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ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable performance in various
applications. Recently, graph prompt learning has emerged as a powerful GNN
training paradigm, inspired by advances in language and vision foundation models.
Here, a GNN is pre-trained on public data and then adapted to sensitive tasks
using lightweight graph prompts. However, using prompts from sensitive data
poses privacy risks. In this work, we are the first to investigate these practical
risks in graph prompts by instantiating a membership inference attack that reveals
significant privacy leakage. We also find that the standard privacy method, DP-
SGD, fails to provide practical privacy-utility trade-offs in graph prompt learning,
likely due to the small number of sensitive data points used to learn the prompts.
As a solution, we propose DP-GPL for differentially private graph prompt learning
based on the PATE framework, that generates a graph prompt with differential
privacy guarantees. Our evaluation across various graph prompt learning methods,
GNN architectures, and pre-training strategies demonstrates that our algorithm
achieves high utility at strong privacy, effectively mitigating privacy concerns while
preserving the powerful capabilities of prompted GNNs as powerful foundation
models in the graph domain.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning representations of
graph-structured data and have shown significant advancements across various applications, such
as drug design (Al-Rabeah & Lakizadeh, 2022; Qian et al., 2023), anomaly detection (Sun et al.,
2022b; Tang et al., 2022), and social network analysis (Chen et al., 2020). Recently, graph prompt
learning (Sun et al., 2023d; Zi et al., 2024; Sun et al., 2023b; Fang et al., 2024; Sun et al., 2022a;
2023a) has emerged as a promising GNN training paradigm. Graph prompt learning first pre-trains a
GNN model on general public graph data and then tunes a graph prompt (Sun et al., 2023b; Huang
et al., 2024; Ge et al., 2023) or tokens (Fang et al., 2024; Sun et al., 2022a; Liu et al., 2023b) on
some sensitive downstream data. By reformulating the downstream task into the pretext task used in
pre-training, it then enables predictions for the downstream task.

The fact that graph prompts are tuned on sensitive downstream data can raise significant privacy
concerns. In fact, in the language and vision domains, it has been shown that private information
from downstream data can leak through predictions of prompted models (Duan et al., 2023b; Wu
et al., 2023). To the best of our knowledge, no such insights exist for the graph domain, and no prior
work has explored the privacy risks of graph prompt learning.

In this work, we set out to close this gap. We first assess the privacy risks of graph prompts by
adapting a state-of-the-art membership inference attack (Shokri et al., 2017; Carlini et al., 2022) to
graph prompt learning and measuring the empirical leakage. Our evaluation demonstrates significant
privacy risks for the downstream data when used to tune graph prompts. For example, we show that
the membership inference attack can achieve an AUC score as high as 0.91 on the PubMed dataset.
We also investigate the relationship between the number of data points used to tune the prompt and the
attack success and find that with less data, the privacy risk grows, posing a significant risk to standard
graph prompt learning that usually relies on a small number of data points (Sun et al., 2023a).
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Figure 1: Framework of DP-GPL. 1 We partition the labeled private data into disjoint groups
randomly. 2 An ensemble of teacher prompts is trained on the disjoint private data groups. 3
Given an unlabeled public data sample, by querying the pre-trained GNN model, each teacher prompt
votes with the most confident class label. 4 The teacher prompts’ votes are privately aggregated,
i.e.,, a noisy argmax over vote counts is returned as the final noisy label for the public data sample.
5 A student prompt is trained with the labeled public data and can be publicly released.

As a naive solution to mitigate this privacy risk, we first turn to the Differential Privacy-Stochastic
Gradient Descent (DP-SGD) algorithm (Abadi et al., 2016)—a gold standard in privacy-preserving
machine learning. However, we find that this approach significantly degrades the downstream
performance due to the limited amount of data used to tune graph prompts. For instance, with a
privacy budget as high as ε = 64, the accuracy on the Cora dataset downstream drops from 48.70%
to 18.47%, i.e., close to random guessing.

As a solution for practical privacy-preserving graph prompt learning, we propose DP-GPL. DP-GPL
follows the general framework of the private aggregation of teacher ensembles (PATE) (Papernot
et al., 2017; 2018), but instead of training a student model with differential privacy guarantees,
it trains a student prompt (Duan et al., 2023a). We thoroughly evaluate our DP-GPL in terms of
privacy guarantees and privacy-utility trade-offs. Over various graph prompt learning methods, GNN
architectures, and pre-training strategies, we find that our algorithm can achieve high utility at strong
privacy privacy guarantees—thereby, implementing the first practical approach to private graph
prompt learning.

In summary, we make the following contributions:

• We are the first to show that private information can leak from graph prompts, in particular when
the prompts are tuned over a small number of data points.

• We show that naively integrating the DP-SGD algorithms into graph prompt learning yields
impractical privacy-utility trade-offs.

• As a solution, we propose DP-GPL, an algorithm based on the PATE framework to implement
differential privacy guarantees into graph prompt learning.

• We perform a thorough evaluation on multiple state-of-the-art graph prompt learning methods,
graph datasets, GNN models, and pre-training strategies and highlight that our method can achieve
both high utility and strong privacy protections over various setups.

