
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

When More is Less: Understanding Chain-of-
Thought Length in LLMs

Yuyang Wu1∗ Yifei Wang2∗ Tianqi Du3 Stefanie Jegelka4,2 Yisen Wang3,5†

1 School of EECS, Peking University 2 MIT CSAIL
3 State Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
4 CIT, MCML, MDSI, TU Munich
5 Institute for Artificial Intelligence, Peking University

Abstract

Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capa-
bilities of large language models (LLMs) by breaking complex tasks into
smaller, manageable sub-tasks. Researchers have been exploring ways to
guide models to generate more complex CoT processes to improve the rea-
soning ability of LLMs, such as long CoT and the test-time scaling law.
However, for most models and tasks, does an increase in CoT length con-
sistently lead to improved reasoning accuracy? In this paper, we observe
a nuanced relationship: as the number of reasoning steps increases, per-
formance initially improves but eventually decreases. To understand this
phenomenon, we provide a piece of evidence that longer reasoning processes
are increasingly susceptible to noise. We theoretically prove the existence
of an optimal CoT length and derive a scaling law for this optimal length
based on model capability and task difficulty. Inspired by our theory, we
conduct experiments on both synthetic and real world datasets and propose
Length-filtered Vote to alleviate the effects of excessively long or short CoTs.
Our findings highlight the critical need to calibrate CoT length to align
with model capabilities and task demands, offering a principled framework
for optimizing multi-step reasoning in LLMs.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in solving complex
reasoning tasks (Brown et al., 2020; Touvron et al., 2023). One approach to enhance their
performance on such tasks is Chain of Thought (CoT) reasoning (Wei et al., 2022), where
the model generates explicit intermediate reasoning steps before arriving at the final answer.
The CoT process can be seen as a divide-and-conquer strategy (Zhang et al., 2024), where
the model breaks a complex problem into simpler sub-problems, solves each one individually,
and then combines the results to reach a final conclusion. It is commonly believed that
longer CoT generally improves the performance, especially on more difficult tasks (Fu et al.,
2023; Jin et al., 2024). On the other hand, a concise CoT (Nayab et al., 2024) has been
shown to incur a decreased performance penalty on math problems. But does performance
consistently improve as the length of the CoT increases?
In this paper, we conduct comprehensive and rigorous experiments on synthetic arithmetic
datasets and find that for CoT length, longer is not always better (Figure 1). Specifically,
by controlling task difficulty, we observe that as the reasoning path lengthens, the model’s
performance initially improves but eventually deteriorates, indicating the existence of an
optimal length. This phenomenon can be understood by modeling the CoT process as a task
decomposition and subtask-solving structure. While early-stage decomposition helps break

∗Equal Contribution.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

down the problem, excessively long reasoning paths lead to error accumulation—where a
single mistake can mislead the entire chain of thought.

1 2 3 4 5 6 7 8
ops/step

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

total ops=32
total ops=24
total ops=16

(a) Small model with 6 layers

1 2 3 4 5 6 7 8 9 10 11 12
ops/step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

total ops=64
total ops=56
total ops=48

(b) Large model with 9 layers

Figure 1: Evaluation of the relationship between CoT length and final performance on
synthetic arithmetic datasets. The models used are different layers of GPT-2, with all other
hyperparameters unchanged. The results show that accuracy initially increases and then
decreases as the number of operations per step grows (while the total number of steps
decreases), indicating that both overthinking and underthinking can harm LLM reasoning
abilities.

Our experimental results also show that the optimal CoT length is directly influenced
by both model capability and task complexity. Intuitively, for more challenging
tasks, a deeper decomposition is required. Meanwhile, a more capable model can handle
moderately complex subtasks in a single step, reducing the need for excessive reasoning steps.
Furthermore, as task difficulty increases, the optimal length of each reasoning step
tends to grow to prevent the total number of steps from becoming excessively long.
Then in Section 4, we provide a formal and rigorous theoretical explanation for these findings.
Under a simplified setting, we show that each of the above conclusions can be described
mathematically. We also present a more general version of our theory that applies to a
broader range of conditions.
Following the theoretical analyses of optimal CoT length, we further validate these insights
by examining their effects on real-world LLM behavior at test-time and their influence on
CoT training. In Section 5.1, we conduct experiments on real-world math problems using
various sizes of open-source LLMs. The results further confirm that a longer CoT is not
always better, but should adapt to model size and task difficulty. Furthermore, in Section 5.2,
we train models using data with the optimal CoT length rather than randomly selected
lengths. The results are striking: a small model trained on optimal-length CoT can
even outperform larger models trained on randomly chosen CoT lengths. This
highlights the significant impact of CoT length in training data on model performance.
Inspired by both theoretical and experimental findings, we propose methods to leverage the
optimal CoT length during inference. Specifically, we enhance the standard majority voting
approach by introducing Length-filtered Vote. This adaptive method selects answers with
the optimal CoT length while filtering out those that are either too short or too long.

2 Related Work

Chain of Thought Large Language Models (LLMs) (Brown et al., 2020) have demonstrated
remarkable abilities in complex reasoning tasks by breaking down challenging problems
into intermediate steps before arriving at the final answer (Wei et al., 2022). Numerous
researchers have proposed various approaches to enhance the CoT reasoning capabilities
of LLMs. Least-to-most prompting (Zhou et al., 2023) decomposes a complex problem

