and the graph’s max-
imum degree (which is bounded by nmax under Assumption 5). This relationship can be
expressed as ∥∆L∥2 ≤ C2 ·∆wmax for some constant C2 which depends on the environ-
ment dynamics.

Combining these, the maximum change in connectivity due to edge weight perturbations, denoted
|∆κ|weights, is:

|∆κ|weights ≤ C2 ·∆wmax ≤ C2

Combined Effect. To find the total bound, we use the triangle inequality. Let G′t be a hypothetical
graph with the same nodes as Gt but with the edge weights of Gt+1. The total change can be
decomposed as:

|κ(Gt+1)− κ(Gt)| = |κ(Gt+1)− κ(G′t) + κ(G′t)− κ(Gt)|

≤ |κ(Gt+1)− κ(G′t)|︸ ︷︷ ︸
Effect of node changes

+ |κ(G′t)− κ(Gt)|︸ ︷︷ ︸
Effect of weight changes

The first term is bounded by |∆κ|nodes and the second term is bounded by |∆κ|weights. Therefore, the
total change is bounded by the sum of the individual bounds:

|κ(Gt+1)− κ(Gt)| ≤ |∆κ|weights + |∆κ|nodes ≤ C2 ·∆wmax + k

This sum defines the maximum possible change in connectivity in a single time step, δmax.

Corollary 2 (Continuity and Lipschitzness of κ almost surely, a.s.). The connectivity function κ(Gt)
is continuous and Lipschitz continuous with respect to time t

Proof. This corollary is a direct consequence of the bounded change in connectivity established in
Lemma 2. We prove each property separately.

Part 1: Proof of Continuity

To prove continuity at a time t, we must show that lim∆t→0 |κ(Gt+∆t)− κ(Gt)| = 0.

From the result of Lemma 2, for any time interval ∆t > 0, the change in connectivity is bounded
by:

|κ(Gt+∆t)− κ(Gt)| ≤ δmax

Substituting the expression for δmax:

|κ(Gt+∆t)− κ(Gt)| ≤ C2 ·∆wmax(∆t) + k(∆t)

where we define ∆wmax(∆t) as the change in the maximum edge weight difference and k(∆t) is
the number of nodes that can enter or leave the sensing radius within the time interval ∆t.
We discuss each of these separately:

1. As defined earlier in definition 4, we have ∆wmax(∆t) ≤ L̄∆t

2. For k(∆t) we note that as the time interval shrinks (∆t → 0), the maximum distance
any object can travel also shrinks. While there exists some cases when the k can change
somewhat arbitrarily even as ∆t→ 0 (such as when all objects are moving radially inwards
towards the agent and abruptly cross cross within the sensing radius R), considering all
possibilities the probability of such events P (E) = 0 , where E : {k(∆t) ≫ nmin}.
Loosely speaking, such events have measure 0 and never occur almost surely, a.s and thus
we have almost surely that lim∆t→0 k(∆t) = 0

18

Published as a conference paper at ICLR 2026

Now, taking the limit of our inequality as ∆t→ 0:

lim
∆t→0

|κ(Gt+∆t)− κ(Gt)| ≤ lim
∆t→0

[C2∆wmax(∆t) + k(∆t)] = 0

which establishes the continuity for the function κ(t) almost surely.

Part 2: Proof of Lipschitz Property

To prove Lipschitz continuity, we must show that there exists a constant Lκ > 0 such that for any
two times t1 and t2:

|κ(Gt2)− κ(Gt1)| ≤ Lκ|t2 − t1|
First, we establish a bound on the magnitude of the time derivative of connectivity, |dκdt |. From the
inequality in Part 1, we can divide by ∆t:

|κ(Gt+∆t)− κ(Gt)|
∆t

≤ C2 · L̄+
k(∆t)

∆t

Taking the limit as ∆t → 0, the left side becomes the definition of the magnitude of the derivative.
The term k(∆t)

∆t represents the instantaneous rate of nodes crossing the sensing boundary, which
almost surely (as discussed above) is a finite value bounded by the environment’s dynamics. Let’s
call the maximum possible rate krate. ∣∣∣∣dκdt

∣∣∣∣ ≤ C2 · L̄+ krate

This shows that the derivative of the connectivity function is bounded. Let’s define this upper bound
as the Lipschitz constant, Lκ:

Lκ := C2 · L̄+ krate

Now, using the Fundamental Theorem of Calculus for any t1, t2 (assuming t1 < t2 without loss of
generality):

κ(t2)− κ(t1) =
∫ t2

t1

dκ(s)

ds
ds

Taking the absolute value of both sides and applying the triangle inequality for integrals (|
∫
fds| ≤∫

|f |ds):

|κ(t2)− κ(t1)| =
∣∣∣∣∫ t2

t1

dκ(s)

ds
ds

∣∣∣∣ ≤ ∫ t2

t1

∣∣∣∣dκ(s)ds

∣∣∣∣ ds
We can now substitute our bound for the derivative’s magnitude:

|κ(t2)− κ(t1)| ≤
∫ t2

t1

Lκds

Evaluating the simple integral gives:

|κ(t2)− κ(t1)| ≤ Lκ|t2 − t1|

This result can be written for any t1, t2 as |κ(t2) − κ(t1)| ≤ Lκ|t2 − t1|, which proves that κ(t) is
almost surely Lipschitz with constant Lκ.

Remark 3. Lemma 2 ensures that connectivity cannot change arbitrarily fast, providing stability
for the learning process. The bound increases with agent/object speeds and decreases with minimum
graph size, which is intuitive.

Lemma 3 (Policy Updates): The intrinsic reward rint(t) is positively correlated with the one-step
change in algebraic connectivity, ∆κ(t) = κ(Gt+1)− κ(Gt).

Proof. The proof relies on showing that actions which increase connectivity receive higher intrinsic
rewards in expectation. We analyze the immediate reward rint(t) based on the outcome of an action.

1. Case 1: Goal Visible (1goal(t) = 1,1goal(t+ 1) = 1): The reward is rint(t) = −∆Reff(t).
From Lemma 1, an increase in connectivity (∆κ > 0) implies a decrease in effective
resistance (∆Reff < 0). Thus, in this case, rint > 0.

19

Published as a conference paper at ICLR 2026

2. Case 2: Goal Lost (1goal(t) = 1,1goal(t+1) = 0): The reward is a large penalty rint(t) =
−β. Losing the goal node constitutes a major degradation of the graph structure, causing a
significant drop in connectivity (∆κ≪ 0).

3. Case 3: Goal Recovery (1goal(t) = 0,1goal(t + 1) = 1): The reward is a large bonus
rint(t) = +β. Recovering the goal node is a major structural improvement, causing a
significant increase in connectivity (∆κ≫ 0).

In all cases, there is a strong positive correlation between the sign of rint(t) and the sign of ∆κ(t).
Therefore, actions that are expected to increase connectivity will yield a higher expected intrinsic
reward.

Remark 4. Lemma 3 shows that our intrinsic reward is well-posed. Since policy gradient methods
update policies to increase the likelihood of actions that lead to higher rewards, this positive corre-
lation ensures the agent will learn to favor actions that preserve or enhance the graph’s structural
connectivity.

Theorem 1 Under Assumptions 1-6, a policy π∗ that maximizes the expected return with our effec-
tive resistance-based intrinsic reward is (ϵ, δ, T)-robust.

Proof. Part 1: Connectivity Preservation

1. Optimality Condition: Say the policy π∗ maximizes J(π) = Eζ∼π[
∑
γt(rext(t) +

αrint(t))]. At a local maximum, the policy gradient is zero: ∇θJ(π
∗) = 0. This im-

plies a balance between the gradients of the different reward components: α∇θJint(π
∗) =

−∇θJext(π
∗).

2. Expected Change in Connectivity: From Lemma 3 we know that increasing intrinsic
rewards (by virtue of policy updates that maximize the discounted reward) further leads
to trajectories that increase connectivity κ. It will avoid actions that needlessly decrease
connectivity, especially if an alternative exists that is neutral or beneficial to the extrinsic
reward.

3. Bounding the Expected Change: The worst possible single-step decrease in connectivity
is physically bounded by δmax, as shown in Lemma 2. Since the policy π∗ is optimized to
maximize reward, and actions leading to lower κ are penalized by rint, the policy will learn
to avoid these worst-case outcomes. Therefore, the expected change in connectivity under
π∗ must be no worse than this physical bound: Eτ∼π∗ [∆κ] ≥ −δmax. Substituting this
gives the desired result: Eτ∼π∗ [κ(Gt+1)] ≥ κ(Gt)− δmax

Part 2: Robust Navigation We demonstrate that π∗ satisfies the three conditions of Definition 5.

1. Goal Visibility Maintenance: By choosing β to be sufficiently large (Corollary 1), the
penalty for goal loss, −β, dominates all other single-step rewards or costs. An optimal
policy π∗ will be strongly driven to select actions that maintain goal visibility to avoid the
catastrophic −β penalty. This directly ensures that the expected time the goal is visible is
high, satisfying condition 2: E[

∑
1goal(t)] ≥ (1− δ)T .

2. Connectivity Preservation: This follows from Part 1 of this theorem and the result above.
Since the agent maintains goal visibility most of the time, its behavior is primarily governed
by the intrinsic reward rint = −∆Reff. As established, optimizing this reward preserves
connectivity. Thus, the expected connectivity under π∗ will remain above some positive
threshold δκ > 0, satisfying condition 3 above.

