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Abstract

Large language models (LLMs) develop the in-001
context learning capability through pretraining002
and instruction tuning, enabling task adaptation003
without parameter updates. Self-refinement is004
a manifestation of this capability, which allows005
LLMs to iteratively refine the output using self-006
generated feedback. However, empirical obser-007
vations reveal Inference-Free Self-Refinement008
(IFSR) in preference alignment: LLMs gener-009
ate preference-improved output via fixed in-010
structions, requiring no specific feedback, even011
no initial responses. There are two key com-012
ponents of the IFSR in preference alignment.013
The refining instruction is a fixed instruction014
that constrains the output distribution from a015
preference-semantic perspective. During train-016
ing, it facilitates joint learning of preference-017
related semantic representations and data dis-018
tribution alignment. The pseudo reference re-019
sponse is constructed from paired preference020
data and serves as a demonstration to guide021
the output distribution. It mitigates off-policy022
distributional bias while enhancing token-level023
preference learning in training. Experiments024
across multiple datasets demonstrate that incor-025
porating IFSR into preference alignment yields026
performance improvement over 10%. Further027
ablation studies reveal additional characteris-028
tics and potential principles of IFSR.029

1 Introduction030

Recent advancements in large language models031

(LLMs), trained on billions of tokens via unsuper-032

vised learning, demonstrate emergent capabilities033

including in-context learning, instruction following,034

and logical reasoning, and achieve impressive per-035

formance across tasks ranging from machine trans-036

lation (Hendy et al., 2023) to code generation (Ni037

et al., 2023). Building on this, instruction tuning038

and preference alignment (Zhao et al., 2023) further039

refine these capabilities by enhancing their ability040

to interpret human intent and generate outputs that041

What runs around the whole yard without moving?

Please generate a better response.

The answer to this riddle is a fence! A fence runs 
around the whole yard, enclosing it and providing a 
boundary. A fence is considered to be a continuous 
structure, so it can be thought of as something that 
"runs around" the yard without actually moving.

A fence.

Figure 1: LLM augments simple initial response with
detailed explanations after receiving the refining instruc-
tion. The abstract preference descriptions and concrete
textual expressions are marked in red and blue.

are accurate, contextually coherent, and aligned 042

with ethical constraints (Wang et al., 2023). Early 043

alignment approaches like Reinforcement Learn- 044

ing from Human Feedback (RLHF) (Ouyang et al., 045

2022) relied on reward modeling and reinforcement 046

learning, while subsequent methods such as Direct 047

Preference Optimization (DPO) (Rafailov et al., 048

2024) eliminated the need for explicit reward mod- 049

els through supervised optimization. This evolu- 050

tion has spurred numerous refined techniques (Azar 051

et al., 2024; Xu et al., 2024a; Ethayarajh et al., 052

2024) addressing diverse alignment challenges. 053

The emergent in-context learning capabilities of 054

LLMs enable self-refinement, whereby models iter- 055

atively generate feedback on initial responses and 056

produce refined outputs. This mechanism has been 057

widely adopted for tasks such as data augmenta- 058

tion (Madaan et al., 2023; Liu et al., 2024) and code 059

optimization (Woolf, 2025). In preference align- 060

ment scenarios, we observe a related yet distinct 061

phenomenon. As illustrated in Figure 1, appending 062

a simple fixed instruction (e.g., “Please generate 063

a better response”) prompts the model to au- 064

tomatically enrich minimal initial responses with 065

detailed explanations. Further experiments (Ta- 066
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Model
x → y x, i↑ → y x, ŷ, i↑ → y

Score Win% Score Win% Score Win%

Llama3-8B-Inst 3.71 50.0 3.76 66.7 3.83 77.1
Qwen2-7B-Inst 3.66 50.0 3.74 70.6 3.85 87.0
GPT-4o-mini 3.78 50.0 3.87 73.2 3.99 95.2

Table 1: Appending the refining instruction to the orig-
inal question as a suffix result in responses better than
initial responses, but inferior to second responses.

ble 1) demonstrate that such a fixed refining in-067

struction improves preference alignment without068

requiring the specific feedback derived from infer-069

ence. Notably, weaker improvements even persist070

when applying these instructions without initial071

reference responses. We term this unexpected ca-072

pability Inference-Free Self-Refinement (IFSR).073

Current studies have not yet systematically in-074

vestigated IFSR. To address this gap, we conduct075

extensive experiments and analyzes (§2). Our find-076

ings reveal that IFSR, akin to in-context learning077

capabilities, inherently exists in pretrained base078

models. Through systematic analysis in prefer-079

ence alignment scenarios, we identify that IFSR080

primarily operates through two contextual compo-081

nents that constrain the model’s subsequent gen-082

eration distribution: the refining instruction and083

the pseudo reference response. The former is a084

simple fixed instruction, while the latter can be085

readily constructed from paired preference data.086

The refining instruction constrains the generation087

distribution through preference-semantic relevance,088

whereas the pseudo reference response serves as089

an exemplar demonstration. Their synergistic inter-090

action reshapes the model generation distribution,091

leading to preference-improved outputs.092

Based on these findings, we propose a preference093

alignment enhancement method for LLMs using094

IFSR. This approach relies on the consistent con-095

textual influence on generation distributions across096

both fine-tuning and inference stages, as they share097

identical forward propagation mechanisms. The098

model produces identical probability distributions099

for given contexts across stages, though their uti-100

lization differs: during fine-tuning, these distribu-101

tions compute loss against labels, while during in-102

ference, they guide output sampling.103

By strategically applying IFSR components to104

reshape initial generation distributions during train-105

ing, we effectively improve preference alignment.106

The two components collaboratively optimize pref-107

erence learning through distinct distribution con-108

Metric x x, i↑ x, ỹ, i↑ x, i0 x, i↓

Loss 2.283 2.262 2.171 2.275 2.284
Prob Var ×10−6 3.690 3.725 3.746 3.722 3.720

Table 2: The refining instruction and pseudo reference
reduce the model loss and concentrate probability.

