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Abstract

Meritocratic systems, from admissions to hiring, aim to impartially reward skill and
effort. Yet persistent disparities across race, gender, and class challenge this ideal.
Some attribute these gaps to structural inequality; others to individual choice. We
develop a game-theoretic model in which candidates from different socioeconomic
groups differ in their perceived post-selection value—shaped by social context and,
increasingly, by AI-powered tools offering personalized career or salary guidance.
Each candidate strategically chooses effort, balancing its cost against expected
reward; effort translates into observable merit, and selection is based solely on
merit. We characterize the unique Nash equilibrium in the large-agent limit and
derive explicit formulas showing how valuation disparities and institutional selec-
tivity jointly determine effort, representation, social welfare, and utility. We further
propose a cost-sensitive optimization framework that quantifies how modifying
selectivity or perceived value can reduce disparities without compromising institu-
tional goals. Our analysis reveals a perception-driven bias: when perceptions of
post-selection value differ across groups, these differences translate into rational
differences in effort, propagating disparities backward through otherwise “fair”
selection processes. While the model is static, it captures one stage of a broader
feedback cycle linking perceptions, incentives, and outcomes—bridging rational-
choice and structural explanations of inequality by showing how techno-social
environments shape individual incentives in meritocratic systems.

1 Introduction

Meritocratic selection systems, used by institutions and firms for admissions, hiring, and content
curation, aim to allocate opportunities based on observable indicators of ability and effort rather
than wealth, identity, or social status. They are widely viewed as promoting fairness and efficiency
[42, 74, 37]. Examples include standardized tests such as the SAT and JEE [52, 8], structured
interviews and assessments [72, 13], and algorithmic ratings on online platforms [24, 73, 84].

Yet, despite their formal neutrality, these systems often produce significant disparities in representation
and outcomes. Women, racial minorities, and lower-income groups are consistently underrepresented
in elite universities, leadership roles, and high-paying industries [64, 45, 75]. These gaps persist even
when evaluation procedures are blind to group identity, suggesting that there are additional factors
that drive inequality in merit-based processes.

One set of explanations points to structural barriers: unequal access to resources that enhance merit
(e.g., quality education, extracurricular activities), implicit biases in selection processes, and limited
opportunities due to privileged networks [87, 40, 56, 61, 13, 63, 24, 73, 84]. Others suggest that
individuals who face the same selection rules may simply make different choices, investing less
effort because they perceive lower returns to success due to cultural preferences, opportunity costs, or
labor market sorting [31, 11, 39, 66, 12]. These disparities under-utilize talent, reducing innovation,
diversity of ideas, and social progress [43, 58, 67]. This raises a central question: how can differences
in perceived opportunity translate into systematic behavioral disparities even when evaluation is
symmetric?
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Expectations about what selection yields-admission, employment, mobility—are shaped not only by
historical inequalities [76, 59, 51], but increasingly by algorithmic tools that mediate labor market
signals [46]. Although meritocratic ideals suggest that pay should correlate with skills, productivity,
and achievements, empirical studies reveal persistent wage disparities even after controlling for factors
such as occupation, education, experience, and hours worked [38, 89, 86, 64, 83, 78, 68, 41]. For
example, in the U.S., women earned just 83.1% of what men earned in 2021, despite outnumbering
men in the college-educated labor force [83, 26]. Similar wage gaps persist across racial, class,
caste, and ethnic lines, with Black, Hispanic, and Indigenous workers earning less than White
and Asian peers in comparable roles [68]. Large language models (LLMs) may further exacerbate
these disparities. Recent studies show that when asked for job or salary recommendations, LLMs
return systematically different responses across demographic groups, even when qualifications are
held constant [2, 46]. Such signals can distort perceived opportunity and disincentivize effort long
before any selection decision occurs. Taken together, these findings suggest a perception-driven bias:
social and algorithmic cues about post-selection value shape pre-selection investment, reinforcing
group-level disparities even under ostensibly meritocratic systems.

Our contributions. We introduce a game-theoretic model of meritocratic selection in which candi-
dates from two groups differ in their perceived value of being selected. This model integrates contest
theory with models of structural bias from algorithmic fairness and captures how valuation disparities
influence effort, merit, and selection outcomes. While the model is static, it represents one stage of a
broader feedback process linking perceptions, incentives, and outcomes. Our main contributions are:

1. Modeling. We formulate a two-group contest in which n rational agents, divided into groups
G1 and G2 (with proportion α ∈ (0, 1)), compete for c · n positions. Group-specific valuations
follow distributions p1 and p2, with p2 modeled as a ρ-biased version of p1 for ρ ∈ (0, 1] [47],
representing structural disparities. Each candidate chooses effort based on their valuation to
maximize their expected payoff, which is then converted into observable merit used for selection.

2. Equilibrium characterization. We prove the existence and uniqueness of a symmetric Nash
equilibrium in the large-agent limit, and express the equilibrium thresholds for both groups in
terms of (c, α, p1, p2) (Theorem 3.1). We further show that the equilibrium in the finite-n setting
converges to this solution at rate O(

√
log n/n).

3. Micro to macro analysis of metrics. Using the equilibrium solution, we derive closed-form
expressions for key performance metrics—group-wise representation ratio rR, social welfare ratio
rS , and institutional revenue in the case where p1 is uniform and p2 is ρ-biased (Proposition 4.1).
These expressions reveal how small changes in ρ, c or α can produce non-linear shifts in outcomes.

4. Fairness-aware interventions. We formulate a constrained optimization problem (Problem (6))
that allows institutions to trade off between increasing selectivity (c) and reducing valuation bias
(ρ) under fairness constraints (e.g., 80%-rule). We solve this problem in closed form for linear
cost functions and characterize when each intervention is most cost-effective (Figure 4).

Taken together, our framework provides a quantitative lens on how structural or algorithmic biases in
perceived value can rationally produce effort and outcome disparities in meritocratic systems, and
offers tools to design interventions that enhance both representation and efficiency.

Related work. Our work connects three areas: economic theories of meritocracy, game-theoretic
models of contests, and algorithmic fairness. Social scientists have long examined the tension
between meritocratic ideals and persistent disparities in outcomes, including gender and racial
pay gaps [59, 76, 38, 15]. While prior models of statistical discrimination explain disparities
through institutional uncertainty or group-dependent beliefs—often despite equal agent quality
[3, 69, 21, 23, 5, 49]—our model assumes perfect institutional information and symmetric evaluation.
Instead, we show how valuation asymmetries alone can induce disparities in effort and selection
outcomes. From a game-theoretic perspective, our setting builds on all-pay auctions and Tullock
contests, which model competitive effort under asymmetry [79, 29, 27]. However, these models rarely
consider group-level valuation differences. To our knowledge, we are the first to study equilibrium
behavior in large-agent contests with asymmetric valuation distributions across groups. Finally,
our bias model extends work in algorithmic fairness that explores valuation gaps and signal noise
[48, 28, 18], but previous strategic classification models typically lack inter-agent competition or
valuation-based disparities [14, 29]. Thus, our work offers a novel integration of asymmetric group
valuations into competitive contest frameworks, with implications for equilibrium behavior, fairness,
and institutional design. See Section A for further discussion and detailed comparisons.
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2 Model and metrics

We consider a population of n agents competing for k = cn indistinguishable spots, where c ∈ (0, 1)
denotes the selection fraction. Agents are partitioned into two groups: an advantaged group G1

of size (1 − α)n and a disadvantaged group G2 of size αn, where α ∈ (0, 1). Each agent i ∈ Gℓ

(ℓ ∈ {1, 2}) has a valuation vi ∼ pℓ supported on Ωℓ ⊆ R≥0. We model systemic disadvantage via a
scaling of valuations: if p1 is the valuation distribution for G1, then G2 has valuations drawn from
p2(v) =

1
ρp1(

v
ρ ), where ρ ∈ (0, 1] captures the degree of bias, implying Ev∼p2

[v] = ρEv∼p1
[v]. For

instance, if p1 is uniform on [0, 1], then p2 is uniform on [0, ρ]. Such a bias model has been widely
studied in the fairness literature [48, 16, 19] and serves as a benchmark for understanding systemic
disparities. Section D.1 discusses extensions where the valuation distributions p1 and p2 are truncated
Gaussians, and the bias parameter ρ may also be drawn from a distribution, introducing stochastic
heterogeneity across candidates. These structural disparities across groups may stem from unequal
access to opportunity, differences in marginal returns, labor market discrimination, or broader societal
narratives about value; see also Remark 2.1 for practical scenarios.