3. Goal Reaching Probability: With goal visibility maintained (from point 1) and connec-
tivity preserved (from point 2), the agent has a consistent view of the goal and receives a
dense, informative reward signal (rint) that guides it towards more “accessible” configura-
tions. This effectively transforms the sparse reward problem into one with a continuous
guidance signal. Standard RL convergence results apply, showing that an agent in this

20

Published as a conference paper at ICLR 2026

setting will learn a policy that reaches the goal with high probability, ≥ 1 − ϵ, satisfying
condition 1.

Since π∗ satisfies all three criteria, it is, by definition, an (ϵ, δ, T)-robust policy.

Remark 5. Theorem 1 establishes that our effective resistance-based intrinsic motivation naturally
leads to robust navigation policies. The key insight is that optimizing for goal accessibility (via
effective resistance) inherently promotes graph connectivity, which in turn supports reliable goal
reaching and visibility maintenance.

Corollary 1 For practical implementation, choose β ≥ C · maxs,a |rext(s, a)| and α ≥ C ′ ·
maxs,a |rext(s,a)|

δmaxC1
.

Proof. This corollary provides design principles derived directly from the theoretical results.

• Choice of β: The role of the ±β reward is to make goal visibility transitions the most
salient events for the learning agent. To guarantee that the agent prioritizes maintaining or
regaining goal visibility over any other immediate reward, the magnitude of β must exceed
the maximum possible value of any other reward or cost achievable in a single step. Setting
β ≥ C ·maxs,a |rext(s, a)| for a safety factor C > 1 formally enforces this dominance.

• Choice of α: The role of α is to scale the intrinsic reward’s influence on the policy up-
dates. This influence must be strong enough to promote exploration based on connectivity,
counteracting small extrinsic rewards that might otherwise lead the agent to degrade its
connectivity. The term δmax from Lemma 2 quantifies the maximum possible one-step
degradation of connectivity, while C1 from Lemma 1 quantifies the sensitivity of the re-
ward signal to connectivity changes. Combining these with the extrinsic reward value,
the ratio maxs,a |rext(s,a)|

δmaxC1
thus provides a natural scale for how much “work” the intrinsic

reward must do. Setting α proportional to this ratio ensures the connectivity-preserving
signal is appropriately weighted against the environment’s dynamics, with the safety factor
C ′ providing an additional buffer.

Remark 6. Theorem 1 establishes that our effective resistance-based intrinsic motivation naturally
leads to robust navigation policies. The key insight is that optimizing for goal accessibility (via
effective resistance) inherently promotes graph connectivity, which in turn supports reliable goal
reaching and visibility maintenance.

A.1.4 DETAILS OF CONVERGENCE AND SAMPLE COMPLEXITY ANALYSIS

Here, we provide the background and proof for the sample complexity result in Section 4.1. We
leverage the general sample complexity framework for policy gradient methods established by (Yuan
et al., 2022).
Definition 6 (Policy Gradient Estimator). Let

Jext(θ) = Eζ∼πθ
[

∞∑
t=0

γtrext(t)]

be the expected extrinsic return and

JT,ext(θ) = Eζ∼πθ
[

T∑
t=0

γtrext(t)]

be the truncated version of it
Additionally, let the GPOMDP gradient estimator Baxter & Bartlett (2001) for the finite horizon T
and with m trajectories be:

∇̂mJT,ext(θ) =
1

m

m∑
i=1

T−1∑
t=0

(
t∑

k=0

∇θ log πθ(a
(i)
k |s

(i)
k)

)
· γtr(i)ext (t)

21

Published as a conference paper at ICLR 2026

Similarly, for our method, the estimator for the total reward rtotal = rext + αrint can be denoted as
∇̂mJtotal(θ).
Assumption 7 (Smoothness and Truncation, assumption 3.1 and 3.2 (Yuan et al., 2022)). The
objective function Jext(θ) is Lipschitz-smooth with the constant G > 0. The truncation error of the
finite-horizon objective JT,ext(θ) w.r.t the original objective Jext(θ) is bounded by constantsD,D′ >
0.
Assumption 8 (ABC Condition (Khaled & Richtárik, 2020)). Let J∗ = supθ Jext(θ). There exist
non-negative constants A,B,C such that the policy gradient estimator ∇̂mJ(θ) satisfies:

E[∥∇̂mJT,ext(θ)∥2] ≤ 2A(J∗ − Jext(θ)) +B∥∇JT,ext(θ)∥2 + C

Under these conditions, the sample complexity to find an ϵ-approximate stationary point is derived
by (Yuan et al., 2022) as follows:
Theorem 2 (Sample Complexity of Policy Gradient, Thm 3.4 in Yuan et al. (2022)). Under As-
sumptions 7 and 8, to find a point θ such that E[∥∇J(θ)∥2] ≤ ϵ, the number of iterationsQ required
is bounded by:

(3)

U ≥ 12δ0G

ϵ2
·max

{
B,

12δ0A

ϵ2
,
2C

ϵ2

}
where δ0 = J∗ − J(θ0) is the initial suboptimality gap.

Proof of variance reduction in lemma 4 with sample complexity bounds using rint
Lemma 4 For the intrinsic reward be rint(t) = Reff(t)−Reff(t+1). The policy gradient estimator
for the total reward satisfies:

1. Almost Unbiased Estimator: E[∇̂mJT,total(θ)] ≈ ∇JT,ext(θ).

2. Variance Reduction: Ctotal ≈ Cext(1− ρ2), where ρ = Corr(Qext(st, at),−Reff(st)).

Proof. Part 1: Almost Unbiased Gradient Estimator: The sum of intrinsic rewards from time t
to a finite horizon T forms a telescoping series:

T−1∑
k=t

rint(k) =

T−1∑
k=t

γk−t(Reff(k)−Reff(k + 1)) (4)

= Reff(t) +

T−1∑
k=t+1

γk−t−1 × (γ − 1)Reff(sk)− γT−t−1Reff(sT) (5)

As the value of γ ≈ 1 (0.99 used in our experiments and commonly across the literature, table 2),
we note that all the terms but Reff(t) become negligible in comparison, ie

∑T−1
k=t+1 γ

k−t−1 × (γ −
1)Reff(sk) − γT−t−1Reff(sT) → 0. Thus the total reward-to-go admits the form Qtotal(st, at) ≈
Qext(st, at) + αReff(t). Since the second term depends only on the current state, we can consider
b(st) = αReff(t) as a state dependent baseline. It is a foundational result of the policy gradient
theorem that subtracting a state-dependent baseline b(st) from the returns does not change the ex-
pectation of the gradient. Therefore,

E[∇̂mJT,total(θ)] ≈ E[∇̂mJT,ext(θ)] = ∇JT,ext(θ)

Part 2: Variance Reduction. The constants B and C important components in the variance of the
reward-to-go estimator V ar(Q(st, at)) in the ABC condition 8 and adapting to our formulation of
the second moment of the gradient E[∥∇̂mJtotal(θ)∥2] will affect values of B and C in the bound of
the assumption. Thus we focus on providing an argument to reduce this. Essentially,

V ar(Qtotal) = V ar(Qext − b(st))

From the literature, we know that the optimal baseline that minimizes variance is the value function
itself. Our term −Reff(t) is designed as a proxy for the value function: it is low when far

22

Published as a conference paper at ICLR 2026

from the goal (low expected return) and high when near the goal (high expected return). This is
essentially what we justified empirically in the correlations plot 6 of section 5.2 where we showed a
strong correlation between −Reff(t) with the value function.

Using the standard definition of V ar(X − Y) = V ar(X) + V ar(Y) − 2Cov(X,Y), we can see
that:

V ar(Qext − b(st)) = V ar(Qext) + V ar(b(st))− 2× ρ×
√
V ar(Qext)×

√
V ar(b(st)) (6)

where ρ = Correlation(Qext, b(st))
As discussed in our implementation (sections A.5 and A.6), we have rint(t) = O(rext(t)) and thus
within reasonable approximations we consider V ar(b(st)) = O(V ar(Qext)). This leads to the

V ar(Qext − b(st)) = O(V ar(Qext)(2− 2ρ))

The larger this correlation coefficient ρ, the more improvement we expect in the sample complexity
and thereby the convergence.
This formulation thus leads to a direct reduction in the variance-dependent constants B and C in
assumption 8 as Btotal = O(Bext(2 − 2ρ)) as well as Ctotal = O(Cext(2 − 2ρ)) , which even with a
relatively weaker correlation of ρ ≥ 0.5 leads to improvements. Especially in the sparse reward
settings where Qext has high variance, a high correlation ρ leads to a substantial variance
reduction.

Plugging the above results in Thereom 2 and noting that in sparse reward settings the termsB as well
as 2C

ϵ2 in the complexity bound are the bottleneck, we have the following version of the improved
sample complexity bound:

Utotal ≥
12δ0G

ϵ2
·max

{
Btotal,

12δ0Atotal

ϵ2
,
2Ctotal

ϵ2

}
(7)

where Utotal are the number of gradient iterations in our case.
Even with Atotal ≈ Aext ; to obtain an ϵ-accurate solution, ie,

Utotal ≈ U(2− 2ρ)

This justifies the faster convergence we observe empirically in section 5.2 of the main paper.

Remark 7. We note that in the implementation of PPO algorithm, for which we use the above
policy gradient bounds as a proxy, we only learn to approximate the value function V π via a neural
network and not the Q function as discussed in the proof A.1.4 above. Since we are dealing with
environments where the agent and object dynamics are continuous, we expect the value function and
Q function exhibit high correlation (following works such as Nachum et al. (2018) that focus on
gaussian smoothed version of the Q function), ie, the states with very high value function with high
probability have actions leading to high discounted cumulative rewards. Thus the plots provided in
section 5.2 serve again as a proxy for what the correlation of the baseline −αReff looks w.r.t the Q
function.

