Bidirectional GPT

Anonymous ACL submission

Abstract

Mainstream Large Language Models (LLMs)
built on the GPT (Generative Pre-trained Trans-
former) architecture can only read and generate
text in a left-to-right direction. This limitation
prevents these models from comprehensively
processing the training data as a whole and
from directly deriving suitable prompts from
given responses. Drawing inspiration from the
global understanding capability of Bi-LSTM,
we introduce Bi-GPT, an enhanced version of
the standard GPT architecture that incorporates
reverse generation capabilities. Instead of alter-
ing the underlying architecture or adding any
extra parameters, Bi-GPT utilizes dual learning
with both forward and backward data streams
to enable bidirectional generation. To reduce
the training cost, we design a two-stage pre-
training strategy that can transform any exist-
ing LLM into the bidirectional version. We
train Bi-GPT with different scales and conduct
a comprehensive set of experiments, includ-
ing conventional forward response generation,
reverse instruction generation, and token classi-
fication tasks, to thoroughly validate its capa-
bilities. The results show that the incorporation
of bidirectional training data improves the for-
ward generation capability (+-8% on 5 datasets)
and overall performance in token classification
tasks. Furthermore, Bi-GPT effectively bridges
the gap between responses and prompts, allow-
ing for the exploration of potential prompt and
meta-prompt generation from a single instance.
In summary, Bi-GPT significantly expands the
application scenarios and capabilities of GPT
without adding any new parameters. '

1 Introduction

Large Language Models (LLMs), particularly those
based on the GPT architecture, have demonstrated
remarkable capabilities in text generation and com-
prehension tasks. These models operate in an au-

'The code, data, and pre-trained model will be publicly
available in the final version.
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Figure 1: Comparison of Bi-GPT and Bi-LSTM. Bi-
GPT adopts bidirectional data pretraining within a single
model, whereas Bi-LSTM trains two separate models
for forward and reverse instances.

toregressive manner, generating text token by token
from left to right. While this approach has proven
effective for many tasks, it inherently limits the
model’s ability to process and understand text in
a holistic manner. This unidirectional processing
restricts the model’s capacity to capture global con-
text. Additionally, it hinders the model’s ability
to effectively utilize the training data. To address
these limitations, several approaches have been pro-
posed. For instance, researchers have explored
techniques for prompt optimization (Wei et al.,
2022; Kojima et al., 2022; Zhang et al., 2022), or
techniques to improve the generation performance
through self-consistency (Wang et al., 2022), self-
reflection (Shinn et al., 2024; Madaan et al., 2024)
and backward reasoning (Weng et al., 2022; Jiang
et al., 2024). These methods aim to guide mod-
els through step-by-step reasoning or to iteratively
refine their prompts and outputs. However, while
these techniques improve performance on specific
tasks, they do not fundamentally alter the unidirec-
tional nature of GPT-based models.

Drawing inspiration from the bidirectional ca-
pabilities of models like Bi-LSTM (Schuster and
Paliwal, 1997; Zhang et al., 2015), which process
data in both forward and backward directions, we
propose Bi-GPT, a GPT architecture incorporat-
ing reverse generation capabilities. As illustrated
in 1, Bi-GPT enables bidirectional generation while



maintaining the same architecture and parameter
count, unlike Bi-LSTM, which necessitates dis-
tinct models for forward and backward inferences.
This is accomplished through a novel dual-learning
approach that leverages both forward and back-
ward data streams. To reduce training costs, we
propose a two-step pretraining strategy, validated
on backbones of varying sizes, which enables the
transformation of any existing unidirectional LLM
into a bidirectional model. Through this combined
framework of reverse pretraining and dual-task fine-
tuning, we aim to endow LLMs with enhanced
forward and backward generation capabilities, re-
sulting in more robust and accurate performance
across diverse tasks. We evaluate Bi-GPT through
a comprehensive set of experiments, including con-
ventional forward response generation, reverse in-
struction generation, and token classification tasks.
Our results demonstrate that incorporating bidi-
rectional training data significantly enhances the
model’s forward generation capability, with an av-
erage improvement of +8% across five datasets.
Meanwhile, Bi-GPT bridges the gap between re-
sponses and prompts, enabling the exploration of
prompt and meta-prompt generation from a single
instance. Finally, Bi-GPT excels in token classifica-
tion tasks, showcasing its ability to capture global
contextual information. Our contributions can be
summarized as follows:

¢ To the best of our knowledge, we are the first
to propose a bidirectional GPT architecture
that enables global memory and bidirectional
generation capabilities without additional pa-
rameters.

