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Abstract
Rating aggregation plays a crucial role in various fields, such as

product recommendations, hotel rankings, and teaching evalua-

tions. However, traditional averaging methods can be affected by

participation bias, where some raters do not participate in the rating

process, leading to potential distortions. In this paper, we consider

a robust rating aggregation task under the participation bias. We

assume that raters may not reveal their ratings with a certain prob-

ability depending on their individual ratings, resulting in partially

observed samples. Our goal is to minimize the expected squared loss

between the aggregated ratings and the average of all underlying

ratings (possibly unobserved) in the worst-case scenario.

We focus on two settings based on whether the sample size

(i.e. the number of raters) is known. In the first setting, where

the sample size is known, we propose an aggregator, named as

the Balanced Extremes Aggregator. It estimates unrevealed ratings

with a balanced combination of extreme ratings. When the sample

size is unknown, we derive another aggregator, the Polarizing-

Averaging Aggregator, which becomes optimal as the sample size

grows to infinity. Numerical results demonstrate the superiority of

our proposed aggregators to participation bias, compared to simple

averaging.

CCS Concepts
• Theory of computation → Algorithmic game theory; Algo-
rithmic mechanism design.
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1 Introduction
Suppose you come back from a hotel stay that left you frustrated.

The service was terrible, and the noise kept you up all night. The

experience was bad enough that, as soon as you got home, you

felt compelled to go online and leave a negative review. This is not

something you normally do—in fact, the last time you stayed at a

hotel that was just okay, you did not even bother to rate it.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

42 31 5

Hotel A

42 31 5

Hotel B

Figure 1: The observed ratings of two hotels.

Observed Ratings

Unobserved Ratings

Hotel A Hotel B

Figure 2: The true ratings of two hotels.

Now, imagine you’re on the other side, trying to decide between

two hotels on an online platform. Both have identical average rat-

ings, but as shown in Figure 1, their rating distributions are quite

different. Which one would you pick?

While many people rely on average ratings to make their choices,

these scores can be misleading due to biases in the way they are

collected. One such bias is participation bias, where the ratings do

not represent the views of all guests—e.g., only the ones who felt

strongly enough to leave feedback [5, 57].

At Hotel A, reviews are polarized: some guests, possibly those

staying in the premium rooms, report excellent stays with 5-star

ratings, while others leave very negative feedback. In contrast, Ho-

tel B’s reviews are consistently around 4 stars, indicating generally

positive but not outstanding experiences. This suggests that Ho-

tel A’s displayed rating might be inflated, as guests with neutral

opinions may have skipped reviewing, whereas Hotel B’s balanced

ratings offer a more accurate reflection. Figure 2 shows a possible

way of the true distribution.

Such participation bias affects other areas too, like course evalua-

tions, movie reviews, and product ratings on e-commerce platforms,

where only extreme opinions tend to be represented [5, 25, 27, 57].

If we could estimate the likelihood of participation across dif-

ferent rater groups, we could apply traditional methods like im-

portance sampling to approximate the true average rater ratings

[45, 46, 49]. However, without data from non-participants, quanti-

fying the precise extent of this bias remains challenging. Therefore,

we need to use alternative metrics to evaluate the aggregation meth-

ods without full knowledge of the participation bias. Following the

1
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field of robustness analysis [3], we employ a robust aggregation

paradigm aimed at minimizing the worst-case error to mitigate the

participation bias.

1.1 Problem Statement
For all positive integer 𝑘 , [𝑘] denotes the set {1, 2, · · · , 𝑘}.

We aim to find a robust function 𝑓 to aggregate the discrete

ratings from 𝑛 raters. Each rating x𝑖 ∈ [𝑚] follows an underlying

distribution 𝒑 = (𝑝1, 𝑝2, · · · , 𝑝𝑚) and we want to estimate the

expectation 𝜇 = Ex∼𝒑 [x]. We assume the ratings are independent.

Otherwise, the actual ratingsmay contain systematic biases, making

it impossible for any aggregator to recover the true expectation

even given all ratings. Under this assumption, the best estimator

for 𝜇 is the empirical average of all ratings
1

𝑛

∑
𝑖 𝑥𝑖 .

However, due to the participation bias, raters will report their

ratings with probabilities that depend on the rating values. Let

𝒈 = (𝑔1, 𝑔2, . . . , 𝑔𝑚) represent these probabilities, where 𝑔𝑟 is the
probability of an rater reporting her rating when it is 𝑟 . We assume

raters are homogeneous and have the same participation bias. As a

result, only a subset of elements in X is observed, which we denote

by X̂. For each rater 𝑖:

x̂𝑖 =

{
x𝑖 with probability 𝑔x𝑖

0 otherwise

where 0 indicates that the rating is unobserved. Let 𝐷𝒑 denote

the distribution generating X and 𝐷𝒑,𝒈 denote the distribution

generating X̂. We also call 𝐷𝒑,𝒈 the information structure.

Without any information on the likelihood of reporting, the

worst-case scenario would be no one reports, resulting in a lack

of any useful aggregator. Thus, we assume there exists a known

parameter 𝑞, indicating the lowest reporting probability among

raters. That is, 𝑔𝑟 ∈ [𝑞, 1] for any rating 𝑟 . When 𝑞 = 1, there

is no participation bias and as 𝑞 decreases, the bias may increase

accordingly. We use an example to illustrate our model.

Example 1.1 (Why direct average is not good). Consider a
binary rating system where 𝑥𝑖 ∈ {1, 2} with equal probability. Here,
let 𝑔1 = 1 and 𝑔2 = 𝑞, meaning that negative reviews (𝑥𝑖 = 1) are
always observed, while positive reviews (𝑥𝑖 = 2) are observed only
with probability 𝑞.

Under this setup, even with a large sample size 𝑛, the direct aver-
age of observed ratings will tend toward 1+2𝑞

1+𝑞 , which significantly
underestimates the true expectation of 3/2 when 𝑞 is small.

We measure the performance of an aggregator by its expected

squared error, defined as 𝐿(𝑓 ,𝒑,𝒈) = EX̂∼𝐷𝒑,𝒈

[
(𝑓 (X̂) − 𝜇)2

]
. One

objective could be finding 𝑓 that minimizes the worst-case error:

max𝒑,𝒈 𝐿(𝑓 ,𝒑,𝒈). However, when the sample size 𝑛 is small, select-

ing 𝒑 with high variances can lead to large errors even for the ideal

aggregator who observes 𝒙 . Since we focus on addressing the errors

attributable to uncertainties in 𝒈, we adopt a robust approach and

instead minimize the regret relative to the ideal aggregator who

observes the full data 𝒙 , and outputs
1

𝑛

∑
𝑖 𝑥𝑖 :

min

𝑓
max

𝒑,𝒈
EX∼𝐷𝒑 ,X̂∼𝐷𝒑,𝒈

[(𝑓 (X̂) − 𝜇)2 − ( 1
𝑛

∑︁
𝑖

x𝑖 − 𝜇)2] .

For short, we denote 𝑅(𝑓 ,𝒑,𝒈) = EX∼𝐷𝒑 ,X̂∼𝐷𝒑,𝒈
[(𝑓 (X̂) − 𝜇)2 −

( 1𝑛
∑
𝑖 x𝑖 − 𝜇)2].

Because we have assumed the raters are homogeneous, observ-

ing �̂� is equivalent as observing the histograms 𝑛𝑢 , 𝑛1, 𝑛2, · · · , 𝑛𝑚
where 𝑛𝑟 counts the number of ratings of 𝑟 for all 𝑟 ∈ {1, · · · ,𝑚},
and 𝑛𝑢 indicates the number of unobserved ratings. That is, the

aggregator’s input is 𝑛𝑢 , 𝑛1, 𝑛2, · · · , 𝑛𝑚 . This is applicable in the

scenarios when the sample size 𝑛 is known. For example, in the

teaching evaluation, the number of students is known to the in-

structors but not all students will give feedback.

A variant with unknown 𝑛. However, in practice, we may not

know 𝑛. For example, in the movie rating platforms, we cannot

obtain the number of people watching the movies. Thus, we con-

sider a variant of the above problem where 𝑛 is unknown. In this

case, the aggregation problem remains the same except that the

aggregator’s input is 𝑛1, 𝑛2, · · · , 𝑛𝑚 .

1.2 Summary of Results
We explore the optimal aggregator in two settings, depending on

the knowledge of the sample size 𝑛 (i.e., the number of raters).

The sample size 𝑛 is known. In Section 3, we assume 𝑛 is known.

We construct a lower bound for the regret by considering a mixture

of two specific information structures. Based on the lower bound,

we provide a new aggregator, the Balanced Extreme Aggregator

(BEA), which is the best response to those two specific informa-

tion structures. Intuitively, BEA estimates the expected ratings of

those unreported raters based on the difference between 𝑛1 and

𝑛𝑚 , the counts of extreme ratings. Then BEA adjusts the observed

rating average with the estimated unobserved rating average. Fig-

ure 3 illustrates the whole process. We illustrate its near-optimal

performance numerically in various cases.

The sample size 𝑛 is unknown. In Section 4, we assume 𝑛 is un-

known. Since we do not know how many unobserved ratings there

are, the above aggregator is not applicable. Instead, we obtain a new

aggregator, the Polarizing-Averaging Aggregator (PAA), and show

its optimality when 𝑛 goes to infinite. Furthermore, we numerically

show that PAA performs well for a finite sample size. Figure 4 il-

lustrates the whole process. We create two modified histograms

from the original observed data. For the first histogram, we identify

a threshold 𝑘1, and only keep 𝑞 fraction of the counts for ratings

above 𝑘1. In the second histogram, we identify a threshold 𝑘2, and

only keep 𝑞 fraction of the counts for ratings below 𝑘2. We then

calculate the empirical mean for each of these adjusted histograms

and output their average.

Section 5 shows the virtualization of our aggregators, which

helps to establish some insights about the aggregators.

2 Related Literature
Rating Aggregation. Rating aggregation can be defined as the

problem of integrating different ratings into a single representative

value. Previous works aim to resist individual disturbance from

random or malicious spammers [4, 6] by building a reputation sys-

tem [14, 26, 40]. The basic idea of reputation system is weighted

average where a rater’s weight is measured by his reputation score

2
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Unobserved Ratings
Count: 𝑛𝑢
Estimated Mean: Ƹ𝜇𝑢 = 𝛼 × 1 + 1 − α × 5

42 31 5

Observed Ratings
Count: 𝑛𝑜
Mean: Ƹ𝜇𝑜

𝑛𝑜 × Ƹ𝜇𝑜 + 𝑛𝑢 × Ƹ𝜇𝑢
𝑛

BEA

A parameter depending on the observed ratings

Figure 3: Illustration of the Balanced Extreme Aggregator
(BEA) when the sample size 𝑛 is known. BEA estimates the
expected ratings of those unreported raters based on the dif-
ference between 𝑛1 and 𝑛𝑚 , the counts of extreme ratings.
Then BEA adjusts the observed rating average with the esti-
mated unobserved rating average.