2 BACKGROUND AND RELATED WORK

2.1 PROMPT LEARNING

Prompt learning is a new machine learning paradigm that has been recently proposed to improve the
performance of large models while addressing the limitations of fine-tuning (Li & Liang, 2021; Lester
et al., 2021; Liu et al., 2023a). The idea is to learn a task-specific prompt that can be added to the
input data while freezing the pre-trained model’s parameters. In addition to many effective prompt
methods in the language domain, such as hand-crafted textual prompts (Brown, 2020), automated
discrete prompts (Gao et al., 2020; Shin et al., 2020), and trainable prompts in the continuous space
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(Li & Liang, 2021; Liu et al., 2021), also in the vision domain (Jia et al., 2022; Sohn et al., 2023) and
for multi-modal models (Zhou et al., 2022), prompt tuning has become a prevalent paradigm.

2.2 GNNS AND GRAPH PROMPT LEARNING

GNNs achieve strong performance on numerous applications (Sun et al., 2023c; Tang et al., 2022;
Chen et al., 2020). Therefore, they rely on various effective architectures, such as Graph Convolutional
Network (GCN) (Kipf & Welling, 2022), Graph Attention Network (GAT) (Veličković et al., 2018a),
and Graph Transformer (Shi et al., 2020)—usually trained in a supervised manner. To make graph
learning more adaptive, many graph pre-training approaches have been proposed (Veličković et al.,
2018b; Hou et al., 2022; Sun et al., 2022a; Xia et al., 2022) that first learn some general knowledge
for the graph model with easily accessible data, and then fine-tune the model on new tasks. This is
often referred to as ”pre-train & fine-tune” paradigm. However, the large diversity between graph
tasks with node level, edge level, and graph level may cause a ”negative transfer” results where the
knowledge learned during the pre-training phase hurts performance when fine-tuning on a specific
downstream task, rather than improving it (Sun et al., 2023b). As a solution, graph prompt learning
was proposed. The goal of graph prompt learning is to learn transformation operations for graphs to
reformulate the downstream task to the pre-training task. Given an input graph G, we can formulate
the graph prompt learning as follows:

G∗ : (X∗, Ainner, Ainsert) = P(X,A) (1)

where G∗ is a prompted graph, which includes learnable components in its feature matrix, i.e.,
X∗ ∈ RK×d and adjacency matrix, i.e., Ainner and Ainsert. P is a graph prompt learning module
that learns the representations of K prompt tokens, i.e., X∗, token structures, i.e., Ainner and inserting
patterns, i.e., Ainsert, which indicates the connection between the prompt tokens and the nodes in
the original graph. We can learn a graph prompt learning module P applied to the original graph to
imitate any graph-level transformation. While Equation (1) shows graph-level transformation, our
adaption of graph prompt is in node-level, i.e., the graph prompt is learned only based on the selected
nodes’ features without the adjacency matrix A of the original graph G. In addition, the learned graph
prompt is adapted to individual nodes, i.e., P(x) where x is an individual node.

For instance, Graph Pre-training and Prompt Tuning (GPPT) (Sun et al., 2022a) applies prompt-
based tuning methods to models pre-trained by edge prediction. It introduces virtual class-prototype
nodes/graphs with learnable links into the original graph, making the adaptation process more akin to
edge prediction. Fang et al. (2024) proposed a universal prompt-based tuning method, called Graph
Prompt Feature (GPF), which can be applied under any pre-training strategy. GPF adds a shared
learnable vector to all node features in the graph while its variant GPF-plus incorporates different
prompted features for different nodes in the graph. Sun et al. (2023b) proposed All-in-one, a graph
prompt that unifies the prompt format in the language area and graph area with the prompt token,
token structure, and inserting pattern. They reformulate the downstream problems to the graph-level
task to further narrow the gap between various graph tasks and pre-training strategies. Graph prompt
learning has superior performance compared to traditional fine-tuning methods and is especially
effective in few-shot settings, i.e., when only a small number of data points are sampled to tune the
prompt. While graph prompt learning benefits various graph applications, in this work, we focus on
node classification tasks and three state-of-the-art graph prompt learning methods, namely GPPT,
All-in-one, and GPF-plus.

2.3 PRIVACY RISKS IN GNNS AND GRAPH PROMPT LEARNING

GNNs have been shown to be vulnerable to various privacy risks, such as membership inference
attacks (MIAs) (Olatunji et al., 2021; He et al., 2021; Conti et al., 2022), model inversion attacks
(Zhang et al., 2022a), and property inference attacks (Wang & Wang, 2022; Zhang et al., 2022b).
Specifically, MIAs against GNNs aim to infer whether a given node or graph was used to train the
GNN model, model inversion attacks aim to recover the model’s training data from the model’s
output, and property inference attacks aim to infer the sensitive properties of the training data through
the access to the target GNN model. Regarding graph prompt learning, some prior work explores
backdoor attacks in graph prompt learning, which utilize prompts to insert backdoor triggers into the
GNN model (Lyu et al., 2024) to impact output integrity. To the best of our knowledge, there is no
prior work on assessing and mitigating the privacy risks in graph prompt learning.
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2.4 DIFFERENTIAL PRIVACY

Differential privacy (DP) (Dwork, 2006) is a mathematical framework that provides privacy
guarantees for randomized mechanisms M : I → S. Therefore, it upper-bounds the probability
that M, when executed on two neighboring datasets D, D′, i.e., dataset that differ in only one data
point, output a different result by formalizing that Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ. The
privacy parameter ε specifies by how much the output is allowed to differ, and δ is the probability
of failure to meet that guarantee. There are two main algorithms to implement DP guarantees for
traditional machine learning. The differentially private stochastic gradient descent algorithm
(DP-SGD) (Abadi et al., 2016) extends standard stochastic gradient descent with two additional
operations, first, gradient clipping that limits the impact of each individual training data point (often
called ”sensitivity”) on the model update, and then the addition of calibrated amounts of stochastic
noise to provide formal privacy guarantees. The second private aggregation of teacher ensembles
algorithm (PATE) (Papernot et al., 2017; 2018) trains an ensemble of teacher models on disjoint
subsets of the private data. Then, through a noisy labeling process, the ensemble privately transfers
its knowledge to an unlabeled public dataset. Finally, a separate student model is trained on this
labeled public dataset for release.