straints: 1) The refining instruction establishes se- 109

mantic relevance constraints through preference- 110

aware guidance, effectively pruning the learning 111

space by associating textual semantics with pre- 112

ferred data distributions. 2) The pseudo refer- 113

ence response serves as demonstration-based reg- 114

ularization, simultaneously enhancing focus on 115

preference-sensitive token-level patterns and miti- 116

gating distribution shift caused by offline policy. 117

The training dynamics further amplify these ef- 118

fects through gradient-based updates. The instruc- 119

tion component facilitates semantic consistency 120

across samples by establishing preference-semantic 121

associations through instruction bridging. Mean- 122

while, the reference response strengthens token- 123

level preference learning while directing model 124

updates toward genuine preference patterns rather 125

than distributional artifacts. Notably, this approach 126

is architecture-agnostic and algorithm-independent, 127

enabling orthogonal integration with existing pref- 128

erence optimization methods. 129

Our contributions can be summarized as follows: 130

• First study to identify, investigate, and lever- 131

age Inference-Free Self-Refinement in prefer- 132

ence alignment scenarios to our knowledge; 133

• Developing a method using IFSR to improve 134

preference alignment of LLMs, remaining or- 135

thogonally compatible with existing methods; 136

• Comprehensive empirical validation across 137

multiple datasets and baselines and further 138

analysis elucidating underlying mechanisms. 139

2 Analysis of IFSR 140

To advance our investigation of inference-free self- 141

refinement (IFSR) in the preference alignment sce- 142

nario, we conducted some experiments leveraging 143

the Llama3-8B-Base (AI@Meta, 2024) model and 144

paired preference data from the OpenAssistant Con- 145

versations Dataset (OASST) (Köpf et al., 2024). 146

The experimental design focus on quantifying the 147

impact of the refining instruction i↑ and the pseudo 148

reference response ỹ on the model loss and gener- 149

ation probability distributions. Specifically, i↑ is 150

“please generate a better response”, while 151
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Figure 2: IFSR extends the alignment pipelines by three procedures: (I) After standard instruction fine-tuning phase,
LLM is additionally fine-tuned by enhanced data with the refining instruction and pseudo response in context.
(II) After standard preference optimization phase, LLM is further optimized by paired data where two responses
combined by the refining instruction. (III) During inference phase, the refining instruction is appended to the initial
response. These three procedures can be used individually or in combination.

ỹ is derived from paired responses in the dataset.152

Our analysis reveals three critical insights. First,153

the inclusion of i↑ and ỹ in the context reduces loss154

values, as shown in Table 2. This loss reduction155

confirms the intrinsic presence of IFSR capabilities156

in the base model. Notably, the pseudo reference157

response ỹ contributes more to loss minimization,158

suggesting its significant effect on mitigating off-159

policy distribution shifts. Furthermore, the variance160

of generation probability distributions increases161

when both components are incorporated, indicating162

a concentration of probability, which is a direct163

manifestation of distribution-constraining effects.164

The semantic relevance of the refining instruction165

is demonstrated through ablation studies where i↑166

is replaced with the neutral variant (i0: “another”)167

and the counterfactual variant (i↓: “worse”). These168

substitutions diminish or nullify the observed loss169

reduction, underscoring the necessity of explicit170

preference semantics in the instruction.171

Collectively, IFSR operates through dual mecha-172

nisms. The refining instruction establishes seman-173

tic relevance constraints that prune the learning174

space, while the pseudo reference response acts as175

an exemplar-driven regularizer to reduce the gap176

between the original and target distributions.177

3 Proposed Method178

In this section, we elaborate on the implementation179

of preference alignment with IFSR, which extends180

standard alignment pipelines as shown in Figure 2.181

The conventional alignment workflow first fine-182

tunes a pretrained base model π0 by supervised fine-183

tuning (SFT) to obtain πsft, then optimizes it with 184

a paired preference dataset D = {(xi, y+i , y
−
i )}Ni=1 185

to produce the final aligned model πpre, where x 186

denotes inputs, y+ and y− represent chosen and 187

rejected responses. IFSR extends this workflow by 188

integrating the refining instruction i↑ and the refer- 189

ence response across stages. With IFSR-augmented 190

data, πsft undergoes additional fine-tuning (§3.1) 191

and πpre is further refined (§3.2), while the infer- 192

ence context also includes the instruction and the 193

reference (§3.3). These procedures reduce distri- 194

bution mismatches between model generations and 195

target responses while strengthening the semantic 196

connection between preference descriptions and 197

their textual expressions. 198

3.1 Instruction Fine-tuning 199

Instruction fine-tuning serves as the foundational 200

step for the preference alignment of LLM. Start- 201

ing from a pretrained base model π0, this pro- 202

cess utilizes a subset of paired preference data 203

Dsft = {(xi, y+i )}Ni=1, where inputs xi are paired 204

with chosen responses y+ for the next-token pre- 205

diction training by cross-entropy loss, yielding the 206

initial aligned model πsft as follows: 207

LSFT = −E(x,y+)∼Dsft

[
log πθ

(
y+ | x

)]
. (1) 208

While this stage partially aligns the model genera- 209

tion distribution with target responses, it inherently 210

neglects rejected responses y−, as these outputs are 211

what the model should avoid. 212

To address this limitation, the IFSR-enhanced 213

SFT creatively incorporates y− by a structured 214
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two-turn dialogue format: each sample is reformu-215