A.2 EXPERIMENTAL DETAILS

A.2.1 AGENT

We use the Point agent from the Safety Gym similar to (Zubia et al., 2025) which has 12 dimensions
(using the notation LA(t) at the tth timestep for its vector):

• Accelerometer in (−∞,∞)3, for measuring the acceleration in m/s2

• Velocimeter in (−∞,∞)3, for measuring the velocity of the agent in m/s

• Gyroscope in (−∞,∞)3, for measuring the angular velocity in rad/s

• Magnetometer in (−∞,∞)3, for measuring the magnetic flux in Wb

23

Published as a conference paper at ICLR 2026

A.2.2 THE OBSERVATION VECTOR

The observation or state vector st, which we will interchangeably refer to as Lobs(t) to characterize
the LiDAR, includes the goal as well as all the other objects and is environment specific. The
dimensionality of this vector is defined by the number of LiDARs used for each type of object as
well as the goal. We have used 32 LiDARs for each object category in this work. As provided in the
implementation of the Safety-gym library, the values of the LiDAR are normalized between 0 and
1 and they represent the vicinity of the objects w.r.t the agent. If any of the LiDARs record some
object oi being extremely close to A, the corresponding value→ 1, whereas for faraway readings
the values→ 0.

Practicality of Using LiDAR data (Lobs): Before providing further details, we highlight the core
reasons for using the LiDAR information as the environment state Lobs(t) or st. In most real-world
scenarios the agents are mounted with LiDARs to precisely assess the vicinity, (Choi et al., 2024;
Zou et al., 2024), and training RL agents using LiDAR information has become mainstream in many
recent works (Zubia et al., 2025; Miera et al., 2023; Xu et al., 2025). This has happened since the
LiDARs measurements are often better than other mechanisms such as sonar, radar, cameras etc (Li
& Xu, 2024; Li & Ibanez-Guzman, 2020). Other example include the entire self-driving industry
(Waymo, Cruise), humanoid startups such as Boston Dynamics etc which all mount sensors, most
often LiDAR, on the agents.

To generalize further to broader sensory data input, even the popular contemporary RL benchmarks
such as CALVIN (Mees et al., 2022), LIBERO (Liu et al., 2023a) etc, utilize sensory information.

Environment Specifications:

1. Navigation: For the navigation environment, along with the goal object there are obstacles
which consist of - gremlins, hazards and buttons in the environment. There is a specific
negative cost associated with each of obstacle categories across difficulty levels. These
negative costs are again very sparse as collisions occur rarely.

(a) Difficulty Level 0 : consists of LiDARs for the four buttons which is a 32 dimensional
vector and another set of LiDARs corresponding to the 32 dimensions for the goal
object (note the goal is mounted on one of the buttons but contains a separate set of
LiDARs for its tracking). Thus, Lobs(t) ∈ [0, 1]64. There are no gremlins and hazards
in this environment.

(b) Difficulty Level 1: consists of LiDARs for the four buttons which is a 32 dimensional
vector, LiDARs for the 32 dimensions for the goal object, LiDAR for the four gremlins
which is also a 32 dimensional vector and lastly the LiDARs for the four hazards which
is again a 32 dimensional vector. Thus, Lobs(t) ∈ [0, 1]128.

(c) Difficulty Level 2: consists of the same setting as Level 1, but this contains 6 gremlins
and 8 hazards instead of 4 each in Level 1, thus making it significantly more chal-
lenging. Note that Lobs(t) ∈ [0, 1]128 since each of the 32 dimensional LiDAR vector
corresponding to either type of the objects remain fixed, but the specific type of object
LiDARs are now tracking many more those objects, as in the case of gremlins and
hazards increasing in number at this difficulty level 2.

2. Building: In this environment, along with the goal object, there are multiple machines,
other robots and risk areas which are the obstacles the agent needs to avoid. Similar to
above, there is a negative cost associated with the obstacle categories across difficulty levels

(a) Difficulty Level 0 : consists of LiDARs for the four machines which is a 32 dimen-
sional vector and another set of LiDARs corresponding to the 32 dimensions for the
goal object, this Lobs(t) ∈ [0, 1]64. There are no robots and risk areas in this environ-
ment.

(b) Difficulty Level 1: consists of LiDARs for the four machines which is a 32 dimen-
sional vector, LiDARs for the 32 dimensions for the goal object, set of LiDARs for
the four robots which is also a 32 dimensional vector and lastly the LiDARs for the
four risk areas which is again a 32 dimensional vector. Thus, Lobs(t) ∈ [0, 1]128.

(c) Difficulty Level 2: consists of the same setting as Level 1, but this contains 6 robots
and 8 risk areas instead of 4 each in Level 1, thus significantly increasing the difficulty
of navigation, Lobs(t) ∈ [0, 1]128.

24

Published as a conference paper at ICLR 2026

3. Fading: The Fading environment poses a unique challenge in that the goal disappears lin-
early after 150 steps of the environment’s refresh. The environment contains the goal object
which the agent needs to navigate to, along with obstacles termed as hazards and vases. The
negative cost is again provided per category.

(a) Difficulty Level 0: consists of LiDARs for the goal object with Lobs(t) ∈ [0, 1]32

without any obstacles.

(b) Difficulty Level 1: consists of the usual 32 LiDARs for the goal object, 32 LiDARs
corresponding to the eight hazards and 32 LiDARs corresponding to the vase. Thus
Lobs(t) ∈ [0, 1]96

(c) Difficulty Level 2: consists of the usual 32 LiDARs for the goal object, 32 LiDARs
corresponding to the ten hazards and 32 LiDARs corresponding to ten vases. Thus
Lobs(t) ∈ [0, 1]96, with significantly more obstacles to avoid disappearing goal object.

A.3 VISUALIZATIONS

Environments: A visualization representation of all these combinations of environments with vary-
ing difficulty levels is provided in figures 7, 8 and 9 respectively.

Goal Not Captured at certain timestep: Our definition of rint(t) from section 3.1 characterizes
the visibility of goal and a significant penalty of −β when its not captured on Agent’s LiDAR. We
provide a sample visualization of a case where the agent drifts far off in the environment in figure
10 such that the goal is outside the sensing range and thus the indices corresponding to the goal in
the observation vector become zero. These high negative intrinsic reward situations provide a strong
signal to the agent to learn a better policy and we empirically show that the learned policies have
much better navigation during evaluation in section A.8.2.

(a) Navigation-Level-0 (b) Navigation-Level-1 (c) Navigation-Level-2

Figure 7: Visualization of the Navigation Environment with Level-0 (left figure), Level-1 (center
figure) and Level-2 (right figure), where the Red spherical ball with a pointed blue cube is the agent
with the LiDARs mounted over it and the goal is the green colored cylinder.

25

Published as a conference paper at ICLR 2026

(a) Building-Level-0 (b) Building-Level-1 (c) Building-Level-2

Figure 8: Visualization of the Building Environment with Level-0 (left figure), Level-1 (center fig-
ure) and Level-2 (right figure), where the agent needs to operate various machines with the Parking
symbol being the goal machine.

(a) Fading-Level-0 (b) Fading-Level-1 (c) Fading-Level-2

Figure 9: Visualization of the Fading Environment with Level-0 (left figure), Level-1 (center figure)
and Level-2 (right figure). Notice how the goal appears faded and eventually vanishes.

Figure 10: An example from the Navigation Environment where the agent wanders off far away and
thus the goal is not captured on the agent’s LiDAR. The agent is thus also not captured in the camera
angle.

26

Published as a conference paper at ICLR 2026

A.4 GRAPH CONSTRUCTION ALGORITHM

Algorithm 1 Graph Construction from LiDAR Data
Input: LiDAR observation vector Lobs ∈ RN (environment specific), LiDAR threshold τ
Output: Graph Gt = (Vt, Et,Wt) with weighted-undirected edges

1: Initialize:
2: Graph Gt with empty node set Vt, edge set Et, and weight set Wt.
3: Create central agent node vA and add to Vt.
4: Fetch the partitions of Lobs for each category (object type): LS1 , · · · , LSi , · · · , LSP , Lgoal,

where i ∈ {1 ≤ i ≤ P}, P is number of categories (excluding Agent and Goal).

5: ▷ 1. Generate nodes for each category via LiDAR segments using algo 2
6: Vclusters ← {SegmentToNodes(LS1), · · · , SegmentToNodes(LSP), SegmentToNodes(Lgoal)}

7: Add all nodes from Vclusters to Vt.