DP for Graphs. As the classical DP guarantee makes no assumptions about potential correlations
between data points, there are existing works that extend DP on graph data (Mueller et al., 2024;
Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013; Olatunji et al., 2023; Sajadmanesh & Gatica-
Perez, 2024; Xiang et al., 2024). There are three variants of DP on graph data: node-level DP,
edge-level DP, and graph-level DP, depending on what the data owner requires to protect. Specifically,
node-level DP aims to protect the privacy of individual nodes in the graph data, including its attributes
and associated edges (Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013; Daigavane et al., 2021;
Olatunji et al., 2023). Edge-level DP aims to protect the relationships between nodes, which can be
applied to social network graphs (Hay et al., 2009) or location graphs (Xie et al., 2016), where the
edges contain sensitive information, but the data represented in the nodes of the graph are assumed
to be non-sensitive. Graph-level DP aims to protect the entire graph data, including the structure of
the graph, node attributes, and edge relationships (Mueller et al., 2022). However, graph-level DP
has not been thoroughly investigated in the literature (Mueller et al., 2024). In this work, we focus
on node-level DP as we aim to protect the privacy of individual nodes in the graph data. Different
from the existing node-level DP guarantees (Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013;
Olatunji et al., 2023; Sajadmanesh & Gatica-Perez, 2024; Xiang et al., 2024), which often results in
large ϵ values, limiting their practical utility, we aim to achieve meaningful privacy guarantees for
graph prompt learning with small and manageable ϵ values (ϵ <= 2).

2.5 PRIVATE PROMPT LEARNING IN THE VISION AND LANGUAGE DOMAIN

In the vision domain, Li et al. (2023) leverage the PATE algorithm for private prompt tuning to vision
encoders. Therefore, they have to tune a prompt and train an additional label mapping for each
teacher. In contrast, our method instantiates different teachers only through graph input prompts.
In the language domain, multiple approaches have been proposed to privatize prompts. Chen et al.
(2023) rely on named entity recognition to identify and hide private information in text prompts.
This approach is not easily transferable to the graph domain and additionally does not yield formal
privacy guarantees. The DP-OPT (Hong et al., 2024) framework relies on a local large language
model (LLM) to derive a discrete, i.e., text, prompt with DP, and then transfers this prompt to a
central LLM. The framework is tightly coupled to the language domain and derives plain language
prompt templates that are not applicable to GNNs. Panda et al. (2023) rely on a PATE-style teacher
ensemble implemented through different prompts, and generate noisy output predictions for the LLM.
Yet, due to the absence of a student model in their framework, each query to the ensemble consumes
additional privacy budget, making the approach impractical. Duan et al. (2023a) solve this limitation
by generating a student prompt from the teacher ensemble, similar to our work.

3 PRIVACY RISKS IN GRAPH PROMPT LEARNING

In this work, we explore the privacy risk for the sensitive downstream data in graph
prompt learning by instantiating a MIA(Carlini et al., 2022; Shokri et al., 2017).
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While prior work on instantiating MIAs against natural language prompts relies on
a simple threshold-based attack (Duan et al., 2023b), we adapt and implement the
more powerful state-of-the-art Likelihood Ratio Attack (LiRA) (Carlini et al., 2022).

Algorithm 1 Likelihood Ratio Attack on Graph Prompt
Learning. Instead of conducting MIA against the target
model in the standard LiRA algorithm, we conduct MIA
against the target prompt in graph prompt learning. We
highlight these differences in blue.
Require: Target prompt Ptarget, Pre-trained GNN model Φ, A

given data sample (xp, yp), data distribution D, Logit scaling
f(p) = log( p

1−p
)

1: confsin = {}, confsout = {}
2: for i← 1 to K times do
3: /* Sample a shadow dataset */
4: Dattack ←$ D
5: /* Train IN graph prompt */
6: Pin ← T (Dattack ∪ (xp, yp))
7: confsin← confsin ∪

{
f(Φ(Pin(xp))yp)

}
8: /* Train OUT graph prompt */
9: Pout ← T (Dattack \ (xp, yp))

10: confsout← confsout ∪
{
f(Φ(Pout(xp))yp)

}
11: end for
12: µin ← mean (confsin), µout ← mean (confsout)
13: σ2

in ← var(confsin), σ2
out ← var(confsout)

14: /* Query with target graph prompt */
15: confobs = f(Φ(Ptarget(xp))yp)

Ensure: Λ =
p(confobs|N (µin,σ2

in))

p(confobs|N (µout,σ
2
out))

We use this attack to assess whether
a given data point was used to train a
given target prompt. Formally, in our
MIA, we consider that the goal of the
adversary is to infer whether a given
private data sample v = (xp, yp) is
in the training dataset of the target
prompt Ptarget. We assume that the
adversary holds n candidate nodes
(x1, x2, . . . , xn) including their corre-
sponding labels (y1, y2, . . . , yn) and
queries the candidates nodes with
prepended target prompt to the pre-
trained GNN model.