42 31 5

Cut off the lower ratingsCut off the higher ratings

Select a threshold: 𝑘1

Observed Histogram

Polarizing-Averaging Aggregator 

Averaging

(× 𝑞)

Select a threshold: 𝑘2

Empirical Mean Empirical Mean 

Figure 4: Illustration of the Polarizing-Averaging Aggregator
(PAA) when the sample size 𝑛 is unknown. We create two
modified histograms from the original observed data. For
the first histogram, we identify a threshold 𝑘1, and only keep
𝑞 fraction of the counts for ratings above 𝑘1. In the second
histogram, we identify a threshold 𝑘2, and only keep 𝑞 frac-
tion of the counts for ratings below 𝑘2. We then calculate the
empirical mean for each of these adjusted histograms and
output their average.

which is calculated by using the rater-object weighed bipartite net-

work. The quality-based methods measure a raters’s reputation by

the difference between the rating values and the objects’ weighted

average rating values [29, 33, 54, 56]. Unlike quality-based methods,

raters are grouped based on their rating similarities and their repu-

tation is calculated by the corresponding group sizes in group-based

methods. [13, 15, 16] Another branch of literature considers how to

resist collusive disturbance where malicious raters simultaneously

promote or demote the qualities of the targeted objects by giving

consistent rating score [36, 50–52, 55].

Our work focuses on the simple setting where there is a single

object so we can not use the rater-object weighed bipartite network

to learn raters’ rating behavioral patterns. We only consider par-

ticipation bias rather than other malicious behaviors. Finally, we

adopt an adversarial approach to evaluate the performance of an

aggregation scheme.

Participation Bias. Participation bias is awell-studied topicwithin
the casual inference community which arises when participants

disproportionately possess certain traits that affect participation

[11]. It is a common source of error in clinical trials and survey

studies [7, 8, 12, 42, 43].

When participation bias is only related to some observed (mea-

sured) variables and other representative samples are available (e.g.

the whole population data from government), weighting strategies

make it possible to create a pseudo-sample representative for these

variables [41, 42] under the assumption that non-participants have

equivalent behaviours to participants in the same socio-demographic

category. An alternative way is multiple imputation (MI), which

is viable when data are missing at random [2, 39, 44] and can

be strengthened if we can infer information on the absent non-

participants using record-linkage [17, 19] or other methods. If the

data are thought to be missing-not-at-random then methods involv-

ing sensitivity analyses like pattern mixture modelling [34] and

NARFCS [47] can be helpful. These methods can also be combined

to correct participation bias [18].

Methods used to correct sample selection bias can also be used

to correct participation bias [48].

The first solution to sample selection bias was suggested byHeck-

man [21] who proposed a maximum likelihood estimator which

heavily relies on the normality assumption. One way to relax nor-

mality while remaining in the maximum likelihood framework was

suggested by Lee [30, 31]. Two-Step estimators are frequently em-

ployed in empirical work including parametric models [22, 23] and

semi-parametric models [1, 24, 32].

Recent works on sample selection models have aimed to address

robust alternatives to the Heckman model. Marchenko and Genton

[35] introduced a selection-t model, whichmodels the error distribu-

tion using a Student’s t distribution for dealing with the robustness

to the normal assumption in the Heckman model. Zhelonkin et al.

[53] proposed a modified robust semi-parametric alternative based

on Heckman’s two-step estimation method with asymptotic nor-

mality and gave its asymptotic variance. de Souza Bastos et al. [10]

propose a generalization of the Heckman sample selection model

by allowing the sample selection bias and dispersion parameters to

depend on covariates.

Our work significantly differs from the above literature in a few

aspects. First, we are only interested in recovering the average

score rather than the casual effect. Second, we consider a simplified

3
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setting where we only know the reported score and the lower bound

of participation rate instead of various socio-demographic data.

Finally, instead of making extra assumptions, we adopt a robust

approach to evaluate the performance of an aggregation scheme.

Robust Aggregation. Arieli et al. [3] first introduced a robust para-
digm for forecast aggregation, aiming to minimize the aggregator’s

regret compared to an omniscient aggregator. Later, De Oliveira

et al. [9] explored a robust absolute paradigm focused on minimiz-

ing the aggregator’s own loss. Since then, a growing number of

researches have addressed robust information aggregation under

various information structures, including the projective substitutes

condition [37], conditional independent setting [3], and scenarios

involving second-order information [38]. Furthermore, Guo et al.

[20] provide an algorithmic approach for computing a near-optimal

aggregator across general information structures. Kong et al. [28]

tackle robust aggregation in the context of base rate neglect, a

specific bias in forecast aggregation.

We consider a different setting from the above literature. We

focus on addressing participation bias in rating aggregation.

3 Rating Aggregation with Known Sample Size
This section will discuss the setting with a known number of agents

𝑛. We provide the Balanced Extremes Aggregator (BEA), which

performs near-optimal numerically in various cases.

BEA estimates the expectation of the unobserved ratings, 𝜇𝑢 ,

using a convex combination of extreme ratings, given by: 𝜇𝑢 = 𝛼 ×
1+ (1−𝛼) ×𝑚 where 𝛼 is a parameter that depends on the observed

ratings. Intuitively, 𝛼 increases with the number of observed ratings

of 1. BEA then combines 𝜇𝑢 with the average observed ratings to

produce a final aggregated result.

Definition 3.1 (Balanced Extremes Aggregator). Given sam-
ple size 𝑛, the observed ratings �̂� , the aggregator’s output is de-
fined as 𝑓 𝐵𝐸𝐴 (�̂�) =

𝑛𝑜𝜇𝑜+𝑛𝑢𝜇𝑢
𝑛 . Here 𝑛𝑜 =

∑
𝑖 1(𝑥𝑖 ≠ 0) is the

number of observed ratings, 𝑛𝑢 = 𝑛 − 𝑛𝑜 is the number of unob-
served ratings. 𝜇𝑜 =

∑
𝑖 𝑥𝑖
𝑛𝑜

is the average of the observed ratings,
𝜇𝑢 = 𝛼 × 1 + (1 − 𝛼) ×𝑚 is the estimation of the unobserved ratings’
expectation. 𝛼 1 depends on the difference between the count of ratings
of 1 and the count of ratings of𝑚, denoted as 𝑛1 − 𝑛𝑚 , and the lower
bound of the participation probability, denoted as 𝑞.

The design of BEA is based on a specific mixture of information

structures which helps to establish a lower bound for the regret. In

particular, solving min𝑓 max𝒑,𝒈 𝑅(𝑓 ,𝒑,𝒈) is equivalent to solving

a zero-sum game between nature who selects an information struc-

ture (𝒑,𝒈), and a decision-maker who selects the aggregator 𝑓 . We

will present a specific mixed strategy of the nature, and use this

mixed strategy to establish a lower bound for the regret. BEA is the

best response to this mixed strategy.

Lemma 3.2 (Lower Bound of the Regret). Consider a pair of
information structures:

1𝛼 =
(𝑎∗𝑞)𝑛1−𝑛𝑚

(𝑎∗𝑞)𝑛1−𝑛𝑚 +(1−𝑎∗ )𝑛1−𝑛𝑚 . 𝑎∗ is the solution to

max

𝑎

∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1−𝑎)𝑡𝑞𝑠 (1−𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝑎)𝑠−𝑡
𝑛 ( (𝑎𝑞)𝑠−𝑡 + (1 − 𝑎)𝑠−𝑡 )

)
2

.

• 𝜃1 = (𝒑1 = [𝑎, 0, · · · , 0, 1 − 𝑎],𝒈1 = [𝑞, 1, · · · , 1, 1])
• 𝜃2 = (𝒑2 = [1 − 𝑎, 0, · · · , 0, 𝑎],𝒈2 = [1, 1, · · · , 1, 𝑞])

where 𝑞 is the lower bound of the participation probability, and 𝑎 ∈
[0, 1] is a parameter. For any aggregator 𝑓 , the regret has a lower
bound
max

𝒑,𝒈
𝑅 (𝑓 , 𝒑,𝒈)

≥ max(𝑅 (𝑓 , 𝒑1,𝒈1 ), 𝑅 (𝑓 , 𝒑2,𝒈2 ) )

≥
∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝑎)𝑠−𝑡
𝑛 ( (𝑎𝑞)𝑠−𝑡 + (1 − 𝑎)𝑠−𝑡 )

)
2

.

Proof Sketch. We provide a proof sketch here, and the complete

proof is deferred to Appendix A.

Consider a mixture of these two information structures: 𝜃 = 𝜃1
or 𝜃2 with equal probability. Then given the observed ratings X̂,
we can compute the posterior Pr[𝜃 = 𝜃1 |X̂]. The best predictor

for the expectation of unobserved ratings will be the conditional

expectation E[x|x̂ = 0] given the information structure is 𝜃 . Then

we can calculate the regret of the best predictor to obtain our lower

bound.

By enumerating all possible 𝑎, we obtain a corollary

Corollary 3.3. For any aggregator 𝑓 ,
max

𝒑,𝒈
𝑅 (𝑓 , 𝒑,𝒈)

≥max

𝑎

∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝑎)𝑠−𝑡
𝑛 ( (𝑎𝑞)𝑠−𝑡 + (1 − 𝑎)𝑠−𝑡 )

)
2

Let 𝑎∗ = argmax𝑎
∑
𝑠,𝑡

(𝑛
𝑡

) (𝑛−𝑡
𝑠

)
𝑎𝑛−𝑡 (1−𝑎)𝑡𝑞𝑠 (1−𝑞)𝑛−𝑠−𝑡

(
(𝑛−𝑠−𝑡 ) (𝑚−1) (1−𝑎)𝑠−𝑡
𝑛 ( (𝑎𝑞)𝑠−𝑡 +(1−𝑎)𝑠−𝑡 )

)
2

,

then according to our proof of Lemma 3.2, BEA is the best response

to 𝜃1 (𝑎∗), 𝜃2 (𝑎∗). That is, for BEA,

𝑅 (𝑓 , 𝜃1 (𝑎∗ ) ) = 𝑅 (𝑓 , 𝜃2 (𝑎∗ ) )

=max

𝑎

∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝜇 )

𝑛

)
2

Based on Corollary 3.3, BEA outperforms any other aggregator

in our lower bound situation. Regarding general situations, we

evaluate the performance of BEA numerically usingMatlab. Figure 5

shows the results, where the grey line is the theoretical lower bound

given by Corollary 3.3, the red line is BEA and the blue line is the

simple averaging. BEA is almost optimal for a wide range of the

parameter 𝑞, and outperforms simple averaging especially when

𝑞 is small. When 𝑞 is close to 1, indicating there is almost no bias,

BEA is not optimal. We will discuss more details in Appendix B.

4 Rating Aggregation with Unknown Sample
Size

This section will discuss the case where the number of agents 𝑛

is unknown. Fortunately, when 𝑛 → ∞, meaning that we have a

large number of agents, we can obtain a closed-form of the optimal

aggregator, which is called the Polarizing-Averaging Aggregator.

When 𝑛 is unknown, the aggregator only has access to the ob-

served histogram 𝑛1, 𝑛2, · · · , 𝑛𝑚 . PAA outputs the average of the

empirical mean of two modified histograms. For the first histogram,

we identify a threshold 𝑘1, and only keep 𝑞 fraction of the counts for

ratings above 𝑘1. In the second histogram, we identify a threshold

𝑘2, and only keep 𝑞 fraction of the counts for ratings below 𝑘2.