* We propose a training strategy that transforms
any existing forward-pretrained LLM into a
bidirectional architecture at minimal cost.

* Bi-GPT largely enhances the forward genera-
tion capabilities, enables automatic prompt op-
timization through backward generation, and
benefits token classification through providing
global token representation.

2 Related Work
2.1 Architectures of LLMs

Early attempts at language modeling and sequence-
to-sequence tasks were dominated by RNN-based
architectures (Hochreiter, 1997; Zaremba, 2014,
Chung et al., 2014). However, their sequential

nature made it difficult to capture long-range de-
pendencies and limited training efficiency. The
transformer architecture (Vaswani, 2017) revolu-
tionized this landscape by replacing recurrence
with multi-head self-attention, allowing parallel
computation over input tokens and more effective
global context modeling. Building on this foun-
dation, BERT (Devlin, 2018) leverages the Trans-
former’s encoder with bidirectional attention, ex-
celling in comprehension-oriented tasks such as
classification and question answering. By contrast,
GPT (Radford et al., 2019; Brown et al., 2020)
adopts the Transformer’s decoder with a unidirec-
tional (left-to-right) attention mechanism, making
it highly effective for generative tasks like text com-
pletion and dialogue.

2.2 Prompt Engineering

Prompt engineering (Liu et al., 2023a) aims to max-
imize the capabilities of LLMs by designing ef-
fective prompts, either as natural language instruc-
tions or learned vector representations. Approaches
range from manual design to automated genera-
tion, including soft prompt learning (Lester et al.,
2021), instruction tuning (Wei et al., 2021; Sanh
et al., 2021), and retrieval-augmented generation
(RAG)(Lewis et al., 2020). In-context learning and
few-shot prompting refine inputs by incorporating
retrieved demonstrations (Rubin et al., 2021; Su
et al., 2022) or reasoning-based exemplars such
as Chain-of-Thought (CoT) prompting (Wei et al.,
2022). Zero-shot CoT removes the need for man-
ual demonstrations by leveraging intrinsic model
reasoning (Kojima et al., 2022), while automatic
CoT generation (Auto-CoT) extends this by clus-
tering diverse examples and generating reasoning
chains (Zhang et al., 2022). More advanced meth-
ods include task decomposition (Zhou et al., 2022),
self-consistency decoding (Wang et al., 2022; Li
et al., 2022), and multi-agent collaboration for
enhanced reasoning (Du et al., 2023; Liu et al.,
2023b). Reinforcement learning refines prompts
based on feedback (Shinn et al., 2024).

2.3 Dual Learning and Reverse Thinking

The core concept of dual learning is to leverage
the primaldual structure inherent to a task, such as
the bidirectional relationship in machine transla-
tion (Sennrich, 2015). This duality acts as a form
of regularization during training, thereby enhanc-
ing performance across both tasks (Chen et al.,
2024). Several works have been proposed to lever-



age backward reasoning to verify the chain-of-
thought during the inference stage (Weng et al.,
2022; Jiang et al., 2024). REVTHINK (Chen et al.,
2024) incorporates backward question generation
and backward reasoning as forms of regularization
to improve reasoning capabilities and maintains the
same test-time efficiency as zero-shot prompting.

3 Method

3.1 Conventional LLM

Large Language Models (LLMs) training generally
consists of two stages: pretraining and fine-tuning.
In the pretraining stage, LLMs are trained on large-
scale textual data to learn general language repre-
sentations. The training data typically consists of
forward text sequences:

.
X = (a2t .. 2. (1)

where i represents a sentence with standard left-
to-right word order, and [V is the total number of
tokens. The model learns to predict the next token
based on the preceding context:

N
p(20, 2t ... ,xN) = Hp(x’]a:o,xl, Cozth).
=0

2

In the fine-tuning stage, standard LLMs are fur-

ther trained on instruction-following data, typi-

cally structured as paired question-to-answer pairs
—

—
Q— A.