8: ▷ 2. Connect agent to each node and also Create fully connected subgraphs within each cluster
9: for each cluster VC in {VS1 , · · · , VSP } do

10: for each node vi in VC do
11: Add edge (vA, vi) to Et with weight wA,i equal to agent-object vicinity
12: end for
13: for each pair of distinct nodes (vi, vj) in VC do
14: Add edge (vi, vj) to Et with weight wij equal to inter-object vicinity
15: end for
16: end for

17: ▷ 3. Compute cluster representatives
18: Vreps ← ∅
19: for each cluster VC in Vclusters do
20: Calculate representative node vrep (e.g., degree central node) for VC and add to Vreps.
21: end for

22: ▷ 4. Connect all cluster representatives to each other
23: for each pair of distinct representatives (vrep i, vrep j) in Vreps do
24: Add edge (vrep i, vrep j) to Et with weight based on vicinity.
25: end for

26: return Gt

27

Published as a conference paper at ICLR 2026

Algorithm 2 Segment to Nodes Function
1: function SEGMENTTONODES(Lsegment)
2: Vnodes ← ∅ ▷ Initialize an empty set for nodes in this segment
3: current node readings← []
4: for i = 1 to length(Lsegment) do
5: di ← Lsegment[i] ▷ Current LiDAR reading (vicinity)
6: if di > 0 then
7: if is empty(current node readings) or |di − last(current node readings)| < τ

then
8: Append di to current node readings
9: else

10: Create node v from current node readings; Add v to Vnodes
11: current node readings← [di] ▷ Start a new node
12: end if
13: else if is not empty(current node readings) then
14: Create node v from current node readings; Add v to Vnodes
15: current node readings← [] ▷ Reset on zero reading
16: end if
17: end for
18: if is not empty(current node readings) then ▷ Add the last processed node
19: Create node v from current node readings; Add v to Vnodes
20: end if
21: return Vnodes
22: end function

A.4.1 SAMPLE GRAPH VISUALIZATION CONSTRUCTED VIA ALGORITHM 1

A visual representation of the graph that is constructed via algorithm 1 is provided in figure 11 along
with the respective environment state in figure 12

0.61

0.33

0.76

0.61

0.75

0.50

0.64

0.73

0.4
6

0.37

0.87

0.51
0.82

0.35
0.51

0.21

0.29

0.69

0.
52

0.44

0.34

0.44

0.69

0.45

0.2
2

0.
73

0.
63

0.61

0.5
3

0.21

0.13

0.63

0.34

0.72

0.
44

0.08

-0.07

0.38

0.02

0.70

0.35

0.17

0.
56

0.17

0.65

0.47

0.
75

0.40

0.
76

0.56

0.43

0.34

0.50

0.56

0.6
2

0.
21

0.34

0.0
3

0.18

0.67

0.73

0.
43

-0.05
0.07

0.61

0.22

0.29

0.29

0.0
9 0.

46

agent

machine_0

machine_1

machine_2

goal_0

robots_0

robots_1

robots_2

robots_3

robots_4

robots_5

robots_6

robots_7
riskareas_0

riskareas_1

riskareas_2

riskareas_3
riskareas_4

riskareas_5

Current State Graph - Structured Layout
Agent
Machine
Goal
Robots
Riskareas

Figure 11: A sample visualization of the generated graph on the Building-Level-2 environment.
The edge weights here describe the vicinity of the objects as discussed in the graph construction
algorithm. The dark red edges are emphasized to show the edges from agent node to all other nodes,
and remaining edges shown in lighter color.

28

Published as a conference paper at ICLR 2026

Figure 12: The environment state corresponding to the graph in figure 11

A.5 IMPLEMENTATION AND HYPERPARAMETER DETAILS

A.5.1 GRAPH CONSTRUCTION HYPERPARAMETERS

Since the construction of Gt in algorithm 1 is the core of our method, we discuss the corresponding
design and hyperparameter choices as follows and explicitly detail these in table 1:

1. The value of LiDAR reading difference threshold τ , which is used to generate the nodes,
is a fairly non-trivial problem which depends on many factors of the environment dynam-
ics. We first obtained an approximate range for τ analytically, described in section A.5.3.
Using this range, we performed a sensitivity analysis over a set of values (results in section
A.9). Aggregating everything, we select τ = 0.1. Additionally, we emphasize that the con-
sistent choice of 0.1 also eases the setting of hyperparameters and reproducibility across
environments.

2. Graph Laplacian is un-normalized. Consider a simple example where there we have two
graphs G1 and G2 where G2 has the exact same connectivity as G1 but the edge weights
of G2 are scaled by some arbitrary factor b, ie the adjacency matrix of AG2

= b · AG1

(where b is multiplied to all elements of the adjacency matrix). Now the Normalized graph
laplacians of both the graphs are exactly the same, LG2 = LG1 , due to the normalization
property by the diagonal degree matrix. This has a counter effect as it completely ignores
the environment state and location of the goal w.r.t the agent which we also want to encode
in rint(t) in the first place. On the other hand, the Un-normalized laplacians provide us the
form LG2

= b · LG1
, retaining the changes of all other objects w.r.t the agent.

3. For the choice of graph connectivity (structure) described in algorithm 1, note that simply
the possible edge connections (ignoring the edge weights) are combinatorial and thus an
informed design decision has to be made to construct the graph Gt from Lobs(t). We
reiterate the algorithm here along with the rationale behind these decisions:

(a) Using each category cluster VC , a star graph is created where the agent node is con-
nected to every other node in the graph. This is done since in any environment the
agent is the core node w.r.t which we obtain information about the surroundings.

(b) Then we construct complete graphs within each VC in order to symbolize a strong
notion of object category (described in detail in section A.2 for all environments).
Another straightforward way to do is to introduce a different edge type for each object,
however such a construction makes the graph more complicated and usually requires
further decomposition in order to compute any property of the graph. Thus we restrict
ourselves to a unified edge type identified by its node-edge tuple (i, j, wij). Two
strong reasons led to this choice - (i) the number of nodes for each object type are
limited and thus even for a complete graph the subgraph size remains manageable, (ii)

29

Published as a conference paper at ICLR 2026

(Li & Zehmakan, 2023) describes the ease of obtaining node centrality (see next point
for this) in a complete graph.

(c) We then obtain the degree based central nodes, also called representatives, in Vreps and
connect those amongst each other making another subgraph. This type of subgraph
is generally small in most scenarios of interest as we are considering different types
of objects (in an environment which contains too many types, one can perform some
form of clustering/grouping) and is thus manageable. While the construction of this
subgraph can be ignored, this however leads to a relatively trivial graph which only
factors in the agent to object nodes, and nodes of same object type, but completely
ignore the geometric locations of the object type w.r.t one another. The choice of con-
necting only the central nodes of the object types is made to restrict the graph size from
becoming fully connected which increases the complexity of Laplacian Pseudoinverse
computation. We have empirically justified this central node connectivity in section
A.12 ablation.

(d) Note: We only generate 1 node for the goal object in algorithm 1. The reason is that
- (i) this simplifies the calculation of rint(t) (in equation 2) in contrast to the case
where we have multiple goal nodes, (ii) in any practical environment, by default the
goal LiDAR values in Lobs(t) are contiguous as the goal is a single object and their
difference is≪ τ which creates a single node automatically.

Table 1: Our method Graph Construction Hyperparameters

Parameter Value
LiDAR reading difference threshold τ 0.1

Graph Gt Laplacian type Un-normalized

A.5.2 PPO HYPERPARAMETERS

Since our method is directly based on the PPO implementation, we retain same hyperparameters
for PPO, PPO with Entropy and Our Method in order to perform the direct analysis of adding our
proposed rint(t). Hyperparameters such as learning rate, reward discounting factor γ, factor for
Generalized Advantage Estimates, entropy lambda factor for PPO with entropy etc are borrowed
from the recent literature (Xudong et al., 2024). Based on many works in the literature, we also
utilize parallel PPO implementation - these agents all operate in independent instances of the cor-
responding environment in order to collect the demonstrations faster and we note that this is NOT
multi-agent RL setting. We use a shared 2-layer MLP to feed the concatenation of the agent vector
(section A.2.1) LA(t) and the Lobs(t) (aka the state vector s(t) from section A.2.2) as input which
is a common approach in the literature. Over this shared MLP backbone we have two separate heads
- the first one is linear projection of size 256× 2 which behaves as the Policy Network πθ to predict
the action whereas the second one is 256 × 1 for the critic for Value function approximation. As
discussed in sections A.2.1 and 3.1, the action space is [−1, 1]2 corresponding to the throttle and
steering angle of the agent respectively which, following (Barhate, 2021), is formulated as a gaus-
sianN (µθ(Lobs(t)), σ

2). The Policy Network output is this 2-dim prediction for the mean and there
is a separate Pytorch trainable parameter of size 2 for the standard deviation values (therefore the
standard deviation values are learned directly via gradient updates). We also discuss the evolution of
this standard deviation values over the course of training in section A.13. During training an action
is sampled at random from this gaussian whereas during evaluation we simply consider the mean
(which is the output of the Policy Network as is) based on the original pytorch implementation. The
hyperparameter values are provided in table 2

For the remaining baselines - we take source code of the Surprise RL Standard and Surprise RL
Diff and train it with PPO as it is the SOTA RL algorithm. For MEGA and GCPO, we borrowed
the source codes from their implementations and MEGA Github (MRL Library of the author) and
GCPO Github respectively.

For the baselines using entropy loss, the entropy is calculated over the gaussian of the aforemen-
tioned action distribution following the actual implementation. The experiments were conducted on
NVIDIA A100 GPUs.

30

https://github.com/spitis/mrl
https://github.com/GongXudong/GCPO

Published as a conference paper at ICLR 2026

Table 2: PPO algorithm hyperparameters. Note that using 20 agents in parallel simply speeds up
the process for on-policy setup and all these agents operate in independently created instances of the
environment.