The pre-trained GNN model then
outputs the probability vectors
(p1, p2, . . . , pn). Following Carlini
et al. (2022), we analyze the model’s
output probability at the correct target
class label of every candidate node xi,
i.e., pi,yi . The intuition of this MIA
is that the output probability at the
correct class yi will be significantly
higher for members that were used in
training Ptarget than non-members.
The detail of our adaptation of the LiRA attack to the graph prompt learning setup is presented in
Algorithm 1.
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Figure 2: AUC-ROC curve of our MIA
on Cora dataset with different number
of shots, i.e., 1-5 shots. With fewer shots,
MIA success rises significantly.

MIA Experimental Setup. We conduct MIA against
graph prompt learning on three downstream datasets,
i.e., Cora, CiteSeer, and PubMed with GNN models
pre-trained on the ogbn-arxiv dataset.1 To evaluate our
MIAs under different numbers of data points used to
tune the graph prompt, we analyze MIA in 1-5 shot
settings. Following the experimental setup from MIAs
against natural language prompts (Duan et al., 2023b),
for each experiment, we consider the k (i.e., k=1-5) data
points used in training the target prompt as members
and 50 ∗ k other randomly selected data points from the
testing dataset as non-members. We repeat the MIA 100
times and report the average attack success.

MIA Results. In Figure 2, we present the AUC-ROC
curve of our MIA on the Cora dataset and the GAT
model. The results for other datasets and models are
presented in Appendix A.4.2 and show a similar trend.
Our results highlight that the privacy risk increases with fewer shots used to train the prompt, e.g.,
with 5 shots we have an AUC score of 0.703, while with 1 shot, the AUC score increases to 0.877.
We hypothesize that this is due to the fact that with fewer shots, the target prompt is more likely to
overfit the prompt data, leading to a higher membership inference risk. Yet, even with more shots,
we observe significantly higher MIA success than the random guessing (0.5), e.g., see Figure 3 with
5-shots over various setups where the average AUC score is consistently between 0.7-0.9. Hence, our
results demonstrate that the private data used in training a graph prompt can be subject to substantial
privacy risk. This motivates the urgent need for privacy-preserving graph prompt learning methods.

1Details of these datasets are presented in Section 5.1.
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Figure 3: AUC-ROC curve of our MIA (with 5 shots). Generally, there is a high MIA risk in terms
of AUC score of between 0.7-0.9.

4 TOWARDS PRIVACY PRESERVING GRAPH PROMPTS

The standard approach for privacy-preserving machine learning is based on the DP-SGD algo-
rithm (Abadi et al., 2016). The DP-SGD algorithm can be applied in gradient-based learning
approaches to limit the impact of individual training data points on the final model and add calibrated
noise to implement the privacy guarantees. We explore this naive way of implementing privacy
guarantees into graph prompt learning and show that it fails to yield reasonable utility even at low
privacy regimes, i.e., with very high ε’s. Motivated by this insight, we propose a non-gradient based
algorithm for private graph prompt learning based on the PATE framework.

4.1 NAIVE IMPLEMENTATIONS OF PRIVACY IN GRAPH PROMPT LEARNING FAIL

As a naive solution to yield private graph prompt learning, we rely on the DP-SGD algorithm.
Therefore, we keep the GNN frozen, calculate the gradients only with respect to the graph prompts,
clip and noise them according to the desired privacy protection, and update the prompt iteratively
to minimize the loss on the downstream task. Our evaluation of this naive approach in Table 8 in
Appendix A.4.3 highlights that DP-SGD yields inadequate privacy-utility trade-offs for private graph
prompt learning. While our results show the general trend that with increasing privacy budgets, the
performance of the downstream task increases, DP-SGD still significantly degrades the downstream
task performance even at high privacy budgets. For instance, with a privacy budget as high as ε = 64
in the 5-shot setting, the accuracy of the downstream task on the Cora dataset still drops from 48.70%
to 18.47%, which is close to random guessing.

4.2 DIFFERENTIALLY PRIVATE GRAPH PROMPT LEARNING FRAMEWORK

Motivated by the failure of the naive DP-SGD approach, we propose a non-gradient based DP graph
prompt learning framework, DP-GPL. We detail the general workflow of DP-GPL in Figure 1.

Following PATE (Papernot et al., 2017; 2018), our algorithms contain the broader stages of training
the teacher models, performing a private knowledge transfer, and obtaining the student. In contrast to
standard PATE, we do not train teachers from scratch, but using the same frozen pre-trained GNN,
we tune teacher prompts. Additionally, our student is again not a trained model like in PATE, but a
prompt tuned on the public data labeled during the knowledge transfer. We detail the building blocks
of our DP-GPL below:

Private Data Partition and Teacher Prompt Tuning. In DP-GPL, we first partition the labeled
private data into disjoint groups randomly and assign each partition to each teacher. Then, we tune
the teacher prompts according to the data points that were assigned to them. The teacher prompt
tuning differs from PATE which trains teacher models from scratch.

Public Querying. To label the public data based on the teacher ensemble, we infer it through the
prompted GNN. Therefore, for each teacher, we need to first insert the teacher prompt into the
public data. How this insertion is done differs among different graph prompt learning methods. For
example, in the GPF-plus method, we insert the teacher prompt into the node features of the public
data samples, while in the All-in-one method, the teacher prompt is inserted into the public data as an
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Figure 4: Private Aggregation. An overview of the aggregation stage in DP-GPL. We first count the
output labels and show them in a histogram. Then, we add Gaussian noise to the votes and return the
vote with the highest noisy count as the returned label for the public data sample.

extra subgraph. Then, we query the pre-trained GNN model once per teacher. For each teacher, we
take as a vote the class label with the highest confidence.