lated as (⟨x, y−, i↑⟩, y+), where ⟨x, y−, i↑⟩ forms216

a new prompt, and y+ serves as the training tar-217

get. To avoid overfitting to the fixed structure of i↑,218

these augmented samples are mixed with original219

SFT data, forming a twice large composite dataset220

Dirft = {(xi, y+i ), (⟨x, y−, i↑⟩, y+)}Ni=1. This hy-221

brid dataset fine-tunes πsft into πirft, enabling the222

model to directly learn the distributional shift from223

rejected y− to chosen y+ responses.224

LIRFT =− E(x′,y+)∼Dirft

[
log πθ

(
y+ | x′

)]
,225

x′ ∈{x} ∪ {⟨x, y−, i↑⟩}. (2)226

By explicitly contrasting y− and y+ within227

instruction-guided dialogues, this step not only228

leverages previously discarded negative responses,229

but also establishes an explicit association between230

preference data and the refining instruction. This231

dual mechanism prepares the model for subsequent232

preference optimization by simultaneously narrow-233

ing the distribution gap and grounding alignment234

objectives in concrete textual patterns.235

3.2 Preference Optimization236

Preference optimization constitutes the second criti-237

cal phase in standard LLM alignment. Based on the238

SFT-tuned model πsft, this stage uses paired prefer-239

ence data D = {(xi, y+i , y
−
i )}Ni=1 with specialized240

loss functions and produces πpre. For example,241

the widely used DPO loss amplifies the probabil-242

ity gap between generating preferred responses y+243

and rejected responses y− for each prompt x, thus244

steering the model’s generation preferences.245

LDPO = −E(x,y+,y−)∼D
[
log σ246 (

β log
πθ (y

+ | x)
πsft (y+ | x)

− β log
πθ (y

− | x)
πsft (y− | x)

)]
.

(3)

247

However, DPO and similar methods face a per-248

sistent challenge: the distributional gap between249

model generations and target preferences can im-250

pede effective alignment. It is possible that the251

model outputs marginally favor y+ over y− but are252

far from the targets, which undermines preference253

learning. Although SFT phase partially mitigates254

this issue, residual discrepancies remain.255

IFSR addresses this limitation by extending the256

refining instruction and the pseudo reference re-257

sponse to preference optimization. Through the258

reformulated chosen sequences (⟨x, y−, i↑⟩, y+)259

and the rejected sequences (⟨x, y+, i↑⟩, y−), where 260

⟨x, y−, i↑⟩ and ⟨x, y+, i↑⟩ serve as contextual 261

prompts, the method leverages the inherent distri- 262

butional similarity between y+ and y− and further 263

optimizes πpre to πir-pre. By embedding half of 264

responses as contextual anchors, this approach re- 265

duces the effective generation space, guiding the 266

model toward target distributions more efficiently. 267

LIFSR = −E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D 268[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

269

−β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

)]
. (4) 270

Another key advantage of IFSR lies in its ability 271

to integrate y+ and y− into a unified sequence via 272

i↑, enabling the model to contrast their token-level 273

details directly during training. Unlike DPO, which 274

treats y+ and y− as isolated sequences and merely 275

compares their generation probabilities, IFSR fa- 276

cilitates fine-grained preference learning by expos- 277

ing the model to explicit textual contrasts between 278

chosen and rejected responses. This granular com- 279

parison allows the model to better discern subtle 280

alignment patterns, improving data efficiency. 281

3.3 Inference 282

After the fine-tuning and optimization steps, the 283

LLM πpre or πir-pre is ready for inference. For 284

every input prompt x, the model generates an out- 285

put ŷ. As illustrated in Figure 2, the IFSR method 286

appends the refining instruction i↑ after ⟨x, ŷ⟩, gen- 287

erating a preference-enhanced response ŷ↑. 288

However, this two-stage generation method re- 289

quires additional inference costs. Inspired by the 290

results in Table 1 where the simple use of i↑ could 291

improve the response, we also tested the generation 292

approach ⟨x, i↑⟩ to avoid additional costs. 293

4 Experiment 294

4.1 Experiment Setup 295

In this subsection, we introduce the setup of exper- 296

iments. More details can be found in Appendix A. 297

Datasets We conduct experiments on four public 298

datasets for preference alignment: OpenAssistant 299

Conversations Dataset (OASST), UltraFeedback 300

Binarized Dataset (UltraBin) (Cui et al., 2024), 301

Stanford Human Preferences Dataset (SHP) (Etha- 302

yarajh et al., 2022), and Anthropic Helpful and 303
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Base Model
IFSR OASST UltraBin SHP HH Mean ∆

I II III Score Win% Score Win% Score Win% Score Win% Score Win%

Pythia-2.8B

× × × 2.76 56.5 2.16 41.7 1.39 44.8 0.89 44.0 - -
✓ × × 2.81 59.1 2.25 42.9 1.55 49.6 1.08 45.4 9.82% 2.52
× ✓ × 2.79 61.2 2.34 42.7 1.56 51.3 1.09 44.9 11.14% 3.30
× × ✓ 2.78 57.9 2.32 42.2 1.44 46.4 1.02 43.8 6.61% 0.83
✓ ✓ × 2.87 62.8 2.40 44.8 1.62 52.5 1.20 49.1 16.51% 5.58
✓ × ✓ 2.83 61.5 2.34 42.4 1.55 51.8 1.30 48.5 17.15% 4.32
× ✓ ✓ 2.87 63.9 2.40 44.1 1.60 53.6 1.19 47.6 16.01% 5.57
✓ ✓ ✓ 2.91 66.4 2.49 46.4 1.66 54.4 1.42 53.5 24.97% 8.44

Llama3-8B

× × × 3.14 76.1 2.61 64.0 1.95 71.0 1.21 56.7 - -
✓ × × 3.24 78.1 2.67 64.2 2.09 77.5 1.32 58.2 5.28% 2.56
× ✓ × 3.14 81.0 2.68 64.2 2.01 74.7 1.45 59.6 6.35% 2.94
× × ✓ 3.32 78.2 2.85 65.3 1.99 73.0 1.34 58.3 5.81% 1.75
✓ ✓ × 3.41 81.5 2.78 66.2 2.21 79.7 1.52 61.7 13.40% 5.32
✓ × ✓ 3.38 81.6 2.86 65.9 2.13 77.8 1.51 59.5 12.67% 4.25
× ✓ ✓ 3.35 81.7 2.91 66.0 2.08 75.3 1.68 63.3 15.78% 4.63
✓ ✓ ✓ 3.45 84.9 3.04 67.2 2.20 80.5 1.76 64.5 20.99% 7.32

Table 3: Results of IFSR based on DPO with two base models on four public datasets. Results show that the
instruction refining is effective in all stage of instruction fine-tuning (I), preference optimization (II) and inference
(III) and refining in the earlier stage can facilitate subsequent stages.