Parameter Value
Learning Rate 1e−4

Batch Size 2048
Num Agents Used in Parallel 20

Num Episodes per agent 2500
Max Timesteps per episode 1000

Num Episodes between Policy Update 2
Num Epochs for update 4

Entropy Coefficient (for baselines using entropy loss) 1e−2

Shared MLP size [|LA|+ |Lobs|, 256]→ [256, 256]
Actor size Shared MLP→ [256, 2]
Critic size Shared MLP→ [256, 1]

Discounting Factor γ 0.99
Generalized Advantage Estimate factor 0.95

PPO clipping ϵ 0.2

A.5.3 OBTAINING THE RANGE FOR THRESHOLD τ

We first reiterate (as already mentioned in section A.5.1) that obtaining a tight range for τ is a
fairly non-trivial problem that requires a deeper investigation of its own. However, here we lay
out the approximations that we used to first obtain a range for τ which we then plugged in with
the corresponding observations from the environment and then lastly did the sensitivity analysis to
arrive at the specific value of τ = 0.1 that worked well across most settings and furthermore as
pointed out earlier in section A.5.1, a single value helps in reproducibility as well.
As mentioned earlier in section A.2.2, the LiDAR values denote the vicinity to the agent rather than
the normalized distance. However for the ease of reading, we use the notion of distance below but it
is trivial to switch to vicinity/closeness. We have the following steps in our derivation:

1. Approximation of τ and its intuition: Defining

• R be the sensing (LiDAR) radius, discussed earlier in section A.1.1
• Suppose we are merging the LiDAR values (for a detailed discussion on the LiDAR values

we refer the reader to section A.2.2) of two arbitrary objects o1, o2 using τ in the Segment-
ToNodes function defined in algorithm 2. Then we define d̂ as the distance from agent to
the nearer of the two objects being considered (i.e. d̂ = min{dA,o1 , dA,o2}), with dA,oi
being agent to object oi distance

• let rc be the collision buffer term which is characterized by the agent’s size, the object
size(s) along with some small safety margin

• let ψ be a slack parameter that we use to control the the dependence on d̂. In other words,
it defines how aggressively we combine objects in a single node as the value of d̂ decreases

We define the upper bound on τ as a function of d̂ as follows:

τ(d̂) <
min(R, dsep)

R
=

min(R, rc + slack(d̂)

R
=

min
(
R, rc + ψ

(
1− d̂

R

))
R

. (8)

where dsep = rc + slack(d̂) is the separation term depending upon rc (which becomes fixed once
we know the agent and obstacle dimensions) and some slack term which is a function of d̂. As
a key property, we need this slack term to behave in a manner such that when the objects are far
from the agent, we can create separate nodes in our graph and it does not have a notable impact
on the Reff value. At d̂ → 0, the objects are fairly close to the agent A and thus we create a
unified node in the graph, keeping a larger slack term. The choice of a linear decay formulation as
slack(d̂) = ψ

(
1− d̂

R

)
is the simplest formulation satisfying the desired property, defined next.

31

Published as a conference paper at ICLR 2026

2. Approximation of ψ in terms of agent and object velocities: While the choice of ψ again
is complex, we leverage an aggregate of the velocities (exact computation discussed below) of the
agent and objects

α =
Vagg

Vagg + vagg
R

where

• vagg = aggregate of the speed (interchangeably used for velocity when direction of motion
is fixed) of the agent

• Vagg = aggregate of the speed of the objects

Thus, when vagg >> Vagg , the likelihood of the agent navigating through the space between the
objects is extremely high admitting slack(d̂) ↓ 0 and vice-versa.

3. Aggregating over d̂: While equation 8 characterizes the threshold, we still have dependency over
the term d̂. We integrate over this term by assuming that the objects o1 and o2 are independently
located within the radius R centered around the agent.
Thus the cumulative density function, Fd̂, of d̂ = min{dA,o1 , dA,o2} can be defined as follows:

Fd̂(x) = P(d̂ ≤ x) = 1− P(dA,o1 > x, dA,o2 > x) (9)

= 1− (1− Fd(x))
2 (10)

where Fd(x) is cumulative density function of an arbitrary object being located within a distance x
from the agent on the disc of radius R, ie, Fd(x) = x2

R2 (simply the ratio of areas). Plugging this
above with the independence of the location of the objects, we obtain

Fd̂(x) = 1−
(
1− x2

R2

)2

Since this function is differentiable, we can compute the PDF as

fd̂(x) = 4
x

R2

(
1− x2

R2

)
, 0 ≤ x ≤ R

The expectation E(d̂) is then

E(d̂) =
∫ R

0

xfd̂(x)dx =
8

15
R (11)

4. Putting it all together: aggregate value of τ : Using the derivations above and putting them in
equation 8, we obtain an aggregate of τ as

τ < min

1,
rc +

Vagg

Vagg+vagg
R
(
1− 8R/15

R

)
R

 (12)

= min

1,
rc +

Vagg

Vagg+vagg

7
15R

R

 . (13)

Numerical approximation:

1. typically rc << R and thus we can ignore this term

32

Published as a conference paper at ICLR 2026

2. to obtain a reasonable estimate of Vagg and vagg , we compute the median values via a
monte carlo estimate as follows:
(a) We considered 10, 000 arbitrary timesteps independently for each of the 3 environ-

ments and the respective 3 difficulty levels
(b) for each timestep t of these 10000 rollouts, we obtained the median of the absolute

value differences between the LiDAR vector values at t and corresponding t+1. This
is a loose approximation since these LiDAR values are w.r.t the agent, but one that
suffices as the agent and the objects have restricted motion at any particular timestep.
For the agent, we already have the estimate of the velocities using its velocimeter as
discussed in section A.2.1

(c) obtain the median values of the distances for the objects and the median values for the
velocities of the agent respectively

(d) compute the ratio Vagg

Vagg+vagg
(as in our case velocity is being calculated as the distance

in a particular direction over 1 unit of time)
(e) The rationale for using median is the same as earlier experiments that the mean values

are extremely noisy (with the standard deviation being higher than mean in a skewed
distribution where the absolute values are bounded below by 0). Thus, we rely on the
median in this estimate.

Plugging all the values, we obtained τ < min(1, 0.124) = 0.124. We then performed the sensitivity
analysis below this threshold value, with more details in section A.9.

A.6 SETTING VALUES OF β AND α

Corollary A.1.3 provides practical implementation choices for the values of β and α in terms of the
maximum absolute extrinsic reward and the maximum graph connectivity change respectively. We
discuss the selection below and note the values explicitly in table 3

Selecting β: Based on the code of the Safety Gym library, we noted that the maximum absolute
value of the extrinsic reward is < 1 and thus factoring in the constant C, we performed some initial
experimental checks and select 5 as a penalty factor to keep, which is sufficiently but not extremely
large, to steer the agent for goal visibility. Values greater than 1 worked reasonably well and 5 is
primarily a design choice.

Selecting α: We consider each of the components maxs,a |rext(s, a)|, δmax and C1 separately:

1. from the empirical details of section 5, we have maxs,a |rext(s, a)| < 10 as we scaled it
with a factor of 10

2. Note that δmax derived in lemma A.1.3 = O(k) , where k defines maximum number of
node changes in the graphs per timestep. Based on the environment specifications from
section A.2. As discussed previously, the event E : {k(∆t)≫ nmin} almost never occurs,
and we thus retain k = 1

3. C1 as the lower bound of C(t) = 1
κ(t)2 ⟨eA − eg, v2(t)⟩

2 , which we empirically observed
to be < 0.837

Putting it all together, we approximate α = 10. If we plug in the numbers, we obtain 10
0.837 = 11.94.

We however, to again focus on simplicity and consistency of the same hyperparamter across the
environments, chose the value of 10, similar to the selection of τ earlier.

Table 3: The values of α and β in the implementation of Our method.

Parameter Value
β penalty factor to enforce goal visibility 5

α factor for scaling rint 10

A Note on Robustness: It is critical to note that these single, principled values (β = 5, α = 10)
were used consistently across all 9 environments (all 3 tasks and all 3 difficulty levels) without

33

Published as a conference paper at ICLR 2026

any per-environment tuning. This stands in stark contrast to methods that require intensive, per-task
hyperparameter sweeps and strongly demonstrates the robustness and generality of our theoretically-
grounded selection process.

A.7 EVOLUTION OF rint DURING NAVIGATION

We plot the cumulative intrinsic reward
∑i

t=1 rint(t), i ∈ [T e] where T e is the length of the cor-
responding episode e being evaluated upon, at the median along with the 25th and 75th percentiles
with shaded region over these 1000 (200 per trained model and 5 models with random seeds) eval-
uation episodes. The aim of this experiment is to assess how the rint evolves as the agent navigates
the environments post the policy training. Since rint fluctuates at every time step depending upon
the current state, we visualize the cumulative value. The results are plotted in figures 13, 14 and 15
for the environments respectively.
Note that there are many timesteps during a trajectory rollout where rint(t) is negative for some
timestep t but the agent is still closer to the goal. This happens due to a more intricate dynamics
where all the other objects are also navigating in the environment and this impacts the edge weights
in Gt. The effects of this can be noticed in the plots for difficulty level 2 primarily. We discuss this
in more detail with a thorough quantitative analysis in next section A.7.1.
Another noteworthy aspect is the difficulty of navigating in the environment can also be assessed
via these plots. As observed in the main section result figures 2, 4 and 3, difficulty level 2 (and level
1 to some extent), which are harder for the agent to navigate in due to presence of large number of
randomly moving obstacles, its corresponding rint also exhibits fluctuations.