Notice that in the described process, only the empirical mean

of histograms is relevant. Therefore, we can use the normalized

4
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(c) 𝑛 = 20,𝑚 = 5
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Figure 5: Simple averaging vs. BEA for different sample size
𝑛 and the number of rating categories𝑚. The x-axis is the
lower bound of the participation probability, 𝑞, and the y-
axis is the natural logarithm of the regret. The regret of BEA
almost matches the theoretical lower bound for a wide range
of 𝑞.

histograms, specifically the empirical distribution, 𝑝𝑟 =
𝑛𝑟∑
𝑗 𝑛 𝑗

,∀𝑟 ∈
[𝑚], as input.

Definition 4.1 (Polarizing-Averaging Aggregator). Define
the Polarizing-Averaging Aggregator 𝑓 𝑃𝐴𝐴 (�̂�) = 𝑢 (�̂�)+𝑙 (�̂�)

2
, where

𝑙 (�̂�) =
∑𝑘1 (�̂�)
𝑟=1

𝑟 × 𝑝𝑟 + 𝑞
∑𝑚
𝑟=𝑘1 (�̂�)+1 𝑟 × 𝑝𝑟∑𝑘1 (�̂�)

𝑟=1
𝑝𝑟 + 𝑞

∑𝑚
𝑟=𝑘1 (�̂�)+1 𝑝𝑟

2,

𝑢 (�̂�) =
𝑞
∑𝑘2 (�̂�)
𝑟=1

𝑟 × 𝑝𝑟 +
∑𝑚
𝑟=𝑘2 (�̂�)+1 𝑟 × 𝑝𝑟

𝑞
∑𝑘2 (�̂�)
𝑟=1

𝑝𝑟 +
∑𝑚
𝑟=𝑘2 (�̂�)+1 𝑝𝑟

3 .

Wewill show that 𝑙 (�̂�) is the lower bound of the true expectation
𝜇 given the empirical distribution �̂� and the lower bound of the

participation probability 𝑞, and 𝑢 (�̂�) is the upper bound.

4.1 Analysis of PAA in the asymptotic case
This section will analyze PAA in the asymptotic case. We first show

that in the asymptotic case, PAA is optimal.Wewill then present the

regret and the worst information structure of PAA in the asymptotic

case.

2

𝑘1 (�̂�) = arg max

1≤𝑘≤𝑚

𝑘−1∑︁
𝑟=1

(𝑟 − 𝑘 )𝑝𝑟 + 𝑞
𝑚∑︁

𝑟=𝑘+1
(𝑟 − 𝑘 )𝑝𝑟 ≥ 0

3

𝑘2 (�̂�) = arg max

1≤𝑘≤𝑚
𝑞

𝑘−1∑︁
𝑟=1

(𝑟 − 𝑘 )𝑝𝑟 +
𝑚∑︁

𝑟=𝑘+1
(𝑟 − 𝑘 )𝑝𝑟 ≥ 0.

4.1.1 Optimality of PAA.

Theorem 4.2. When 𝑛 → ∞, PAA is optimal.

Proof Sketch. We provide a proof sketch here, the complete proof

is deferred to Appendix A.

We first notice that when 𝑛 → ∞, the regret is the loss. When

𝑛 → ∞, the ideal aggregator who observes full ratings knows the

true distribution 𝒑. Therefore, the regret of 𝑓 to the ideal aggregator
equals the loss max𝒑,𝒈 (𝑓 (�̂�) − Ex∼𝒑 [x])2. The problem becomes

solving min𝑓 max𝒑,𝒈 (𝑓 (�̂�) − Ex∼𝒑 [x])2 conditional on knowing

the empirical distribution of the observed ratings �̂�.
Furthermore, when 𝑛 → ∞, �̂� is propositional to the element-

wise product
4
of the true distribution 𝒑 and the participation prob-

abilities 𝒈: �̂� ∝ 𝒑 ◦ 𝒈.
The proof is divided into the following steps.

Optimal aggregator is the midpoint of extremes. Given �̂�, define
the lower bound of the expectation of 𝒑 which satisfy the propo-

sitional constraint 𝑙∗ (�̂�) = min𝒑,𝒈:�̂�∝𝒑◦𝒈 Ex∼𝒑 [x] and the upper

bound 𝑢∗ (�̂�) = max𝒑,𝒈:�̂�∝𝒑◦𝒈 Ex∼𝒑 [x].
Since (𝑓 (�̂�)−Ex∼𝒑 [x])2measures the squared distance toEx∼𝒑 [x],

the best aggregator must be the midpoint between the extreme val-

ues to minimize this squared distance. That is, the best 𝑓 has the

format of (𝑢∗ (�̂�) + 𝑙∗ (�̂�))/2.
It’s left to show that 𝑙∗ (�̂�) = 𝑙 (�̂�) and 𝑢∗ (�̂�) = 𝑢 (�̂�) where 𝑙 (�̂�)

and 𝑢 (�̂�) are described in the definition of PAA (Definition 4.1).

Minimize or maximize Ex∼𝒑 [x] given �̂�. Given �̂�, we start to find
(𝒑′,𝒈′) to minimize or maximize Ex∼𝒑 [x], conditional on �̂� ∝ 𝒑◦𝒈.
We first characterize 𝒈′. Here are two properties of the optimal 𝒈′.

• 𝒈′ is extreme: 𝑔𝑟 = 1 or 𝑞 for any rating 𝑟 .

• 𝒈′ is monotonic: 𝑔𝑟 ≤ 𝑔𝑟+1 or 𝑔𝑟 ≥ 𝑔𝑟+1 for any rating 𝑟 .

Here is how we derive the above properties. Given �̂�, because
�̂� ∝ 𝒑 ◦ 𝒈, Ex∼𝒑 [x] can be viewed as a function, denoted as 𝐹 , of

𝒈. By calculating the partial derivative of 𝐹 , we observe the sign

of
𝑑𝐹
𝑑𝑔𝑟

is independent with 𝑔𝑟 as long as 𝑔𝑟 is positive. The sign of

𝑑𝐹
𝑑𝑔𝑟

can be determined by 𝐹 (𝒈) − 𝑟 .

Using these two properties of𝒈′,𝒈′ can be constructed as follows:
for the minimum, there exists an index 𝑘1 (�̂�) such that 𝑔𝑟 = 𝑞 for

any 𝑟 ≤ 𝑘1 (�̂�) and 𝑔𝑟 = 1 otherwise. While for the maximum, there

exists an index 𝑘2 (�̂�) such that 𝑔𝑟 = 1 for any 𝑟 ≤ 𝑘2 (�̂�) and 𝑔𝑟 = 𝑞

otherwise.

To find the optimal 𝑘1 (�̂�), 𝑘2 (�̂�), we can simply enumerate all

the 𝑚 values, but we make a more careful analysis to give the

closed-form of the optimal 𝑘1 (�̂�), 𝑘2 (�̂�) in the appendix.

This finishes the proof sketch of the optimality of PAA in the

asymptotic case.

4.1.2 Regret and the worst information structure of PAA. We also

obtain the closed forms of regret and the corresponding worst

information structure of PAA.

Proposition 4.3. When𝑛 → ∞, the regret of PAA is
(
(𝑚−1) (1−𝑞)

2(1+𝑞)

)
2

.
In addition, the corresponding worst pair of information structure is

• 𝜃1 = (𝒑1 = [ 1

𝑞+1 , 0, · · · , 0,
𝑞

𝑞+1 ],𝒈1 = [𝑞, 1, · · · , 1, 1])

4
For any vectors 𝒙,𝒚 , their element-wise product is 𝒙 ◦ 𝒚 = (𝑥1𝑦1, · · · , 𝑥𝑛𝑦𝑛 ) .
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the number of rating categories is𝑚 = 3: The x-axis is the
lower bound of the participation probability,𝑞, and the y-axis
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• 𝜃2 = (𝒑2 = [ 𝑞
𝑞+1 , 0, · · · , 0,

1

𝑞+1 ],𝒈2 = [1, 1, · · · , 1, 𝑞])
That is,

𝑅(𝑓 𝑃𝐴𝐴, 𝜃1) = 𝑅(𝑓 𝑃𝐴𝐴, 𝜃2) =
(
(𝑚 − 1) (1 − 𝑞)

2(1 + 𝑞)

)
2

.

Proof Sketch. Fix the optimal aggregator PAA, we aim to find the

worst information structure (𝒑∗,𝒈∗) that maximizes the loss/regret

(𝑓 𝑃𝐴𝐴 (�̂�) − Ex∼𝒑 [x])2.
We have proved that the optimal aggregator is the midpoint of

the extremes 𝑙 (�̂�) and 𝑢 (�̂�). The maximal loss is (𝑢 (�̂�) − 𝑙 (�̂�))2 /4.
To obtain the maximal loss, we aim to find �̂�∗

to maximize 𝑢 (�̂�) −
𝑙 (�̂�). We analyze the maximizer in the following four steps.

• We first show that �̂�∗
has at most three non-zero entries:

|{𝑟 : 𝑝𝑟 > 0}| ≤ 3.

• We further show that �̂�∗
has exactly two non-zero entries:

|{𝑟 : 𝑝∗𝑟 > 0}| = 2.

• We then obtain the concrete value: �̂�∗ = ( 1
2
, 0, · · · , 0, 1

2
).

• Finally, we construct two worst information structures

𝜃1 = (𝒑1 = [ 1

𝑞 + 1

, 0, · · · , 0, 𝑞

𝑞 + 1

],𝒈1 = [𝑞, 1, · · · , 1, 1]),

𝜃2 = (𝒑2 = [ 𝑞

𝑞 + 1

, 0, · · · , 0, 1

𝑞 + 1

],𝒈2 = [1, 1, · · · , 1, 𝑞]) .

In particular, 𝜃1 is the maximizer of Ex∼𝒑 [x] given �̂� = �̂�∗
.

𝜃2 is the minimizer of Ex∼𝒑 [x] given �̂� = �̂�∗
.

First Step: For any empirical distribution �̂�, recall that the par-
ticipation probabilities in the maximizer of Ex∼𝒑 [x] given �̂� has

the format that 𝑔𝑟 = 1 for any 𝑟 ≤ 𝑘1 (�̂�) and 𝑔𝑟 = 𝑞 otherwise. The

participation probabilities in the minimizer of Ex∼𝒑 [x] given �̂� has

the format that 𝑔𝑟 = 𝑞 for any 𝑟 ≤ 𝑘2 (�̂�) and 𝑔𝑟 = 1 otherwise.

The aim is to maximize the gap𝑢 (�̂�)−𝑙 (�̂�). We first divide �̂� into

three components by 𝑘1 (�̂�) ≤ 𝑘2 (�̂�). Then we prove that by alter-

nately concentrating all probabilities in the first component at rat-

ing 1 and all probabilities in the third component at rating𝑚, we can

achieve a new distribution with a non-decreasing gap. Note that in

the new distribution, the threshold will also change. We repeat this

concentration step until the distribution stabilizes at �̂�′
, which has

the following form: (𝑝′
1
, 0, · · · , 0, 𝑝′

𝑘1 (�̂�′ )+1, · · · , 𝑝
′
𝑘2 (�̂�′ ) , 0, · · · , 0, 𝑝

′
𝑚).