Each agent also has an initial ability ai ∼ pa supported on Ωa ⊆ R≥0, drawn independently. We
assume that pa is identical across groups. Agents choose policies Ai : Ωℓ × Ωa → R≥0 that map
their type θi = (vi, ai) to an exerted effort ei = Ai(θi). The agent’s score is si = ei + ai. A strictly
increasing merit function m : R≥0 → R≥0 maps scores to merit. The institution selects the k agents
with the highest merit values. Each agent’s payoff is

fi(vi, ai, ei; s1, . . . , sn) = I(m(si) among top k)·vi−(si−ai) = I(si among top k)·vi−(si−ai),

where the second equality uses the strict monotonicity of m. Agents know n, k, p1, p2, pa, their
group identity, and their own type θi = (vi, ai), but not others’ types. Let A = (A1, . . . , An) denote
the joint policy profile. The probability that agent i is selected after exerting effort e is

Pi(e; ai, A−i) = P (e+ ai is among the top k scores of {Aj(θj) + aj}j ̸=i ∪ {e+ ai}) ,

where θj = (vj , aj) are drawn i.i.d. from the respective group distributions. The expected payoff is

πi(vi, ai, e;A−i) = Esj [fi(vi, ai, e; s1, . . . , sn)] = Pi(e; ai, A−i) · vi − e.

A policy profile A is a Nash equilibrium (NE) if, for all i, v, a, and e,

πi(v, a, e;A−i) ≤ πi(v, a,Ai(v, a);A−i). (1)

We implicitly assume that agents act rationally and strategically to maximize their expected payoffs,
using their knowledge of the contest structure to compute the NE policy A [77]. For simplicity, we
sometimes assume that pa is a point mass at 0, so that policies depend only on valuations.

A special case of our model generalizes the classical undifferentiated contest (where p1 = p2), which
has been extensively studied [79, 55, 85]. To the best of our knowledge, our work is the first to study
strategic asymmetries arising from valuation differences in settings where group sizes are known and
fixed, a structure commonly seen in admissions and hiring. We provide detailed comparisons with
prior works [1, 29, 27] in Section A.1. Remark E.7 discusses extensions to multi-group settings and
to heterogeneous effort-to-merit mappings, where each individual may convert effort into merit at a
different (non-linear) rate.

Metrics. We study three metrics to evaluate fairness, efficiency, and institutional outcomes un-
der a given policy A. Define Rℓ(A) as the (random) fraction of agents selected from group
Gℓ. The representation ratio is rR(A) := E

[
min

{
R1(A)
R2(A) ,

R2(A)
R1(A)

}]
,1 a metric commonly used

in the fairness literature [22, 6, 17]. rR(A) ∈ [0, 1], and low values indicate underrepresen-
tation of one group. Building on standard notions of allocative efficiency [70], define group-
wise social welfare as Sℓ(A) := 1

|Gℓ|
∑

i∈Gℓ
(I(i selected) · vi − ei). The social welfare ratio

is rS(A) := E
[
min

{
S1(A)
S2(A) ,

S2(A)
S1(A)

}]
. This metric measures disparities in average payoffs between

groups. Define the average revenue asRV(A,m) := E
[
1
k

∑
i selected m(si)

]
, capturing the average

merit of selected agents and aligns with institutional objectives [33, 34].

1We consider the min operator since randomness can occasionally lead to equal or even higher representation
for the disadvantaged group G2. This becomes vanishingly rare as n → ∞.
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We analyze how the NE policy A and associated metrics vary with the bias parameter ρ and the
selection fraction c. These parameters capture systemic disparities and selection competitiveness,
respectively. Even for simple instances, deriving closed-form NE strategies under asymmetric
valuations is significantly more complex than in the undifferentiated case. A worked example
illustrating these challenges is provided in Section B.
Remark 2.1 (Practical settings with group-based valuation bias). Our model captures environ-
ments where disadvantaged groups anticipate lower returns from being selected—due to structural
barriers, social context, or biased algorithmic feedback (see Section 1). For example, as discussed in
Section 1, persistent wage gaps across gender and race—even after accounting for qualifications—as
well as biased algorithmic recommendations can diminish expectations about the benefits of selection.
These lower expectations can rationally reduce pre-selection effort, even under formally fair rules,
and represent the main regime we study. That said, in domains such as credit, housing, or education,
disadvantaged groups may instead face higher marginal returns due to limited outside options; this
can be modeled by reversing which group has the compressed valuation distribution.

3 Theoretical results: Nash equilibrium and metrics for large n

The first question we address is whether a Nash equilibrium (NE) policy exists for the two-group
contest and how it can be computed. While characterizing NE policies for finite n is challenging,
the large-population limit (n → ∞) reveals an interesting and tractable structure. The following
result shows that in this limit, it is possible to describe how the strategies of the two groups, G1 and
G2, converge. However, the absence of an explicit policy formulation for finite n complicates the
interpretation of convergence, which we address by adopting the notion of an approximate NE policy.
Definition 3.1 (ε-Nash equilibrium [54]). For an ε > 0, a policy A is said to be an ε-NE policy if
for any ℓ ∈ {1, 2}, agent i ∈ Gℓ, type (v, a) ∈ Ωℓ × Ωa, and effort e ≥ 0, the following condition is
met: πi(v, a, e;A−i) ≤ πi(v, a,Ai(v, a);A−i) + ε.

An ε-NE permits stability violations up to ε, with exact NE recovered when ε = 0. This notion
allows us to formalize the convergence of NE policies in the following theorem.
Theorem 3.1 (The two-group contest: Large n limit). Let α, c ∈ (0, 1). For ℓ = 1, 2, let pℓ be a
density supported on a domain Ωℓ ⊆ R≥0. Let pa be a density supported on a domain Ωa ⊆ R≥0.
Let m : R≥0 → R≥0 be a merit function that is strictly increasing. For ℓ = 1, 2, let Fℓ be a
cumulative density function (CDF) of the sum of valuation and initial ability such that for any
ζ ∈ R≥0, Fℓ(ζ) = Prv∼pℓ,a∼pa

[v + a ≤ ζ]. Suppose (Ω1 ∪ Ω2) + Ωa is connected2 and densities
p1, p2, pa are positive at any point of their own domains. Let t be the unique solution to the equation

(1− α)F1(ζ) + αF2(ζ) = 1− c. (2)

Define s(v, a) := 0 if v + a < t and s(v, a) := max {t− a, 0} if v + a ≥ t (3)
and let policy A be: each agent i ∈ G1 uses the restriction Ai = s|Ω1×Ωa

, while each agent j ∈ G2

uses the restriction Aj = s|Ω2×Ωa . Moreover, this solution t is monotonically decreasing with c.

This A is the unique policy such that there exists an infinite sequence A(1), . . . , A(n), . . ., where
A(n) is a policy for the two-group contest with n agents characterized by a threshold function
s(n) : (Ω1 ∪ Ω2) × Ωa → R≥0, such that the followings hold: (1) For every integer n ≥ 1, agent
i ∈ G1 uses the restriction A

(n)
i = s(n)|Ω1×Ωa

, while each agent j ∈ G2 uses the restriction
A

(n)
j = s(n)|Ω2×Ωa and limn→∞ s(n) = s; (2) Every A(n) is an εn-NE policy with limn→∞ εn = 0.

This theorem characterizes the policy A through a threshold function s parameterized by t, establish-
ing that there exists a sequence of policies A(1), . . . , A(n), . . . that converge towards A, progressively
approximating it. In Section E, we provide the explicit form of policies A(n) characterized by s(n)

(in Theorem E.2) and a complete proof. Note that the value t defines the threshold function s, and
consequently, the policy A. Therefore, we focus below on analyzing t. We first remark on the
uniqueness of t guaranteed by Equation (2) under certain assumptions on the domains and densities
(see Lemma E.1), which are natural in real-world contexts and satisfied by the distributions discussed
in Section 2. These assumptions ensure that each Fℓ, being a CDF, is strictly monotonic over its

2Here, symbol + represents the Minkowski sum of domains, where A+B = {a+ b : a ∈ A, b ∈ B}.
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domain Ωℓ+Ωa. Consequently, the combined CDF (1−α)F1+αF2 must also be strictly monotonic
over the connected domain (Ω1 ∪ Ω2) + Ωa, which guarantees the uniqueness of the solution t.

A key takeaway from Theorem 3.1 is that, in the large-n limit, each agent makes a binary decision
based on their combined valuation and initial ability v + a: either exert effort max{t − a, 0} to
ensure a score of at least t, or put in no effort at all. The threshold t, determined by Equation (2),
plays a central role in this decision. It is chosen such that a fraction 1− c of the agent population has
v+a ≤ t, meaning that exactly a fraction c is expected to exert effort and compete. Thus, t implicitly
encodes the level of competition: higher values of t reflect more intense competition, requiring higher
effective scores for selection.

Computing the threshold in the NE policy. Equation (2) is crucial for applying Theorem 3.1,
as it enables the explicit computation of t, facilitating analysis in Section 4. Let Fa be the CDF
of the initial ability.3 Note that Fℓ(ζ) = Prv∼pℓ,a∼pa [v + a ≤ ζ] =

∫
Ωℓ

pℓ(v)Fa(ζ − v)dv. Thus,
Equation (2) is equivalent to (1− α)

∫
Ω1

p1(v)Fa(ζ − v)dv + α
∫
Ω2

αp2(v)Fa(ζ − v)dv = 1− c.