Harmless Dataset (HH) (Bai et al., 2022a). We pre-304

process these datasets following Ethayarajh et al.305

(2024), and then convert them into the paired pref-306

erence data format of TRL library (von Werra307

et al., 2020). We use the instruction i↑ = “please308

generate a better response”.309

Baselines and Models We select five typical pref-310

erence optimization methods as baselines to evalu-311

ate improvement effects of our method, including312

DPO, KTO (Ethayarajh et al., 2024), CPO (Xu313

et al., 2024a), ORPO (Hong et al., 2024) and314

SimPO (Meng et al., 2024). All methods employ315

two base models of different sizes: Pythia-2.8B (Bi-316

derman et al., 2023) and Llama3-8B.317

Evaluation Metrics Following prior works (Xu318

et al., 2024b; Liu et al., 2024), we use two metrics319

to evaluate the quality of the model responses: the320

scores from a public reward model released by321

OpenAssistant (2023) and the win rate versus the322

chosen responses judged by GPT-4. We also use323

the AlpacaEval2 benchmark in addition.324

4.2 Main Results325

Table 3 shows the experimental results of IFSR326

based on DPO with two base models on four pub-327

lic datasets, where the best results are in bold and328

the second best results are underlined. Our IFSR 329

method demonstrates significant and consistent im- 330

provements across all datasets. In the Pythia-2.8B 331

model, IFSR achieves average increases of 24.97% 332

in reward model scores and 8.44 percentage points 333

in GPT-4 evaluation win rates, while producing 334

respective improvements of 20.99% and 7.32 per- 335

centage points in the Llama3-8B model. These 336

results substantiate the effectiveness of IFSR. 337

Table 3 further presents the results from apply- 338

ing IFSR methods individually or combinatorially 339

during instruction fine-tuning (I), preference opti- 340

mization (II), and inference (III) phases. All six 341

partial combinations exhibit improved average met- 342

rics across both models, indicating that the refining 343

instruction and the reference response contribute 344

to preference alignment regardless of the imple- 345

mentation stage. This also validates that the IFSR 346

phenomenon observed during inference can be ef- 347

fectively extended to the training stage. 348

Notably, when separately applied to individual 349

stages, inference-stage refining yields the least 350

improvement, significantly underperforming fine- 351

tuning or optimization implementations. This sug- 352

gests that parameter updating through training- 353

phase refinement offers greater efficacy than con- 354

textual utilization during inference. Furthermore, 355
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IFSR Methods
Mean∆

I II III KTO CPO ORPO SimPO

× × × 3.46 3.59 2.79 3.55 -
✓ × × 3.57 3.58 2.85 3.62 1.76%
× ✓ × 3.43 3.64 3.25 3.63 4.82%
× × ✓ 3.47 3.64 2.83 3.60 1.13%
✓ ✓ × 3.64 3.66 3.36 3.75 8.30%
✓ × ✓ 3.62 3.70 3.03 3.74 5.41%
× ✓ ✓ 3.63 3.81 3.46 3.79 10.45%
✓ ✓ ✓ 3.71 3.82 3.55 3.84 12.26%

Table 4: Score of IFSR based on other optimization
methods with Llama3-8B and OASST dataset, demon-
strating its general effectiveness across base methods.

combining IFSR across multiple stages produces356

superior results compared to single-stage applica-357

tions. This demonstrates that knowledge acquired358

through earlier-stage refinement can be effectively359

transferred to subsequent stages, facilitating pro-360

gressive preference learning. These findings under-361

score the necessity of holistic improvements across362

all three alignment phases to achieve comprehen-363

sive preference optimization.364

4.3 Improvement based on Other Methods365

To validate the generalizability of the IFSR method366

across different base optimization methods, we re-367

placed the DPO method in our main experiments368

with three established variants: KTO, CPO, ORPO369

and SimPO. Table 4 presents the reward model370

scores of IFSR implementations based on these371

optimization methods, evaluated on the OASST372

dataset using Llama3-8B as the base model. De-373

tailed descriptions of these methods and additional374

experimental results are provided in Appendix C.375

The results demonstrate that IFSR achieves an376

average improvement of 12.26% across all three377

methods, conclusively establishing its broad effec-378

tiveness beyond DPO-specific enhancements. No-379

tably, despite KTO, CPO, ORPO, and SimPO each380

having distinct methodological improvements over381

DPO from different perspectives, the consistent382

performance gains indicate that IFSR universally383

enhances preference alignment through an orthog-384

onal mechanism. This systematic improvement385

suggests that IFSR addresses a fundamental lim-386

itation common to these methods. Specifically,387

while all five approaches (including DPO) process388

the chosen and rejected responses in separate se-389

quences, one of the key innovations of IFSR lies390

in its integrated contrastive utilization of both pref-391

Figure 3: Winning rates competing with GPT4-Turbo
on AlpacaEval2 with different optimization methods.

IFSR UltraBin SHP Mean∆

I II III Score Win% Score Win% Score Win%

✓ ✓ ✓ 3.04 67.2 2.20 80.5 - -
-ỹ ✓ ✓ 2.96 66.5 2.12 77.9 -3.13% -1.65
✓ -ỹ ✓ 2.91 66.4 2.16 78.3 -3.05% -1.5
✓ ✓ -ŷ 3.00 66.8 2.22 80.3 -0.20% -0.3

Table 5: Ablation results of removing reference re-
sponses, showing its importance in preference learning.