At last we concentrate all probabilities in the second component of

�̂�′
at one of rating (𝑘1 (�̂�′) + 1) and rating 𝑘2 (�̂�′) to obtain a new

distribution with a non-decreasing gap and at most three non-zero

entries.

Second Step: Now we have proved that �̂�∗
has at most three

non-zero entries at position 1, 𝑘 ∈ (1,𝑚),𝑚. We further find that we

can redistribute the density at the middle position 𝑘 to one of the

end positions 1,𝑚 will not decrease the gap 𝑢 (�̂�) − 𝑙 (�̂�). Thus, we
show that �̂�∗

has exactly two non-zero entries: |{𝑟 : 𝑝∗𝑟 > 0}| = 2.

Third Step: Given the simple format of �̂�∗
, we obtain its value

by differentiation.

Fourth Step: Finally, we calculate the worst information struc-

tures (𝒑∗,𝒈∗) given �̂�∗
by computing the maximizer and the mini-

mizer of Ex∼𝒑 [x] given �̂� = �̂�∗
.

4.2 Analysis of PAA in the finite case
PAA is also applicable for the finite case. Though PAA is not optimal

when 𝑛 is finite, we prove that it is near-optimal, with the error

bound depending on the sample size 𝑛, and the number of rating

categories𝑚.

Theorem 4.4. When𝑚 = 𝑜

(
( 𝑛
ln𝑛

)
1

4

)
, PAA is𝑂

(
𝑚2

√︃
ln𝑛
𝑛

)
-optimal.

That is, for any aggregator 𝑓 ,

max

𝒑,𝒈
𝑅(𝑓 𝑃𝐴𝐴,𝒑,𝒈) ≤ max

𝒑,𝒈
𝑅(𝑓 ,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
.

Proof Sketch. The input to 𝑓 𝑃𝐴𝐴 is the empirical distribution

of observed ratings. In the asymptotic scenario, this corresponds

to 𝒑 ◦ 𝒈, and we have demonstrated that 𝑓 𝑃𝐴𝐴 is optimal under

these conditions. However, in finite sample situations, the empirical

distribution is only an approximate version of 𝒑 ◦ 𝒈. Consequently,
the performance of 𝑓 𝑃𝐴𝐴 hinges on the quality of this approxima-

tion. We will further analyze the performance by employing the

Chernoff bound and union bound to assess the approximation’s

accuracy.

Furthermore, when 𝑛 is finite, unlike the asymptotic case, the

regret is not the loss. When 𝑛 is different, the ideal aggregator is

also different. The analysis should also consider this.

5 Virtualization of Aggregators
Visualization of BEA. Figure 7 and Figure 8 visualize BEA for a

specific case where the sample size 𝑛 = 20, and the rating values

are [𝑚] = [2] = {1, 2}. Compared to simple averaging, BEA tends

to be more conservative (i.e. close to
𝑚+1
2

= 3/2). Note as the

lower bound of the participation probability 𝑞 becomes larger, BEA

becomes more conservative.

Visualization of PAA. Figure 9 and Figure 10 visualize PAA for a

specific case where the sample size 𝑛 = 1000, and the rating values

are [𝑚] = [2] = {1, 2}. Note as the lower bound of the participation
probability 𝑞 becomes smaller, PAA becomes more conservative

(i.e. close to
𝑚+1
2

= 3/2). We can see it more clearly in Figure 10.

When 𝑛1 = 𝑛2 = 300, all the aggregators report the same value

𝑚+1
2

= 3

2
. In general, 𝑓 𝐵𝐸𝐴 also reports

𝑚+1
2

when𝑛1 = 𝑛𝑚 . When𝑛

is large, the worst case is roughly 𝑛1 = 𝑛𝑚 , when 𝑛 → ∞, the worst

�̂� is ( 1
2
, 0, · · · , 0, 1

2
). This represents a polarized situation where

participants are split between extreme approval or disapproval,

with equal numbers on both sides.

6
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(d) simple averaging

Figure 7: Heat map of BEA for a specific case where the sam-
ple size 𝑛 = 20, and the rating values are [𝑚] = [2] = {1, 2}.
The x-axis represents the count of rating 1, and the y-axis
represents the count of rating 2. We vary the lower bound of
the participation probability 𝑞.
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Figure 8: Value of BEA for a specific case where the sample
size 𝑛 = 20, and the rating values are [𝑚] = [2] = {1, 2}. The
count of rating 1 is fixed as 𝑛1 = 5. The x-axis is the count
of rating 2, 𝑛2. The y-axis is the value of BEA. We vary the
lower bound of the participation probability 𝑞.

6 Conclusion
In this work, we explored the problem of rating aggregation with

the participation. We focus on two scenarios where the sample

size may be either known or unknown. For the known case, we

introduced the Balanced Extremes Aggregator (BEA), which bal-

ances the extreme ratings by predicting the unobserved ratings
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(b) 𝑞 = 0.3
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(c) 𝑞 = 0.5
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Figure 9: Heat map of PAA for a specific case where the sam-
ple size 𝑛 = 1000, and the rating values are [𝑚] = [2] = {1, 2}.
The x-axis represents the count of rating 1, and the y-axis
represents the count of rating 2. We vary the lower bound of
the participation probability 𝑞. When 𝑞 = 1, PAA degenerates
to simple averaging.
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Figure 10: Value of PAA for a specific case where the sample
size 𝑛 = 1000, and the rating values are [𝑚] = [2] = {1, 2}. The
count of rating 1 is fixed as 𝑛1 = 300. The x-axis is the count
of rating 2, 𝑛2. The y-axis is the value of PAA. We vary the
lower bound of the participation probability 𝑞. When 𝑞 = 1,
PAA degenerates to simple averaging.

with the observed ratings. We evaluate its performance by numer-

ical results. For the unknown sample size setting, we presented

the Polarizing-Averaging Aggregator (PAA), which achieves near-

optimal performance by averaging two polarized true distributions

given the observed ratings.
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As for the future work, we could explore adaptive algorithms

that dynamically adjust to varying participation probabilities over

time could enhance robustness, especially in rapidly changing en-

vironments like e-commerce and social media platforms.

In this work, we assume the ratings are independent. Incorpo-

rating user behavior analysis, such as identifying and adjusting

for systematic biases based on user demographics or past behavior,

could yield more general aggregators.

Another promising direction involves extending our aggregators

to handle multi-dimensional ratings, which are common in mod-

ern applications where users rate multiple attributes (e.g., service,

quality, and price).
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A Omitted Proofs
Lemma A.1 (Lower Bound of the Regret). Consider a pair of

information structures:

• 𝜃1 = (𝒑1 = [𝑎, 0, · · · , 0, 1 − 𝑎],𝒈1 = [𝑞, 1, · · · , 1, 1])
• 𝜃2 = (𝒑2 = [1 − 𝑎, 0, · · · , 0, 𝑎],𝒈2 = [1, 1, · · · , 1, 𝑞])

where 𝑎 is a parameter. Then for any aggregator 𝑓 , the regret has a
lower bound

max

𝒑,𝒈
𝑅 (𝑓 , 𝒑,𝒈)

≥ max(𝑅 (𝑓 , 𝒑1,𝒈1 ), 𝑅 (𝑓 , 𝒑2,𝒈2 ) )

≥
∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝑎)𝑠−𝑡
𝑛 ( (𝑎𝑞)𝑠−𝑡 + (1 − 𝑎)𝑠−𝑡 )

)
2

.

Proof. Consider a linear combination information structure

𝜃 = 𝜃1 or 𝜃2 with equal probability. Now we compute its best

response 𝑓 ′ (X̂) = E
[
1

𝑛

∑
𝑖 x𝑖 |X̂

]
, which is the posterior given the

observed ratings. Given 𝑠 =
∑
𝑖 1(𝑥𝑖 = 1), 𝑡 =

∑
𝑖 1(𝑥𝑖 = 𝑚). We

have

Pr[𝜃 = 𝜃1 |X̂]

=
Pr[X̂ |𝜃1 ]

Pr[X̂ |𝜃1 ] + Pr[X̂ |𝜃2 ]

=

(𝑛
𝑡

) (𝑛−𝑡
𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡(𝑛

𝑡

) (𝑛−𝑡
𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡 +

(𝑛
𝑠

) (𝑛−𝑠
𝑡

)
𝑎𝑛−𝑠 (1 − 𝑎)𝑠𝑞𝑡 (1 − 𝑞)𝑛−𝑠−𝑡

=
(𝑎𝑞)𝑠−𝑡

(𝑎𝑞)𝑠−𝑡 + (1 − 𝑎)𝑠−𝑡 .

=
1

1 + ( 1−𝑎
𝑎𝑞

)𝑠−𝑡

Then

E[x|x̂ = 0]
= Pr[𝜃 = 𝜃1 |X̂]E[x|x̂ = 0, 𝜃1] + Pr[𝜃 = 𝜃2 |X̂]E[x|x̂ = 0, 𝜃2]

= 1 ∗ 1

1 + ( 1−𝑎𝑎𝑞 )𝑠−𝑡
+𝑚 ∗ (1 − 1

1 + ( 1−𝑎𝑎𝑞 )𝑠−𝑡
)

=𝑚 − (𝑚 − 1) 1

1 + ( 1−𝑎𝑎𝑞 )𝑠−𝑡
.

Thus the best response is 𝑓 ′ (X̂) =
∑

𝑖 x̂𝑖+(𝑚−(𝑚−1) 1

1+( 1−𝑎𝑎𝑞 )𝑠−𝑡
)∗(𝑛−𝑠−𝑡 )

𝑛 .

By simple calculation we obtain that for any 𝑓 ,

𝑅 (𝑓 ,Θ) ≥ 𝑅 (𝑓 , 𝜃 ) ≥ 𝑅 (𝑓 ′, 𝜃 )

=
∑︁
𝑠,𝑡

(
𝑛

𝑡

) (
𝑛 − 𝑡

𝑠

)
𝑎𝑛−𝑡 (1 − 𝑎)𝑡𝑞𝑠 (1 − 𝑞)𝑛−𝑠−𝑡

(
(𝑛 − 𝑠 − 𝑡 ) (𝑚 − 1) (1 − 𝜇 )

𝑛

)
2

□

Theorem A.2. When 𝑛 → ∞, the aggregator is optimal.