Specifically, when p2(v) =
1
ρp1

(
v
ρ

)
for some ρ ∈ (0, 1], this equation becomes becomes

(1− α)
∫
Ω1

p1(v) · Fa(ζ − v)dv + α
ρ

∫
Ω2

p1(
v
ρ )Fa(ζ − v)dv = 1− c. (4)

We illustrate how to use this equation to compute the explicit form of t. Let p1 be uniform on
Ω1 = [0, 1], p2 be uniform on Ω2 = [0, ρ], and pa be uniform on Ωa = [0, 1]. Such uniform densities
are often used in studies and analyses [48, 16, 19], serves as a fundamental benchmark for insights into
decision-making, allocation mechanisms, and strategic behavior. Moreover, domain (Ω1∪Ω2)+Ωa =
[0, 2] is connected for any value of ρ ∈ (0, 1], satisfying assumptions in Theorem 3.1. Since p1(v) = 1
for v ∈ [0, 1], p2(v) = 1

ρ for v ∈ [0, ρ] and Fa(ζ−v) = min{1, (ζ−v)+} (Here, x+ = max{0, x}),
Equation (2) reduces to

∫ 1

0
(1 − α) · min{1, (ζ − v)+}dv +

∫ ρ

0
α
ρ · min{1, (ζ − v)+}dv = 1 − c.

Consequently, the solution t is a piecewise function of parameters ρ, c, and α; see Proposition F.4
for its explicit form. Here, we illustrate the behavior of t over a representative range where α = 0.5
(equal-sized groups) and 0 < c ≤ 1

4 (high selectivity).

t = 2− 2
√
c if ρ < 1− 2

√
c and t = 1+3ρ

1+ρ −
√

4cρ(1+ρ)−ρ(1−ρ)2

1+ρ if ρ ≥ 1− 2
√
c. (5)

Note that, while t is the same for both groups, it may happen that t > 1 + ρ (when ρ < 1− 2
√
c),

implying that no agent in G2 exerts any effort. We note that for other densities, such as piecewise
linear and polynomial, including Pareto, explicit forms of the solution t are achievable. For instance,
consider a Pareto distribution defined by p1(v) =

2
v3 for v ≥ 1, a ρ-biased density p2(v) =

1
ρp(

v
ρ ),

and pa is a point mass at 0. Here, t can be explicitly calculated: If α + c − 1 > 0 and ρ <√
(α+ c− 1)/α, then t = ρ

√
α/(α+ c− 1) otherwise, t =

√
(1− α+ αρ2)/c.

Computing the metrics. We next ask whether the key metrics associated with the NE policy A from
Section 2 can be computed in closed form. Given the simple threshold structure of A, these metrics
can indeed be expressed as functions of the scalar threshold t. However, for general densities p1 and
p2, the expressions for the representation ratio rR(A) and social welfare ratio rS(A) become more
complex due to the presence of the min operator and the convolution involved between pℓ and pa
(see Theorem F.3). For clarity, we focus on the special case where p2 is a ρ-biased version of p1 and
pa is a point mass at 0, which admits more tractable expressions. Since t depends on the parameters
ρ, c, and α, the resulting metrics are also functions of these parameters. The following theorem
characterizes both the explicit forms and their monotonicity behavior.

Theorem 3.2 (Metrics and their monotonicity). Assume p2(v) =
1
ρp1

(
v
ρ

)
for some ρ ∈ (0, 1]

and pa is a mass point at 0. Let policy A be defined as in Theorem 3.1, characterized by t being the
unique solution of Equation (4). Then for any density p1,

rR(A) = 1−F1(t/ρ)
1−F1(t)

, rS(A) =
ρ
∫ ∞
t/ρ

(v−t/ρ)p2(v)dv∫ ∞
t

(v−t)p1(v)dv
, andRV(A,m) = m(t).

Moreover, rR(A) and rS(A) are monotonically increasing w.r.t. ρ, whileRV(A,m) is monotonically
increasing w.r.t. ρ and monotonically decreasing w.r.t. c and α, for any merit function m.

3Throughout this paper, we extend the domain of a CDF F to the entire real line R such that F is monotoni-
cally non-decreasing, with F (−∞) = 0 and F (∞) = 1.
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(a) n = 20 (b) n = 200 (c) n = 600

Figure 1: Evolution of group effort policies at iteration 500 for various n with ρ = 0.8 and c = 0.2.

The proof is deferred to Section F. Combined with the closed-form expression for t, this result enables
direct computation of the metrics, which we use for contest analysis in Section 4. Notably, rR(A)
and rS(A) increase with c, whileRV(A,m) decreases, highlighting both benefits and trade-offs for
the institute. The qualitative behavior of rR(A) and rS(A) w.r.t. c and α, however, depends on the
underlying densities; see Remark F.2.

Discussion of NE policies for finite n. To assess the robustness and practical relevance of our theoreti-
cal results, we study the closeness between the finite-n NE policy and the infinite-population threshold
policy s defined in Equation (3) (see Section C). We propose a dynamic procedure (Algorithm 1) that
initializes with s1 = s2 = s for groups G1 and G2, and iteratively updates them.

We simulate this dynamics under the setting p1 = Unif[0, 1], p2 = Unif[0, ρ = 0.8], pa = δ0, with
c = 0.2, α = 0.5, and n = 20, 200, 600, 1200, running 500 iterations in each case. Figure 1 shows
representative results; full plots are in Figures 5–8.

The simulations show that even moderate population sizes (n ≥ 600) yield policies closely tracking
the infinite NE, validating its use as a practical approximation. We also observe group-level differences
in convergence speed and stability (Figure 9), with smoother and faster stabilization as n increases.

Finally, using the proof of Theorem 3.1, we establish that the finite-n NE policy is O(log n/n)-
close in value and yields an O(

√
log n/n)-NE. Concretely, this means that for large n, the finite

policy takes the form s(n) = 0 for v < t − O(
√

log n/n) and s(n) = t otherwise. For general
distributions, closeness depends on the density structure and is more involved. Aligning with our
empirical observations, these results reinforce the practical relevance of the large-n analysis, which
captures the incentive-aligned baseline under strategic behavior. See Section C.2 for details.

Key ideas in the proof of Theorem 3.1. The proof involves two main steps: hypothesizing the NE
policy structure and verifying that it is indeed an equilibrium. We sketch the core ideas below; a full
overview appears in Section E.1. For clarity, we focus on the case where pa is a point mass at 0.

Hypothesizing the structure of the NE policy. The key challenge in characterizing the NE policy lies
in the absence of its explicit form for finite n. Drawing intuition from the undifferentiated case with
density p, where the NE policy converges to a threshold function s(v) = F−1

p (1−c) if v ≥ F−1
p (1−c)

and 0 otherwise, the first idea is to hypothesize that in the two-group case, the NE policies s1, s2
also take threshold forms with group-dependent thresholds t1, t2. However, asymmetry in p1, p2
complicates the expression of winning probabilities Pi and prevents a straightforward computation of
t1, t2. Focusing on the uniform case where p1 is Unif[0, 1] and p2 is the ρ-biased version supported
on [0, ρ], the second idea is that in the limit n → ∞, NE stability requires t1 = t2 = t. If t1 > t2,
then some agents in G1 benefit by reducing their effort to slightly above t2, contradicting NE; a
symmetric argument holds if t1 < t2. Although s1 and s2 are defined on different domains, they
can be viewed as restrictions of the same threshold function s characterized by t. This justifies
setting s1 = s2 = s with a shared threshold t, and modeling the two-group contest using an effective
mixture density p = (1 − α)p1 + αp2 supported on Ω1 ∪ Ω2. As n → ∞, the contest becomes
indistinguishable from the undifferentiated case with p, yielding the same threshold t = F−1

p (1− c)
as in Equation (2). Thus, the NE policy A defined in Theorem 3.1 is a natural candidate for the
limiting equilibrium. Note that this p is only used for hypothesizing NE rather than demonstrating the
convergence; see discussion in Section E.4. Moreover, the above argument suggests that, in the limit,
the strategic environment becomes uniform across all agents, motivating us to develop an infinite
contest (Definition E.5) and provide an alternative proof; see Section E.5.
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(a) rR(A) v.s. ρ (b) rR(A) v.s. c (c) rS(A) v.s. ρ (d) rS(A) v.s. c

Figure 2: Plots of the representation ratio rR(A) and the social welfare ratio rS(A) as parameters ρ and c vary
for Proposition 4.1, with default settings of (ρ, c, α) = (0.8, 0.1, 0.5). A dotted line in these plots indicates the
threshold at which rR(A) = 0.8 or rS(A) = 0.8.