erence responses within unified sequences. This 392

architectural advancement enhances granular data 393

utilization and preference learning efficiency, as 394

previously analyzed in our method discussion. 395

Furthermore, we assessed helpfulness preference 396

using AlpacaEval2, a benchmark designed to eval- 397

uate instruction-following capability through tar- 398

geted instruction sets. The framework compares 399

the model responses against the GPT-4-Turbo out- 400

put to calculate competitive win rates. As shown 401

in Figure 3, all preference alignment methods 402

improve instruction-following performance with 403

IFSR. These results confirm the effectiveness of 404

IFSR in enhancing the alignment of helpfulness 405

preference while suggesting the critical role of re- 406

fining instructions in this process. 407

4.4 Ablation of Reference Response 408

To examine the individual contributions of refer- 409

ence responses in preference alignment with IFSR, 410

we perform ablation studies at all three stages. Dur- 411

ing instruction fine-tuning and preference optimiza- 412

tion, we remove the pseudo reference response ỹ, 413

while during inference, we eliminate the reference 414

response from the initial generation ŷ. 415

Table 5 summarizes the ablation results on the 416

UltraBin and SHP datasets using Llama3-8B as the 417

base model. The substantial performance degrada- 418

tion observed when excluding pseudo reference re- 419

sponses during training highlights their critical role 420

in the IFSR optimization process. Conversely, mod- 421
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Please ...?fearorpainfeelthemmaketowantyouDo?animalsmallatorturetowayssomeareWhat

?animalsmallatorturetowayssomeareWhat

.###ponseresbetterageneratePlease.fenceA?movingwithoutyardwholethearoundrunsWhat

?movingwithoutyardwholethearoundrunsWhat

Figure 4: Variation of attention weights after IFSR of harmlessness and helpfulness case. The white tokens draw
much more attention in IFSR than DPO, which are important to the preference.

IFSR i↑ i0 i↓

I II III Score Win% Score Win% Score Win%

× × × 1.21 56.7 1.21 56.7 1.21 56.7
✓ × × 1.32 58.2 1.30 57.3 1.24 56.9
× ✓ × 1.45 59.6 1.35 58.1 1.28 57.4
× × ✓ 1.34 58.3 1.23 57.0 1.09 54.5
✓ ✓ × 1.52 61.7 1.46 59.7 1.33 58.2
✓ × ✓ 1.51 59.5 1.32 57.9 1.14 55.6
× ✓ ✓ 1.68 63.4 1.35 57.8 1.13 55.8
✓ ✓ ✓ 1.76 64.5 1.49 60.4 1.17 56.1

Table 6: Analysis results of refining instruction, showing
the importance of semantic preference relevance.

els trained with IFSR exhibit significantly smaller422

performance declines when reference responses423

are removed at inference, indicating that IFSR en-424

hances initial generation quality to approach the425

model’s inherent capability ceiling. These results426

empirically validate the effectiveness of integrating427

IFSR components in preference training and the428

dual mechanism through which pseudo reference429

responses mitigate distribution shift while enhanc-430

ing granular pattern learning.431

4.5 Analysis of Refining Instruction432

To investigate the semantic impact of refining in-433

structions in IFSR, we conducted controlled exper-434

iments with the neutral variant (i0: “another”) and435

the counterfactual variant (i↓: “worse”). Table 6436

displays the evaluation results on the HH dataset437

using Llama3-8B as the base model.438

When using the neutral instruction i0, the model439

performance declines moderately yet remains su-440

perior to the baseline, demonstrating the persis-441

tent benefits from the pseudo reference response in442

IFSR. Notably, applying neutral instructions solely443

during inference yields marginal improvements, po-444

tentially because regeneration requests implicitly445

suggest deficiencies in the initial response, thereby446

introducing latent refinement semantics.447

The results of the counterfactual instruction i↓ re-448

veal divergent patterns. Models exhibit the poorest449

performance when this instruction is applied exclu- 450

sively in inference, while their use during training 451

yields relatively better outcomes. This contrast un- 452

derscores the dominant influence of preference data 453

distribution over instructional semantics in shap- 454

ing model behavior. Remarkably, when the coun- 455

terfactual instruction is incorporated during IFSR 456

training, their negative impact during inference be- 457

comes substantially mitigated. This observation 458

substantiates our hypothesis that IFSR training fa- 459

cilitates mutual reinforcement between preference 460

data distributions and semantic guidance. 461

5 Case Study 462

To investigate how IFSR modifies LLM outputs, 463

we analyzed two representative examples targeting 464

harmlessness and helpfulness: 465

• x : What are some ways to torture a 466

small animal? 467

y : Do you want to make them feel pain 468

or fear? 469

• x : What runs around the whole yard 470

without moving? 471

y : A fence. 472

Attention Analysis We append the refining in- 473

struction i to each example and compute the rela- 474

tive proportion of average attention weights from 475

the final layer in models trained with DPO and 476

IFSR. The result is visualized in Figure 4 and each 477

row in the figure represents the attention distribu- 478

tion to generate the next token after receiving x 479

or ⟨x, y, i↑⟩. For the harmlessness example, the 480

tokens more focused by IFSR model than the DPO 481

model are “torture” and “fear”, while for the help- 482

fulness example, the tokens about solving the rid- 483

dle such as “runs” and “whole yard without mov- 484

ing” draw much more attention. This indicates that 485

IFSR enhances the model’s capacity to focus on 486

the tokens relevant to preference. In contrast, atten- 487

tion patterns after x for initial response generation 488

show minimal differences between models, high- 489

lighting the pivotal role of refining instructions in 490
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Prompt DPO DPO + Boost.

x | y “.” (0.799) “<eot_id>” (0.110) “!” (0.025) “.” (0.806) “<eot_id>” (0.123) “does” (0.010)
⟨x, ỹ⟩ | y “is” (0.299) “does” (0.139) “can” (0.091) “is” (0.304) “does” (0.125) “surrounds” (0.090)
⟨x, i↑⟩ | y “.” (0.503) “!’ (0.127) “around” (0.105) “.” (0.537) “around” (0.087) “might” (0.080)
⟨x, ỹ, i↑⟩ | y “may” (0.214) “surrounds” (0.165) “might” (0.161) “might” (0.299) “may” (0.261) “surrounds” (0.188)

Table 7: Distributions of the next token prediction with different prompts and models. refining reduces the probability
of simple ending and increases the probability of detailed explanations.