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

into a series of simpler sub-problems, solving them sequentially, where the solution to each
subproblem builds upon the answers to previously solved sub-problems. Tree of thoughts
(Yao et al., 2023) enables LLMs to engage in deliberate decision-making by exploring multiple
reasoning paths, self-evaluating options, and dynamically adjusting the reasoning process
through backtracking or look-ahead strategies to make globally optimal choices. Similarly,
Divide-and-Conquer methods (Zhang et al., 2024; Meng et al., 2024) divide the input sequence
into multiple sub-inputs, which can significantly improve LLM performance in specific tasks.
Despite their differences, these methods share a common characteristic: they all treat the
CoT process as a framework for decomposition and subtask-solving. Similarly, our study
adopts this perspective.
CoT Understanding In addition to the methods mentioned above, many works aim to
formalize the CoT process and explore why it is effective. Circuit complexity theory has been
used to analyze the computational complexity of problems that transformers can solve with
and without CoT, providing a theoretical understanding of CoT’s effectiveness (Feng et al.,
2023; Li et al., 2024b). Cui et al. (2024) theoretically demonstrate that, compared to Stepwise
ICL, integrating reasoning from earlier steps (Coherent CoT) enhances transformers’ error
correction capabilities and prediction accuracy. Ton et al. (2024) quantify the information
gain at each reasoning step in an information-theoretic perspective to understand the CoT
process. Furthermore, Li et al. (2024a) show that fast thinking without CoT results in
larger gradients and greater gradient differences across layers compared to slow thinking with
detailed CoT, highlighting the improved learning stability provided by the latter. Ye et al.
(2024) investigate CoT in a controlled setting by training GPT-2 models on a synthetic GSM
dataset, revealing hidden mechanisms through which language models solve mathematical
problems. Unlike these theoretical studies, our work focuses on the impact of different lengths
of CoT on final performance and tries to understand CoT from task decomposition and error
accumulation perspective.
Overthinking With the remarkable success of OpenAI’s o1 model, test-time computation
scaling has become increasingly important. More and more works (Snell et al., 2024; Chen
et al., 2024d; Wu et al., 2024; Brown et al., 2024) have explored the scaling laws during
inference using various methods, such as greedy search, majority voting, best-of-n, and their
combinations. They concluded that with a compute-optimal strategy, a smaller base model
can achieve non-trivial success rates, and test-time compute can outperform larger models.
This highlights the importance of designing optimal inference strategies.
However, Chen et al. (2024a) hold a contrastive opinion that in some cases, the performance
of the Best-of-N method may decline as N increases. Similarly, the overthinking phenomenon
(Chen et al., 2024c) becomes more and more important as o1-like reasoning models allocate
excessive computational resources to simple problems (e.g., 2 + 3 = 5) with minimal gains.
These findings indicate the need to balance computation based on model capabilities and
task difficulty. In our study, we focus on different types of CoT reasoning, categorized by
CoT length. Moreover, we theoretically identify a balanced CoT strategy that adapts to
model size and task difficulty, optimizing performance under these constraints.

3 Influence of Chain-of-Thought Length on Arithmetic Tasks

To begin, we aim to empirically investigate the relationship between reasoning performance
and CoT length. Therefore, we need to control a given model to generate reasoning chains
of varying lengths for a specific task. Unfortunately, no existing real-world dataset or model
fully meets these strict requirements. Real-world reasoning tasks, such as GSM8K or MATH
(Cobbe et al., 2021; Hendrycks et al., 2021), do not provide multiple solution paths of different
lengths, and manually constructing such variations is challenging. Moreover, it is difficult
to enforce a real-world model to generate a diverse range of reasoning paths for a given
question.
Given these limitations, we begin our study with experiments on synthetic datasets. Notably,
even when working with real-world datasets, we observe behavioral patterns that align well
with the findings derived from synthetic data (Section 5.1).

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.1 Problem Formulation

+

5 +

4 +

+

2 1

3

Figure 2: Computation tree of arithmetic ex-
pression 5 + (4 + ((2 + 1) + 3)).

To investigate the effect of CoT length in
a controlled manner, we design a synthetic
dataset of simplified arithmetic tasks with
varying numbers of reasoning steps in the
CoT solutions. The necessity and ratio-
nale for simplified arithmetic tasks will be
further discussed in the Appendix B.
Definition 3.1 (Problem). In a simplified
setting, an arithmetic task q is defined as a
binary tree of depth T . The root and all non-
leaf nodes are labeled with the + operator,
while each leaf node contains a numerical value (mod 10). In addition, we impose a constraint
that every non-leaf node must have at least one numerical leaf as a child.

The bidirectional conversion method between arithmetic expressions and computation trees
is as follows: keeping the left-to-right order of numbers unchanged, the computation order
of each "+" or tree node is represented by tree structure or bracket structures. For example,
consider the task 5 + (4 + ((2 + 1) + 3)) with T = 4. The corresponding computation tree is
defined as Figure 2.
To ensure that CoT solutions of the same length have equal difficulty for a specific problem,
we assume that each reasoning step performs the same operations within a single CoT process.
A more rigorous discussion will be conducted in Appendix B.2.
Definition 3.2 (Solution). We define a t-hop CoT with a fixed each step length of t as
a process that executes t operations starting from the deepest level and moving upward
recursively.

According to this definition, the execution sequence is uniquely determined. For example,
one way to solve expression in Figure 2 is by performing one addition at a time:

5 + (4 + ((2 + 1) + 3)) = <1> (1)
2 + 1 = 3 (2)
3 + 3 = 6
4 + 6 = 0
5 + 0 = 5<END>.

Another approach is to perform two additions at a time:

5 + (4 + ((2 + 1) + 3)) = <2> (3)
(2 + 1) + 3 = 6
5 + (4 + 6) = 5<END>.

The latter approach is half as long as the former, but each reasoning step is more complex1.
This illustrates a clear trade-off between the difficulty of each subtask and the total number
of reasoning steps.
In practice, when t does not evenly divide T , the final step performs T mod t operations.
To guide the model in generating the desired CoT length, we insert the control token <t>
after the question and before the beginning of the solution. To preserve the parentheses that
indicate the order of operations, we construct expressions in Polish notation. However, for
readability, we present each problem in its conventional form throughout the article.

1This is because performing two operations at once requires the model to either memorize
all combinations of numbers in a two-operator equation and their answers, apply techniques like
commutativity to reduce memory requirements, or use its mental reasoning abilities to perform the
two operations without relying on CoT.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.2 Experiment Setup

Dataset The datasets used for training different models are identical and are constructed
from tasks with varying total operators T and solutions with different t.
Model Since model depth plays a critical role in mathematical reasoning (Ye et al., 2024),
we trained GPT-2 models with varying numbers of layers, keeping all other parameters (e.g.,
heads, dimensions) constant, to assess the impact of model capacity. Our experimental results
provide evidence that models with more layers are capable of performing more operations in
a single step, without the need for CoT.
Train and Test For each problem, we train the model to start generating from the control
token <t> to ensure that it can independently determine which CoT solution to use. During
testing, we guide the model to produce the required t-hop CoT by inserting the control token
<t> right before the question. More details can be found in Appendix D.