Showing A is an NE. Although we have a solid guess for the NE policy A, a key challenge arises:
the NE policy for finite n lacks an explicit form, making it unclear how to define convergence to
A. Towards this end, the third key idea is to provide a different proof of convergence to a threshold
function for an undifferentiated case with density p, without using the explicit NE formulations. The
first attempt to prove that A is an ε-NE for sufficiently large n fails—even in the simple case with
p = Unif[0, 1] and c = 0.5. One can construct a valuation v = 0.2 such that the agent benefits by
exerting a small effort e = 0.01, achieving a winning probability Pi(e;A−i) ≈ 0.5 and obtaining
a payoff of approximately 0.09. To bypass this, the idea is to define a proxy sequence A(n) with
threshold policies s(n) that 1) converge to A as n → ∞ and 2) ensure that Pi(e;A

(n)
−i ) → 0 for

e < t, making A(n) an εn-NE with εn → 0 (see Section E.1.3). To this end, we define s(n)(v) = t if
v ≥ t−

√
log n/n and 0 otherwise, so that a (c+

√
log n/n)-fraction of agents put in effort t. This

yields Pi(e;A
(n)
−i ) ≤

√
1/n by concentration, ensuring the payoff from deviation is at most

√
1/n,

and A(n) is an O(
√

log n/n)-NE. Finally, we adapt this new proof technique to the two-group case
with general p1, p2 by carefully selecting the following threshold shift (Definitions E.1 and E.2):

∆n := min
{
F−1
1 (F1(t)−

√
log n/n), F−1

2 (F2(t)−
√

log n/n)
}
,

and set s(n)(v) = t if v ≥ t−∆n, 0 otherwise (see Theorem E.2). We find that limn→∞ ∆n = t,
indicating that s(n) converges to s. Crucially, such a ∆n ensures at least a (c+

√
log n/n)-fraction

of agents, in expectation, putting in effort t. Using this property, we establish a concentration tail
bound for the winning probability Pi analogous to the undifferentiated contest: Pi(e;A

(n)
−i )→ 0 if

e < t (see Lemma E.4). Furthermore, this minimal winning probability guarantees that A(n) is an
εn-NE with limn→∞ εn = 0 (Lemma E.6). This analysis concludes Theorem 3.1.

Uniqueness of the NE guaranteed by Theorem 3.1. First, if Ω1 ∪ Ω2 is not connected, the CDF
(1− α)F1(v) + αF2(v) may not be strictly monotonic over Ω1 ∪ Ω2. For instance, if α = c = 0.5,
p1 is uniform on Ω1 = [0, 1] and p2 is uniform on Ω2 = [2, 3], then (1 − α)F1(1) + αF2(1) =
(1 − α)F1(2) + αF2(2) = 0.5 = 1 − c. Consequently, there may exist two distinct points t1 = 1
and t2 = 2 in Ω1 ∪Ω2, leading to non-unique NEs. In contrast, when Ω1 ∪Ω2 is connected and each
pℓ is positive on Ωℓ, the unique solution t to Equation (3) ensures a unique NE policy. To see this, by
Corollary 3.2 of [20], symmetric agents use symmetric policies in NE, so we hypothesize a policy
pair (s1, s2) for G1 and G2, respectively. As n→∞, both s1 and s2 manifest as threshold functions,
leading to s1 = s2 = s, ensuring the uniqueness of NE. Additionally, it arises because if s1 ̸= s2, the
NE would destabilize, as agents from one group would adjust their thresholds to gain higher payoffs.
This proof can be easily extended to multiple groups and non-identical cost of effort; see Remark E.7.

4 Analysis: metric behavior and intervention design

Variation of metrics with ρ and c. Using Theorems 3.1 and 3.2, we analyze how
the metrics—representation ratio rR(A), social welfare ratio rS(A), and average revenue
RV(A,m)—respond to changes in the bias parameter ρ and the selectivity parameter c. We study
whether these effects are linear or non-linear, and whether they exhibit sharp thresholds.

Setup. We adopt the setting from Section 3: p1 is uniform on [0, 1], p2 is its ρ-biased variant,
uniform on [0, ρ], and pa is a point mass at 0. This isolates the effect of asymmetric valuations while
simplifying calculations. The corresponding CDFs are F1(v) = v and F2(v) = v/ρ, with both
saturating to 1 outside their support. Unless varied explicitly, we use default values ρ = 0.8, c = 0.1,
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and α = 0.5, representing moderate bias, high selectivity, and balanced group sizes. We refer to
Section D.2 for analogous analysis under truncated Gaussian distributions.

Closed-form metrics. Fixing the density setup above, we apply Theorems 3.1 and 3.2 to derive
closed-form expressions for t, rR(A), and rS(A). These are summarized below (proof in Section F).
Proposition 4.1 (Metrics for uniform densities). Let p1 be uniform on [0, 1], p2 uniform on [0, ρ],
and pa a point mass at 0. Let A be the NE policy as n→∞. Let ρc := 1− c

1−α . Then:

t = 1− c
1−α if ρ < ρc, t =

ρ(1− c)

ρ− αρ+ α
if ρ ≥ ρc,

rR(A) = 0 if ρ < ρc, rR(A) =
ρ− αρ+ α+ c− 1

α− αρ+ cρ
if ρ ≥ ρc,

rS(A) = 0 if ρ < ρc, rS(A) =
ρ(ρ− αρ+ α+ c− 1)2

(α− αρ+ cρ)2
if ρ ≥ ρc.

Moreover, RV(A,m) = m(t) for any merit function m(·); rR(A) and rS(A) are monotonically
increasing functions of parameters ρ, c, α.

As in Equation (5), Proposition 4.1 reveals a sharp threshold at ρ = 1− c
1−α . When ρ < 1− c

1−α ,
t lies above the maximum valuation in G2, implying that no agents from that group participate.
Consequently, rR(A) and rS(A) are zero and independent of ρ. When ρ crosses this threshold, these
metrics become positive and increase monotonically with ρ, reaching 1 at ρ = 1, the symmetric case.

Metric behavior. Figure 2 plots the representation ratio rR(A) and the social welfare ratio rS(A) as
functions of the bias parameter ρ and selectivity parameter c. The corresponding threshold values t are
shown in Appendix Figure 13(b). Both rR(A) and rS(A) exhibit non-linear growth with increasing
ρ and c, and drop sharply—super-linearly—when these parameters decrease. For instance, with
c = 0.1, α = 0.5, and ρ ≤ 0.85, we observe that rR(A) ≤ 0.2, indicating notably low representation
for group G2. This highlights a key practical insight: in highly selective environments, such as
contests with a 1-in-10 selection rate, strategic behavior amplifies disparities. These trends echo
empirical findings on under-representation in competitive domains [80, 64]. Moreover, reductions in
c (i.e., increased selectivity) lead to pronounced declines in both representation and social welfare.

These trends of metrics offer designers of meritocratic selection processes critical insights into
strategies for countering under-representation and elevating rR(A) (or mitigating disparities in
average payoffs and elevating rS(A)). We recall the two main criteria for identifying representation
bias: 1) Ensuring the selection of at least one agent from every group, and 2) adhering to the 80%
rule, which serves as a guideline for identifying potential adverse impact if the hiring rate for G2

falls below 80% of that for G1, i.e., rR(A) ≥ 0.8. Given the fixed nature of α within the population
structure, the main avenues for interventions aimed at improving rR(A) focus on adjusting the
parameters ρ or c. Below, we explore potential interventions for both approaches:

(1) Increasing ρ effectively means increasing the valuation of agents in G2. Various strategies have
been proposed and implemented to achieve this goal. For instance, [39] highlights several approaches
to narrow the pay gap, including enhancing workplace flexibility, decreasing the cost associated
with temporal flexibility, and improving the availability of high-quality, affordable childcare. These
interventions aim to increase job valuation for women, analogous to increasing ρ. Figure 2(a)
quantifies the required increase in ρ: to ensure at least one agent from G2 is selected, ρ must exceed
0.8; to adhere to the 80%-rule, it should be at least 0.976.

(2) As shown in Figure 2(b), raising c above 0.1 satisfies the criterion for selecting at least one agent
from G2, while elevating it to 0.5 meets the 80%-rule requirement. Increasing c represents a more
straightforward approach than boosting ρ and might be more feasible for institutions. This could
involve pre-selecting a larger subset of candidates and applying a distinct selection process to this
subset, based on institutional priorities and the likelihood of successful candidates following the
expected trajectories.

Finally, regarding the average revenueRV(A,m) = m(t), it immediately follows from Proposition
4.1 that RV(A,m) significantly decreases as competition within the entire population intensifies–
either through a decrease in ρ or an increase in c. Given that average revenue is indicative of the
benefit of the institute, this trend underscores the critical need for contest designers to mitigate
systemic biases in valuations. The decline in average revenue with increasing bias compromises not
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only the fairness of the contest, but also the overall quality of the outcomes it produces. This aligns
with research that has explored the losses attributed to systemic biases [43, 58, 67].

Optimizing interventions under cost and fairness constraints. Having identified two policy
levers—reducing bias (ρ) and increasing selectivity (c)—a natural question arises: how should
institutions choose between these interventions to improve outcomes such as the representation
ratio or social welfare ratio? To address this, we formulate a constrained optimization problem for
cost-effective intervention design. We allow two interventions: increasing ρ by ∆ρ ∈ [0, 1− ρ], and
increasing c by ∆c ∈ [0, 1− c]. Let rR(∆ρ,∆c) denote the representation ratio under the NE policy
with updated parameters ρ+∆ρ, c+∆c. The goal is to ensure rR(∆ρ,∆c) ≥ τ while minimizing
intervention cost. We define two components of the cost function:

(1) Resource cost of increasing ρ. Let f : [0, 1− ρ]→ R≥0 be monotonic, modeling the institutional
cost of boosting valuation. A simple form is linear: f(∆ρ) = a∆ρ, justified by first-order Taylor
approximation when ∆ρ is small. Other variants include f(∆ρ) = a∆β

ρ for β > 1, representing the
increase in the marginal cost of continuously improving bias.