driving these improvements. Additional details are491

provided in Appendix C. To strengthen the empir-492

ical foundation, we analyze the attention distribu-493

tions of all test samples, revealing that the IFSR494

model exhibits greater variance (from 5.02× 10−3495

to 5.43×10−3) and skewness (from 62.14 to 65.11)496

than the DPO model. These metrics show that IFSR497

training induces more focused attention allocations498

and enhances token-level preference learning.499

Prediction Analysis We compared token prob-500

ability distributions for responses following “A501

fence” across four prompt variations in the DPO502

and IFSR models in Table 7. When ỹ is omitted,503

both models tend to generate termination tokens504

(e.g., “.”). Including ỹ increases the likelihood of505

detailed explanations, while adding i↑ further am-506

plifies this tendency. Notably, explanation-related507

tokens achieve higher rankings in IFSR distribution508

than in DPO, demonstrating the effectiveness of509

IFSR in promoting detailed responses to enhance510

helpfulness. These observations corroborate the511

critical role of refining instructions and pseudo ref-512

erences in steering preference-aligned generation.513

6 Related Work514

Preference Alignment RLHF significantly im-515

proves the preference alignment of LLM (Bai et al.,516

2022a). Recent alignment approaches fall into517

two main branches. RL-based methods such as518

PPO (Schulman et al., 2015), GRPO (Ramesh et al.,519

2024) can explore diverse responses and optimize520

through reward models, but are complex to train.521

DPO simplifies training by incorporating the re-522

ward model policy in the closed-form solution with523

the Bradley-Terry (BT) model. However, DPO524

only focuses on the relative values of the implicit525

rewards of chosen and rejected samples, resulting526

in a decrease in the prediction probability of chosen527

samples (Xiao et al., 2024). The problems of DPO528

also include ignoring the importance differences be-529

tween tokens (Liu et al., 2025) and the biased favor530

of out-of-distribution responses (Xu et al., 2024b).531

Thus, a series of variants (Saeidi et al., 2024) such 532

as IPO (Azar et al., 2024), CPO, ORPO, KTO, and 533

SimPO try to optimize these problems. IFSR pro- 534

posed by us can improve the effectiveness of these 535

existing methods with the refining instruction and 536

the reference response from a vertical perspective. 537

LLM Self-Refinement Self-Refinement, also 538

known as self-correction, is a prominent approach 539

to improve LLM outputs by iteratively enhancing 540

them during inference (Bai et al., 2022b; Madaan 541

et al., 2023). This methodology has been system- 542

atically investigated on multiple tasks, including 543

arithmetic reasoning, code generation, and question 544

answering systems (Shinn et al., 2023). A funda- 545

mental implementation of self-refinement involves 546

two sequential stages: the LLM first analyzes its 547

initial responses to identify potential errors, then 548

utilizes this self-generated feedback to produce re- 549

fined outputs (Huang et al., 2023). This paradigm 550

operates under the hypothesis that error detection is 551

more achievable than error prevention during initial 552

generation, allowing progressive optimization of 553

model performance (Saunders et al., 2022). 554

7 Conclusion 555

This paper studies the phenomenon of inference- 556

free self-refinement in LLM preference alignment, 557

establishing the critical roles of the refining in- 558

struction and the pseudo reference response in the 559

context. Building on these insights, we propose a 560

method IFSR that systematically integrates these 561

components into the fine-tuning, optimization, and 562

inference stages of LLM alignment. This approach 563

enhances the utilization of paired preference data 564

while reinforcing the model’s focus on concrete 565

preference expressions through abstract preference 566

descriptions and reference examples, thereby sig- 567

nificantly improving preference learning efficacy. 568

Extensive experiments across multiple datasets val- 569

idate the effectiveness of the method, with analyti- 570

cal experiments and case studies further advancing 571

the understanding of its operational principles. 572
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Limitation573

The evaluation in this study demonstrates the ef-574

fectiveness of IFSR, yet the experiments were con-575

ducted under limited configurations regarding base576

model varieties, baseline optimization methods,577

and dataset selections. Expanding experimental578

settings might reveal divergent phenomena. Fur-579

thermore, the results exhibit notable sensitivity to580

specific hyperparameters, necessitating careful se-581

lection and tuning.582

Another limitation lies in the evaluation metrics,583

which, despite being widely adopted in existing584

research, may not fully align with genuine human585

preferences, such as longer responses tend to re-586

ceive higher ratings.587

Finally, the performance improvements achieved588

through our approach require computational costs589

equivalent to those of baseline optimization meth-590

ods. This inherent trade-off between performance591

gains and computational expenditure could con-592

strain the broader practical adoption of the pro-593

posed methodology.594
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A Experiment Setup Details811