Proof. When𝑛 → ∞, the empirical distribution is propositional

to the element-wise product of the true distribution 𝒑 and the

participation probabilities 𝒈: �̂� ∝ 𝒑 ◦ 𝒈. We want to minimize

max𝒑,𝒈 (𝑓 (�̂�) − Ex∼𝒑 [x])2.
Given �̂�, define the lower bound of the expectation of 𝒑 which

satisfy the propositional constraint 𝑙∗ (�̂�) = min𝒑,𝒈:𝑝∝𝒑◦𝒈 Ex∼𝒑 [x]
and the upper bound𝑢∗ (�̂�) = max𝒑,𝒈:𝑝∝𝒑◦𝒈 Ex∼𝒑 [x]. Since (𝑓 (�̂�)−
Ex∼𝒑 [x])2 is a quadratic function about Ex∼𝒑 [x], we have

max

𝒑,𝑔
(𝑓 (�̂�) − Ex∼𝒑 [x])2 = max{(𝑓 (�̂�) − 𝑙∗ (�̂�))2, (𝑓 (�̂�) − 𝑢∗ (�̂�))2}

≥ (𝑢∗ (�̂�) − 𝑙∗ (�̂�))2/4.
The equality holds if and only if 𝑓 (�̂�) = (𝑢∗ (�̂�) +𝑙∗ (�̂�))/2, so the

best aggregator is 𝑓 (�̂�) = (𝑢∗ (�̂�) + 𝑙∗ (�̂�))/2. It’s left to show that

𝑙∗ (�̂�) = 𝑙 (�̂�) and 𝑢∗ (�̂�) = 𝑢 (�̂�) where 𝑙 (�̂�) and 𝑢 (�̂�) are described
in the definition of PAA (Definition 4.1).

Given �̂�, we start to find (𝒑′,𝒈′) tominimize ormaximizeEx∼𝒑 [x],
conditional on �̂� ∝ 𝒑 ◦ 𝒈. We first characterize 𝒈′. Here are two
properties of the optimal 𝒈′.

• 𝒈′ is extreme: 𝑔𝑟 = 1 or 𝑞 for any rating 𝑟 .

• 𝒈′ is monotonic: 𝑔𝑟 ≤ 𝑔𝑟+1 or 𝑔𝑟 ≥ 𝑔𝑟+1 for any rating 𝑟 .

Given �̂�, because �̂� ∝ 𝒑 ◦𝒈, Ex∼𝒑 [x] can be viewed as a function,

denoted as 𝐹 , of 𝒈. By calculating the partial derivative of 𝐹 , we

have

𝑑𝐹

𝑑𝑔𝑟
=

𝑝𝑟𝑔
−2
𝑟

(∑𝑗 𝑝 𝑗/𝑔 𝑗 )2
∗ (

∑︁
𝑗

𝑗
𝑝 𝑗

𝑔 𝑗
− 𝑟

∑︁
𝑗

𝑝 𝑗

𝑔 𝑗
)

=
𝑝𝑟𝑔

−2
𝑟

(∑𝑗 𝑝 𝑗/𝑔 𝑗 )2
∗ (

𝑟−1∑︁
𝑗=1

( 𝑗 − 𝑟 )
𝑝 𝑗

𝑔 𝑗
+

𝑚∑︁
𝑗=𝑟+1

( 𝑗 − 𝑟 )
𝑝 𝑗

𝑔 𝑗
)

=
𝑝𝑟𝑔

−2
𝑟∑

𝑗 𝑝 𝑗/𝑔 𝑗
∗ (𝐹 (𝒈) − 𝑟 ).

First Notice that the sign of
𝑑𝐹
𝑑𝑔𝑟

is independent with 𝑔𝑟 as long

as 𝑔𝑟 is positive, so the optimal 𝒈 is extreme: 𝑔𝑟 = 1 or 𝑔𝑟 = 𝑞. Then

Notice the sign of
𝑑𝐹
𝑑𝑔𝑟

is determined by 𝐹 (𝒈) − 𝑟 where 𝐹 (𝒈) =

Ex∼𝒑 [x] ∈ [1,𝑚], so the optimal 𝒈 is monotonic.
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Using these two properties of 𝒈′, 𝒈′ can be given by an index

strategy:

for the minimum, there exists an index 𝑘1 (�̂�) such that

𝑔′𝑟 =

{
𝑞 𝑟 ≤ 𝑘1 (�̂�)
1 𝑟 > 𝑘1 (�̂�)

while for the maximum, there exists an index 𝑘2 (�̂�) such that

𝑔′𝑟 =

{
1 𝑟 ≤ 𝑘2 (�̂�)
𝑞 𝑟 > 𝑘2 (�̂�)

To find the optimal index, we can simply calculate all the 𝑚

values, but here we make a more careful analysis.

Take the minimum for example. We use 𝒈 (𝑘 )
to denote a 1 ×𝑚

vector with the first 𝑘 elements being 𝑞 and the other elements

being 1. We claim 𝐹 (𝒈 (𝑘 ) ) has a single-bottom shape regarding the

index 𝑘 , or equivalently,

𝐹 (𝒈 (𝑘 ) )−𝐹 (𝒈 (𝑘−1) ) > 0 =⇒ ∀𝑘
′
≥ 𝑘, 𝐹 (𝒈 (𝑘 ′ ) )−𝐹 (𝒈 (𝑘 ′−1) ) ≥ 0.

Let 𝐷𝑘 = 1

𝑞

∑𝑘
𝑖=1 𝑝𝑖 +

∑𝑚
𝑖=𝑘+1 𝑝𝑖 . We have

𝐹 (𝒈 (𝑘 ) ) − 𝐹 (𝒈 (𝑘−1) ) = ( 1
𝑞
− 1)𝑝𝑘𝐷𝑘 (𝑘 − 𝐹 (𝑔𝑘 )).

We first prove 𝐹 (𝒈 (𝑘 ) ) < 𝑘 =⇒ ∀𝑘 ′ ≥ 𝑘, 𝐹 (𝒈 (𝑘 ′ ) ) < 𝑘
′
. Notice

𝐹 (𝒈 (𝑘+1) ) − 𝐹 (𝒈 (𝑘 ) ) = ( 1
𝑞
− 1)𝑝𝑘+1𝐷𝑘+1 ((𝑘 + 1) − 𝐹 (𝑔𝑘+1)).

So

𝐹 (𝒈 (𝑘+1) ) =
𝐹 (𝑘) + ( 1𝑞 − 1) (𝑘 + 1)𝑝𝑘+1𝐷𝑘+1

1 + ( 1𝑞 − 1)𝑝𝑘+1𝐷𝑘+1
.

If 𝐹 (𝒈 (𝑘 ) ) < 𝑘 , we have

𝐹 (𝑔𝑘+1) =
𝐹 (𝑘) + ( 1𝑞 − 1) (𝑘 + 1)𝑝𝑘+1𝐷𝑘+1

1 + ( 1𝑞 − 1)𝑝𝑘+1𝐷𝑘+1

<
𝑘 + ( 1𝑞 − 1) (𝑘 + 1)𝑝𝑘+1𝐷𝑘+1

1 + ( 1𝑞 − 1)𝑝𝑘+1𝐷𝑘+1

<
(𝑘 + 1) + ( 1𝑞 − 1) (𝑘 + 1)𝑝𝑘+1𝐷𝑘+1

1 + ( 1𝑞 − 1)𝑝𝑘+1𝐷𝑘+1

= 𝑘 + 1

By induction, we have ∀𝑘 ′ ≥ 𝑘, 𝐹 (𝒈 (𝑘 ′ ) ) < 𝑘
′
. So

𝐹 (𝒈 (𝑘 ) ) − 𝐹 (𝒈 (𝑘−1) ) > 0 =⇒ 𝐹 (𝒈 (𝑘 ) ) < 𝑘

=⇒ ∀𝑘
′
≥ 𝑘, 𝐹 (𝒈 (𝑘 ′ ) ) < 𝑘

′

=⇒ ∀𝑘
′
≥ 𝑘, 𝐹 (𝒈 (𝑘 ′ ) ) − 𝐹 (𝒈 (𝑘 ′−1) ) ≥ 0.

So 𝑘1 (�̂�) is the optimal index for minimum ⇐⇒ 𝐹 (𝒈 (𝑘1 (�̂�) ) ) −
𝑘1 (�̂�) > 0, 𝐹 (𝒈 (𝑘1 (�̂�)+1) ) − (𝑘1 (�̂�) + 1) < 0 ( Since �̂� can have

zero entries, there might be some consecutive 𝑘 that all of them is

"optimal". For clarity, we take this definition). i.e.

𝑘1 (�̂�) = max{𝑘 : 1 ≤ 𝑘 ≤ 𝑚,

𝑘−1∑︁
𝑖=1

(𝑖 − 𝑘) 𝑝𝑖
𝑞

+
𝑚∑︁

𝑖=𝑘+1
(𝑖 − 𝑘)𝑝𝑖 ≥ 0}.

Similarly,

𝑘2 (�̂�) = max{𝑘 : 1 ≤ 𝑘 ≤ 𝑚,

𝑘−1∑︁
𝑖=1

(𝑖 − 𝑘)𝑝𝑖 +
𝑚∑︁

𝑖=𝑘+1
(𝑖 − 𝑘) 𝑝𝑖

𝑞
≥ 0}.

Notice the optimal index is also a rough approximation of the

optimal value. Since 𝑘1 (�̂�) < 𝑙 (�̂�) < 𝑘1 (�̂�) + 1, 𝑘2 (�̂�) < 𝑢 (�̂�) <

𝑘2 (�̂�) + 1 and 𝑙 (�̂�) < 𝑢 (�̂�), we have 𝑘1 (�̂�) ≤ 𝑘2 (�̂�).
□

PropositionA.3. When𝑛 → ∞, the regret of PAA is
(
(𝑚−1) (1−𝑞)

2(1+𝑞)

)
2

.
In addition, the corresponding worst pair of information structure is

• 𝜃1 = (𝒑1 = [ 1

𝑞+1 , 0, · · · , 0,
𝑞

𝑞+1 ],𝒈1 = [𝑞, 1, · · · , 1, 1])
• 𝜃2 = (𝒑2 = [ 𝑞

𝑞+1 , 0, · · · , 0,
1

𝑞+1 ],𝒈2 = [1, 1, · · · , 1, 𝑞])

That is,

𝑅(𝑓 𝑃𝐴𝐴, 𝜃1) = 𝑅(𝑓 𝑃𝐴𝐴, 𝜃2) =
(
(𝑚 − 1) (1 − 𝑞)

2(1 + 𝑞)

)
2

.

Proof. Fix the optimal aggregator PAA, we aim to find the

worst information structure (𝒑∗,𝒈∗) that maximizes the loss/regret

(𝑓 𝑃𝐴𝐴 (�̂�) − Ex∼𝒑 [x])2.
We have proved that the optimal aggregator is themidpoint of the

extremes 𝑙 (�̂�) and 𝑢 (�̂�). The maximal loss is (𝑢 (�̂�) − 𝑙 (�̂�))2 /4. To
obtain the maximal loss, we aim to find �̂�∗

to maximize𝑢 (�̂�) − 𝑙 (�̂�).
We analyze the maximizer in the following four steps.

First we prove �̂�∗
has at most three non-zero entries. Then we

prove �̂�∗
has exactly two non-zero entries. Next we prove the

�̂�∗
is ( 1

2
, 0, · · · , 0, 1

2
). Finally, we calculate the worst information

structures (𝒑∗,𝒈∗) given �̂�∗
by computing the maximizer and the

minimizer of Ex∼𝒑 [x] given �̂� = �̂�∗
.