(2) Cost via revenue loss. Increasing c reduces average revenue RV(A,m) = m(t), as it lowers
the score threshold t. Let g(∆ρ,∆c) = m(t(ρ, c))−m(t(ρ+∆ρ, c+∆c)), represent the revenue
decline. Since the institution seeks to maximize value, this loss contributes to total intervention cost.

Optimization problem. We formalize the intervention design as:

min∆ρ∈[0,1−ρ], ∆c∈[0,1−c] f(∆ρ) + g(∆ρ,∆c) s.t. rR(∆ρ,∆c) ≥ τ. (6)

This framework also applies to reducing welfare disparities by replacing rR with rS in the constraint.

Empirical calibration. To demonstrate real-world applicability, we calibrate the model using gender-
disaggregated data from JEE Advanced 2024, a highly competitive entrance exam for India’s IITs. Of
180,200 candidates, 139,180 were male and 41,020 female; 40,284 males and 7,964 females qualified.
This yields admit rates of 28.9% for males and 19.4% for females, giving an observed representation
ratio of robs ≈ 0.671. The overall selection rate is c ≈ 0.268, and the female applicant fraction is
α ≈ 0.228. These values anchor our analysis of strategic disparities and potential interventions. In
Section G.1, under the uniform density setup in Proposition 4.1, we compute ρ ≈ 0.882 using the
explicit form of robs = rR(A) = 1− (1−c)(1−ρ)

α−αρ+cρ .

Explicit solution under uniform densities. We now solve the optimization problem under this
uniform density setup with (ρ, c, α) = (0.882, 0.268, 0.228), setting m(e) = e, f(∆ρ) =
5∆1.1

ρ , and g(∆ρ,∆c) = t(ρ, c) − t(ρ + ∆ρ, c + ∆c). This yields the objective: 5∆1.1
ρ −

[t(ρ+∆ρ, c+∆c)− t(ρ, c)], subject to the condition rR(∆ρ,∆c) ≥ τ and feasibility constraints.

Insights. Figure 4 shows the optimal intervention as a function of the target threshold τ . For τ ≤ 0.92,
increasing c (lowering selectivity) is more cost-effective. For τ > 0.92, increasing ρ (mitigating bias)
becomes preferable. This suggests that expanding access is more impactful under high disparity,
while improving group valuation is better when gaps are narrower.

We conducted additional simulations by varying α and c beyond the default values (see Section G.2).
The results remain consistent with our main findings, confirming the robustness of the above key
insights. In Section G.3, we also offer a concrete example to illustrate how our model supports
interpretable predictions and can inform data-grounded interventions—while also noting what is
required to operationalize it in practice.

min
∆ρ∈[0,1−ρ],∆c∈[0,1−c]

5∆
1.1
ρ −

(ρ + ∆ρ)(1 − c − ∆c)

(1 − α)(ρ + ∆ρ) + α

s.t.
(1 − α)(ρ + ∆ρ) + α + c + ∆c − 1

α − α(ρ + ∆ρ) + (c + ∆c)(ρ + ∆ρ)
≥ τ

ρ + ∆ρ ≥ 1 −
c + ∆c

1 − α
.

Figure 3: Explicit form of Problem (6). Figure 4: Plot of optimal interventions
(∆ρ,∆c) for various τ ∈ (0.671, 1].
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Alternative potential interventions. Having discussed interventions based on adjusting ρ and c,
we next consider alternative approaches that modify the contest structure itself. These interventions
can further reduce disparities in representation or social welfare ratios, though they depart from
the baseline two-group contest formulation. A detailed analysis of these extensions is provided in
Section G.4.

Introducing preference heterogeneity. One approach is to apply group-specific merit mappings of
the form mℓ(s) = xℓs + yℓ for group Gℓ (ℓ = 1, 2), with parameters xℓ, yℓ ≥ 0. Here, xℓ acts as
a scaling factor or “handicap,” and yℓ as an offset or “head start” (see also Appendix A). With this
intervention, we can still compute the Nash equilibrium for infinite n (Theorem G.1), which implies:

• rR(A) and rS(A) increase with ρ, c, and α, as well as with x2, y2, and decrease with x1, y1;
• Choosing merit parameters with x2 > x1 and y2 > y1 can sustain high representation and

welfare ratios (e.g., rR(A), rS(A) ≥ 0.8) even in highly selective settings;
• Increasing x2 or y2 can thus serve as an effective disparity-reducing intervention.

Incorporating outside options. Another possibility is to assign each agent in group Gℓ a reservation
payoff λℓ ≥ 0 if not selected. Because this payoff is earned only upon losing, a higher λℓ lowers
the marginal benefit of effort, acting opposite to the merit parameters xℓ and yℓ. Hence, increasing
λ1 (the outside option for the advantaged group) reduces their effort incentives and can help narrow
representation and welfare gaps.

Setting group-specific selection rates. Finally, the institution can set separate capacity constraints
for each group—for instance, selecting a c-fraction of agents from G1 and G2 independently. This
decomposes the overall model into two within-group contests, fixing rR(A) = 1 under equal selection
rates. Compared to the combined contest, agents in G2 now face a lower bar for selection and exert
more effort on average.

5 Conclusion, limitations, and future work

This work highlights a central tension in modern meritocratic systems: even when selection mech-
anisms are formally unbiased, systemic disparities in how groups perceive value can lead rational
agents to behave in ways that perpetuate inequality. Our model captures this dynamic through a
strategic contest framework that extends all-pay auctions to multi-group settings. By analyzing Nash
equilibria in the large population limit, we characterize how group-level biases (ρ) and selectivity
(c) affect fairness and institutional metrics such as representation, social welfare, and revenue. A
central contribution is Theorem 3.1, which provides an explicit form for equilibrium strategies under
broad conditions. Our framework enables interpretable predictions and supports data-grounded policy
interventions.

Our model makes simplifying assumptions to enable analytical tractability. Most notably, it assumes
agents are fully rational and that merit is captured by a single-dimensional notion of effort. In
practice, decision-making is shaped by uncertainty, cultural context, and multifaceted criteria for merit.
Extending the framework to incorporate bounded rationality, noisy information, or multidimensional
effort remains an important direction for future work. Several application-driven extensions are
also promising. One involves modeling university admissions systems with external incentives
(e.g., brand-based free-riding), which may result in over-representation of certain groups (ρ > 1).
Another is to study how affirmative action or group-dependent costs reshape equilibrium behavior.
These variants would help bridge theory with institutional design. Beyond these extensions, an
important avenue is to embed this static framework within dynamic feedback environments where
perceptions evolve over time in response to outcomes and institutional signals. Such models could
capture how bias propagates or attenuates across repeated selection cycles. Finally, while our model
isolates a tractable facet of systemic inequality, real-world disparities—especially in AI-mediated
evaluations—demand broader integration with social and historical context. As algorithmic tools
shape hiring, admissions, and promotion, our framework helps explain how group-level differences
in perceived value can interact with selection to amplify or mitigate bias. More broadly, we view
this work as a step toward unifying rational-choice and structural perspectives on inequality through
formal, data-driven modeling. We hope this work informs the design of more equitable, data-driven
decision systems.
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A Detailed related work

Meritocratic selection process, pay gap, and statistical discrimination feedback loop. In the social
sciences, there is a large body of work that studies meritocratic selection processes and their lim-
itations; see [59, 57, 76] and the references therein. [15, 62] discuss the pay gap in meritocratic
systems, shedding light on how merit-based reward systems and gender wage gaps intersect. [38],
in an extensive line of work, discusses the gender pay gap and addresses the economic and social
factors contributing to wage disparities between men and women. Another line of research focuses on
studying statistical discrimination feedback loops, which model how firms update their beliefs about
group quality over time, reinforcing disparities [3, 69, 21, 23, 5, 49]. For instance, [3] emphasizes how
the cost of individualized assessment incentivizes reliance on priors, which can become self-fulfilling
and reinforce structural inequality. [3] models a profit-maximizing employer who faces noisy signals
of productivity and rationally uses group-level statistics, leading to persistent wage gaps even with
equal underlying abilities. [21] show that pessimistic beliefs about a group’s productivity can result
in tougher standards, reduced investment incentives, and discriminatory equilibria. [23] extend this to
two-sided settings where firms and workers both act on noisy beliefs, reinforcing low-investment,
low-opportunity equilibria. A key distinction, as we understand it, is that classical models of statistical
discrimination typically generate disparities through imperfect and group-dependent beliefs about
identical underlying abilities. In contrast, our framework allows perfect, unbiased information at the
institutional level and identical selection criteria for all candidates. We focus instead on valuation
asymmetries—that is, differences in the perceived benefit of success across groups—and show that
these differences alone can lead to disparities in effort and representation, even under meritocratic
selection.