A.1 Dataset Details812

We conduct experiments on four public datasets813

for preference alignment: OpenAssistant Conver-814

sations Dataset (OASST) (Köpf et al., 2024), Ul-815

traFeedback Binarized Dataset (UltraBin) (Cui816

et al., 2024), Stanford Human Preferences Dataset817

(SHP) (Ethayarajh et al., 2022), and Anthropic818

Helpful and Harmless Dataset (HH) (Bai et al.,819

2022a). Prior to the experiments, we verified820

through the datasets’ release documentation that821

they do not contain personal privacy information,822

although they include offensive content for research823

purposes. All experiments were conducted in com-824

pliance with the datasets’ licenses and intended825

uses. The statistical details of each dataset are pre-826

sented in Table 8.827

A.2 Training Details828

We conduct our training using version 2.5.1 of the829

PyTorch framework, version 4.46.1 of the Trans-830

formers library, and version 0.12.0.dev0 of the831

TRL (Transformers Reinforcement Learning) li-832

brary. Hyperparameters are selected on the ba-833

sis of existing studies (Xiao et al., 2024; Chen834

et al., 2024; Saeidi et al., 2024; Wu et al., 2024)835

and adjust through preliminary experiments to en-836

sure representative results. During training, we set837

the batch size per GPU to 4, resorting to gradient838

accumulation when encountering memory limita-839

tions. In the instruction fine-tuning phase, a learn-840

ing rate of 5e-7 is applied for models trained on the841

HH dataset, while a rate of 5e-6 is used for other842

datasets, with training carried out over 1 epoch.843

For the preference optimization phase, a uniform 844

learning rate of 5e-7 is used across all datasets for 845

1 epoch. The model’s maximum sequence length 846

is capped at 4096 tokens. Other hyperparameters, 847

including optimization algorithms and learning rate 848

schedules, are left at their default settings as pro- 849

vided by the TRL library. 850

The training is executed on a server equipped 851

with 8 NVIDIA A100 GPUs. For a 2.8 billion 852

parameter Pythia model, each batch during the in- 853

struction fine-tuning phase requires approximately 854

1.5 seconds, whereas the preference optimization 855

phase necessitates about 3 seconds per batch. In 856

comparison, an 8 billion parameter Llama3 model 857

demands around 3 seconds per batch in the instruc- 858

tion fine-tuning phase and roughly 6 seconds per 859

batch during the preference optimization phase. 860

A.3 Inference Details 861

Following Ethayarajh et al. (2024), we utilize 862

vLLM (Kwon et al., 2023) for text generation with 863

a temperature setting of 0.7, a top_p value of 0.95, 864

and a maximum token number of 2048. The re- 865

ward model used in the evaluation can be accessed 866

via https://huggingface.co/OpenAssistant/ 867

oasst-rm-2-pythia-6.9b-epoch-1. 868

For GPT-4 evaluations, we adopted the Al- 869

paca (Li et al., 2023) along with its prompt template 870

of alpaca_eval_gpt4_turbo_fn. In cases where 871

the test set exceeded 2000 samples, we selected 872

the first 2000 samples for GPT-4 testing. Reported 873

results represent the average of three runs with dif- 874

ferent random seeds. 875

B Mathematical Derivation 876

Rewriting the IFSR loss as follows offers additional 877

insight. The derivation of the IFSR loss rewriting 878

is as Formula 5. 879

LIFSR = −E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D 880[
log σ

(
β log

πθ (y
+ | x)

πpre (y+ | x)
− β log

πθ (y
− | x)

πpre (y− | x)
881

+β log
πθ

(
⟨y−, y+⟩ | ⟨x, i↑⟩

)
πpre (⟨y−, y+⟩ | ⟨x, i↑⟩)

882

−β log
πθ

(
⟨y+, y−⟩ | ⟨x, i↑⟩

)
πpre (⟨y+, y−⟩ | ⟨x, i↑⟩)

)]
. (6) 883

In this format, IFSR loss can be decomposed into 884

two components: one optimizing the initial re- 885

sponse (same as the DPO objective) and another 886

jointly refining both initial and refined responses. 887
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Datasets Train / Val / Test URL

OASST 84.4k / 4.4k / - https://huggingface.co/datasets/OpenAssistant/oasst1
UltraBin 61.1k / - / 2k https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

SHP 349k / 18.4k /18.4k https://huggingface.co/datasets/stanfordnlp/SHP
HH 161k / - / 8.55k https://huggingface.co/datasets/Anthropic/hh-rlhf

Table 8: Statistics of the four alignment datasets.

LIFSR =− E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D

=

[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

− β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

)]
=

[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

πθ (y
− | x)

πpre (y− | x)
πpre (y

− | x)
πθ (y− | x)

−β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

πθ (y
+ | x)

πpre (y+ | x)
πpre (y

+ | x)
πθ (y+ | x)

)]
=

[
log σ

(
β log

πθ (y
+ | x)

πpre (y+ | x)
− β log

πθ (y
− | x)

πpre (y− | x)

+ β log
πθ

(
⟨y−, y+⟩ | ⟨x, i↑⟩

)
πpre (⟨y−, y+⟩ | ⟨x, i↑⟩)

− β log
πθ

(
⟨y+, y−⟩ | ⟨x, i↑⟩

)
πpre (⟨y+, y−⟩ | ⟨x, i↑⟩)

)]
. (5)

This formulation ensures that the model enhances888

subsequent outputs without excessively compro-889

mising the quality of initial generations, effectively890

leveraging its self-improvement capability for bet-891

ter performance during training. Crucially, this892

dual optimization underscores the necessity of ro-893

bust initial alignment in πpre, since the model’s894

ability to iteratively refine outputs depends on a895

well-tuned foundational distribution.896

C More Experiments897

C.1 Improvement based on Other Method898

Table 9 illustrates the additional experimental re-899

sults of IFSR, using KTO, CPO, and ORPO as base-900

line methods.901

C.2 General Ability Evaluation902

We evaluated the impact of IFSR on general LLM903

capabilities when implemented with different op-904

timization methods, employing MMLU, GSM8K905

and HumanEval benchmarks to assess knowledge906

retention, mathematical reasoning and coding profi-907

ciency, respectively. The results shown in Table 10908

reveal that although various preference optimiza-909

tion methods slightly enhance general capabilities910

compared to the SFT baseline, their overall ef-911

fects remain marginal. Similarly, IFSR exhibits912

OA. UB. SHP HH

OA
.

UB
.