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.05

0.10

0.15

0.20

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(a) Navigation-Level-0

0 200 400 600 800 1000
Trajectory Time Step

0.1

0.0

0.1

0.2

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(b) Navigation-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.10

0.05

0.00

0.05

0.10

0.15

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(c) Navigation-Level-2

Figure 13: Visualization of the Cumulative rint across the timesteps for the Navigation Environment
with Level-0 (left figure), Level-1 (center figure) and Level-2 (right figure)

0 200 400 600 800 1000
Trajectory Time Step

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(a) Building-Level-0

0 200 400 600 800 1000
Trajectory Time Step

0.2

0.1

0.0

0.1

0.2

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(b) Building-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.05

0.10

0.15

0.20

0.25

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(c) Building-Level-2

Figure 14: Visualization of the Cumulative rint across the timesteps for the Building Environment
with Level-0 (left figure), Level-1 (center figure) and Level-2 (right figure)

34

Published as a conference paper at ICLR 2026

0 20 40 60 80 100
Trajectory Time Step

0.00

0.05

0.10

0.15

0.20

0.25

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(a) Fading-Level-0

0 50 100 150
Trajectory Time Step

0.0

0.1

0.2

0.3

0.4

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(b) Fading-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.10

0.05

0.00

0.05

Cu
m

ul
at

iv
e

r in
t

25-75 percentile
median

(c) Fading-Level-2

Figure 15: Visualization of the Cumulative rint across the timesteps for the Fading Environment
with Level-0 (left figure), Level-1 (center figure) and Level-2 (right figure)

A.7.1 CONFIGURATIONS FOR NEGATIVE rint(t) BUT IMPROVED NAVIGATION TO GOAL

As mentioned in the previous section, while plotting rint (section A.7), there can be configurations
whereReff(t)−Reff(t+1) ≤ 0 but the agent navigates closer to the goal. Note that such situations
occur since the computation of Reff is non-trivial w.r.t to the distance of agent to the goal, as it
incorporates the entire observation space captured on its LiDARLobs(t) andLobs(t+1). To quantify
such situations, we perform the following experiment:

1. Load each of the t trained policies
2. Roll each policy for 20 episodes, thus 100 (20× 5) arbitrary rollouts in total incorporating

for the randomness
3. Obtain the count of the timesteps at which the aforementioned situation of negative rint

but agent navigating closer to the goal happened. Lets call this count Jneg
rint

4. Obtain the total number of timesteps that the agent navigated across all episodes, call this
count J

5. Compute the ratio

The outcomes mentioned in table 4 justify the fluctuations in the plots of the rint and how it affects
the monotonicity of even the cumulative reward.

Table 4: Fraction of times when rint < 0 but agent moves closer to the goal, in order to justify the
rationale behind plotting the cumulative rint instead of raw values in section A.7

Environment Name Jneg
rint

J Ratio
Jneg
rint

J
Navigation-level-0 501 5977 0.0838
Navigation-level-1 2220 10293 0.2157
Navigation-level-2 12138 51186 0.2371
Building-level-0 627 6755 0.0928
Building-level-2 3132 16008 0.1956
Building-level-2 9472 37007 0.2560
Fading-level-0 84 5123 0.0164
Fading-level-1 1928 7047 0.2736
Fading-level-2 12078 51846 0.2329

A.8 BRIDGING THE RESULTS FROM LEMMA 1 AND THEOREM 1 WITH EMPIRICAL
OBSERVATIONS

A.8.1 EMPIRICAL VERIFICATION OF BOUNDED GRAPH CONNECTIVITY

We proved in lemma 1 that the change inReff and κ have opposite gradient signs over time. Earlier
we showed that generallyReff tends to decrease over time, and as such, we expect κ(Gt) to increase.
We also claimed in the first part of theorem 1 that the expected graph connectivity at timestep t+ 1
is lower bounded via Eτ∼π∗ [κ(Gt+1)|Gt] ≥ κ(Gt)− δmax where the δmax is from lemma A.1.3.

35

Published as a conference paper at ICLR 2026

To justify both of these empirically, we we provide the plots for the absolute difference of κ(Gt+1)
and κ(Gt) across the timesteps at the median along with the 25th and 75th percentile bands across
the environments and difficulty levels in figures 16, 17 and 18. The following important observations
can be made:

1. as argued from the lemma 1, we expect the value of κ to increase over time. This essentially
leads to larger absolute differences which can observed in various plots.

2. we notice various arbitrary fluctuations in the plots. These values typically characterize
non-trivial changes to the graph structure, which are also reflected in δmax dervied in
lemma 2. Using δmax = O(∥) for k = 1, clearly holds.

0 25 50 75 100 125 150
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(a) Navigation-Level-0

0 100 200 300 400
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(b) Navigation-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(c) Navigation-Level-2

Figure 16: The absolute value of the difference of second eigenvalues, ie |κ(Gt) − κ(Gt+1)| across
the Navigation environment.

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(a) Building-Level-0

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(b) Building-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|
25-75 percentile
median

(c) Building-Level-2

Figure 17: The absolute value of the difference of second eigenvalues, ie |κ(Gt) − κ(Gt+1)| across
the Building environment.

0 20 40 60 80
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(a) Fading-Level-0

0 20 40 60 80 100 120
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(b) Fading-Level-1

0 200 400 600 800 1000
Trajectory Time Step

0.00

0.01

0.02

0.03

0.04

0.05

|
(

t)
(

t+
1)

|

25-75 percentile
median

(c) Fading-Level-2

Figure 18: The absolute value of the difference of second eigenvalues, ie |κ(Gt) − κ(Gt+1)| across
the Fading environment.

A.8.2 EMPIRICAL VERIFICATION OF GOAL VISIBILITY MAINTENANCE

We also argue that a well trained (otherwise optimal) policy will learn to maintain a high goal
visibility - (i) in order to maximize the expected reward and (ii) to avoid the large negative penalty

36

Published as a conference paper at ICLR 2026

of −β. We demonstrate that this indeed happens and during evaluation the 5 trained policies indeed
maintain a much higher goal visibility as shown in table 5 across all environments and difficulty
levels in comparison to randomly initialized policies.

Table 5: Percentage of timesteps in which the goal is visible on the agent’s observation Lobs during
the evaluation in contrast to a randomly initialized policy.

Environment Name Randomly Initialized Policy Trained Policy
Navigation-level-0 50.26% 99.59%
Navigation-level-1 48.61% 99.35%
Navigation-level-2 56.39% 98.99%
Building-level-0 85.33% 99.48%
Building-level-1 81.00% 99.27%
Building-level-2 77.12% 99.09%
Fading-level-0 94.88% 99.92%
Fading-level-1 88.60% 99.67%
Fading-level-2 86.90% 99.21%

A.9 SENSITIVITY ANALYSIS OF GRAPH CONSTRUCTION THRESHOLD τ

One of the core components of our method is the threshold τ which is used in the clustering of
elements of the LiDAR array to construct nodes in the graph as discussed in algorithm 1. Since,
we numerically attained τ < 0.124 earlier, we vary tau ∈ {0.08, 0.09, 0.1, 0.11, 0.12} and evaluate
the corresponding policies. Since the values in this set are relatively close, we also expect less
susceptibility. The sensitivity analysis plots are provided in figure 19 (all the computations are done
in the same manner as discussed in Evaluation Methodology of section 5). While we do notice
minor fluctuations in the results and there is no unified value of τ that works the best across all types
of evaluation metrics and environments, τ = 0.1 still provides a great parameter setting and can be
used for all difficulty levels and environments, thus significantly reducing the hyperparameter search
workload mentioned previously in section A.5.1.

0.08 0.09 0.1 0.11 0.12
τ Value

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

100.0 99.7 99.9 100.0 99.999.3 98.7 99.6 99.2 99.7100.0 100.0 100.0 100.0 100.0

Navigation
Building
Fading

(a) Success Rate

0.08 0.09 0.1 0.11 0.12
τ Value

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

M
ed

ia
n

R
ew

ar
d

Navigation
Building
Fading

(b) Median Environment Reward

0.08 0.09 0.1 0.11 0.12
τ Value

40

50

60

70

80

M
ed

ia
n

Ti
m

es
te

ps

Navigation
Building
Fading

(c) Median Timesteps

Figure 19: Success Rate, Median Timesteps and Median Normalized Reward across the environ-
ments for varying values of the graph construction hyperparameter τ in algorithm 1

A.10 COMPLEXITY ANALYSIS AS A FUNCTION OF GRAPH SIZE

We provide a formal analysis of the computational complexity of our method, which is incurred at
each timestep. The total per-step cost is the sum of (1) graph construction and (2) effective resistance
computation.

1. Graph Construction (Algorithm 1): The complexity of constructing Gt is highly efficient.
The SegmentToNodes function (Algorithm 2) iterates through the LiDAR observation
vector (Lobs(t)), say of size N , which has a complexity of O(N). The subsequent con-
nection steps (lines 9-25 in Algorithm 1) iterate through the nodes n = |Vt| and object
categories P . In the worst case, this involves creating a complete graph within clusters,
resulting in a complexity of O(n2). Since the dependence on N is linear and n is designed
to be small, the total graph construction cost, which is additive, of O(N + n2) is not large.

37

Published as a conference paper at ICLR 2026

2. Effective Resistance Computation (Eq 2): This is the primary computational bottleneck
of our intrinsic reward. The calculation, as defined in Eq 2, requires the Moore-Penrose
pseudoinverse, L+

t , of the n × n graph Laplacian Lt. Standard numerical methods for
computing the pseudoinverse (e.g., via Singular Value Decomposition) have a computa-
tional complexity of O(n3), where n = |Vt| is the number of nodes in the graph.