All-pay auctions and Tullock contests. In game theory, there is a significant body of literature that
investigates all-pay auctions. For instance, [79, 55, 85] study the setting in which every agent knows
their private valuations and the distribution of other agents. Specifically, [79] study a “biased” 2-agent
contest in which the designer is allowed to give a “headstart” to the effort of one agent. This headstart
can be interpreted as differing merits of the agents, which corresponds to the initial abilities in our
model. They characterize the optimal design for maximizing the expected highest effort or total effort
of agents. In this case, the bias is introduced by the designer, rather than inherent in the system. [85]
study the undifferentiated case for a single winner, while the contest designer is allowed to select the
contest success function (CSF) based on agents’ efforts. Their main focus is on studying the optimal
design of the CSF that maximizes the total expected effort. The main difference from our model is
that they consider bias in the efforts instead of in the valuations.

The all-pay auction with complete information has also been well-studied. Unlike the setting in this
paper, these works assume that the valuations of all agents are known. [7] initiated the study of an
n-agent k-winner all-pay auction and provided a complete characterization of the NE distribution.
A line of research investigates the optimal design for maximizing the total expected effort/revenue,
including imposing a multiplicative bias on the effort of agents [32, 36] or introducing an additional
headstart [35, 33, 34, 36, 90].

Tullock contests [82, 81, 30, 34, 25, 53, 50] model the probability of winning based on relative effort
without direct costs for participation, whereas an all-pay auction requires all agents to pay their bid
amounts regardless of winning, with only the highest bidder(s) securing the prize. [65] study the
dynamics of large contests, where a significant number of agents compete. Such contests pose unique
analytical challenges and offer insights into the behavior of agents in mass competition scenarios.
The works of [32, 33, 34] also investigate how the design of contests can be optimized to maximize
revenue, considering factors like bias in efforts, headstarts, and the structure of the CSF. Across these
studies, a common theme is the characterization of Nash equilibrium strategies within the context of
different contest models, and identifying designs that encourage maximal effort or revenue.

Strategic classification and ranking. Another related direction is strategic learning, which mainly
includes strategic classification [14, 44, 60, 9] and strategic ranking [29]. In strategic classification,
agents can exert effort to alter their features to achieve higher values according to the published
classifier. The designer’s aim is to select a classifier that is robust to the manipulation of inputs
by strategic agents. However, in this setting, agents’ efforts are influenced solely by the published
classifier, with no competition among them. In strategic ranking problems, agents’ payoffs depend on
their post-ranking, which is determined by a combination of their prior rankings and efforts. While
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there is competition in this problem, all agents have the same valuation, which is different from our
model.

Models of bias in valuations. Several works have modeled group-level biases based on empirical
observations [4, 10, 48, 28, 18]. Additive and multiplicative skews in the valuations have also been
modeled [48, 10]. [48] consider valuations v > 0 of the advantaged group distributed according
to the uniform or Pareto density and, for the disadvantaged group, they model the output as v/β
for some fixed β ≥ 1. We consider a class of bias models inspired by this model, the ρ in our
case corresponds exactly to 1/β. The implicit variance model of [28] models differences in the
amount of noise in the valuations for individuals in different groups. Here, the output estimate is
drawn from a Gaussian density whose mean is the valuation e (which can take any real value) and
whose variance depends on the group of the individual being evaluated: The variance is higher
for individuals in the disadvantaged group compared to individuals in the advantaged group. [18]
proposes an optimization-based approach to model how group-wise valuation distributions can be
obtained by tuning parameters such “information constraints” or “risk aversion”.

A.1 Comparison of the two-group contest with relevant models

To the best of our knowledge, our model is novel and has not been studied in the literature. Below, we
compare our model with the most relevant models. Firstly, [1] examines a specific case of our model
with n = 2, k = 1, and α = 0.5, demonstrating the existence of a unique NE under certain conditions.
While their analysis is limited to a two-player scenario, our model generalizes this by considering any
number of players and allowing for multiple winners. [29] propose another two-group contest model.
However, a key distinction in our model is the consideration of asymmetric valuation distributions
across groups, whereas [29] introduces bias through the cost of effort, assuming symmetric valuations
for all agents. This asymmetry in valuation distributions in our model adds complexity to the analysis.

Another related work is [27], which explores an all-pay auction with two groups. In their model,
agents’ abilities are symmetrically distributed, and those in the advantaged group may receive
additional rewards with equivalent bids. Despite the symmetric strategic environment in [27], our
model features asymmetric valuation distributions between groups, resulting in an asymmetric
strategic environment. This asymmetry introduces further computational challenges for deriving the
NE; details can be found below.

A detailed comparison with [27]. We provide a detailed comparison between our two-group
model and that in [27]. The primary distinction is that their model results in a symmetric strategic
environment, while ours creates an asymmetric one. Below, we provide further details on this
difference.

In the model of [27], each agent belongs to the target group with probability µ or to the non-target
group with probability 1 − µ, independently of the other agents. The ability of an agent is then
drawn i.i.d. from distribution F if they belong to the target group, and from G if they belong to the
non-target group. As a result, the ability of each agent is drawn identically and independently from
the joint distribution µF +(1−µ)G. Let H be the CDF of this joint distribution. The probability that
a given ability v is among the top k abilities is then given by

∑n−1
i=n−k

(
n−1
i

)
H(v)i(1−H(v))n−1−i,

which is the same for each agent, thereby resulting in a symmetric strategic environment.

In our model, consider a simplified case where pa is a point mass at 0. Then, F1 and F2 correspond
to the cumulative distribution functions (CDFs) of p1 and p2, which represent the valuation densities
of G1 and G2, respectively. The probability that, for an agent in G1, a given valuation v is among the
top k valuations is given by:

n−1∑
i=0

n−1−i∑
j=n−k−i

(
n− 1

i

)(
n− 1− i

j

)
F1(v)

i(1− F1(v))
(1−α)n−1−iF2(v)

j(1− F2(v))
αn−j .

In contrast, the probability for an agent in G2 is given by
n−1∑
i=0

n−1−i∑
j=n−k−i

(
n− 1

i

)(
n− 1− i

j

)
F1(v)

i(1− F1(v))
(1−α)n−iF2(v)

j(1− F2(v))
αn−1−j .

These two expressions differ whenever p1 ̸= p2, leading to asymmetry in the strategic environment.
This asymmetry significantly complicates the computation of the order statistics for the (k − 1)-th
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effort compared to the symmetric ones. E.g., for strategies s1 and s2, let Fsℓ(v) denote the CDF of
efforts sℓ(v) when v ∼ pℓ. The cumulative distribution of the (k − 1)-th effort e⋆ from an agent in
G1 is then given by:

Pr[e⋆ ≤ v]

=

n−1∑
i=0

n−1−i∑
j=(1−c)n−i

(
n− 1

i

)(
n− 1− i

j

)
Fs1(v)

i(1− Fs1(v))
(1−α)n−1−iFs2(v)

j(1− Fs2(v))
αn−j .

In contrast, the cumulative distribution of the (k − 1)-th effort e⋆ from an agent in G2 is given by:

Pr[e⋆ ≤ v]

=

n−1∑
i=0

n−1−i∑
j=(1−c)n−i

(
n− 1

i

)(
n− 1− i

j

)
Fs1(v)

i(1− Fs1(v))
(1−α)n−iFs2(v)

j(1− Fs2(v))
αn−1−j .

In the symmetric ones (s1 = s2 = s), the computation simplifies to:

Pr[e⋆ ≤ v] =

n−1∑
i=(1−c)n

(
n− 1

i

)
Fs(v)

i(1− Fs(v))
n−1−i.

Thus, the calculus and approximations for the two-group contest is significantly more difficult,
making it harder to arrive at the equilibrium policies than in the contest with a symmetric strategic
environment.

B Illustrative examples for the two-group case

In this section, we present a two-agent example with a biased valuation distribution to illustrate both
the difficulty of computing the Nash equilibrium (NE) policy and the significant impact of valuation
bias on the contest outcome. Let c = 0.5. Let the density p1 of agent 1 be the uniform distribution on
Ω1 = [0, 1] and p2 of agent 2 be the ρ-biased version of p1 supported on Ω2 = [0, ρ]. Let the density
pa be a point mass at 0. Let Aℓ : Ωℓ → R≥0 be the NE policy that maps valuation vℓ to effort Aℓ(vℓ).
We assume Aℓ is monotonically increasing on the domain Ωℓ.

In this example, if agent 1 puts in effort e, it wins if the effort of agent 2 is smaller than e. Thus, its
winning probability P1 =

A−1
2 (e)
ρ

4 and its payoff is π1(v, e;A2) =
A−1

2 (e)
ρ v − e. Similarly, if agent

2 puts in effort e, its winning probability P2 = A−1
1 (e) and payoff is π2(v, e;A1) = A−1

1 (e)v − e.
Then, by the stability condition (1), we have ∂πℓ(v,e;A3−ℓ)

∂e |e=Aℓ(v)= 0, implying that

A′
2(A

−1
2 (A1(v))) =

v

ρ
, and A′

1(A
−1
1 (A2(v))) = v.