3.3 Experimental Results

U-curve For convenience, we present how the final accuracy changes as the number of
operators performed per step t increases, which corresponds to a decrease in the number of
reasoning steps, for tasks of varying difficulty (total operators). Figures 1a and 1b show the
performance of small and large models on easy tasks (16, 24, 32 operators) and hard tasks
(48, 56, 64 operators) respectively.
The results (Figure 1) align well with our theory, demonstrating that as the number of rea-
soning steps increases, the final performance initially improves and then declines. Subsequent
experiments will explore how the optimal CoT length changes with model capability and
task difficulty.

20 30 40 50 60 70 80
total ops

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

t=1
t=2
t=3
t=4
t=5
t=6
t=7
t=8

(a) Small model with 6 layers

20 30 40 50 60 70 80
total ops

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

t=1
t=2
t=3
t=4
t=5
t=6
t=7
t=8
t=9

(b) Large model with 9 layers

Figure 3: The envelope curve shows how the performance of optimal operators in a single
step (t) changes as the task becomes more difficult. The different colors of the envelope
curve correspond to the best-performing operators in one step (t) for the given set of total
operators.

Envelope Curve Figure 3a and 3b illustrate the envelope curve, where different colors
represent the optimal single-step length. The results indicate that as the task becomes more
challenging, CoT with a larger single-step reasoning length t achieves the best performance.
This can be interpreted as a mechanism to regulate the total number of CoT steps—shorter
single-step lengths require more CoT steps to complete the task.
Optimal CoT length shifts To further investigate how the optimal CoT length changes
with model capability and task difficulty, we trained models of varying sizes (ranging from 5
to 9 layers) on tasks of different difficulties (from 16 to 64 operators). For each combination
of model size and task difficulty, we recorded the optimal number of reasoning steps.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 4 illustrates two key findings. First, an increase in the number of reasoning steps
is beneficial for solving more challenging problems, indicating that harder tasks require
more steps to achieve optimal performance. Second, the optimal number of reasoning steps
decreases as the model size increases, suggesting that stronger models can handle more
complex reasoning within fewer steps.

4 Theoretical Analysis

5 6 7 8 9
Model Size(layers)

12
24

36
48

60
Ta

sk
 D

iff
icu

lty
(to

ta
l o

ps
)

4 2 2 3 2

12 5 4 5 4

12 12 6 6 6

16 8 7 8 7

20 12 10 10 7

2

4

6

8

10

12

14

16

18

20

Figure 4: Heat map of optimal CoT length in
different model sizes and task difficulties.

In this section, we provide a theoretical anal-
ysis of the CoT process for the simplified
arithmetic tasks defined above and explain
the empirical results observed in synthetic
datasets. All proofs of the paper are deferred
to Appendix F.

4.1 Setup

Let N ∈ N+ represent the total number of
steps in the CoT process. As defined ear-
lier, T denotes the total number of operators
in the given question, and t =

⌈
T
N

⌉
repre-

sents the number of operators processed in
each reasoning step. We use ti to denote
the subtask in the i-th reasoning step (e.g.,
2 + 1 in Eq. (2)), and ai to represent the
corresponding answer (e.g., 3 in Eq. (2)).
Definition 4.1. Given task q with total operators T (Definition 3.1) and model θ, to a
specific N , we define an N step (t-hop in Definition 3.2) CoT process as

P (aN |q, θ) =
N∏

i=1
P (ti|Hi−1, q, θ)P (ai|ti, Hi−1, q, θ),

where Hk = [t1, a1, · · · , tk, ak] collects the first k steps in the N -step CoT process, and aN

is not only the answer of the final subtask ti, but the answer to the whole task q as well.

Let a∗
i denote the correct answer to subtask ti, and t∗

i the correct next subtask given the
history reasoning steps Hi−1, total task q, and total step number N . To estimate the final
accuracy A(N) = P (aN = a∗

N |q, θ), we need to separately estimate the sub-question accuracy
P (ti = t∗

i |Hi−1, q, θ) and the sub-answer accuracy P (ai = a∗|ti, Hi−1, q, θ).
For the sub-question accuracy, as observed in our experiments, the loss for tokens
appearing in ti remains almost constant across different values of N and model sizes (see
Appendix C). We assume that the noise affecting tokens in each subtask ti, denoted as
σ(T) ∈ [0, 1), is positively correlated with the total number of operators T . Intuitively, as
the number of operators increases, extracting the correct subtask becomes more challenging.
For the sub-answer accuracy, it is clear that when given subtask ti, P (ai = a∗|ti, Hi−1, q, θ)
is independent of the history reasoning steps Hi−1 and is only influenced by the model θ
and the difficulty of the subtask ti. For each model, we define its capability M based on
the reasoning boundary (Chen et al., 2024b). Specifically, we consider M as the maximum
number of operators the model can compute in a single step without CoT.

M = M(θ) = max
t

{P (ai = a∗|ti, θ) > 0, |ti| = t} , (4)

where |ti| refers to the number of operators in subtask ti. In the following discussion, we
focus only on CoT chains that do not exceed the model’s capability, which is t < M. Hence,
we define the error rate of each subtask answer as E(N, M, T) ∈ [0, 1).
Proposition 4.2. The total accuracy of N -step reasoning is

A(N) = α ((1 − E(N, M, T))(1 − σ(T)))N
, (5)

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

where α denotes a constant value independent of N .

Proposition 4.2 establishes a differentiable functional relationship between total accuracy and
CoT length N . Once we obtain estimates for E(N, M, T) and σ(T), we can determine the
optimal N(M, T). For simplicity, in the following discussion, we allow N , M , and T to be
real numbers. In Section 4.2, we analyze the case of a linear error rate, while in Section 4.3,
we explore more general error functions.

4.2 A Simple Case with Linear Error

An estimation of σ(T). To simplify the setting, we assume σ(T) = T
C , where C is a

hyperparameter representing the maximum number of operators the model can handle, which
is solely influenced by the training data. To ensure that the model is capable of generating a
reasonable subtask (even if it is incorrect), we consider a finite range T ∈ [0, 0.9C], ensuring
that the subtask accuracy rate 1 − σ(T) remains within [0.1, 1].