3.2 Bidirectional GPT

To enhance bidirectional learning, Bi-GPT intro-
duces additional modifications in both pretraining
and fine-tuning stages. During pretraining, Bi-GPT
incorporates reverse text sequences:

«—

X = ([INV], 2V, 2N 9. (3)

where [INV] is a special token indicating reverse
generation. The model is trained to predict tokens
in both forward and reverse directions, with the
conditional probability formulated as:

N
p(mo,:cl, s xN) = Hp(xi’x“_l? s xNv [INV])
=0
N . .
X Hp(aﬂxo,xl, Cath,
i=0

“4)

Theoretically, this strategy supports full-parameter
pretraining from scratch. However, such pretrain-
ing is computationally expensive and impractical
due to the massive tokens required. To address
this challenge, we propose a two-step pretraining
strategy that first applies reverse pretraining A.2
and then combines both forward and reverse pre-
training to convert a forward-trained LLM into a
bidirectional one. During fine-tuning, Bi-GPT ex-
tends standard instruction-following data by incor-
porating dual learning. In addition to the standard
question-to-answer sequences, Bi-GPT constructs
reversed pairs by swappin% and ilglerting both the

question and the answer A — Q. We prepend
[INV] to the start and append [PROMPT] to the
end of the reversed answer.

3.3 Pretraining Strategy

We compared three potential pretraining strategies
as follows:

* Direct bidirectional pretraining: Start with
bidirectional data using the forward pretrained
model as initialization.

* Transition based on PPL intersection: First
pretrain on reverse sequence data. When the
perplexities (PPLs) of the forward and reverse
sequences intersect, switch to bidirectional
pretraining.

* Transition based on reverse PPL convergence:
First pretrain on reverse sequence data until
the reverse PPL converges. Then transition to
bidirectional pretraining.

As illustrated in Fig. 2, it is evident that all three
approaches can quickly restore the PPL for for-
ward data to a lower level, after which the PPLs
for both forward and reverse data steadily decrease
and eventually converge. Based on a comparison
of the final PPL values after convergence, the av-
erage PPL for the first scheme is 14.943, for the
second scheme is 15.118, and for the third scheme
is 14.073. The scheme with the lowest average PPL
was selected as the optimal training strategy. This
strategy involves first pre-training with reverse data
until its PPL converges, followed by full-parameter
pre-training with bidirectional data.

3.4 Application

Bi-GPT supports multiple applications, including
forward response generation, prompt generation
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Figure 2: Perplexity of forward and reverse text during three pretraining strategies. (i)—(iii) present PPL during
bidirectional pretraining from different starting points: (i) from the beginning, (ii) from the PPL intersection of
forward and reverse text, and (iii) after reverse text PPL converges.

from a single instance, meta prompt generation,
and token classification.

Forward Generation In the standard forward
generation task, Bi-GPT generates responses given
a normal forward question input, similar to conven-
tional language models.

One-Instance Prompt Generation Additionally,
Bi-GPT enables prompt generation from one in-
stance by producing reverse prompts from reversed
input text, as described in Eq. 5.

— . —
[INV], A, [PROMPT] 2%,

(&)
This capability allows for the automatic exploration
of effective prompts based on a single instance.

Meta Prompt Generation Furthermore, Bi-GPT
can generate meta-prompts by combining reverse
answers and reverse questions as follows:

— — p:
[INV], A, [PROMPT], Q 2-%L,

«
Meta  (6)
Token Classification For token classification
tasks, such as Named Entity Recognition (NER),
Bi-GPT leverages its global bidirectional represen-
tation to enhance prediction performance. Given
a sequence of tokens of length NV, predictions are
made by combining logits from both forward and

reverse directions as follows:

Logits; = Bi-GPT(2?, ..., 2%)+

Bi-GPT([INV],z, ..., z%) @
where Bi-GPT incorporates a linear layer score to
map the hidden size dimension to the number of cat-
egories in NER classification tasks. By integrating
forward and reverse logits, Bi-GPT significantly
improves token-level prediction accuracy.

4 Experiment

4.1 Experimental Setup

In this study, we utilized LLaMA-3 (Dubey et al.,
2024) as the foundational model and explored
LLMs with varying parameter scales, specifically
from 1B to 8B parameters. During the pre-training
phase, we employed 32 Huawei Ascend 910A
32GB NPUs for full-parameter training of the
LLMs. In the fine-tuning stage, we utilized 4
Nvidia RTX 3090 24GB GPUs to perform LoRA
fine-tuning on the pre-trained LLM.