Noisy Teacher Vote Aggregation. In DP-GPL, we aggregate the teachers’ votes with a majority
voting mechanism akin to PATE. Specifically, for a query Q from the downstream task and classes
1 to C, let yi(Q) ∈ [1, C] denote the pre-trained GNN model’s prediction for i-th teacher prompt,
and cm(Q) denote the vote count for class m, i.e., cm(Q) =

∑N
i (yi(Q) = m). Then, we add

independent Gaussian noise to the count for each class, following the Confident GNMax algorithm
(Papernot et al., 2018), and return the label with the highest noisy count for the query.

Student Prompt Training. Instead of training a student model, like in the original PATE, we use the
labeled public data from the aggregation stage to train a student graph prompt. This prompt can be
released to the public while protecting the private data used to train the teacher prompts.

4.3 PRIVACY ANALYSIS

As the training nodes for different teacher prompts are independent and do not have connecting edges,
the privacy analysis of our methods follows that in the original PATE algorithm (Papernot et al.,
2018). We analyze the privacy analysis of DP-GPL below.

The privacy analysis of DP-GPL follows the standard privacy analysis of the GNMax algorithm,
see Papernot et al. (2018), Section 4.1. Let f(x) denote the histogram obtained by the teacher
votes. We use the Gaussian mechanism (Dwork et al., 2014) to obtain a noisy histogram f ′(x) as
f ′(x) = f(x) +N (0, σ2). We denote by ∆f the sensitivity of f .2 The Gaussian mechanism then
yields the following data independent bound for PATE (Mironov, 2017):

(α,∆2
f · α/2σ2)-Rényi-DP. (2)

Using standard conversion (Mironov, 2017), we can convert this bound back to (ε, δ)-DP bounds.

5 EMPIRICAL EVALUATION

5.1 GENERAL EXPERIMENTAL SETUP

Datasets. We use ogbn-arxiv (Hu et al., 2020), which is a large-scale graph dataset, as the pre-training
dataset. For the downstream tasks, we use Cora (Yang et al., 2016), CiteSeer (Yang et al., 2016), and
PubMed (Yang et al., 2016). Since the pre-trained dataset (i.e., ogbn-arxiv) and downstream dataset
(i.e., Cora, CiteSeer, and PubMed) have various input feature dimensions, we here use SVD (Singular
Value Decomposition) to unify input features from all dimensions as 100 dimensions, following the
process in Sun et al. (2023b). We provide more details about these datasets in Appendix A.1. For
each dataset, We randomly select 50% of the nodes as the private data and the remaining 50% as
the public data. Within the public data, we randomly select 50 nodes as the query nodes and the
remaining nodes as the testing data.

2Given that each teacher can contribute 1 vote, ∆f = 1 in DP-GPL.
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Models. We use three widely-used GNN models, i.e., GCN (Kipf & Welling, 2022), GAT (Veličković
et al., 2018a), and Graph Transformer (GT) (Shi et al., 2020) as the backbone for both ”pre-train &
fine-tune” and graph prompt learning paradigms. The default hyperparameters used for pre-training
GNN models are presented in Table 5. For pre-training strategies, we select four mostly used methods
covering node-level, edge-level, and graph-level strategies, i.e., DGI (Veličković et al., 2018b),
GraphMAE (Hou et al., 2022), EdgePreGPPT (Sun et al., 2022a), and SimGRACE (Xia et al., 2022).

Graph Prompt Learning Methods. Current popular graph prompt learning methods can be classified
into two types, ’Prompt as graph’ and ’Prompt as token’ (Zi et al., 2024). For ’Prompt as graph’ type,
we select All-in-one (Sun et al., 2023b), and for ’Prompt as token’ type, we use GPPT (Sun et al.,
2022a), and GPF-plus (Fang et al., 2024). These graph prompt methods are all state-of-the-art. Also,
we focus on the 5-shot graph prompt learning setting as it has high performance on downstream tasks
(as shown in Table 7 in Appendix A.4.1) and also high MIA risk (as shown in Figure 3).

Privacy Parameters and Accounting. We set the privacy parameters for DP-GPL according
to Table 6 in Appendix A.2. To empirically account for the per-teacher privacy loss during our
experiments, we build on the code-based from Boenisch et al. (2023).

DP-GPL. We use an ensemble of 200 teacher prompts, and each teacher prompt is trained with
disjoint 5 shots of data from the private downstream task. For query dataset, we select 50 public
samples from the downstream distribution. DP-GPL is implemented to immediately stop querying
once a teacher has reached their privacy limit, which we set to ε = 2. We repeat each experiment
three times and report the average and standard deviation of the public student prompt’s accuracy on
the testing dataset.

Baselines. We compare against three baselines. (1) Lower Bound (LB): (ε = 0). Given a pre-
trained GNN model, we directly evaluate its performance on the downstream test data. (2) Ensemble
Accuracy (Ens. Acc.):(ε = ∞). We use the histogram of the private teacher ensemble votes and
return the clean argmax. (3) Upper Bound (UB): (ε = ∞). i.e., we select the teacher prompt which
has the best testing accuracy.

Table 1: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (DGI, All-in-one, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper Bound.
DP-GPL performs significantly better than the lower bound in all setups. Generally, there is a more
than 30% improvement for DP-GPL over the lower bound.