An estimation of E(N, M, T). We define the model answer’s error rate E(N, M, T) = T
N /M

as the ratio between the number of subtask operators and the model’s capacity M (Eq. (4))
that the maximum number of operators the model can compute in a single step. Therefore,
1 − T

NM > 0.
According to Proposition 4.2, a simplified total accuracy of N -step reasoning is

A(N) = α

((
1 − T

C

)(
1 − T

NM

))N

. (6)

Theorem 4.3. In a simplified setting, for a given model capability M and task difficulty T ,
the final accuracy A(N) (Eq. (6)) increases initially and then decreases as the number of
reasoning steps N increases. Besides, there exists an optimal

N(M, T) = TZ

M(Z + 1) (7)

that maximizes the final accuracy, where Z = W−1

(
− 1− T

C

e

)
, and W−1(x) denotes the smaller

branch of the Lambert function, which satisfies the equation wew = x.

Theorem 4.3 shows the optimal N(M, T) is only affected by two factors M and T . Through
the expression of N , we can naturally derive the following three observations about the trend
of N with respect to changes in M or T :
Corollary 4.4. T

N(T,M) = M
(
1 + 1

Z

)
increases monotonically with T , which aligns the

envelope curve result well.

Corollary 4.5. N(M, T) increases monotonically with T , which shows that as the total task
becomes more difficult, the optimal number of reasoning steps increases.
Corollary 4.6. N(M, T) decreases monotonically with M , which shows that as the capability
of the model becomes stronger, it is easier for the model to solve one-step subtask reasoning,
which leads to the decrease of the total task decomposition number.

4.3 Extension to General Error Functions

In the simple case above, we discussed the trend of overall accuracy with respect to N
and the variation of optimal N with M and T , assuming the subtask error rate is a linear
function. In the following discussion, we aim to derive conclusions corresponding to more
general error rate functions. We find that as long as the error function satisfies some basic
assumptions, the above conclusions still hold. A detailed discussion of basic assumptions
will be conducted in Appendix E.
Theorem 4.7. For any noise function 0 < σ(T) < 1 and a subtask error rate function
0 < E(N, M, T) < 1 satisfying Assumption E.1 and E.2, a general final accuracy function
A(N) (Proposition 4.2) has the following properties:

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• limN→+∞ A(N) → 0

• If A(N) has the point of maximum value N∗ > 1, then N∗ has a lower bound

N∗ ≥ N(M, T) = E−1
(

1 − 1
e2(1 − σ(T))

)
, (8)

where E−1 is the inverse function of E(N, M, T) with respect to N , which has the same
monotonicity as E with respect to M and T . Therefore, we have similar corollaries as in the
linear case.
Corollary 4.8. As the model becomes stronger, E−1 decreases monotonically with respect to
M , which leads to decrease of N(M, T).
Corollary 4.9. As the task becomes harder, E−1 is monotonically increasing with respect to
T , which leads to an increase of N(M, T).

5 Empirical Examination of Optimal CoT Length

Following the theoretical analyses of optimal CoT length in Section 4, we further validate
these insights on both real-world LLM behaviors at test time and its influence on CoT
training.

5.1 Optimal CoT Length of LLMs on MATH

1.5B 7B 32B 72B
Model Size

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Optimal Length
Longest Length

(a) Optimal v.s. Longest Length

1.5B 7B 32B 72B
Model Size

4

6

8

10

12

14

O
pt

im
al

 L
en

gt
h

(b) Impact of Model Size

0.0 0.2 0.4 0.6 0.8 1.0
Task Difficulty(1-acc)

5

10

15

20

25

30

35
O

pt
im

al
 L

en
gt

h
r = 0.57
p = 1.887e-08

(c) Impact of Task difficulty

Figure 5: Evaluation on MATH datasets with Qwen2.5 Series Instruct models.

To validate our theory on real-world tasks with LLMs, we consider the MATH (Hendrycks
et al., 2021) algebra dataset (Level 5), which includes challenging competition-level mathe-
matics problems requiring multi-step reasoning. We select Qwen2.5 series Instruct models
(Qwen et al., 2025) to investigate behaviors among models with different capabilities. More
details can be found in Appendix A.1.
Optimal Length and Model Capability In this section, we randomly select 30 questions
from the dataset, generating 60 samples for each question, resulting in a total of 1,800
samples for each model. The results, shown in Figure 5a, demonstrate that for each model,
the longest number of steps is not the best one. Additionally, the optimal CoT length
decreases as the model size increases, from 14 steps for the 1.5B model to 4 steps for the 72B
model (Figure 5b). This trend aligns with our theory that larger models perform better with
fewer reasoning steps, as they are more capable of effectively handling single-step reasoning.
Impact of Task Difficulty In this part, we evaluate how the optimal CoT length changes
with task difficulty. To achieve this, we randomly select 100 questions from the dataset,
generating 60 samples for each question to ensure the number of reasoning steps is calculated
accurately. We assume that a question with lower accuracy among the 60 samples is
more difficult for the model, using 1-accuracy as a proxy for the relative difficulty of each
question(the larger the harder).

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

16 32 48 64
Total Operators

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Base small
Base large
Opt small

Figure 6: Comparison of training on CoTs with optimal lengths versus random lengths: Base
refers to a model trained on data with random CoT lengths, while Opt refers to a model
trained on data with optimal CoT lengths.

We then plot a scatter plot of accuracy versus optimal CoT length and calculate the correlation.
As shown in Figure 5c, a significant correlation (p = 1e − 8 << 0.05) between task difficulty
and optimal CoT length. Results on different models are shown in Appendix A.2. This
finding supports our theory that harder tasks require more steps to solve effectively.

5.2 Implications for Training with CoT Data

In the previous synthetic dataset experiments (Section 3), we generated solutions with
varying step lengths by training our model on data sampled with random CoT lengths. Now
that we have identified the optimal CoT length, an important question arises:

Can we construct a dataset that contains only CoT solutions with optimal
lengths, tailored to the current model size and task difficulty?

To explore this, we conduct experiments on a synthetic dataset. The baseline model is
trained on CoT step lengths following a uniform distribution, while the optimal model is
trained exclusively on the optimal CoT lengths identified in Figure 4.
During testing, we allow the model to choose the CoT types on its own. The results shown
in Figure 6 demonstrate that with a carefully designed training dataset, a smaller model can
achieve significantly better performance—nearly 100% accuracy—even surpassing a larger
model trained on base dataset.
However, in real-world datasets, the same problem may be associated with reasoning chains
of varying lengths, none of which necessarily correspond to the optimal one. This experiment
highlights the importance of carefully selecting CoT length when training models for chain-
of-thought reasoning.