4.2 Dataset

Our pretraining dataset consists of 9 million sam-
ples from Common Crawl, a publicly available
web archive covering diverse sources like news,
blogs, and academic pages. We evaluate the
forward generation ability on five tasks, includ-
ing the commonsense reasoning dataset ARC-
challenge (Clark et al., 2018), the math rea-
soning dataset MATH (Hendrycks et al., 2021),
GSMS8K (Cobbe et al., 2021), the tabular data rea-
soning dataset TabMWP (Lu et al., 2022), and
the natural language inference dataset ANLI (Nie
et al., 2019). To assess prompt optimization capa-
bility of Bi-GPT, we conducted experiments on the
instruction-following dataset Alpaca-GPT4 (Peng
et al., 2023). This dataset was chosen to eval-
uate the model’s generation performance rather
than accuracy-focused benchmarks mentioned
above. For token classification tasks, we con-
ducted experiments on two benchmark datasets:
CoNLL2003 (Sang and De Meulder, 2003) and
CoNLL++ (Wang et al., 2019). Additionally, sam-
ples for prompt generation tasks were randomly
selected from the aforementioned datasets.



Model Size | Method ARC MATH GSM8K TabMWP ANLI Avg.
Llama3 3435 1722 22.97 75.72 48.25 33.77
B Llama3 w/ dual learning 36.37 17.24 23.43 80.97 48.67 4134
Bi-GPT w/o dual learning  34.73  17.22 23.05 74.66 48.75  39.68
Bi-GPT 36.52 17.35 24.41 83.58 48.92 42.16
Llama3 7491  21.75 5443 93.62 58.83  60.71
3B Llama3 w/ dual learning 75.01 2231 61.03 94.21 61.25 62.76
Bi-GPT w/o dual learning ~ 75.09  26.09 58.91 93.47 60.58 62.83
Bi-GPT 75.09  26.25 61.41 95.68 62.00 64.09

Table 1: Forward reasonrng performance on five held-in datasets. Llama3 served as the baseline model, trained

solely on Q — A datasets, Llama3 w/ dual learning was augmented with A — Q training pairs. Bi-GPT w/o

dual learning refers to the Bi-GPT model that excluded A — Q training data. Llama3 employs single-direction
fine-tuning, while Bi-GPT can benefit from additional dual learning.

Inference Mode | Model ROUGE-1 ROUGE-2 ROUGE-l BLEU Score
- - Llama3 w/ dual learning 0.403 0.208 0.317 0.148
Q— Bi-GPT 0.401 0.211 0.314 0.152

— — —

A — Q — A’ | Llama3 w/ dual learning 0.392 0.202 0.306 0.144

P “— —

A—Q — A Bi-GPT 0.413 0.227 0.328 0.168

Table 2: Evaluation metrics between the generated answer A’ and the ground truth answer A. Superscript <
indicates reversed text, while — indicates forward text. The first two rows present results tested on the original
question Q from the test set, while the last two rows was tested on the model-generated question Q’.

4.3 Affections on Forward Generation

We trained Bi-GPT on datasets from five different
domains and conducted forward generation experi-
ments, where the questions in the original dataset
were used as prompts. From the results presented
in Table 1, it is evident that the incorporation of
bidirectional training improves forward generation
performance across most of the datasets for both 1B
and 8B model scales. Specifically, models trained
with dual learning achieve higher average scores
than the standard models. The improvement is
more pronounced in complex tasks such as GSM8K
and TabMWP, suggesting that dual learning is par-
ticularly beneficial for complex tasks.

4.4 One-Instance Prompt Optimization

To evaluate Bi-GPT’s capability in reverse genera-
tion, we conduct experiments assessing its ability
to generate questions from given answers and re-
construct the original responses. This validates the
model’s reversibility and highlights its effective-
ness in single-instance prompt generation. Addi-
tionally, we explore its potential to generate higher-
level instructions from a single instance. The
following subsections detail our evaluation of re-
versibility and meta-prompt generation.

4.4.1 Validation of Reversibility

In order to validate the reversibility of Bi-GPT, we
conducted experiments to evaluate its performance
in reverse inference and subsequent forward gener-
ation. This capability is crucial for demonstrating
the model’s bidirectional understanding and its po-
tential for prompt optimization in scenarios where
the original input may be suboptimal or unavailable.
As shown in Table 2, Llama3 w/ dual learning is
an extension of the baseline LLlama3 model, incor-
porating a dual learning mejhaniim that utilizes

both answer-question pairs Q — A and question-
— —

answer pairs A — Q for training. During the
testing phase, we first allowed Bi-GPT to infer the
<

reverse question Q' from the reverse answer as de-
scribed in Eq. 5, then generate the forward answer
based on the flipped forward question and compute
the correlation metrics with the ground truth an-
swer. While the Llama3 with dual learning model

N
directly infers the forward question Q' from the
forward ground truth answer and further generates
the forward answer based on it, then calculates the
correlation metrics as aforementioned.