LB Ens. Acc. UB Our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12

CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04

PubMed 32.86 71.48 71.72 0.2383 66.07 ±1.78

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00

CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97

PubMed 29.95 69.09 70.13 0.2386 62.70 ±2.10

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97

CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13

PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15
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Table 2: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (DGI, GPF-plus, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 43.92 59.14 60.13 0.9186 58.10 ±1.63

CiteSeer 37.51 69.24 70.38 0.4917 68.11 ±1.39

PubMed 32.86 79.07 79.22 0.3150 78.85 ±1.40

GCN
Cora 49.10 71.33 77.87 0.4268 64.64 ±0.73

CiteSeer 40.51 82.70 85.98 0.2039 79.44 ±5.74

PubMed 29.95 80.76 81.73 0.2486 79.81 ±5.17

GT
Cora 21.80 37.81 38.08 0.9990 37.38 ±1.69

CiteSeer 27.56 37.78 37.88 0.9933 37.61 ±3.04

PubMed 39.23 71.17 73.45 0.9973 68.94 ±0.94

Table 3: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (DGI, GPPT, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 43.92 51.73 56.39 0.7777 46.90 ±1.24

CiteSeer 37.51 48.55 54.29 0.4790 42.65 ±1.26

PubMed 32.86 63.97 68.25 0.2874 59.55 ±0.88

GCN
Cora 49.10 59.23 64.16 0.4980 54.15 ±2.02

CiteSeer 40.51 56.41 60.60 0.3728 52.09 ±1.19

PubMed 29.95 68.41 73.41 0.2601 63.28 ±4.75

GT
Cora 21.80 56.84 58.74 0.6964 54.78 ±3.15

CiteSeer 27.56 48.28 49.76 0.5904 46.63 ±2.86

PubMed 39.23 66.52 69.46 0.3846 63.38 ±2.11

5.2 RESULTS

We present the results of our DP-GPL, and of the three baselines on different GNN models and
downstream datasets in Table 1, Table 2 and Table 3, taking the DGI pertaining strategy as the
examples. The results for other setups in Appendix A.4.4 show the same trends. We first observe
that both our proposed algorithms significantly improve over the lower bound (ε = 0) baseline,
highlighting their effectiveness in tuning graph prompts to solve the respective downstream tasks.
This highlights that our DP-GPL is effective in improving privacy-utility trade-offs.

Regarding our methods’ privacy consumption, we observe that neither exhausts the given privacy
budget of ε = 2. In particular, DP-GPL is not able to spend above ε = 0.3627 during the labeling.
This small privacy consumption is due to the limited number of public samples used for the knowledge
transfer: over the given 50 queries, the methods cannot spend more privacy. While it would be
possible to increase the number of public queries, we find that this does not increase the downstream
performance notably. Hence, by limiting the public data to 50 samples, the best privacy-utility
trade-offs can be achieved.

6 CONCLUSIONS

In this work, we are the first to highlight the privacy risks that arise from graph prompt learning.
By running a membership inference attack, we showed that private information from the private
dataset used to tune the graph prompts can leak to external parties who query the prompted GNN.
To mitigate the resulting risk for the downstream data, we set out to design a private graph prompt
learning algorithm. Motivated by our finding that the naive application of the DP-SGD algorithm, the
standard to implement DP guarantees in machine learning, fails to yield good privacy-utility trade-
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offs, we designed DP-GPL, which builds on the PATE algorithm and performs a noisy knowledge
transfer from teachers to a student prompt. We thoroughly analyzed the resulting utility and privacy
implications and highlighted that our DP-GPL is able to yield strong utility at high privacy guarantees.
Thereby, our work contributes towards leveraging the computational and utility benefits from graph
prompt learning but without additional privacy risks for the downstream data.
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Table 4: Statistics of datasets. |V|, |E|,m, |C| denote the number of nodes, num of edges, dimension
of a node feature vector, and number of classes, respectively.

Dataset |V| |E| m |C|
ogbn-arxiv 169, 343 1, 166, 243 128 40

Cora 2, 708 10, 556 1, 433 7
CiteSeer 3, 327 9, 104 3, 703 6
PubMed 19, 717 88, 648 500 3

A APPENDIX

A.1 EXPERIMENTAL SETUP: DATASETS

In this paper, we focus on graph prompt learning for node-level tasks. Also, we consider the scenario
where a GNN model is pretrained on a large graph by the model provider, and users apply it to a
specific downstream task (a smaller graph) through graph prompt learning Sun et al. (2023b). To
simulate this scenario, we use ogbn-arxiv, which is a large-scale graph dataset, as the pre-training
dataset. For the downstream tasks, we use Cora, CiteSeer, and PubMed Yang et al. (2016). The
statistics of datasets are presented in Table 4.

A.2 EXPERIMENTAL SETUP: HYPERPARAMETERS

The default hyperparameters used in the GNN pre-training phase are presented in Table 5. And
Table 6 shows the parameters for Confident-GNMax used in DP-GPL.

Table 5: Default hyperparameter setting for
GNN pre-training.