6 Length-filtered Vote

Section 5.2 highlights the importance of aligning the CoT length with the model’s capabilities
and the task’s difficulty. However, achieving this alignment requires an accurate estimation
of both the task and the model. Moreover, given a pretrained model, how can we leverage
the optimal CoT length without any prior estimation of the task or even the model itself?
In this section, we propose a length-aware variant of majority vote, Length-filtered vote,
where we use prediction uncertainty as a proxy to filter reliable CoT lengths. As in majority
vote, given a model fθ, a question q, a ground truth answer a∗, we first sample a set of answer
candidates independently c1, . . . , cn

i.i.d.∼ fθ(q). After that, instead of direct vote, we group
the answers based on their corresponding CoT length ℓ(ci) (discussed in Appendix A.1) into
groups with equal bandwidth D (by default, we set D = 2), denoted as {Lj}m

j=1. As our
theory suggests that the prediction accuracy of CoT paths is peaked around a certain range

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm 1 Length-filtered Vote
1: Input: Model fθ, Question q, Space of All Possible Answers A, Number of Total Groups

M , Number of Selected Groups K, Group Width D
2: Output: Final Answer â

3: Sample candidates c1, . . . , cn
i.i.d.∼ fθ(q)

4: Define A(c) as the corresponding answer of candidates c.
5: Define pj ∈ [0, 1]|A| as the frequency of each answer in length group Lj .
6: for j = 1 to m do

Lj = {ci | ℓ(ci) ∈ [D ∗ (j − 1), D ∗ j) , i = 1, · · · , n}
7: for a ∈ A do

pj [a] =
∑

c∈Lj
I(A(c) = a)
|Lj |

8: end for
9: end for

10: {s1, . . . , sK} = arg minS⊆{1,...,M},|S|=K

∑
s∈S H(ps)

11: â = arg maxa∈A

∑
c∈Ls1 ∪···∪LsK

I(A(c) = a)
12: return â

of CoT length, we identify such groups through the prediction uncertainty of the answers
within each group, based on the intuition that lower uncertainty implies better predictions.
Specifically we calculate the Shannon entropy of the final answers given by the CoT chains
in each group Li, denoted as H(Li). We then select K (by default, we set K = 3) out of M
groups that has the smallest entropy and then perform majority vote only on these selected
groups. We summarize it in Algorithm 1.

Table 1: Performance of different models with varying sample numbers for Direct Vote on
all candidates and Length-filtered Vote.

Model Method Number of Samples
20 30 40 50

Llama3.1-8B-Ins Direct Vote 35% 38% 39% 38%
Length-filtered Vote 36% 42% 42% 41%

Qwen2.5-7B-Ins Vote 34% 35% 36% 34%
Length-filtered Vote 36% 40% 38% 40%

We evaluate the propose method against vanilla majority vote (i.e., self-consistency) (Wang
et al., 2023) on a randomly chosen subset of 100 questions from the GPQA dataset, a more
challenging collection of multiple-choice questions. The results in Table 1 show that our
filtered vote consistently outperforming vanilla majority vote at different sample numbers
and have little performance degradation as the sample number increases. This indicates the
importance of considering the influence CoT length in the reasoning process.

7 Conclusion

In this paper, we conduct experiments on a simplified synthetic dataset, drawing clear
conclusions on how the CoT length affects the final performance. Our study also provides
valuable insights, showing that the optimal CoT length should adapt to both model size
and task difficulty. Furthermore, we present a rigorous theoretical framework demonstrating
the non-monotonic scaling behavior of CoT length and how it is influenced by model size
and task difficulty. Additionally, we conduct experiments on real-world datasets, yielding
similar results. We also propose methods that can benefit from the optimal CoT length
during both training and test phases. In this way, our analysis offers concrete theoretical
and empirical insights into developing LLMs that adaptively select the appropriate reasoning
length, avoiding either overthinking or underthinking.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Acknowledgment

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160300),
National Natural Science Foundation of China (92370129, 62376010), and Beijing Nova
Program (20230484344, 20240484642). Yifei Wang and Stefanie Jegelka were supported in
part by the NSF AI Institute TILOS, and an Alexander von Humboldt Professorship.

References
Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,

and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling, 2024. URL https://arxiv.org/abs/2407.21787.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia,
and James Zou. Are more LLM calls all you need? towards the scaling properties of
compound AI systems. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=m5106RRLgx.

Qiguang Chen, Libo Qin, Jiaqi WANG, Jingxuan Zhou, and Wanxiang Che. Unlocking the
capabilities of thought: A reasoning boundary framework to quantify and optimize chain-
of-thought. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024b. URL https://openreview.net/forum?id=pC44UMwy2v.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song,
Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Do not think that much for 2+3=? on the overthinking of o1-like llms, 2024c.
URL https://arxiv.org/abs/2412.21187.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. A simple and
provable scaling law for the test-time compute of large language models, 2024d. URL
https://arxiv.org/abs/2411.19477.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL
https://arxiv.org/abs/2110.14168.

Yingqian Cui, Pengfei He, Xianfeng Tang, Qi He, Chen Luo, Jiliang Tang, and Yue Xing.
A theoretical understanding of chain-of-thought: Coherent reasoning and error-aware
demonstration, 2024. URL https://arxiv.org/abs/2410.16540.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=qHrADgAdYu.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning, 2023. URL https://arxiv.org/abs/2210.00720.

11

https://arxiv.org/abs/2407.21787
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=m5106RRLgx
https://openreview.net/forum?id=pC44UMwy2v
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2411.19477
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2410.16540
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2210.00720

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset, 2021. URL https://arxiv.org/abs/2103.03874.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng
Zhang, and Mengnan Du. The impact of reasoning step length on large language models.
In Annual Meeting of the Association for Computational Linguistics, 2024. URL https:
//api.semanticscholar.org/CorpusID:266902900.

Ming Li, Yanhong Li, and Tianyi Zhou. What happened in llms layers when trained for fast vs.
slow thinking: A gradient perspective, 2024a. URL https://arxiv.org/abs/2410.23743.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems, 2024b. URL https://arxiv.org/abs/2402.12875.