First Step: For any �̂�, consider the optimal index for minimum

𝑘1 (�̂�) and the optimal index for maximum 𝑘2 (�̂�). Since 𝑘1 (�̂�) <
𝑙 (�̂�) < 𝑘1 (�̂�) + 1, 𝑘2 (�̂�) < 𝑢 (�̂�) < 𝑘2 (�̂�) + 1 and 𝑙 (�̂�) < 𝑢 (�̂�), we
have 𝑘1 (�̂�) ≤ 𝑘2 (�̂�). Define 𝑎 =

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 and

�̂�1 = (𝑎, 0, · · · , 0, 𝑝𝑘1 (�̂�)+1, 𝑝𝑘1 (�̂�)+2, · · · , 𝑝𝑚) .

For short, we denote 𝑅(𝑓 , �̂�) = max𝒑,𝒈:�̂�∝𝒑◦𝒈 (𝑓 (�̂�) −Ex∼𝒑 [x])2,
which is the maximum regret of 𝑓 given the empirical distribution

�̂�. We will show 𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤ 𝑅(𝑓 𝑃𝐴𝐴, �̂�1).
Note for �̂�1, we have

𝑙 (�̂�1) ≤
1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑗𝑝 𝑗

1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑝 𝑗
,

and

𝑢 (�̂�1) ≥
∑𝑘2 (�̂�)

𝑗=1
𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑗𝑝 𝑗∑𝑘2 (�̂�)

𝑗=1
𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑝 𝑗

.
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So

(𝑢 (�̂�1) − 𝑙 (�̂�1)) − (𝑢 (�̂�) − 𝑙 (�̂�))
= (𝑙 (�̂�) − 𝑙 (�̂�1)) − (𝑢 (�̂�) − 𝑢 (�̂�1))

≥ (
1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑗𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑗𝑝 𝑗

1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑝 𝑗
−

1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑗𝑝 𝑗

1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑝 𝑗
)

− (
∑𝑘2 (�̂�)

𝑗=1
𝑗𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑗𝑝 𝑗∑𝑘2 (�̂�)

𝑗=1
𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑝 𝑗

−
∑𝑘2 (�̂�)

𝑗=1
𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑗𝑝 𝑗∑𝑘2 (�̂�)

𝑗=1
𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑝 𝑗

)

=

1

𝑞

∑𝑘1 (�̂�)
𝑗=1

( 𝑗 − 1)𝑝 𝑗
1

𝑞

∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑝 𝑗
−

∑𝑘2 (�̂�)
𝑗=1

( 𝑗 − 1)𝑝 𝑗∑𝑘2 (�̂�)
𝑗=1

𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑝 𝑗

=

∑𝑘1 (�̂�)
𝑗=1

( 𝑗 − 1)𝑝 𝑗∑𝑘1 (�̂�)
𝑗=1

𝑝 𝑗 + 𝑞
∑𝑚

𝑗=𝑘1 (�̂�)+1 𝑝 𝑗
−

∑𝑘2 (�̂�)
𝑗=1

( 𝑗 − 1)𝑝 𝑗∑𝑘2 (�̂�)
𝑗=1

𝑝 𝑗 + 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�)+1 𝑝 𝑗

≥ 0.

which implies 𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤ 𝑅(𝑓 𝑃𝐴𝐴, �̂�1).
We also use 𝒑(1) to denote the first element of 𝒑. Define 𝑏 =∑𝑚
𝑗=𝑘2 (�̂�1 )+1 �̂�1 ( 𝑗) and �̂�2 = (�̂�1 (1), �̂�1 (2), · · · , �̂�1 (𝑘2 (�̂�1)), 0, · · · , 0, 𝑏).
Similarly, we can prove 𝑅(𝑓 𝑃𝐴𝐴, �̂�1) ≤ 𝑅(𝑓 𝑃𝐴𝐴, �̂�2).
We call this one iteration. Note the non-zero entries will not in-

crease during the iteration. We iterate until the non-zero entries do

not decrease. We use �̂�′
to denote the stable distribution after itera-

tions. �̂�′
has the format of (𝑝′

1
, 0, · · · , 0, 𝑝′

𝑙
, 𝑝′

𝑙+1, · · · , 𝑝
′
𝑟 , 0, · · · , 0, 𝑝′𝑚),

where 𝑘1 (�̂�′) < 𝑙 and 𝑘2 (�̂�′) > 𝑟 .

Define �̂�3 = (𝑝′
1
, 0, · · · , 0, 1 − 𝑝′

1
− 𝑝′𝑚, 0, · · · , 0, 𝑝′𝑚) where the

𝑙-th entry is 1 − 𝑝′
1
− 𝑝′𝑚 . Define �̂�4 = (𝑝′

1
, 0, · · · , 0, 1 − 𝑝′

1
−

𝑝′𝑚, 0, · · · , 0, 𝑝′𝑚) where the 𝑟 -th entry is 1 − 𝑝′
1
− 𝑝′𝑚 .

𝑙 (�̂�3) ≤
1

𝑞

∑𝑙−1
𝑗=1 𝑗�̂�3 ( 𝑗) +

∑𝑚
𝑗=𝑙

𝑗�̂�3 ( 𝑗)
1

𝑞

∑𝑙−1
𝑗=1 �̂�3 ( 𝑗) +

∑𝑚
𝑗=𝑙

�̂�3 ( 𝑗)
=

1

𝑞 𝑝
′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) +𝑚𝑝′𝑚

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)

𝑢 (�̂�3) ≥
∑𝑟

𝑗=1 𝑗�̂�3 ( 𝑗) + 1

𝑞

∑𝑚
𝑗=𝑟+1 𝑗�̂�3 ( 𝑗)∑𝑟

𝑗=1 �̂�3 ( 𝑗) + 1

𝑞

∑𝑚
𝑗=𝑟+1 �̂�3 ( 𝑗)

=
𝑝′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) + 𝑚

𝑞 𝑝
′
𝑚

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

If 𝑝′
1
≤ 𝑝′𝑚 , then

(𝑢 (�̂�3) − 𝑙 (�̂�3)) − (𝑢 (�̂�′) − 𝑙 (�̂�)′)
= (𝑙 (�̂�′) − 𝑙 (�̂�3)) − (𝑢 (�̂�′) − 𝑢 (�̂�3))

≥ (
1

𝑞

∑𝑘1 (�̂�′ )
𝑗=1

𝑗𝑝′
𝑗
+ ∑𝑚

𝑗=𝑘1 (�̂�′ )+1 𝑗𝑝
′
𝑗

1

𝑞

∑𝑘1 (�̂�′ )
𝑗=1

𝑝′
𝑗
+ ∑𝑚

𝑗=𝑘1 (�̂�′ )+1 𝑝
′
𝑗

−
1

𝑞 𝑝
′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) +𝑚𝑝′𝑚

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)

)

− (
∑𝑘2 (�̂�′ )

𝑗=1
𝑗𝑝′

𝑗
+ 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�′ )+1 𝑗𝑝

′
𝑗∑𝑘2 (�̂�′

𝑗=1
𝑝′
𝑗
+ 1

𝑞

∑𝑚
𝑗=𝑘2 (�̂�′ )+1 𝑝

′
𝑗

−
𝑝′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) + 𝑚

𝑞 𝑝
′
𝑚

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

)

= (
1

𝑞 𝑝
′
1
+ ∑𝑟

𝑗=𝑙
𝑗𝑝′

𝑗
+𝑚𝑝′𝑚

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)

−
1

𝑞 𝑝
′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) +𝑚𝑝′𝑚

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)

)

− (
𝑝′
1
+ ∑𝑟

𝑗=𝑙
𝑗𝑝′

𝑗
+ 𝑚

𝑞 𝑝
′
𝑚

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

−
𝑝′
1
+ 𝑙 (1 − 𝑝′

1
− 𝑝′𝑚) + 𝑚

𝑞 𝑝
′
𝑚

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

)

=
©«

𝑟∑︁
𝑗=𝑙

𝑗𝑝′𝑗 − 𝑙 (1 − 𝑝′
1
− 𝑝′𝑚)ª®¬

(
1

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)
− 1

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

)
=

𝑟∑︁
𝑗=𝑙

( 𝑗 − 𝑙)𝑝′𝑗

(
1

1

𝑞 𝑝
′
1
+ (1 − 𝑝′

1
)
− 1

(1 − 𝑝′𝑚) + 1

𝑞 𝑝
′
𝑚

)
≥ 0.

Similarly, if 𝑝′
1
> 𝑝′𝑚 , we have

(𝑢 (�̂�4) − 𝑙 (�̂�4)) − (𝑢 (�̂�′) − 𝑙 (�̂�)′) ≥ 0.

So (𝑢 (�̂�′) − 𝑙 (�̂�)′) ≤ max{(𝑢 (�̂�3) − 𝑙 (�̂�3)), (𝑢 (�̂�4) − 𝑙 (�̂�4))},
which implies 𝑅(𝑓 𝑃𝐴𝐴, �̂�′) ≤ max{𝑅(𝑓 𝑃𝐴𝐴, �̂�3), 𝑅(𝑓 𝑃𝐴𝐴, �̂�4)}. So
�̂�∗

has at most three non-zero entries.

Second Step:Nowwe prove �̂�∗
has exactly two non-zero entries.

Without loss of generality, we now suppose there are only three

ratings: 1, 𝑘,𝑚, where 1 < 𝑘 < 𝑚. For �̂� = (𝑎, 1 − 𝑎 − 𝑏,𝑏), suppose
the optimal index for minimum is 𝑘1 (�̂�) ∈ {1, 2} and the optimal

index for maximum is 𝑘2 (�̂�) ∈ {1, 2}. Still we have 𝑘1 (�̂�) ≤ 𝑘2 (�̂�).
Define �̂�5 = (𝑎, 0, 1 − 𝑎), �̂�6 = (1 − 𝑏, 0, 𝑏). There are three cases.

Case 1: We have 𝑘1 (�̂�) = 𝑘2 (�̂�) = 1.

𝑙 (�̂�) = 𝑎

𝑎 + 𝑞(1 − 𝑎) +
𝑞(1 − 𝑎 − 𝑏)
𝑎 + 𝑞(1 − 𝑎) × 𝑘 + 𝑞𝑏

𝑎 + 𝑞(1 − 𝑎) ×𝑚

𝑢 (�̂�) = 𝑞𝑎

𝑞𝑎 + 1 − 𝑎
+ 1 − 𝑎 − 𝑏

𝑞𝑎 + (1 − 𝑎) × 𝑘 + 𝑏

𝑞𝑎 + (1 − 𝑎) ×𝑚

𝑙 (�̂�5) =
𝑎

𝑎 + 𝑞(1 − 𝑎) +
𝑞(1 − 𝑎)

𝑎 + 𝑞(1 − 𝑎) ×𝑚

𝑢 (�̂�5) =
𝑞𝑎

𝑞𝑎 + (1 − 𝑎) +
1 − 𝑎

𝑞𝑎 + (1 − 𝑎) ×𝑚

Then

(𝑢 (�̂�5) − 𝑙 (�̂�5)) − (𝑢 (�̂�) − 𝑙 (�̂�))
= (𝑢 (�̂�5) − 𝑢 (�̂�)) − (𝑙 (�̂�5) − 𝑙 (�̂�))

=
1 − 𝑎 − 𝑏

𝑞𝑎 + (1 − 𝑎) × 𝑘 − 𝑞(1 − 𝑎 − 𝑏)
𝑎 + 𝑞(1 − 𝑎) × 𝑘

= 𝑘 (1 − 𝑎 − 𝑏) ( 1

𝑞𝑎 + (1 − 𝑎) −
1

𝑎
𝑞 + (1 − 𝑎) )

≥ 0.
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1335
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1346

1347

1348

1349

1350
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1353
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1387
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So 𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤ 𝑅(𝑓 𝑃𝐴𝐴, �̂�5).
Case 2:𝑘1 (�̂�) = 𝑘2 (�̂�) = 2. Similarly, we can prove𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤

𝑅(𝑓 𝑃𝐴𝐴, �̂�6).
Case 3: 𝑘1 (�̂�) = 1, 𝑘2 (�̂�) = 2.