Type Hyperparameter Setting

GAT
Architecture 3 layers
Hidden unit size 128

GCN Architecture 3 layers
Hidden unit size 128

Graph Transformer
Architecture 3 layers
Hidden unit size 128

Training

Learning rate 0.001
Optimizer Adam
Epochs 300
Batch size 128

Table 6: Parameters for Confident-GNMax. (T - threshold, σ1, σ2 - noise parameters)

GNN model Downsteream dataset T σ1 σ2

GAT Cora 170 5 100
GAT CiteSeer 170 5 50
GAT PubMed 170 1 20
GCN Cora 150 1 20
GCN CiteSeer 180 1 20
GCN PubMed 170 1 20
GT Cora 150 10 100
GT CiteSeer 150 5 50
GT PubMed 170 5 100

A.3 PSEUDOCODE FOR OUR DP-GPL

We here provide the pseudocode for our DP-GPL algorithm in Algorithm 2. This algorithm includes
the main five steps in our methods, i.e., private data partition, teacher prompts training, prompting
pre-trained GNN model, aggregation, and student prompt training. In this algorithm, we highlight the
difference between our methods and the standard PATE in blue.
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Algorithm 2 DP-GPL. In contrast to the standard PATE algorithm where the teacher models are
trained on disjoint subsets of private data, our DP-GPL trains teacher prompts on disjoint subsets of
the private graph data. We highlight these differences in blue.

Require: Private graph data Vprivate = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Require: Number of teachers N , threshold T , noise parameters σ1 and σ2

Require: Pre-trained GNN model Φ, unlabeled public query data Vpublic

1: Step 1: Private data partition
2: /* DP-GPL */
3: Partition Vprivate into N IID disjoint groups {g1, g2, . . . , gN}
4: for each teacher i = 1 to N do
5: Step 2: Teacher Prompts Training
6: Train teacher prompt Pi on the group gi
7: end for
8: Step 3: Prompting pre-trained GNN model
9: Actual public data Dpublic = ∅

10: for each query xj ∈ Vpublic (e.g., a node) do
11: Insert teacher prompt Pi into the query data point, i.e., Pi(xj)

12: Query the pre-trained GNN model and get a label yj
i = Φ(Pi(xj))

13: Step 4: Aggregation
14: /* DP-GPL */
15: Get count for each class with uniform votes: cm(xj) =

∑N
i (yj

i = m)

16: if maxm {cm(xj)}+N (0, σ2
1) ≥ T then ▷ m is the class label

17: yj = argmaxm

{
cm(xj) +N (0, σ2

2)
}

18: Dpublic = Dpublic ∪ (xj , yj)
19: end if
20: end for
21: Step 5: Student Prompt Training
22: Train student prompt Ps using the noisy labeled public data Dpublic

23: Differential Privacy Guarantee
24: Compute actual privacy loss (ε, δ) based on noise parameters σ1, σ2 and the number of queries |Dpublic|
25: return Student prompt Ps with differentially private guarantee
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A.4 ADDITIONAL EXPERIMENTS

A.4.1 PERFORMANCE OF GRAPH PROMPT LEARNING

One advantage of graph prompt learning is that in the few-shot setting, the downstream performance
of graph prompt learning is comparable to or even better than the ”pre-train & fine-tune” paradigm.
We implement preliminary experiments to compare the downstream performance of graph prompt
learning and the fine-tuning paradigm in a 5-shot setting, as shown in Table 7. As we can see, in most
cases, the testing accuracy of graph prompt methods is close to or higher than that of the fine-tuning
paradigm, making it reasonable to explore the privacy risk of graph prompt learning in the few-shot
setting.

Table 7: Performance of Pre-train & Fine-tune (PFT) and graph prompt learning (Cora, 5-shot).

GNN architectures Pre-train methods PFT All-in-one GPF-plus GPPT

GAT

DGI 46.03 ±0.79 48.70 ±1.45 53.48 ±1.99 56.53 ±1.51

EdgePreGPPT 56.33 ±1.29 48.71 ±1.11 40.89 ±1.53 54.77 ±1.54

GraphMAE 43.51 ±0.74 50.66 ±1.03 51.61 ±1.09 49.32 ±1.49

SimGRACE 14.71 ±1.67 13.05 ±1.62 21.35 ±1.24 35.03 ±2.07

GCN

DGI 52.12 ±1.36 58.25 ±1.10 66.50 ±2.50 56.21 ±1.68

EdgePreGPPT 43.77 ±1.16 68.94 ±1.09 76.30 ±0.98 60.28 ±1.86

GraphMAE 39.55 ±1.24 62.90 ±0.91 75.84 ±1.10 51.63 ±1.25

SimGRACE 18.15 ±0.52 18.19 ±1.64 19.97 ±0.65 33.72 ±1.98

GraphTransformer

DGI 53.33 ±1.09 45.12 ±2.05 29.54 ±2.24 56.21 ±1.51

EdgePreGPPT 60.02 ±1.07 53.45 ±1.06 35.74 ±0.59 56.95 ±1.04

GraphMAE 52.95 ±1.44 41.84 ±0.97 36.58 ±0.67 48.54 ±1.17

SimGRACE 39.79 ±0.25 15.03 ±1.12 15.60 ±0.88 41.14 ±0.57

A.4.2 MIA RESULTS

Figure 5 and Figure 6 show our MIA on CiteSeer and PubMed datasets, respectively, with 1-5 shots
of private data used in training prompts. As we can observe, our MIA has higher attack success with
few shots.
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Figure 5: AUC-ROC curve of our MIA on CiteSeer dataset with different number of shots, i.e.,
1-5 shots.