Zijie Meng, Yan Zhang, Zhaopeng Feng, and Zuozhu Liu. Dcr: Divide-and-conquer reasoning
for multi-choice question answering with llms, 2024. URL https://arxiv.org/abs/2401.
05190.

Sania Nayab, Giulio Rossolini, Giorgio Buttazzo, Nicolamaria Manes, and Fabrizio Giacomelli.
Concise thoughts: Impact of output length on llm reasoning and cost, 2024. URL
https://arxiv.org/abs/2407.19825.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024. URL https:
//arxiv.org/abs/2408.03314.

Jean-Francois Ton, Muhammad Faaiz Taufiq, and Yang Liu. Understanding chain-of-thought
in llms through information theory, 2024. URL https://arxiv.org/abs/2411.11984.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought
reasoning in language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
24824–24837. Curran Associates, Inc., 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference
computation: Compute-optimal inference for problem-solving with language models.
In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024. URL
https://openreview.net/forum?id=j7DZWSc8qu.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=5Xc1ecxO1h.

12

https://arxiv.org/abs/2103.03874
https://api.semanticscholar.org/CorpusID:266902900
https://api.semanticscholar.org/CorpusID:266902900
https://arxiv.org/abs/2410.23743
https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2401.05190
https://arxiv.org/abs/2401.05190
https://arxiv.org/abs/2407.19825
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2411.11984
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=5Xc1ecxO1h

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part
2.1, grade-school math and the hidden reasoning process, 2024. URL https://arxiv.
org/abs/2407.20311.

Yizhou Zhang, Lun Du, Defu Cao, Qiang Fu, and Yan Liu. An examination on the
effectiveness of divide-and-conquer prompting in large language models, 2024. URL
https://arxiv.org/abs/2402.05359.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most
prompting enables complex reasoning in large language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=WZH7099tgfM.

13

https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2402.05359
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Appendix

Contents

A Additional Real world Experiment Details 14
A.1 Implementation Details . 14
A.2 Task Difficulty v.s. Optimal CoT Lengths . 14

B Synthetic Arithmetic Problem Discussions 15
B.1 Contrast to vanilla arithmetic problem . 15
B.2 Same Subtask Difficulty . 16

C Subtask Loss 16

D Synthetic Experiment Details 16

E General Error Functions 16

F Proof 17
F.1 Proof of Proposition 4.2 . 17
F.2 Proof of Theorem 4.3 . 17
F.3 Proof of Corollary 4.5 . 18
F.4 Proof of Theorem 4.7 . 19
F.5 Technical Lemmas . 20

A Additional Real world Experiment Details

A.1 Implementation Details

In real world experiments, we investigate how the optimal CoT length varies between these
two models and with different question difficulties. To create solutions with varying step
lengths, we follow (Fu et al., 2023) by using in-context examples (8-shots) with three different
levels of complexity to guide the model in generating solutions with different step counts.
For each set of in-context examples, we sample 20 times, resulting in a total of 60 samples
per question.
When calculating the number of steps, we separate the full reasoning chain using "\n"(Fu
et al., 2023) and remove empty lines caused by "\n\n". Then we consider the total number
of lines as the CoT length. Since the MATH dataset questions are challenging, leading to
high variability in final CoT lengths, we scale the CoT length using length = length //
5. As we are primarily observing trends, this scaling is considered acceptable.
When evaluating the results, questions with accuracy < 0.01 or > 0.99 (indicating all
incorrect or all correct responses) are excluded, as their accuracy does not vary with step
length changes.

A.2 Task Difficulty v.s. Optimal CoT Lengths

To further investigate the relationship between task difficulty and optimal CoT lengths on
real world datasets, we conduct experiments on different models. The results (Figure 7 and

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

8) are impressive that results on all models show a significant correlation between the task
difficulties and optimal lengths.

0.0 0.2 0.4 0.6 0.8 1.0
Task Difficulty(1-acc)

5

10

15

20

25

30

O
pt

im
al

 L
en

gt
h

r = 0.47
p = 1.114e-04

(a) Qwen2.5 7B Instruct

0.0 0.2 0.4 0.6 0.8 1.0
Task Difficulty(1-acc)

5

10

15

20

25

30

35

O
pt

im
al

 L
en

gt
h

r = 0.42
p = 1.453e-03

(b) Qwen2.5 14B Instruct

Figure 7: Evaluation between task difficulties and optimal CoT lengths on MATH datasets
with Qwen2.5 Series Instruct models.

0.0 0.2 0.4 0.6 0.8 1.0
Task Difficulty(1-acc)

0

5

10

15

20

25

O
pt

im
al

 L
en

gt
h

r = 0.30
p = 3.691e-03

(a) Llama 3.1 8B Instruct

0.0 0.2 0.4 0.6 0.8 1.0
Task Difficulty(1-acc)

0

5

10

15

20

O
pt

im
al

 L
en

gt
h

r = 0.46
p = 3.964e-06

(b) Llama 3.1 70B Instruct

Figure 8: Evaluation between task difficulties and optimal CoT lengths on MATH datasets
with LLama3.1 Series Instruct models.

B Synthetic Arithmetic Problem Discussions

B.1 Contrast to vanilla arithmetic problem

Why pruning? Initially, we intended to create a synthetic dataset for regular arithmetic
tasks, but we quickly realized that the computation tree for such tasks is uncontrollable.
For example, consider the task 1 ∗ 2 + 3 ∗ 4. We hoped to compute 2 operators in one
step, but found it impossible because the addition needs to be computed after the two
multiplications, and we cannot aggregate two multiplications in one subtask. Therefore,
pruning the computation tree becomes essential.
Why only focusing on addition? There are two reasons why we focus on arithmetic
tasks involving only addition: first, it simplifies pruning, as the order of operations can be
controlled solely by parentheses; second, it facilitates the computation of sub-tasks, since
parentheses do not affect the final result, and the model only needs to compute the sum of

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

all the numbers when solving a sub-task. We aim for the model to handle longer sub-tasks,
thereby allowing a broader study of the impact of CoT length.
Will the simplified synthetic dataset impact the diversity of the data? We need
to clarify that even with pruning, the structure of the expressions will still vary because
swapping the left and right child nodes of each non-leaf node in the computation tree results
in different expressions. When T > 30, the number of possible variations exceeds 1 × 109.