Solving this gives us the following explicit forms:

∀v ∈ Ω1, A1(v) =
ρ

ρ+ 1
vρ+1; and ∀v ∈ Ω2, A2(v) =

ρ−1/ρ

ρ+ 1
v1+1/ρ. (7)

Specifically, when ρ = 1 (the unbiased case), we have A1 = A2 = A, which simplifies the stability
condition to A′(v) = v, yielding the NE policy A(v) = v2

2 . Also note that for v ∈ Ω2,

A1(v)

A2(v)
= ρ1+1/ρvρ−1/ρ ≤ ρ1+1/ρρρ−1/ρ = ρ1+ρ ≤ 1,

which implies that A1(v) ≤ A2(v). Thus, agent 2 is more inclined to put in greater effort than agent
1 for identical valuations.

4Here, we assume A−1
2 (e) = ρ if A2(ρ) < e.
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Imagine an institute that is unaware of the bias in valuations across two agents and thus applies the
unbiased NE policy A(v) = v2

2 to predict the contest outcome. For instance, it would predict the
average revenue

RV(A,m) =

∫ 1

0

Pr
vℓ∼pℓ

[
m

(
max

{
v21
2
,
v22
2

})
> t

]
dt = 0.25,

where the merit function is m(t) = t. However, under a ρ-biased valuation distribution, the true
average revenue is RVρ = ρ

2(ρ+1) , which decreases monotonically with ρ. This implies that the
institute could overestimate its expected benefitRV by a fraction of

0.25−RVρ

RVρ
=

1− ρ

2ρ
,

which amounts to approximately 13% when ρ = 0.8. This example underscores the importance of
studying asymmetric valuations and highlights the relevance of our proposed metrics for analyzing
their impacts.

We also observe that even for this simple two-agent example, the stability condition is considerably
more complex than in the undifferentiated case. In more general settings—such as those involving
multiple spots, non-uniform valuation densities, or non-trivial ability densities—the explicit forms of
NE policies for a two-group contest become even more complicated, making direct computation and
explicit analysis impractical.

C Analysis of finite NE policies in the uniform distribution case

In this section, we use the uniform distribution example from Section 3 as a running example,
introduce a dynamic algorithm (Algorithm 1) to approximate the finite NE policies, and perform a
statistical comparison between the finite and infinite cases. Additionally, we provide a theoretical
analysis of the closeness between the NE policies and associated metrics in the finite and infinite
cases.

C.1 Empirical analysis

Dynamics for computing finite NE policies. Recall that we consider p1 = p = Unif[0, 1],
p2 = p2 = Unif[0, ρ] for ρ ∈ [0, 1], and pa ≡ 0. Algorithm 1 presents a dynamic procedure to
approximately compute the finite-population NE policies.

We initialize each group’s policy s
(0)
ℓ with a smoothness variant of the infinite NE policy (Lines 3–4),

then iteratively update these policies over N steps and return the final output as an approximation of
the finite NE (Lines 5–38). At each iteration t:

1. We first update the effort set Et based on the policies s
(t−1)
ℓ from the previous iteration

(Line 6). Since the action space is continuous, we restrict agents to choose efforts only from
this finite set Et.

2. Next, we update the policy for group G1 using the policy s
(t−1)
2 from the previous iteration

(Lines 7–21). The computation is performed over a finite set V (1) of discrete valuation
levels (Line 1). For each valuation v, we determine the best-response effort that maximizes
the agent’s expected payoff by computing winning probabilities through a convolution of
binomials (Lines 9–19). Specifically, we set p1 = 1− v in Lines 9 and 12, consistent with
the monotonicity constraint enforced in Line 11. Finally, Line 21 updates the policy using a
carefully chosen step size a

(t)
ℓ to ensure convergence.

3. We then update the policy for group G2 based on the policy s
(t−1)
1 from the previous

iteration (Lines 7–21). This process mirrors that of G1, with the main difference lying in the
computation of winning probabilities for each effort in Et due to the asymmetric valuation
distributions.

The resulting policies sℓ = s
(T )
ℓ are defined on discrete valuation grids. To obtain continuous

policies, we interpolate them by connecting adjacent valuation points with straight lines, resulting in
piecewise-linear approximations.
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Choice of hyperparameters. In our simulations, we set the valuation resolution mv = 101, effort
resolution me = 101, total number of iterations T = 500, and step sizes a(t)1 = a

(t)
2 = 1

10T . We
always set n1 = n2 = n

2 , which means α = 0.5.

Metrics. For each iteration t, we compute the following metric to evaluate the updated policies s(t)ℓ :

∆(ℓ,t) :=

∑
v∈V (ℓ) |π(t)

ℓ (v)− s
(t−1)
ℓ (v)|

mv
=

∑
v∈V (ℓ) |s(t)ℓ (v)− s

(t−1)
ℓ (v)|

a
(t)
ℓ mv

,

which quantifies the average policy update for group Gℓ at iteration t. Intuitively, a decreasing ∆(ℓ,t)

indicates convergence of the policy sequence s(t)ℓ . However, since we work with discretized valuation
and effort sets, we do not expect ∆(ℓ,t) to vanish entirely.

Results. Figures 5, 6, 7, and 8 present the evolution of equilibrium policies for population sizes
n ∈ {20, 200, 600, 1200} across four time snapshots t ∈ {50, 150, 300, 500}, with fixed parameters
ρ = 0.8 and c = 0.2. Although all runs begin with a smoothed version of the infinite-population
NE, the dynamics vary significantly with population size. For small n (e.g., n = 20), we observe
noticeable fluctuations in early iterations, particularly in group G2, whose valuation distribution is
more concentrated. By t = 500, both policies stabilize, though they retain visible irregularities due
to stochasticity in rank-based feedback. Even though all runs begin with a smooth initialization based
on the infinite-population NE, the dynamics unfold differently depending on population size. For
small n (e.g., n = 20), we observe noticeable fluctuations in the early iterations, especially in group
G2, whose valuation distribution is more concentrated. At t = 500, the policies stabilize but retain
some irregularity, reflecting noise in the agent-level ranking and feedback structure.

As n increases, both groups’ policies become smoother and stabilize more quickly. By n = 600, the
effort policies align closely with the infinite NE, and further updates beyond t = 300 are negligible.
These trends are confirmed by the convergence plots in Figure 9, which show a sharp reduction in the
ℓ1-norm policy update ∆(ℓ,t) with increasing n. Group G1 consistently converges faster than G2, a
pattern attributable to its broader valuation support and greater flexibility in effort choice. Overall,
the results illustrate that the infinite-population equilibrium is a good predictor even for moderately
sized finite systems, while also quantifying the transient effects and instability that emerge in low-n
regimes.

Interestingly, we also observe from these plots that when n is small (n = 20, 200), s2(v) > s1(v),
while for larger values of n (n = 600, 1200), s2(v) < s1(v). In the subsequent subsection, we will
provide a theoretical analysis to explain the underlying reasons for this behavior.

C.2 Theoretical analysis

We begin by presenting theoretical evidence for the alignment between finite and infinite NEs, a
relationship that is observed empirically. In the proof of Theorem 3.1 (see Section E), we show that
for any finite n, εn-NE policy s(n) stated in Theorem 3.1 is “O(

√
log n/n)-close” to the policy s

for infinite n and is “O(
√
log n/n)-close” to an NE policy. Specifically, when p1, p2 are uniform

distributions and pa is a point mass at 0, for any constant α, the closeness between s(n) and s can
be directly translated into the policy form: s(n) = 0 for v < t − O(

√
log n/n) and s(n) = t for

v ≥ t − O(
√
log n/n). For general p1, p2, pa, we note that the O(

√
log n/n)-closeness depends

on the concept of densities, which is more complex. Corollary 3.2 from [20] implies that the NE
policy must be symmetric within each group. Let s1 represent the policy for G1 and s2 for G2. The
above analysis indicates that the closeness between s1, s2, and s (from Equation (3)) is expected to
be bounded by O(

√
log n/n).

In the following, we analyze the empirical observations regarding the scaling of s1 and s2. Intuitively,
s1(v) increases from approximately 0 to approximately t as v increases from t −

√
log n/n to

t+
√
log n/n. If an agent in G2 exerts an effort of t(1−

√
log n/n), the agent’s winning probability

could exceed 95%. This observation motivates the choice of setting s2(v) = t(1 −
√
log n/n),

rather than 0, to generate positive profits when v > t(1 −
√
log n/n)/95%. As a result, if t(1 −
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√
log n/n)/95% ≤ t, i.e.,

√
logn
n ≥ 0.05, then s2(t) ≥ t(1 −

√
log n/n) ≥ s1(v). Therefore,

when n is small and
√

logn
n ≥ 0.05, it holds that s2(v) > s1(v) for v ∈ Ω2. Conversely, when n is

large,
√

logn
n becomes small, and s1(v) > s2(v), as agents in G2 consistently receive lower payoffs

than those in G1 when s1 = s2. This behavior explains the observed scaling between s1 and s2, as
discussed in Section C.1.