A.4.3 RESULTS OF DP-SGD ON GRAPH PROMPT LEARNING

Table 8 shows the performance of DP-SGD on graph prompt learning with different privacy budgets
and numbers of shots. It is evident that the DP-SGD algorithm significantly degrades the downstream
task’s performance even at high privacy budgets. Only when the number of shots increases to 100,
the DP-SGD algorithm can achieve a high utility. However, in the few-shot setting (i.e., less than 50
shots), the DP-SGD algorithm fails to have a great privacy-utility trade-off.

A.4.4 ADDITIONAL DP-GPL RESULTS

We also present the performance of our DP-GPL on other setups, see Table 9 to Table 11. In
consistent with the observations in Section 5.2, our DP-GPL can achieve high utility under strong
privacy guarantees.
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Figure 6: AUC-ROC curve of our MIA attack on PubMed dataset with different number of
shots, i.e., 1-5 shots.

Table 8: Performance of DP-SGD on graph prompt learning on Cora dataset (DGI, GPF-plus,
GAT).

# Shots ε =∞ ε = 1 ε = 8 ε = 16 ε = 32 ε = 64
5 48.70 ±1.45 15.10 ±1.09 15.46 ±1.13 16.58 ±0.17 17.04 ±1.01 18.47 ±0.91

10 65.70 ±5.15 17.04 ±0.43 16.75 ±3.29 17.33 ±2.91 18.09 ±0.21 18.67 ±0.96

50 75.20 ±2.09 19.58 ±0.17 19.91 ±3.15 22.55 ±1.63 22.44 ±2.04 22.04 ±1.20

100 78.42 ±0.98 68.15 ±0.94 77.27 ±0.33 77.94 ±1.85 78.16 ±1.94 78.40 ±1.53

A.4.5 INFLUENCE OF THE NUMBER OF QUERIES

We analyze the impact of the number of public queries on the performance of our DP-GPL in
Figure 7, taking Cora, DGI, All-in-one, and GAT as an example. As we can see, the performance of
our DP-GPL increases as the number of public queries increases from 10 to 50. With more than 50
public queries, the performance of our DP-GPL tends to be stable, indicating that our methods can
achieve the best privacy-utility trade-offs with 50 public queries.
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Figure 7: Influence of the number of public queries on the performance of our DP-GPL (Cora,
DGI, All-in-one, GAT).

A.4.6 MIA RESULTS AGAINST DP-GPL

We also evaluate the effectiveness of our DP-GPL against MIA, as shown in Figure 8. The member
data is the private data used in training all teacher prompts, and the non-members are randomly
selected samples from the testing dataset. As we can see, all curves are very close to the dash line
(random guess), which shows that our DP-GPL is effective against MIA, for all downstream tasks
and GNN architectures.
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Table 9: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (GraphMAE, All-in-one, δ = 1.5 × 10−4). LB – Lower Bound, UB – Upper
Bound.

LB Ens. Acc. UB our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 39.65 49.40 52.94 0.5728 41.02 ±1.38

CiteSeer 38.50 39.09 40.87 0.2412 29.27 ±2.10

PubMed 30.86 64.64 67.85 0.2232 58.81 ±0.59

GCN
Cora 30.76 62.97 65.37 0.0782 59.50 ±0.63

CiteSeer 31.85 67.89 71.85 0.0588 61.68 ±0.41

PubMed 32.87 70.22 71.46 0.4989 64.59 ±0.11

GT
Cora 35.68 47.35 48.65 0.4197 37.47 ±1.05

CiteSeer 34.67 52.58 56.48 0.0390 46.97 ±2.18

PubMed 22.38 34.34 35.47 0.3359 32.82 ±1.42

Table 10: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (GraphMAE, GPF-plus, δ = 1.5 × 10−4). LB – Lower Bound, UB – Upper
Bound.

LB Ens. Acc. UB our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 39.65 51.69 54.38 0.6778 45.44 ±7.09

CiteSeer 38.50 58.02 61.94 0.2194 54.50 ±3.41

PubMed 30.86 76.21 78.56 0.4846 66.21 ±3.05

GCN
Cora 30.76 74.16 76.85 0.6135 66.88 ±1.91

CiteSeer 31.85 78.13 80.87 0.6262 69.45 ±2.58

PubMed 32.87 77.84 80.85 0.0595 68.67 ±5.32

GT
Cora 35.68 39.10 42.49 0.0273 30.78 ±3.33

CiteSeer 34.67 41.61 43.75 0.1189 34.72 ±0.54

PubMed 22.38 28.29 31.39 0.6147 21.86 ±1.69
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Figure 8: AUC-ROC curve of our MIA against DP-GPL (Cora, 5 shots). Generally, all curves are
very close to the dash line (random guess), which shows that DP-GPL is effective against MIA.
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Table 11: Performance comparison between our DP-GPL and three baselines on three down-
stream datasets. (GraphMAE, GPPT, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL

Private ε = 0 ε =∞ ε =∞ ε Test Acc

GAT
Cora 39.65 49.99 51.57 0.5979 47.08 ±2.13

CiteSeer 38.50 45.44 46.48 0.6392 43.02 ±0.41

PubMed 30.86 55.48 56.64 0.5325 53.92 ±0.05

GCN
Cora 30.76 54.57 54.85 0.3617 51.61 ±3.98

CiteSeer 31.85 44.12 45.78 0.1175 41.53 ±1.17

PubMed 32.87 59.25 60.57 0.2091 56.35 ±1.64

GT
Cora 35.68 52.63 54.09 0.1988 50.24 ±4.11

CiteSeer 34.67 65.16 65.78 0.2290 63.49 ±5.21

PubMed 22.38 46.41 47.97 0.3221 44.03 ±3.00
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