Compared to Llama3 with dual learning, the
questions generated by Bi-GPT are even more
likely to yield answers closer to the ground truth



Benchmark \ Model Size  Method  Accuracy Precision Recall F1 Score
IB Llama3 0.951 0.659 0.711 0.684
CoNILI2003 Bi-GPT 0.973 0.823 0.855 0.839
B Llama3 0.958 0.701 0.755 0.727
Bi-GPT 0.976 0.848 0.882 0.864
B Llama3 0.957 0.695 0.742 0.718
CONLLA++ Bi-GPT 0.974 0.837 0.860 0.849
B Llama3 0.958 0.701 0.750 0.725
Bi-GPT 0.979 0.865 0.890 0.878

Table 3: Token classification results of unidirectional and bidirectional LLMs on CoNLL2003 and CoNLL++

benchmarks.

answers than the original test set questions ac-
cording to Table 2. This indicates that Bi-GPT
can be utilized to generate prompts that are more
likely to elicit specific content for unknown in-
puts. The comparative results highlight the strong
reversibility property of Bi-GPT. Specifically, Bi-
GPT demonstrates the ability to effectively infer
corresponding questions from given answers. We
present some examples of prompts generated by
Bi-GPT and the corresponding responses produced
using these prompts, alongside the responses gen-
erated using the original test set prompts, as shown
in Table 4.

4.4.2 Meta Prompt Generation

Bi-GPT is capable of generating meta prompt from
a single instance, leveraging its bidirectional capa-
bility to establish a stronger connection between
responses and prompts. As formulated in Eq. 6,
the model takes a reversed answer and its corre-
sponding reversed question as input, producing a
meta prompt that encapsulates key contextual in-
formation. This capability enables Bi-GPT to dy-
namically construct meta prompts that refine or
guide subsequent text generation, making it par-
ticularly useful for exploring prompt generation
with one single instance. Meta-prompt genera-
tion examples are presented in Table 5. The left
column categorizes the meta prompts generated
by Bi-GPT, while the right column provides cor-
responding meta-question-answer examples. To
clearly illustrate the components, different sections
are highlighted using three distinct colors: the cyan
section represents the original prompt, the blue sec-
tion denotes the original answer, and the red section
highlights the meta-prompt generated by Bi-GPT
based on the answer-prompt pair.

4.5 Bi-GPT for Token Classification

To evaluate Bi-GPT’s ability to capture contextual
information, we conduct token classification exper-
iments on the CoNLL2003 and CoNLL++ bench-
marks. Compared to the unidirectional Llama3,
Bi-GPT achieves significant improvements across
all metrics. For instance, on CoNLL2003, Bi-
GPT (1B) attains an F1 score of 0.839, surpassing
Llama3’s 0.684. Similar gains are observed for the
8B model, with Bi-GPT achieving an F1 score of
0.864 compared to Llama3’s 0.727. These results
demonstrate that Bi-GPT’s bidirectional training
enhances its ability to understand token-level con-
text, making it more effective for tasks requiring
fine-grained semantic understanding.

5 Conclusion

In this work, we propose Bi-GPT, an innovative
bidirectional enhancement of the conventional GPT
architecture that does not require additional param-
eters. By leveraging dual learning with both for-
ward and backward data streams, Bi-GPT achieves
bidirectional generation capabilities, providing a
significant improvement in the processing of train-
ing data as a whole. Our approach not only en-
hances the model’s forward generation capabilities,
with an +8% improvement across five datasets,
but also enables the exploration of prompt genera-
tion from a single instance. Furthermore, Bi-GPT
demonstrates significant benefits for token classi-
fication tasks by providing a richer global token
representation. Overall, our results showcase that
Bi-GPT expands the range of possible applications
for GPT-based models while maintaining a low
computational cost, making it an attractive option
for future developments in the field of large lan-
guage models.



Original Prompt

Corresponding Answer

Prompt By Bi-GPT

Corresponding Answer

Ground Truth

Provide two valid
solutions to  the
given mathematical
equation. 2x + 3 =
5\n

Two valid solutions to the
given mathematical equa-
tionare x = 1 and x = -2.