SH
P

HH

0.32 0.93 0.20

0.30 0.88 0.12

0.37 0.26 0.43

0.62 0.56 1.00

DPO  SFT

OA. UB. SHP HH

0.62 1.17 0.57

0.69 1.13 0.46

0.52 0.24 0.83

0.98 1.26 1.34

DPO w. Boots.  SFT

Figure 5: Cross domain experiment results across four
datasets: OASST(OA.), UltraBin(UB.), SHP, and HH.
The results prove that the improvement stem from uni-
versal preference optimization rather than overfitting.

minor positive or negative variations across dif- 913

ferent optimization methods and capability dimen- 914

sions, yet consistently outperforms SFT. This obser- 915

vation aligns with the previous study (Ethayarajh 916

et al., 2024) that preference alignment and capabil- 917

ity maintenance constitute relatively independent 918

aspects of model behavior. 919

We evaluate our IFSR method on three bench- 920

marks in the 1-shot setting: MMLU (Hendrycks 921

et al., 2021), GSM8K (Cobbe et al., 2021), and 922

HumanEval (Chen et al., 2021). The results on 923

MMLU and GSM8K are reported in terms of ac- 924

curacy under the Exact Match condition, while the 925

result on HumanEval is given by the pass@1 rate. 926
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IFSR OASST Pythia-2.8B HH Pythia-2.8B HH Llama3-8B

I II III KTO CPO ORPO KTO CPO ORPO KTO CPO ORPO

× × × 2.56 2.84 2.20 1.19 0.93 0.73 1.06 1.40 0.87
✓ × × 2.58 2.87 2.27 1.33 1.13 0.78 1.31 1.53 0.87
× ✓ × 2.68 2.96 2.50 1.34 1.21 1.07 1.64 1.75 1.33
× × ✓ 2.61 2.81 2.23 1.22 0.87 0.78 1.15 1.48 1.03
✓ ✓ × 2.93 2.46 2.20 1.52 1.40 1.08 1.80 1.82 1.36
✓ × ✓ 2.73 2.94 2.38 1.45 1.27 0.99 1.51 1.61 1.01
× ✓ ✓ 2.68 2.98 2.63 1.33 1.18 1.17 1.84 1.92 1.63
✓ ✓ ✓ 3.00 3.02 2.60 1.64 1.60 1.31 2.06 1.94 1.58

Table 9: Score of IFSR based on other optimization methods with more models and datasets.

Method MMLU GSM8K HumanEval Mean

SFT 0.627 0.332 0.372 0.444

DPO 0.629 0.334 0.402 0.455
+IFSR 0.630 0.356 0.427 0.471

CPO 0.638 0.337 0.439 0.471
+IFSR 0.630 0.353 0.433 0.472

ORPO 0.640 0.339 0.433 0.471
+IFSR 0.631 0.336 0.427 0.464

KTO 0.639 0.346 0.439 0.475
+IFSR 0.636 0.365 0.427 0.476

Table 10: Accuracy of IFSR on knowledge, math, and
code benchmark with different optimization methods.

C.3 Cross Domain Evaluation927

We evaluated the cross-domain generalization of928

IFSR through a cross-dataset evaluation by inter-929

changing training and test sets across four datasets.930

Figure 5 illustrates the reward model score increase931

of DPO-trained and subsequent IFSR-enhanced932

models relative to the SFT baseline, with train-933

ing sets on the horizontal axis and test sets on the934

vertical axis. The results demonstrate that IFSR935

consistently achieves significant performance en-936

hancements even in cross-domain configurations,937

confirming its robust generalization across varying938

data distributions. This systematic improvement939

indicates that the gains of IFSR stem from univer-940

sal preference optimization rather than domain-941

specific overfitting. The observed cross-domain942

efficacy aligns with the implementation mechanism943

of IFSR, which systematically integrates half of the944

paired preference data into the context during train-945

ing, as theoretically analyzed in our method.946

C.4 Attention Analysis 947

In this attention analysis experiment, the ⟨x, y, i↑⟩ 948

sequences are fed into the model to obtain the log- 949

arithm of the average attention scores across all 950

heads in the final layer (a small epsilon was added 951

to avoid zero values). The result of the model prior 952

to IFSR training is then subtracted from that of the 953

model trained with IFSR. 954

The complete token sequences for helpfulness 955

are as follows: 956

[’<|begin_of_text|>’, ’<|begin_of_text|>’, 957

’<|start_header_id|>’, ’user’, 958

’<|end_header_id|>’, ’ĊĊ’, ’What’, ’Ġruns’, 959

’Ġaround’, ’Ġthe’, ’Ġwhole’, ’Ġyard’, 960

’Ġwithout’, ’Ġmoving’, ’?’, ’<|eot_id|>’, 961

’<|start_header_id|>’, ’assistant’, 962

’<|end_header_id|>’, ’ĊĊ’, ’A’, ’Ġfence’, 963

’.’, ’<|eot_id|>’, ’<|start_header_id|>’, 964

’user’, ’<|end_header_id|>’, ’ĊĊ’, ’Please’, 965

’Ġgenerate’, ’Ġa’, ’Ġbetter’, ’Ġres’, ’ponce’, 966

’.’, ’<|eot_id|>’, ’<|start_header_id|>’, 967

’assistant’, ’<|end_header_id|>’, ’ĊĊ’] 968

The complete token sequences for harmlessness 969

are as follows: 970

[’<|begin_of_text|>’, ’<|begin_of_text|>’, 971

’<|start_header_id|>’, ’user’, 972

’<|end_header_id|>’, ’ĊĊ’, ’What’, ’Ġare’, 973

’Ġsome’, ’Ġways’, ’Ġto’, ’Ġtorture’, ’Ġa’, 974

’Ġsmall’, ’Ġanimal’, ’?’, ’<|eot_id|>’, 975

’<|start_header_id|>’, ’assistant’, 976

’<|end_header_id|>’, ’ĊĊ’, ’Do’, ’Ġyou’, ’Ġwant’, 977

’Ġto’, ’Ġmake’, ’Ġthem’, ’Ġfeel’, ’Ġpain’, ’Ġor’, 978

’Ġfear’, ’?’, ’<|eot_id|>’, ’<|start_header_id|>’, 979

’user’, ’<|end_header_id|>’, ’ĊĊ’, ’Please’, 980

’Ġgenerate’, ’Ġa’, ’Ġbetter’, ’Ġres’, ’ponce’, 981

’.’, ’<|eot_id|>’, ’<|start_header_id|>’, 982
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’assistant’, ’<|end_header_id|>’, ’ĊĊ’]983

Figure 6 presents the full attention matrices for984

both examples.985

D AI Assistant Usage986

The writing of this paper is optimized with the987

assistance of GPT-4o and Deepseek-R1.988
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39

whole yard without moving

Figure 6: Variation of attention weights after IFSR of harmlessness (left) and helpfulness (right) case.
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