𝑙 (�̂�) = 𝑎

𝑎 + 𝑞(1 − 𝑎) +
𝑞(1 − 𝑎 − 𝑏)
𝑎 + 𝑞(1 − 𝑎) × 𝑘 + 𝑞𝑏

𝑎 + 𝑞(1 − 𝑎) ×𝑚

𝑢 (�̂�) = 𝑞𝑎

𝑏 + 𝑞(1 − 𝑏) +
𝑞(1 − 𝑎 − 𝑏)
𝑏 + 𝑞(1 − 𝑏) × 𝑘 + 𝑏

𝑏 + 𝑞(1 − 𝑏)) ×𝑚

Define

𝐴 =
𝑞(1 − 𝑏)

𝑏 + 𝑞(1 − 𝑏) +
𝑏𝑚

𝑏 + 𝑞(1 − 𝑏) − (1 + 𝑞𝑏 (𝑚 − 1)
𝑎 + 𝑞(1 − 𝑎) ),

𝐵 = 1 + (𝑞(1 − 𝑎 − 𝑏) + 𝑏) (𝑚 − 1)
𝑏 + 𝑞(1 − 𝑏) − ( 𝑎

𝑎 + 𝑞(1 − 𝑎) +
𝑞(1 − 𝑎)𝑚
𝑎 + 𝑞(1 − 𝑎) ) .

Since 𝑢 (�̂�) − 𝑙 (�̂�) is linear on 𝑘 , we have

𝑢 (�̂�) − 𝑙 (�̂�) ≤ max{𝐴, 𝐵}.

Notice

𝑢 (�̂�6) =
𝑞(1 − 𝑏)

𝑏 + 𝑞(1 − 𝑏) +
𝑏𝑚

𝑏 + 𝑞(1 − 𝑏) , 𝑙 (�̂�5) =
𝑎

𝑎 + 𝑞(1 − 𝑎) +
𝑞(1 − 𝑎)𝑚
𝑎 + 𝑞(1 − 𝑎) .

So

𝐴 = 𝑢 (�̂�6)−(1+
𝑞𝑏 (𝑚 − 1)
𝑎 + 𝑞(1 − 𝑎) ), 𝐵 = 1+ (𝑞(1 − 𝑎 − 𝑏) + 𝑏) (𝑚 − 1)

𝑏 + 𝑞(1 − 𝑏) −𝑙 (�̂�5)

𝑙 (�̂�6) − (1 + 𝑞𝑏 (𝑚 − 1)
𝑎 + 𝑞(1 − 𝑎) )

=
1 − 𝑏

𝑞𝑏 + 1 − 𝑏
+ 𝑞𝑏𝑚

𝑞𝑏 + 1 − 𝑏
− (1 + 𝑞𝑏 (𝑚 − 1)

𝑎 + 𝑞(1 − 𝑎) )

= 1 + 𝑞𝑏 (𝑚 − 1)
𝑞𝑏 + 1 − 𝑏

− ((1 + 𝑞𝑏 (𝑚 − 1)
𝑎 + 𝑞(1 − 𝑎) ))

= 𝑞𝑏 (𝑚 − 1) ( 1

𝑞𝑏 + 1 − 𝑏
− 1

𝑎 + 𝑞(1 − 𝑎) )

=
𝑞𝑏 (𝑚 − 1)

(𝑞𝑏 + 1 − 𝑏) (𝑎 + 𝑞(1 − 𝑎)) (𝑎 + 𝑞(1 − 𝑎) − (𝑞𝑏 + 1 − 𝑏))

=
𝑞𝑏 (𝑚 − 1)

(𝑞𝑏 + 1 − 𝑏) (𝑎 + 𝑞(1 − 𝑎)) (𝑞 − 1) (1 − 𝑎 − 𝑏)

≤ 0

𝑢 (�̂�5) − (1 + (𝑞(1 − 𝑎 − 𝑏) + 𝑏) (𝑚 − 1)
𝑏 + 𝑞(1 − 𝑏) )

=
𝑞𝑎

𝑞𝑎 + (1 − 𝑎) +
(1 − 𝑎)𝑚

𝑞𝑎 + (1 − 𝑎) −
(
1 + (𝑞(1 − 𝑎 − 𝑏) + 𝑏) (𝑚 − 1)

𝑏 + 𝑞(1 − 𝑏)

)
= 1 + (1 − 𝑎) (𝑚 − 1)

𝑞𝑎 + (1 − 𝑎) −
(
1 + (𝑞(1 − 𝑎 − 𝑏) + 𝑏) (𝑚 − 1)

𝑏 + 𝑞(1 − 𝑏)

)
= (𝑚 − 1) ( 1 − 𝑎

𝑞𝑎 + (1 − 𝑎) −
𝑞(1 − 𝑎 − 𝑏) + 𝑏
𝑏 + 𝑞(1 − 𝑏) )

= (𝑚 − 1)
(
1 − 𝑞𝑎

𝑞𝑎 + (1 − 𝑎) − (1 − 𝑞𝑎

𝑏 + 𝑞(1 − 𝑏) )
)

= 𝑞𝑎(𝑚 − 1) ( 1

𝑏 + 𝑞(1 − 𝑏) −
1

𝑞𝑎 + (1 − 𝑎) )

=
𝑞𝑎(𝑚 − 1)

(𝑞𝑎 + (1 − 𝑎)) (𝑏 + 𝑞(1 − 𝑏)) (𝑞𝑎 + (1 − 𝑎) − 𝑏 + 𝑞(1 − 𝑏))

=
𝑞𝑎(𝑚 − 1)

(𝑞𝑎 + (1 − 𝑎)) (𝑏 + 𝑞(1 − 𝑏)) (1 − 𝑞) (1 − 𝑎 − 𝑏)

≥ 0.

So 𝐴 ≤ 𝑢 (�̂�6) − 𝑙 (�̂�6), 𝐵 ≤ 𝑢 (�̂�5) − 𝑙 (�̂�5), which implies

𝑢 (�̂�) − 𝑙 (�̂�) ≤ max{𝑢 (�̂�6) − 𝑙 (�̂�6), 𝑢 (�̂�5) − 𝑙 (�̂�5)},
i.e.,

𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤ max{𝑅(𝑓 𝑃𝐴𝐴, �̂�5), 𝑅(𝑓 𝑃𝐴𝐴, �̂�6)}.
Putting the three pieces together, we have

𝑅(𝑓 𝑃𝐴𝐴, �̂�) ≤ max{𝑅(𝑓 𝑃𝐴𝐴, �̂�5), 𝑅(𝑓 𝑃𝐴𝐴, �̂�6)},
which implies �̂�∗

has exactly two non-zero entries.

Third Step: Next, we prove �̂�∗ = ( 1
2
, 0, · · · , 0, 1

2
). For �̂� =

(𝑎, 0, · · · , 0, 1 − 𝑎), 0 ≤ 𝑎 ≤ 1, 𝑙 (�̂�) = 𝑎
𝑎+𝑞 (1−𝑎) + 𝑞 (1−𝑎)

𝑎+𝑞 (1−𝑎) ×
𝑚, 𝑢 (�̂�) = 𝑞𝑎

𝑞𝑎+(1−𝑎) +
1−𝑎

𝑞𝑎+(1−𝑎) ×𝑚, so

𝑢 (�̂�) − 𝑙 (�̂�) = (𝑚 − 1) ×
(

1 − 𝑎

𝑞𝑎 + (1 − 𝑎) −
𝑞(1 − 𝑎)

𝑎 + 𝑞(1 − 𝑎)

)
= (𝑚 − 1) × (1 − 𝑞2) (𝑎 − 𝑎2)

(1 − 𝑞)2 (𝑎 − 𝑎2) + 𝑞

= (𝑚 − 1) × (1 + 𝑞) (𝑎 − 𝑎2)
(1 − 𝑞) (𝑎 − 𝑎2) + 𝑞

1−𝑞
.

Let 𝑥 = 𝑎 − 𝑎2 ∈ [0, 1
4
], 𝐹 (𝑥) = 𝑢 (�̂�)−𝑙 (�̂�)

𝑚−1 =
(1+𝑞)𝑥

(1−𝑞)𝑥+ 𝑞

1−𝑞
. Then

𝐹 ′ (𝑥) =
(1 + 𝑞)

(
(1 − 𝑞)𝑥 + 𝑞

1−𝑞

)
− (1 − 𝑞) (1 + 𝑞)𝑥(

(1 − 𝑞)𝑥 + 𝑞
1−𝑞

)
2

=
𝑞(1 + 𝑞)

(1 − 𝑞)
(
(1 − 𝑞)𝑥 + 𝑞

1−𝑞

)
2

> 0.

So 𝑥 = 1

4
uniquely maximizes the regret. Since 𝑥 = 1

4
⇐⇒ 𝑎 =

1

2
, we prove �̂�∗ = ( 1

2
, 0, · · · , 0, 1

2
).

Fourth Step: Finally, it is easy to figure out the optimal index

for minimum 𝑘1 (�̂�∗) and the optimal index for maximum 𝑘2 (�̂�∗)
can both be any value in [𝑚 − 1]. Without loss of generality, we

set 𝑘1 (�̂�∗) = 1, 𝑘2 (�̂�∗) =𝑚 − 1. So the corresponding worst pair of

information structure is

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Mitigating the Participation Bias by Balancing Extreme Ratings Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

• 𝜃1 = (𝒑1 = [ 1

𝑞+1 , 0, · · · , 0,
𝑞

𝑞+1 ],𝒈1 = [𝑞, 1, · · · , 1, 1])
• 𝜃2 = (𝒑2 = [ 𝑞

𝑞+1 , 0, · · · , 0,
1

𝑞+1 ],𝒈2 = [1, 1, · · · , 1, 𝑞])
□

Theorem A.4. When 𝑚 = 𝑜

(
( 𝑛
ln𝑛

)
1

4

)
, PAA is 𝑂

(
𝑚2

√︃
ln𝑛
𝑛

)
-

optimal. That is, for any aggregator 𝑓 ,

max

𝒑,𝒈
𝑅(𝑓 𝑃𝐴𝐴,𝒑,𝒈) ≤ max

𝒑,𝒈
𝑅(𝑓 ,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
.