Provide two valid so-
lutions to the follow-
ing equation: 2x + 3
=5\n

Solution 1: \nSubtracting 3
from both sides of the equation,
we get:\n2x + 3 -3 =5 - 3\n2x
=2\nx = I\n\nSolution 2: \nDi-
viding both sides of the equa-
tion by 2, we get:\n(2x +3) /2
=5/2\n2x/2+3/2=5/2\nx
=1

Sure. Here are two valid solutions to the
given equation:\n\nSolution 1:\n2x + 3 =
S\nSubtract 3 from both sides of the equa-
tion: \n2x + 3 - 3 =5 - 3\nSimplifying,
we have:\n2x = 2\nDivide both sides by 2:
\n(2x)/2 = 2/2\nSimplifying, we have:\nx
= 1\nSo one solution to the equation is x
= l.\n\nSolution 2:\nAnother way to solve
the equation is to move all terms to one
side of the equation: \n2x + 3 - 5 = O\nSim-
plifying, we have:\n2x - 2 = O\nDividing
both sides by 2: \n2x/2 - 2/2 = 0\nSimplify-
ing, we have:\nx - 1 = O\nAdding 1 to both
sides:\nx - 1 + 1 =0 + 1\nSimplifying, we
have:\nx = 1\nSo the other solution to the
equation is also x = 1.

Edit the content and
make sure the reader
understands what the
writer is trying to ex-
plain. People who
take part in sustain-
ablity put effort into
their lifestyle to make
a positive contribu-
tion to society.\n

Individuals who partici-
pate in sustainability strive
to incorporate eco-friendly
practices into their daily
routines, with the goal of
making a positive impact
on the environment and so-
ciety as a whole.

Generate a sentence
about  individuals
who engage in sus-
tainable practices.

Individuals who engage in sus-
tainable practices are making
a positive impact on the envi-
ronment and helping to create
a better future for themselves
and future generations.

Individuals who engage in sustainable prac-
tices make a conscious effort to adopt a
lifestyle that positively contributes to soci-
ety and helps preserve the environment for
future generations.

Write a CSS code
to apply a few style
rules on a webpage.
Heading  font-size:
18px\nBackground
Colour: #{7f :\n

Here is a CSS code
that applies the
style rules you men-
tioned:\n\n" " “css\nhl \n
font-size: 18px;\n\nbody
\n background-color:
#f7f;\n\n" "

Write a CSS code
to apply the specified
style rules. We want
the body of the page
and all heading el-
ements on the page
to have a background
color of #7f7f7 and a
font size of 18px.\n

Here is the CSS code to
apply the specified style
rules:\n\n" * “css\nbody, h1, h2,
h3, h4, h5, h6 \n background-
color:  #f7f7f7;\n font-size:
18px;\n\n " **

Here is a sample CSS code that you can
use to apply the specified style rules on a
webpage:\n\n" " " css\nbody \n background-
color: #f7f7f7;\n\n\nh1, h2, h3, h4, h5,
h6 \n font-size: 18px:\n\n"""\n\nln this
code, the “body" selector targets the en-
tire webpage, and the *background-color”
property sets the background color of the
page to the specified hexadecimal value
“#f7f7f7" \n\nThe "h1°, "h2", "h3", "h4",
*h5", and "h6" selectors target all heading
elements on the page, and the font-size"
property sets their font size to " 18px .

Identify the relation-
ship between \"cat\"
and \"yarn\". \n

\"Cat\" and \"yarn\" are
two words that are not di-
rectly related to each other.
\"Cat\" refers to a small,
carnivorous mammal with
soft fur and a short, ta-
pered tail, while \"yarn\"
refers to a long, thin strand
of fibers twisted together,
often used for knitting or
weaving. The only con-
nection between the two
words is that they are both
commonly used in the con-
text of crafts and hobbies,
where cats are often de-
picted as participants or
yarn is used as a material.

Describe the relation-
ship between \"cat\"
and \"yarn\".\n

\"Cat\" and \"yarn\" are two
words that are not directly re-
lated to each other. \"Cat\" is
a noun that refers to a small,
carnivorous mammal with soft
fur and a short, tapered tail.
\"Yarn\" is a noun that refers to
a continuous strand of twisted
fibers, often used for knitting
or weaving. The only connec-
tion between the two words is
that cats are known to play with
yarn, using it as a toy or creat-
ing a ball of yarn.

The relationship between \"cat\" and
\"yarn\" is often one of play. Many cats
find yarn balls interesting and entertaining
to play with, as they can chase, paw, and
roll it around with their paws. This interac-
tion can provide a form of physical exercise
and mental stimulation for the cat. How-
ever, it should be noted that playing with
yarn can be dangerous for cats, as there is a
risk of ingesting the yarn, which can cause
serious health issues.