Connecting Theory to Practice: While a theoretical complexity of O(n3) might seem prohibitive,
it is crucial to note that our entire framework is explicitly designed to ensure n remains small.

• Bounded Graph Size: As enforced by our Algorithm 1, which clusters nearby LiDAR
readings, the number of nodes n is not a function of the observation dimension (128) but
of the number of perceived entities.

• Empirical Validation: The practical cost of this O(n3) computation is trivial because n
is small. This is empirically validated by our runtime analysis in figures 20, 21 and 22
in the next section, where we note our method’s total runtime is only 1.1x to 1.25x, for
per episode training run, that of vanilla PPO across all the benchmarks. This marginal
increase confirms that the time spent on PPO’s policy/value updates far exceeds the time
spent on our graph andReff calculations. Additionally, this marginal increase in runtime is
completely countered by the much faster convergence during training from figure 5.

In summary, while the formal complexity is O(n3), our principled graph construction ensures n is
small and bounded, making the practical computational cost negligible and significantly lower than
other SOTA baselines like GCPO.

A.11 EFFICIENCY OF OUR METHOD

To further justify the practicality of our method, we also compute the per episode rollout time based
on the process time (in order to provide a fair comparison by ignoring the sleep time, cache misses
etc) and compare those across all methods. The plots in figures 20, 21 and 22 show the median
process time per episode along with the percentiles as done previously. As expected, PPO runs the
fastest since it does not incur any additional computation whereas PPO+Ent incurs a small additional
cost for the entropy calculation, but the ratio of median runtime per episode for Our method vs PPO
is only between 1.2− 1.25 on navigation environment, which further reduces to between 1.1− 1.17
on a more complex building environment. This is much better than baseline ratio of SRL-Std to PPO
at 1.29− 1.51 on navigation and the best baseline GCPO’s ratio to PPO at 1.38− 1.62. Notice that
the graph construction and Reff calculation of our method can be done on any standard CPU core
within milliseconds per state observation, which further becomes favorable as the environment gets
complex.

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
3.1s

4.2s
5.3s

6.3s
7.4s

Median Q25 Q75

(a) Difficulty Level 0

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
3.4s

4.9s
6.3s

7.8s
9.2s

Median Q25 Q75

(b) Difficulty Level 1

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
3.6s

5.2s
6.8s

8.5s
10.1s

Median Q25 Q75

(c) Difficulty Level 2

Figure 20: Navigation Environment Times

38

Published as a conference paper at ICLR 2026

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
4.2s

6.4s
8.5s

10.7s
12.9s

Median Q25 Q75

(a) Difficulty Level 0

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
4.7s

7.3s
10.0s

12.7s
15.3s

Median Q25 Q75

(b) Difficulty Level 1

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
5.1s

8.2s
11.3s

14.4s
17.4s

Median Q25 Q75

(c) Difficulty Level 2

Figure 21: Building Environment Times

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
2.9s

3.8s
4.7s

5.6s
6.6s

Median Q25 Q75

(a) Difficulty Level 0

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
3.1s

4.3s
5.4s

6.5s
7.6s

Median Q25 Q75

(b) Difficulty Level 1

PPO

PPO+Ent

SRL-Std

SRL-Diff

MEGA

GCPO

Ours

2.0s
3.8s

5.5s
7.3s

9.1s
10.8s

Median Q25 Q75

(c) Difficulty Level 2

Figure 22: Fading Environment

A.12 ABLATION FOR THE CENTRAL NODES CONNECTIVITY OF THE OBJECT TYPE
SUBGRAPHS

Another key component of the graph construction algorithm 1 is the connectivity of central nodes
based on the degree for each type (VSi , i ∈ [P]). We provided a rationale for this in section A.5.1
and justify this empirically in figure 23. While the success rate does not fluctuate much since the
agent still navigates to the goal eventually, we see a much more pronounced effect on the number of
timesteps taken to reach the goal as well as the median reward the agent receives on its trajectories.
For eg - in the navigation environment we see around 10% increase in the number of timesteps to
reach the goal and around 14% increase for the building environment. Correspondingly, the agent’s
rewards are reduced by almost 8.4% and 12% respectively. The fading environment is relatively less
sensitive to this component of the graph construction.

Navigation Building Fading
Environment

99.0

99.5

100.0

Su
cc

es
s

Ra
te

 (
%

)

With Connections
No Connections

(a) Success Rate

Navigation Building Fading
Environment

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

N
or

m
al

iz
ed

 R
ew

ar
d

With Connections
No Connections

(b) Median Environment Reward

Navigation Building Fading
Environment

0

20

40

60

80

100

120

140

M
ed

ia
n

Ti
m

es
te

ps

With Connections
No Connections

(c) Median Timesteps

Figure 23: Success Rate, Median Timesteps and Median Normalized Reward across the environ-
ments for the ablation of algorithm 1

39

Published as a conference paper at ICLR 2026

A.13 EVOLUTION OF THE STANDARD DEVIATION σA(t) OF THE ACTION DISTRIBUTION
DURING TRAINING

Figures 24, 25 and 26 compare the evolution of the standard deviation parameter σA over the course
of training. Our primary emphasis here is to compare this against PPO (and PPO+Ent) while con-
necting it to the convergence results from sections 4 and experiments of 5.2. Since during training
we sample the agent’s action from theN (µθ(Lobs(t)), σ

2), there is a natural exploration component
in this formulation, however high deviation values for longer can lead to - slower convergence, more
timesteps to reach the goal and furthermore not reaching the goal in many cases due to excessive
exploration in the environment. Thus, we argue that a higher negative slope of standard deviation
curve, but not too extreme (as this will hinder the exploration in the environment leading to poor
outcomes), is favorable. This rationale has been also thoroughly justified in the previous sections of
this work.

0 200 400 600 800 1000 1200 1400
Trajectory Time Step

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(a) Navigation-Level-0

0 1000 2000 3000 4000
Trajectory Time Step

0.4

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(b) Navigation-Level-1

0 1000 2000 3000 4000 5000
Trajectory Time Step

0.4

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(c) Navigation-Level-2

Figure 24: Standard Deviation σA(t) of the action distribution during training in the Navigation
environments.

0 200 400 600 800 1000 1200 1400 1600
Trajectory Time Step

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(a) Building-Level-0

0 1000 2000 3000 4000
Trajectory Time Step

0.4

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(b) Building-Level-1

0 1000 2000 3000 4000 5000
Trajectory Time Step

0.4

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(c) Building-Level-2

Figure 25: Standard Deviation σA(t) of the action distribution during training in the Building envi-
ronments.

0 250 500 750 1000 1250 1500 1750
Trajectory Time Step

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(a) Fading-Level-0

0 500 1000 1500 2000 2500 3000
Trajectory Time Step

0.4

0.6

0.8

1.0

1.2

1.4

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(b) Fading-Level-1

0 1000 2000 3000 4000
Trajectory Time Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

St
an

da
rd

 D
ev

ia
ti

on

PPO
PPO with entropy
Ours

(c) Fading-Level-2

Figure 26: Standard Deviation σA(t) of the action distribution during training in the Fading envi-
ronments.

40

Published as a conference paper at ICLR 2026

Navigation Building Fading
Environment

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Sp
ea

rm
an

 C
or

re
la

tio
n

p = 3.30e-01 p = 6.14e-07 p = 8.50e-01

(a) Difficulty Level 2

Figure 27: Spearman Correlation coefficients between the value function and −Reff over level 2
for the environments. We note the weaker correlation values are primarily due to the difficulty in
approximating the value function as noted in several works (Moon et al., 2023; Engstrom et al.,
2020) in conjunction with other factors affecting the training.

A.14 EXTENSION TO DENSE ENVIRONMENT REWARD SETUP

We provide an extension of our experiments to the case where the reward obtained from the envi-
ronment is dense, ie, rext is used at every timestep K = 1 in contrast to the K = 25 mentioned in
main results of section 5. We perform empirical validation across all the environments on both - the
easier level-0 difficulty and the much more difficult level-2, which covers both ends of the spectrum.
We have several observations from the results described in tables 6 and 7:

• Inline with the results from figure 6 (correlation between the value function and −Reff)
and the theoretical results, the augmentation of rint keeps the results consistent, without
interfering the learning and convergence process.

• For difficulty level 0, where the results of our sparse setting already reach complete success,
the observed improvements are marginal.

• For difficulty level 2, which is a much more complex setup due to significantly larger
number of obstacles and goal reaching difficulty (section A.2.2), we again note that rint
does not interfere and rather serve as a reward shaping mechanism to assist the learning
process.

Lastly, we also emphasize that the focus of our work is to improve the convergence of sparse goal
conditioned online RL, and this set of experiments is to merely justify that breadth of applicability
of our propsedReff.

Table 6: The comparison of evaluation results, over difficulty level 0, for policies trained via the
Sparse formulation where the standard environment reward is provided at every K = 25 steps
(results copied from figures 2, 3 and 4 against the Dense formulation where we utilize the standard
environment reward at every timestep K = 1. The columns for Normalized Reward and Timesteps
detail the median results along with the 25th and 75th percentile results.