Proof. For clarity, we define 𝑅𝑛 (𝑓 𝑃𝐴𝐴,𝒑,𝒈), which is the re-

gret of PAA when the sample size is 𝑛. Suppose 𝑓 ∗𝑛 is the optimal

aggregator when sample size is 𝑛. It is equivalent to prove

max

𝒑,𝒈
𝑅𝑛 (𝑓 𝑃𝐴𝐴,𝒑,𝒈) ≤ max

𝒑,𝒈
𝑅𝑛 (𝑓 ∗𝑛 ,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
Use 𝑅𝑛 (𝑓 ∗) to denote the optimal regret when the sample size

is 𝑛, and 𝑅∗ is the optimal regret when 𝑛 → ∞. First Notice

𝑅𝑛 (𝑓 ∗) is a non-increasing function with respect to 𝑛 since we

can always choose the aggregator which only uses part of the

ratings, so 𝑅𝑛 (𝑓 ∗) ≥ 𝑅∗. Then We bound the difference between

𝑅𝑛 (𝑓 𝑃𝐴𝐴,𝒑,𝒈) and 𝑅∗ by concentration inequality.

For any (𝒑,𝒈), when 𝑛 → ∞, we obtain �̂� =
𝒑𝒈∑
𝑗 𝑝 𝑗𝑔𝑗

and

𝑅∞ (𝑓 𝑃𝐴𝐴,𝒑,𝒈) = (𝑓 𝑃𝐴𝐴 (�̂�)−Ex∼𝒑 [x])2 = (𝑢 (�̂�) + 𝑙 (�̂�)
2

−Ex∼𝒑 [x])2

In the finite case, we get a noisy distribution �̂�
′
. We use 𝑛𝑟 to

denote the number of people whose rating is 𝑟 and �̂�𝑟 to denote the

number of people who actually report 𝑟 .

𝑅𝑛 (𝑓 𝑃𝐴𝐴, 𝒑,𝒈) = E[ (𝑓 𝑃𝐴𝐴 (�̂�′ )−
∑

𝑟 𝑟𝑛𝑟

𝑛
] = E[ (𝑢 (�̂�

′ ) + 𝑙 (�̂�′ )
2

−
∑

𝑟 𝑟𝑛𝑟

𝑛
)2 ]

By chernoff bound, we have

Pr[|𝑛𝑟 − 𝐸 [𝑛𝑟 ] | ≥
√
𝑛 ln𝑛] ≤ 2𝑒−

2𝑛 ln𝑛
𝑛 =

2

𝑛2

Pr[|�̂�𝑟 − 𝐸 [�̂�𝑟 ] | ≥
√
𝑛 ln𝑛] ≤ 2𝑒−

2𝑛 ln𝑛
𝑛 =

2

𝑛2

Pr[|
∑︁
𝑟

�̂�𝑟 − 𝐸 [
∑︁
𝑟

�̂�𝑟 ] | ≥
√
𝑛 ln𝑛] ≤ 2𝑒−

2𝑛 ln𝑛
𝑛 =

2

𝑛2

Define event 𝐴𝑟 = {|𝑛𝑟 − 𝐸 [𝑛𝑟 ] | ≥
√
𝑛 ln𝑛}, event 𝐴 =

∨𝑚
𝑟=1𝐴𝑟 ,

event 𝐵𝑟 = {|𝑛𝑟 − 𝐸 [�̂�𝑟 ] | ≥
√
𝑛 ln𝑛}, event 𝐵 =

∨𝑚
𝑟=1 𝐵𝑟 , event

𝐶 = {|∑𝑟 �̂�𝑟 − 𝐸 [∑𝑟 �̂�𝑟 ] | ≥
√
𝑛 ln𝑛}. By union bound, we have

Pr[𝐴 ∨ 𝐵 ∨𝐶] ≤ 4𝑚 + 2

𝑛2
≤ 1

𝑛

Case 1: 𝐴 happens or 𝐵 happens or 𝐶 happens.

E

[
(𝑢 (�̂�

′ ) + 𝑙 (�̂�′ )
2

−
∑
𝑟 𝑟𝑛𝑟

𝑛
)2 | 𝐴 ∨ 𝐵 ∨𝐶

]
= 𝑂 (𝑚2)

Case 2: None of 𝐴, 𝐵,𝐶 happens. We have

���𝑝 ′
𝑟 − 𝑝𝑟

��� = ���� �̂�𝑟∑
𝑗 �̂� 𝑗

− 𝑝𝑟𝑔𝑟∑
𝑗 𝑝 𝑗𝑔 𝑗

����
=

����� 𝐸 [�̂�𝑟 ] +𝑂 (
√
𝑛 ln𝑛)

𝐸 [∑𝑗 �̂� 𝑗 ] +𝑂 (
√
𝑛 ln𝑛)

− 𝑝𝑟𝑔𝑟∑
𝑗 𝑝 𝑗𝑔 𝑗

�����
=

����� 𝑝𝑟𝑔𝑟𝑛 +𝑂 (
√
𝑛 ln𝑛)∑

𝑗 𝑝 𝑗𝑔 𝑗𝑛 +𝑂 (
√
𝑛 ln𝑛)

− 𝑝𝑟𝑔𝑟∑
𝑗 𝑝 𝑗𝑔 𝑗

�����
= 𝑂

(√︂
ln𝑛

𝑛

)

When 𝑛 is large enough, this error will not influence the optimal

index. So

���𝑙 (�̂�′ ) − 𝑙 (�̂�)
���

=

������
1

𝑞

∑𝑘1
𝑗=1

𝑗𝑝
′
𝑗
+ ∑𝑚

𝑗=𝑘1+1 𝑗𝑝
′
𝑗

1

𝑞

∑𝑘1
𝑗=1

𝑝
′
𝑗
+ ∑𝑚

𝑗=𝑘1+1 𝑝
′
𝑗

−
1

𝑞

∑𝑘1
𝑗=1

𝑗𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑗𝑝 𝑗

1

𝑞

∑𝑘1
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑝 𝑗

������
=

��������
1

𝑞

∑𝑘1
𝑗=1

𝑗𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑗𝑝 𝑗 +𝑂
(
𝑚2

√︃
ln𝑛
𝑛

)
1

𝑞

∑𝑘1
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑝 𝑗 +𝑂
(
𝑚

√︃
ln𝑛
𝑛

) −
1

𝑞

∑𝑘1
𝑗=1

𝑗𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑗𝑝 𝑗

1

𝑞

∑𝑘1
𝑗=1

𝑝 𝑗 +
∑𝑚

𝑗=𝑘1+1 𝑝 𝑗

��������
= 𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

Similarly,

���𝑢 (�̂�′ ) − 𝑢 (�̂�)
��� = 𝑂

(
𝑚2

√︃
ln𝑛
𝑛

)
, so

�����𝑢 (�̂�′ ) + 𝑙 (�̂�′ )
2

− 𝑢 (�̂�) + 𝑙 (�̂�)
2

����� = 𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

Notice

���� ∑𝑟 𝑟𝑛𝑟

𝑛
− Ex∼𝒑 [x]

���� = ���� ∑𝑟 𝑟𝑛𝑟

𝑛
−

∑
𝑟 𝑟E[𝑛𝑟 ]

𝑛

���� = ���� ∑𝑟 𝑟 (𝑛𝑟 − E[𝑛𝑟 ] )
𝑛

���� = 𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

Then we have

E

[
(𝑢 (�̂�

′ ) + 𝑙 (�̂�′ )
2

−
∑︁
𝑟

𝑟𝑛𝑟 )2 | ¬(𝐴 ∨ 𝐵 ∨𝐶)
]

=

(
𝑢 (�̂�) + 𝑙 (�̂�)

2

− Ex∼𝒑 [x] +𝑂
(
𝑚2

√︂
ln𝑛

𝑛

))
2

= 𝑅∞ (𝑓 𝑃𝐴𝐴,𝒑,𝒈) +𝑂
(
𝑚2

√︂
ln𝑛

𝑛

)
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Putting the two pieces together, we have

𝑅𝑛 (𝑓 𝑃𝐴𝐴, 𝒑,𝒈)

= Pr[𝐴 ∨ 𝐵 ∨𝐶 ] E
[
(𝑢 (�̂�

′ ) + 𝑙 (�̂�′ )
2

−
∑

𝑟 𝑟𝑛𝑟

𝑛
)2 | 𝐴 ∨ 𝐵 ∨𝐶

]
+ Pr[¬(𝐴 ∨ 𝐵 ∨𝐶 ) ] E

[
(𝑢 (�̂�

′ ) + 𝑙 (�̂�′ )
2

−
∑

𝑟 𝑟𝑛𝑟

𝑛
)2 | ¬(𝐴 ∨ 𝐵 ∨𝐶 )

]
= Pr[𝐴 ∨ 𝐵 ∨𝐶 ] 𝑂 (𝑚2 ) + Pr[¬(𝐴 ∨ 𝐵 ∨𝐶 ) ]

(
𝑅𝑛 (𝑓 𝑃𝐴𝐴, 𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

))
≤ 𝑚2

𝑛
+ (1 − 1

𝑛
)
(
𝑅𝑛 (𝑓 𝑃𝐴𝐴, 𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

))
= 𝑅∞ (𝑓 𝑃𝐴𝐴, 𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

Since for any 𝒑,𝒈 the inequality holds, we have

max

𝒑,𝒈
𝑅𝑛 (𝑓 𝑃𝐴𝐴,𝒑,𝒈) ≤ max

𝒑,𝒈
𝑅∞ (𝑓 𝑃𝐴𝐴,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

So for any sample size 𝑛,

max

𝒑,𝒈
𝑅𝑛 (𝑓 𝑃𝐴𝐴,𝒑,𝒈) ≤ max

𝒑,𝒈
𝑅∞ (𝑓 𝑃𝐴𝐴,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
= 𝑅∗ +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
≤ 𝑅𝑛 (𝑓 ∗) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)
= max

𝒑,𝒈
𝑅(𝑓 ∗𝑛 ,𝒑,𝒈) +𝑂

(
𝑚2

√︂
ln𝑛

𝑛

)

The first equality holds since 𝑓 𝑃𝐴𝐴 is the optimal aggregator

when 𝑛 → ∞.

□

B Omitted Figures
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(a) 𝑛 = 20,𝑚 = 3
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(b) 𝑛 = 10,𝑚 = 3
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(c) 𝑛 = 20,𝑚 = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

lo
g(

re
gr

et
)

Theoretical Lower Bound
BEA
Simple Averaging

(d) 𝑛 = 10,𝑚 = 5

Figure 11: Simple averaging vs. BEA for different sample size
𝑛 and the number of rating categories𝑚. The x-axis is the
lower bound of the participation probability, 𝑞, and the y-
axis is the natural logarithm of the regret. The regret of BEA
almost matches the theoretical lower bound for a wide range
of 𝑞.

Figure 11 are the regret of different aggregators with 𝑞 ranging from

0.01 to 0.99 with step 0.01. Notice when 𝑞 is large (the threshold

is around 0.82 for 𝑛 = 10 and 0.91 for 𝑛 = 20), the regret of BEA

deviates from the theory lower bound and even exceeds the regret

of simple average aggregator when 𝑞 is larger. This is because

the worst information structure for BEA changes from the pair in

Lemma 3.2 to

𝜃 = (𝒑 = [𝑏, 0, · · · , 0, 1 − 𝑏],𝒈1 = [𝑞, 𝑞, · · · , 𝑞, 𝑞])
where 𝑏 is dependent with 𝑛 and 𝑞.
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