Write a few sentences
to describe a scene.
Night, empty street.\n

The night is dark and
quiet as the empty street
stretches out before me.
The only sound is the dis-
tant hum of traffic in the
distance. The streetlights
cast a warm glow on the de-
serted sidewalks, illuminat-
ing the occasional stray cat
or discarded piece of trash.
The air is cool and still, and
the only movement is the
gentle sway of the street-
lights as they dance in the
breeze.

Imagine you are
writing a  script
for a movie. The

scene focuses on an
empty street. Write
a description of the
scene.\n

The camera pans down a long,
empty street. The asphalt is
smooth and black, with a faint
sheen from the morning dew.
The streetlights cast a warm,
yellow glow, illuminating the
scene. There is not a single
car or person in sight. The
only sound is the distant hum
of traffic from the nearby high-
way. The camera slowly pans
up, revealing a tall, abandoned
building in the distance. The
building is dilapidated, with
peeling paint and broken win-
dows. The camera then pans
back down, revealing the en-
tire street, which is completely
empty. The scene is somber
and eerie, with a sense of lone-
liness and abandonment.

It is night, and the street is eerily empty.
The streetlights cast a soft, yellow glow on
the pavement, but there are no cars or peo-
ple in sight. The silence is broken only
by the distant hum of the city and the occa-
sional rustling of leaves in the gentle breeze.
It’s as if the world is holding its breath, wait-
ing for something to happen.

Table 4: Case study on responses to the original prompts and Bi-GPT-generated prompts. The red highlights
represent the similar parts between the ground truth answer and the answer generated by Bi-GPT using the self-

produced prompt.



Meta Category

Examples

Background supplementary | Background: The frequency of sound waves is measured in hertz (Hz), or the number of
waves that pass a fixed point in a second. Human beings can normally hear sounds with a
frequency between about 20 Hz and 20,000 Hz. Sounds with frequencies below 20 hertz
are called infrasound Sounds. with frequencies above 20,000 hertz are called ultrasound
Some. other animals can hear sounds in the ultrasound range. For example, dogs can hear
sounds with frequencies as high as 50,000 Hz. You may have seen special whistles that
dogs but not people can hear. The whistles produce a sound with a frequency too high for
the human ear to detect. Other animals can hear even higher-frequency sounds. Bats, for
example, can hear sounds with frequencies higher than 100,000 Hz. Paragraph: David wants
to categorize animals according to the sound waves they can hear. Eventually, he was able
to categorize them in three different groups, group A, group B, and group C. He placed
the animals that can only hear ifrasound in group A. Then he placed the animals that are
only able to hear the same frequency of sound waves as humans do in group B. The last
group of animals were able to hear only ultrasound. He placed them in group C. Given the
paragraph above, please answer correctly the following question: Which group would be
able to hear the highest frequency, group A, group B, or group C? The paragraph describes
three groups of animals group A, B, and C. Group A cannot hear infrasound; meanwhile
the other two groups can detect this frequency range. However, only group C can detect
ultrasound because humans are unable to do so. Therefore, we conclude that among all three
groups of animals mentioned in the paragraph above, it is group C who can perceive sound
waves with higher frequencies than the others (ultrasound). In conclusion: Group C is able
to hear sounds that have a high frequency compared to those heard by Groups A and B.

Methodological guidance Calculate the number of thorns in a bush of roses by multiplying the number of roses by the
number of thorns per rose. Dan plants 3 rose bushes. Each rose bush has 25 roses. Each rose
has 8 thorns. How many thorns are there total? First find the total number of roses: 3 bushes
* 25 roses/bush = «3#25=75»75 roses Then multiply the number of roses by the number of
thorns per rose: 75 roses * 8 thorns/rose = «75*8=600»600 thorns #### 600

Story tell Given a story, solve a math problem. The story is about a young man named Josh who
has a dream of becoming rich. He has invested a lot of money in stocks, but Josh wants
to do something other than investing in the stock market. Josh decides to try flipping a
house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased
the value of the house by 150%. How much profit did he make? The cost of the house
and repairs came out to 80,000+50,000=$«80000+50000=130000» 130,000 He increased
the value of the house by 80,000%1.5=«80000%1.5=120000»120,000 So the new value of
the house is 120,000+80,000=$«120000+80000=200000»200,000 So he made a profit of
200,000-130,000=$«200000-130000=70000»70,000 ##HH# 70000