B.2 Same Subtask Difficulty

A Chain-of-Thought (CoT) containing sub-tasks of varying difficulty can be seen as a mixture
of CoTs with the same difficulty level. On the other hand, allowing CoTs to generate sub-
tasks of different lengths increases the overall difficulty of CoTs of the same length, making
them harder to study. Third, under Assumption E.1, convexity analysis shows that the
final accuracy function (Proposition 4.2) is concave. Therefore, to maximize accuracy, all
sub-tasks should have the same difficulty level.

C Subtask Loss

As we observed in training losses, the loss of subtask generation tokens (e.g. 1 + 2) for the
easiest subtask(t = 1) is about 3 times larger than the hardest subtask (t = 12), while the
loss ratio for subtask answer tokens is 1e4. Therefore, it is acceptable for taking the subtask
error rate constant with t.
Besides, there is no obvious pattern showing the model sizes affect the subtask loss. Moreover,
the smallest model and the largest model have almost the same subtask loss. Therefore, in
our settings, we take model size as irrelevant with the subtask error rate.

D Synthetic Experiment Details

In default, we train different models(layers ranging from 5 to 9) on the same dataset,
which included mixed questions with total operators T ∈ [12, 80] and random sampled CoT
solutions with each step operators t ∈ [1, 12]. All other parameters are kept the same with
the huggingface GPT-2 model. During the training process, the CoT indicator token <t>
is also trained, so that during test-time, we can let the model decide which type of CoT it
will use by only prompting the model with the question. For each model, we train 25000
iterations with batch size that equals 256. During test-time, we test 100 questions for each
T and t. All experiments can be conducted on one NVIDIA A800 80G GPU.

E General Error Functions

Assumption E.1. E(N, M, T) satisfies the following reasonable conditions:

• 0 < E(N = 1, M, T) < 1

• limN→+∞ E(N, M, T) = 0

• E(N, M, T) is monotonically deceasing with N , since more detailed decomposition
leads to easier subtask.

• E(N, M, T) is convex with N , since the benefits of further decomposing an already
fine-grained problem(N is large) are less than the benefits of decomposing a problem
that has not yet been fully broken down(N is small).

• E(N, M, T) is monotonically deceasing with M , since stronger models have less
subtask error rate.

• E(N, M, T) is monotonically increasing with T , since harder total task leads to
harder subtask while N, M are the same.

Assumption E.2. σ(T) is monotonically increasing with T

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

F Proof

In this section, we provide the proofs for all theorems.

F.1 Proof of Proposition 4.2

Proposition 4.2. The total accuracy of N -step reasoning is

A(N) = α ((1 − E(N, M, T))(1 − σ(T)))N
, (5)

where α denotes a constant value independent of N .

Proof. In each subtask ti, which contains t operators, there are 2t + 1 tokens (as the number
of numerical tokens is one more than the number of operators). Therefore, the accuracy of
each subtask is given by

P (ti = t∗
i |Hi−1, q, θ) = (1 − σ(T))2t+1

. (9)

In our theoretical analysis, for simplicity, we allow t to be a fraction, defined as t = T
N ,

and assume that each subtask has the same level of difficulty given T and N . Under this
assumption, we have the final accuracy:

A(N) = P (aN = a∗
N |q, θ) (10)

=
N∏

i=1
P (ti = t∗

i |Hi−1, q, θ)P (ai = a∗
i |ti, Hi−1, q, θ) (11)

=
N∏

i=1
(1 − σ(T))2t+1 (1 − E(N, M, T)) (12)

= (1 − σ(T))N(2t+1) (1 − E(N, M, T))N (13)
= (1 − σ(T))2T ((1 − E(N, M, T))(1 − σ(T)))N (14)
= α ((1 − E(N, M, T))(1 − σ(T)))N (15)

F.2 Proof of Theorem 4.3

Theorem 4.3. In a simplified setting, for a given model capability M and task difficulty T ,
the final accuracy A(N) (Eq. (6)) increases initially and then decreases as the number of
reasoning steps N increases. Besides, there exists an optimal

N(M, T) = TZ

M(Z + 1) (7)

that maximizes the final accuracy, where Z = W−1

(
− 1− T

C

e

)
, and W−1(x) denotes the smaller

branch of the Lambert function, which satisfies the equation wew = x.

Proof. Given Eq. (6) that

A(N) = α

((
1 − T

C

)(
1 − T

NM

))N

(16)

We consider function

f(x) =
[(

1 − T
Mx

) (
1 − T

C

)]x

. (17)

For convenience, define

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

g(x) = ln
(
f(x)

)
= x ln

[(
1 − T

Mx

) (
1 − T

C

)]
.

Thus,
g′(x) =

[
ln
(
1 − T

Mx

)
+ T

Mx
(
1 − T

Mx

)] + ln
(
1 − T

C

)
.

Set g′(x) = 0:

ln
[(

1 − T
Mx

) (
1 − T

C

)]
+ T

Mx
(
1 − T

Mx

) = 0.

Let A = 1
1− T

Mx

, then we have

ln
[(

1 − T
C

)]
+ A − 1 = ln(A).

Let z := 1 − T/C. (Since T/C < 1, z = 1 − T/C > 0.) By moving terms, we have:

−z

e
= −A exp(−A).

Therefore,
A = −W −1(−z

e
) = −Z,

Finally, we have

N(M, T) = x = TZ

M(Z + 1)

Here W (·) is the Lambert W function, and for 0 < 1 − T
C < 1, the argument α = − 1−T/C

e

lies in the interval
(
− 1

e , 0
)
. This means there are two real branches W0 and W−1 in that

domain, but since Z
Z+1 > 0,we have Z < −1. Therefore, we only take the solution on branch

W−1.

F.3 Proof of Corollary 4.5

Corollary 4.5. N(M, T) increases monotonically with T , which shows that as the total task
becomes more difficult, the optimal number of reasoning steps increases.

Proof. We begin the proof by incorporating the notation from F.2. We have

g′(x) =
[
ln
(
1 − T

Mx

)
+ T

Mx
(
1 − T

Mx

)] + ln
(
1 − T

C

)
,

and x∗(T) such that g′(x∗(T)) = 0.
Let F (x∗(T), T) = g′(x∗(T)) = 0, ∀T. We want to see how x∗(T) changes as T changes,
therefore we take total derivative w.r.t. T . By the chain rule,

0 = d

dT
F
(
x∗(T), T

)
= ∂F

∂x

(
x∗(T), T

)
︸ ︷︷ ︸

call this Fx

· ∂x∗

∂T

(
T
)

+ ∂F

∂T

(
x∗(T), T

)
︸ ︷︷ ︸

call this FT

.