Env Setup Success Rate ↑ Normalized Reward ↑ Timesteps ↓
Navigation-level-0 Sparse 99.90% 0.03091 (0.02709 ; 0.03545) 55 (46 ; 69)

Dense 100.0% 0.03124 (0.02771 ; 0.03633) 51.5 (43 ; 67.75)
Building-level-0 Sparse 99.60% 0.02833 (0.02533 ; 0.03250) 60 (48 ; 78)

Dense 100.0% 0.02974 (0.02702 ; 0.03413) 56.25 (44 ; 77)
Fading-level-0 Sparse 99.90% 0.03075 (0.02868 ; 0.03340) 53 (44.75 ; 61)

Dense 100.0% 0.03218 (0.02959 ; 0.03491) 52 (42.5 ; 59.5)

41

Published as a conference paper at ICLR 2026

Table 7: The comparison of evaluation results, over difficulty level 2, for policies trained via the
Sparse formulation where the standard environment reward is provided at every K = 25 steps
(results copied from figures 2, 3 and 4 against the Dense formulation where we utilize the standard
environment reward at every timestep K = 1. The columns for Normalized Reward and Timesteps
detail the median results along with the 25th and 75th percentile results.

Env Setup Success Rate ↑ Normalized Reward ↑ Timesteps ↓
Navigation-level-2 Sparse 55.50% 0.00682 (-0.00169 ; 0.00996) 242 (97 ; 1000)

Dense 100.0% 0.02790 (0.02238 ; 0.03465) 88 (63 ; 122)
Building-level-2 Sparse 88.40% 0.01339 (0.00994 ; 0.01679) 168 (89 ; 518.75)

Dense 100.0% 0.02420 (0.01959 ; 0.02908) 98 (71 ; 137)
Fading-level-2 Sparse 61.10% 0.00702 (0.00004 ; 0.01000) 248 (85 ; 1000)

Dense 100.0% 0.02790 (0.02228 ; 0.03380) 92 (69 ; 114)

A.15 DISCUSSION ON GENERALIZATION BEYOND LIDAR

We emphasize that the core requirement of our framework is not LiDAR, but rather a state st that
can be meaningfully decomposed into a graph of interacting entities (e.g., agent, goal, obstacles
and such). The LiDAR data used in our experiments is merely a practical instantiation of this, as it
directly provides categorized, egocentric information that our Algorithm 1 can parse into nodes and
edges. We have also characterized this experimental choice by attributing to the extensive success
of the use of sensory data (such as LiDAR) in both - simulation and real world environments (as
discussed in section A.2.2). The following extensions, which essentially cover almost real world
implementations, support of our arguments:

• Raw Pixel Inputs (Vision): For environments where the state st is an image, the graph can
be constructed by deploying a perception frontend. For example, a pre-trained (or jointly
trained) object detector or keypoint extractor identifies the ”agent,” ”goal,” and various
”obstacles” in the scene. The bounding boxes or keypoints of these detected entities serve
as the nodes Vt. Edges Et and weights Wt are then be defined via the spatial (e.g., pixel
distance) or semantic relationships, and theReff computation directly proceeds as discussed
in our Algorithm 1

• Tabular MDPs (e.g., Grid Worlds): In a discrete grid world, the graph construction is
even more straightforward. The nodes Vt are the agent’s current cell, the goal cell, and all
cells identified as obstacles or hazards. The edges Et represent physical adjacency (e.g.,
connecting all non-obstacle cells that share a border), with weights Wt set to unity. In
this configuration, Reff(agent, goal) serve as a robust, non-Euclidean distance metric that
accounts for all walls and pathways, providing a dense and informative reward signal.

• General Sensory Inputs: are trivial to handle with our current construction directly.

This flexibility demonstrates that our core contribution—using Reff as a goal-directed structural
reward—is a general principle that can be adapted to any MDP where the state can be abstracted
into an entity-based graph.

A.16 GENERALIZATION OF REFF TO OTHER ENVIRONMENTS

In the previous section we characterized the generality of our algorithm and proposed metric to
various types of inputs, albeit within navigation and manipulation tasks. We start by noting that
these two types of tasks describe a substantial percentage of the real world deployments of RL -
humanoids, delivery bots, warehouse robots and such. We have a general implementation as follows:

• Nodes: by discretizing the state space into regions, eg using a VQ-VAE, where each code-
book vector becomes a node in the graph G

• Edges and Weights: connecting temporally adjacent or regions in vicinity, with the weights
representing transition probabilities or inverse distance.

• Computing Reff: by considering two nodes from the graph G, the Reff can be calculated
and minimized against a baseline set of Reff values computed over some expert’s data or
simply using the highest reward states. We discuss this with the following two examples.

42

Published as a conference paper at ICLR 2026

Example environments for generalization ofReff

• Antmaze (OGBench (Park et al., 2025): The following simple construction can generate
a graph over which we computeReff

1. Nodes: each cell or a group of cell describes a node in the graph G. The cells are
binned by their respective categories of - the agent location, the obstacle (wall) and
the cells containing the goal.

2. Edges and Weights: are computed simply by inverse distance of the cells on the grid to
incorporate for basic geometry, or by connecting neighboring cells for a more trivial
graph.

3. Reff: the computation simply follows our eq 2 between the agent and goal node cells.

• Locomotion tasks (e.g., Half-Cheetah) (Brockman et al., 2016):

1. Nodes: The graph nodes V are the agent’s primary body parts (e.g., for Half-Cheetah,
this includes the torso, thighs, shins, and feet). The agent’s state st (containing joint
positions) defines the spatial embedding of these nodes at time t.

2. Edges & Weights: The graph Gt could be fully connected, where the weight wij(t)
between any two nodes i and j is a function of their spatial distance, e.g., wij(t) =
1/(||posi(t)− posj(t)||2 + ϵ). This graph’s Laplacian, Lt, holistically represents the
agent’s entire pose at time t.

3. Reff: The task (e.g., learning a stable gait) can be framed as matching a target pose.
We can define a set R̂target of ”target effective resistance” Rtarget values (computed
either from various expert’s ”stable” poses or high reward states/poses) between two
key nodes (e.g., front foot and back foot).

4. Intrinsic Reward: The intrinsic reward would be a shaping reward to match this target:
rint = −(Reff(t) −Rtarget)

2, where Rtarget ∈ R̂target. This guides the agent to learn
a stable pose configuration, demonstrating the flexibility of Reff as a holistic state
descriptor.

A.17 COMPARISON WITH LEARNED METRIC APPROACHES

Recent advancements in Quasimetric Learning (QRL) (Wang et al., 2023; Liu et al., 2024) have
demonstrated the utility of learning distance metrics from interaction data to capture the underlying
geometry of the state space. While both QRL and our Effective Resistance (Reff) formulation
serve as distance metrics to guide exploration, they differ fundamentally in their derivation, sample
efficiency, and interpretability.

Analytic vs. Learned Derivation: Approaches like Wang et al. (2023) learn a metric function
d(s, s′) via optimization over extensive transition data. While this allows the metric to adapt to
complex, non-Euclidean dynamics, it inherently requires significant samples to converge to a useful
representation. In contrast, our method analytically computes Reff from the graph Laplacian at
each timestep based on the local observation. This analytic nature eliminates the need for a metric-
learning phase, allowing our intrinsic reward to provide a dense, meaningful signal immediately
upon interaction.

Inductive Bias and Interpretability: A key advantage of our approach is its strong inductive bias:
we posit that the ”difficulty” of reaching a goal is structurally correlated with the resistive connec-
tivity of the graph constructed from the state. This yields high interpretability. As illustrated in
Figure 1, a reduction in Reff directly corresponds to tangible structural improvements, such as the
widening of a bottleneck or the opening of a new pathway. Conversely, metrics learned via function
approximation can act as ”black boxes,” making it difficult to ascertain whether the learned distance
reflects true reachability or spurious correlations in the training data.

Theoretical Guarantees: Finally, because our metric is grounded in spectral graph theory, we can
derive formal guarantees regarding connectivity preservation and robust navigation (as detailed in
Lemma 1 and Theorem 1). Establishing similar theoretical bounds for metrics learned purely from
stochastic environment interactions remains a challenging open problem.

43

Published as a conference paper at ICLR 2026

A.18 USE OF LLMS

We have used LLMs, particularly GPT and Perplexity, for paraphrasing some sentences to make
them academically sound, basic proof reading and finding relevant literature works to ensure com-
pleteness and coverage.

44

	Introduction
	Related work
	Methodology
	Preliminaries
	Intrinsic Reward via Effective Resistance

	Theoretical Results
	Improved Sample Complexity

	Experiments
	Main Results
	Convergence Analysis

	Conclusion
	Reproducibility statement
	Appendix
	Details of Theoretical Analysis
	Core Assumptions
	Key Definitions
	Proofs for Main Results
	Details of Convergence and Sample Complexity Analysis

	Experimental Details
	Agent
	The Observation vector

	Visualizations
	Graph Construction Algorithm
	Sample Graph Visualization constructed via algorithm 1

	Implementation and Hyperparameter Details
	Graph Construction Hyperparameters
	PPO Hyperparameters
	Obtaining the range for threshold

	Setting values of and
	Evolution of rint during navigation
	Configurations for negative rint(t) but improved navigation to goal

	Bridging the results from Lemma 1 and Theorem 1 with empirical observations
	Empirical verification of bounded graph connectivity
	Empirical verification of goal visibility maintenance

	Sensitivity Analysis of Graph Construction threshold
	Complexity Analysis as a Function of graph size
	Efficiency of Our method
	Ablation for the Central Nodes Connectivity of the Object Type Subgraphs
	Evolution of the Standard Deviation A(t) of the action distribution during training
	Extension to Dense Environment Reward setup
	Discussion on Generalization Beyond LiDAR
	Generalization of Reff to other Environments
	Comparison with Learned Metric Approaches
	Use of LLMs