Zero-shot CoT Provide a step-by-step solution to the following question. Shannon loves her homemade
madeleine cookies. Her recipe makes 12 cookies. Shannon makes her own madeleine
cookies and eats 2 a night as a treat. She wants to make enough cookies to last her for 30
days by storing them in the freezer. Her recipe makes 1 dozen madeleine cookies. How
many dozens of cookies will she need to make so she has enough for 30 days? She eats 2
cookies a night so for 30 nights she needs 2*30 = «2*30=60»60 cookies Her recipe makes
12 cookies and she needs to make 60 cookies so that’s 60/12 = «60/12=5»5 dozen #### 5

Roly play Imagine you are Sherlock Holmes, and I've just arrived at the house of a woman named Lori,
who is trying to figure out the number of eggs she needs to prepare for her party. Lori gave
me the key to her kitchen and a carton of 2 dozen eggs. I stood next to her while she was
preparing for the party and discovered that Lori needed 1 whole egg to make 2 deviled egg
halves. She anticipates that each of her guests will eat 3 deviled egg halves. If she is inviting
16 guests to her party, how many dozens of eggs will she need? She is inviting 16 guests that
will eat 3 deviled egg halves each so she needs 16*3 =«16*3=48»48 halves 1 whole egg is
needed to make 2 halves so 48 halves is 48/2 = «48/2=24»24 whole eggs 1 dozen is equal to
12 and she needs 24 eggs so she needs 24/12 = «24/12=2»2 dozen eggs #### 2

Task description Make a deduction from the information in the scenario, given the following information
about the situation. Can you find out how much was withheld from her wage? Sally has
realized she did not receive a full wage this week. Her bank account, which held $200 at the
start of the week, now holds $420. She has received no other money into her bank account
this week. If her weekly wage should be $300, how many dollars were withheld from Sally’s
wage? The wage she received was $420 - $200 = $«420-200=220»220 This means her wage
was $300 - $220 = $«300-220=80»80 short #### 80

Table 5: Meta prompt generation from one single instance case study. The cyan section represents the original
prompt, the blue section denotes the original answer, and the red section shows the meta-prompt generated by
Bi-GPT based on the original prompt and answer.



6 Limitations

While the proposed strategy allows for full-
parameter pretraining from scratch, it is compu-
tationally expensive and impractical due to the vast
number of tokens required. Additionally, our ex-
periments focused on large language models rang-
ing from 1B to 8B parameters, limiting the ability
to evaluate scaling performance for larger models.
Further research is needed to explore the effec-
tiveness and feasibility of scaling this approach to
models with more parameters, which may present
additional challenges in terms of computational
resources and training time.
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A Implementary Details

A.1 Dataset Statistics

Dataset ‘ Domain License Train Validation ~ Train} Validationt Test
ARC(Challenge)(Clark et al., 2018) Commonsense CCBY-SA 4.0 1119 299 - - 1172
MATH(Hendrycks et al., 2021) Math MIT 7500 - 7300 200 5000
GSMB8K(Cobbe et al., 2021) Math MIT 7473 - 7273 200 1339
TabMWP(Lu et al., 2022) Tabular CCBY-SA 4.0 23,059 7686 - - 7686
ANLI(r3)(Nie et al., 2019) NLI CC BY-NC 4.0 100,459 1200 - - 1200
Alpaca-GPT4(Peng et al., 2023) QA CCBY-NC 4.0 52,002 - 50,002 1000 1000
CoNLL2003(Sang and De Meulder, 2003) NER - 14987 3466 - - 3684
CoNLL++(Wang et al., 2019) NER Apache 2.0 14987 3466 - - 3684

Table 6: The finetuning datasets used in this work, including the forward generation task, the prompt optimization
task and the token classification task. For datasets without a validation set, we manually split the training set to form
the column Traint and column Validationt.

A.2 Pretraining Details

As illustrated in Fig. 3, the upper panel presents the perplexity (PPL) curves for forward and reverse text
during full-parameter pre-training using only reverse data. It is observed that as training progresses, the
PPL for forward text increases, while the PPL for reverse text decreases rapidly. After the two curves
intersect, they gradually tend to converge.
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Figure 3: Perplexity of forward and reverse text during two-step pretraining. (i) shows the PPL on forward and
reverse text for the Llama3 model (1B and 8B) during reverse-only pretraining. (ii)—(iv) present PPL during
bidirectional pretraining from different starting points.
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