Hence
∂x∗

∂T

(
T
)

= −
FT

(
x∗(T), T

)
Fx

(
x∗(T), T

) .

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

So the sign of x′∗(T) is the opposite of the sign of FT , provided Fx ̸= 0.
Since

Fx

(
x, T

)
= − T 2

x(Mx − T)2 < 0, ∀x > 0, (18)

all we need to prove is

FT

(
x∗(T), T

)
= T

(Mx∗(T) − T)2 − 1
C − T

> 0. (19)

That is

√
T (C − T) + T

M
> x∗(T). (20)

Let x0(T) =
√

T (C−T)+T

M be the test point.

According to Lemma F.1, F (x0(T), T) < 0. Since F (x∗(T), T) = 0, and Fx

(
x∗(T), T

)
< 0,

we have x0(T) > x∗(T).

Thus, FT

(
x∗(T), T

)
> 0 holds and we have proved our corollary with ∂x∗

∂T

(
T
)
> 0.

F.4 Proof of Theorem 4.7

Theorem 4.7. For any noise function 0 < σ(T) < 1 and a subtask error rate function
0 < E(N, M, T) < 1 satisfying Assumption E.1 and E.2, a general final accuracy function
A(N) (Proposition 4.2) has the following properties:

• limN→+∞ A(N) → 0

• If A(N) has the point of maximum value N∗ > 1, then N∗ has a lower bound

N∗ ≥ N(M, T) = E−1
(

1 − 1
e2(1 − σ(T))

)
, (8)

Proof. (1) Since 0 < A(N) < (1 − σ(T))N , and limN→+∞(1 − σ(T))N = 0,
limN→+∞ A(N, M, T) = 0
(2) Let g(x) denote E(x, M, T) and define f(x) = ln A(x). Then,

f ′(x) = ln(1 − σ(T)(1 − g(x))) − xE′(x)
1 − E(x) (21)

< ln(1 − σ(T)(1 − g(x))) + 2, (since E is convex and x = N ≥ 1) (22)
If A(N) attains its maximum at some point N∗ > 1, then ln(1 − σ(T)) + 2 > 0. Otherwise,
we would have f ′(x) < ln(1 − σ(T)) + 2 ≤ 0 ∀x > 1, leading to a contradiction.
Thus, it follows that e2(1 − σ(T)) > 1.

Now, define N(M, T) = E−1
(

1 − 1
e2(1−σ(T))

)
, which satisfies

ln(1 − σ(T)(1 − g(N(M, T)))) + 2 = 0.

If there exists x∗ < N(M, T) such that f ′(x∗) = 0, then we obtain
0 = f ′(x∗) < ln(1 − σ(T)(1 − E(x))) + 2 < 0,

which is a contradiction. Hence, the assumption that x∗ < N(M, T) must be false.
Therefore, we conclude that x∗ = N∗ > N(M, T).

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

F.5 Technical Lemmas

Lemma F.1. Let F (x) be defined as

F (x) = ln
(

1 − T

Mx

)
+ T

Mx
(
1 − T

Mx

) + ln
(

1 − T

C

)
,

where T, M, C ∈ R+ satisfy the conditions:

• 0 < T
C < 0.9,

• 0 < T
Mx < 1.

Define x0 as

x0 =
√

T (C − T) + T

M
.

Then, we have
F (x0) < 0.

Proof. At x = x0, note that
Mx0 =

√
T (C − T) + T.

Thus,

1 − T

Mx0
= 1 − T

T +
√

T (C − T)
=

√
T (C − T)

T +
√

T (C − T)
.

Therefore,

ln
(

1 − T

Mx0

)
= ln

(√
T (C − T)

T +
√

T (C − T)

)
= ln

√
T (C − T) − ln

(
T +

√
T (C − T)

)
.

Also, observe that

T

Mx0

(
1 − T

Mx0

) = T

(T +
√

T (C − T))
(√

T (C−T)
T +

√
T (C−T)

) = T√
T (C − T)

=
√

T

C − T
.

It is convenient to introduce the change of variable

u =
√

T

C − T
,

so that
T = u2(C − T),

√
T (C − T) = u(C − T).

Then we have
T +

√
T (C − T) = u2(C − T) + u(C − T) = u(C − T)(u + 1).

In these terms we have:
ln
√

T (C − T) = ln
[
u(C − T)

]
= ln u + ln(C − T),

ln
(
T +

√
T (C − T)

)
= ln

[
u(C − T)(u + 1)

]
= ln u + ln(C − T) + ln(u + 1),

and √
T

C − T
= u.

Finally, we have
ln
(

1 − T

C

)
= − ln(C

C − T
) = − ln(u2 + 1)

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Thus, the function F (x0) becomes

F (x0) = ln u + ln(C − T) −
(
ln u + ln(C − T) + ln(u + 1)

)
+ u − ln(u2 + 1) (23)

= − ln(u + 1) + u − ln(u2 + 1) , (24)

where u =
√

T
C−T ∈ (0, 3) . It is easy to show F (x0) < 0 when u ∈ (0, 3).

21

	Introduction
	Related Work
	Influence of Chain-of-Thought Length on Arithmetic Tasks
	Problem Formulation
	Experiment Setup
	Experimental Results

	Theoretical Analysis
	Setup
	A Simple Case with Linear Error
	Extension to General Error Functions

	Empirical Examination of Optimal CoT Length
	Optimal CoT Length of LLMs on MATH
	Implications for Training with CoT Data

	Length-filtered Vote
	Conclusion
	Additional Real world Experiment Details
	Implementation Details
	Task Difficulty v.s. Optimal CoT Lengths

	Synthetic Arithmetic Problem Discussions
	Contrast to vanilla arithmetic problem
	Same Subtask Difficulty

	Subtask Loss
	Synthetic Experiment Details
	General Error Functions
	Proof
	Proof of Proposition 4.2
	Proof of Theorem 4.3
	Proof of Corollary 4.5
	Proof of Theorem 4.7
	Technical Lemmas