Finally, we discuss the impact on metrics when the number n of agents is finite. Recall that in
the finite n case, we can assume NE policies s1 and s2 for group G1 and G2, respectively. As
discussed above, when n is not too small, we have 1) s1 > s2 and 2) s1, s2, and s are O(

√
log n/n)-

close. Since s1 > s2 and they converge to the same policy as n grows, the representation ratio
R1(A) = E

(
|S∩G1|
|G1|

)
decreases with n, whileR2(A) = E

(
|S∩G2|
|G2|

)
increases with n, where S is

the (random) winning set. Consequently, the representation ratio rR(A) = R2(A)
R1(A) increases as n

grows. Since the gap between s1 and s2 is bounded by O(
√

log n/n), this results in an increase of
O(

√
log n/n) inR2(A) and a similar decrease of O(

√
log n/n) inR1(A) compared to the infinite

case. Thus, the increase in rR(A) should be bounded by O(
√
log n/n). A similar quantitative

analysis applies to the social welfare ratio rS(A) and average revenueRV(A,m).

Figure 5: Evolution of group effort policies over time for n = 20, ρ = 0.8, and c = 0.2.

D Other bias models and analysis of metrics for their Nash equilibrium

D.1 Other bias models

A natural extension of p1 = Unif[0, 1] in Section 2 is when p1 is the density of the uniform
distribution on an interval [a, b] (0 < a < b ≤ ∞) and p2 is the density of the uniform distribution on
Ω2 = [ρa, ρb]. Then p2(v) =

1
ρ(b−a) and again, Ev∼p2 [v] = ρ · a+b

2 = ρ · Ev∼p1 [v]. More generally,
one might consider a density p1 that is supported on a domain Ω1 = [a,∞], along with a ρ-biased
density defined as p2(v) = 1

ρp1(
v
ρ ) for ρ ∈ (0, 1] and v ∈ [ρa,∞].

Besides the uniform distribution case, we consider valuations coming from a truncated normal
distribution supported on [0, 1]. Formally, let p1 be the density of a truncated normal distribution
N(µ, σ2) on the interval Ω1 = [0, 1], where µ lies within (0, 1) and σ > 0. Let p2 be the density of a
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Algorithm 1 Dynamics for Computing Finite NE Policies for the Uniform Distribution Case

Input: Group sizes n1, n2 ≥ 1, selection rate c ∈ (0, 1), bias ρ ∈ [0, 1], valuation steps mv ≥ 1,
effort steps me ≥ 1, an interger T ≥ 1, and two sequences of step sizes {a(t)ℓ }t∈[T ],ℓ∈{1,2}

Output: Policies s1, s2 for G1 and G2, respectively
1: Initialize grids V (1) ← linspace(0, 1,mv), V (2) ← linspace(0, ρ,mv), and E =

linspace(0, 1,me).
2: Compute α← n2

n1+n2
and k ← ⌊c(n1 + n2)⌋

3: Compute threshold t =


1− c

1− α
, ρ < 1− c

1− α
,

ρ (1− c)

ρ− ρα+ α
, otherwise,

4: Initialize s
(0)
1 (v) = s

(0)
2 (v) = t

1+e−50(v−θ) ▷ Smoothness of the infinite NE in Proposition 4.1
5: for t = 1 to T do
6: Et ← E ∪

{
s
(t−1)
ℓ (v) | v ∈ V (ℓ), ℓ ∈ {1, 2}

}
▷ Updating effort set

7: laste ← 0
8: for i = 1 to mv do
9: v ← V

(1)
i , beste ← laste, p1 ← 1− v and p2 ← max

v′∈V (2):s
(t−1)
2 (v′)≥beste

ρ−v′

ρ

10: p(1)(beste)←
∑k−1

a=0

∑a
b=0

((
n1−1

b

)
pb1(1− p1)

n1−1−b
)
·
((

n2

a−b

)
pa−b
2 (1− p1)

n2−a+b
)

11: for all e ∈ Et with e ≥ laste do
12: p1 ← 1− v and p2 ← max

v′∈V (2):s
(t−1)
2 (v′)≥beste

ρ−v′

ρ

13: p(1)(e)←
∑k−1

a=0

∑a
b=0

((
n1−1

b

)
pb1(1− p1)

n1−1−b
)
·
((

n2

a−b

)
pa−b
2 (1− p1)

n2−a+b
)

14: pay ← p(1)(e) v − e
15: if pay > p(1)(beste) v − beste then
16: beste ← e
17: end if
18: end for
19: π

(t)
1 (v)← beste, laste ← beste

20: end for
21: s

(t)
1 ← s

(t−1)
1 + a

(t)
1 (π

(t)
1 − s

(t−1)
1 )

▷ Update policy for G1 at iteration t
22: laste ← 0
23: for i = 1 to mv do
24: v ← V

(2)
i , beste ← laste, p1 ← max

v′∈V (1):s
(t)
1 (v′)≥beste

1− v and p2 ← ρ−v′

ρ

25: p(2)(beste)←
∑k−1

a=0

∑a
b=0

((
n1

b

)
pb1(1− p1)

n1−b
)
·
((

n2−1
a−b

)
pa−b
2 (1− p1)

n2−1−a+b
)

26: for all e ∈ Et with e ≥ laste do
27: p1 ← max

v′∈V (1):s
(t)
1 (v′)≥beste

1− v and p2 ← ρ−v′

ρ

28: p(2)(e)←
∑k−1

a=0

∑a
b=0

((
n1

b

)
pb1(1− p1)

n1−b
)
·
((

n2−1
a−b

)
pa−b
2 (1− p1)

n2−1−a+b
)

29: pay ← p(2)(e) v − e
30: if pay > p(2)(beste) v − beste then
31: beste ← e
32: end if
33: end for
34: π

(t)
2 (v)← beste, laste ← beste

35: end for
36: s

(t)
2 ← s

(t−1)
2 + a

(t)
2 (π

(t)
2 − s

(t−1)
2 )

▷ Update policy for G2 at iteration t
37: end for
38: return Policies s1 ← s

(T )
1 , s2 ← s

(T )
2
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Figure 6: Evolution of group effort policies over time for n = 200, ρ = 0.8, and c = 0.2.

Figure 7: Evolution of group effort policies over time for n = 600, ρ = 0.8, and c = 0.2.
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Figure 8: Evolution of group effort policies over time for n = 1200, ρ = 0.8, and c = 0.2.

Figure 9: Convergence of group-wise policy updates ∆(ℓ,t) for different population sizes n, with fixed
parameters ρ = 0.8 and c = 0.2.
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(a) Density p2 for various ρ (b) Expected value of p2

Figure 10: Statistics for truncated normal distribution with µ = 0.5, σ = 0.1.

Figure 11: Plots of t versus ρ for various α with c = 0.1 for the truncated normal distribution. The dotted line
t1 = 0.9 corresponds to the undifferentiated contest with density p = p1.

truncated normal distribution N(ρµ, σ2) on the interval Ω2 = [0, 1]. Since the bias is multiplicative,
the domain of p1, Ω1 = [0, 1], does not influence the assessment of the contest’s results. Note that

Ev∼p2 [v] = ρµ+
ϕ(−ρµ

σ )−ϕ( 1−ρµ
σ )

Φ( 1−ρµ
σ )−Φ(−ρµ

σ )
, where ϕ(x) is the probability density function of the standard

normal distribution N(0, 1) and Φ(x) is its cumulative distribution function. The expectation of
p2 does not decrease linearly with ρ as in the uniform case, but it closely approximates a linear
function and monotonically decreases with ρ. This is motivated by real-world settings where the
valuations (such as pay or SAT scores) exhibit a truncated normal distribution [88]. Other variants
of distributions include piecewise-linear, polynomial (such as Pareto), and log-normal distributions,
along with their biased versions.

We implicitly assume that the bias parameter ρ is fixed and identical for all agents in G2 above.
However, ρ could be noisy and non-identical to agents. For instance, let pρ be a density supported on
[0, 1]. We assume each agent i ∈ G2 has an individual bias ρi i.i.d. drawn from pρ, and its valuation
is drawn from the ρi-biased density of p1. Then p2 is supported on Ω2 = Ω1, and satisfies that for
any v ∈ Ω1,

p2(v) =

∫ 1

0

1

x
pρ(x)p1(

v

x
)dx.

D.2 Analysis of metrics for Nash equilibrium in the truncated normal distribution case

In this section, we do a similar analysis as in Section 4 for the case that p1 is a truncated normal
distribution N(µ, σ2) supported on [0, 1], p2 is a ρ-biased truncated normal distribution N(ρµ, σ2)
supported on [0, 1], and pa is a point mass at 0. We choose µ = 0.5 and σ = 0.1. This selection
ensures that the density function is narrowly focused around the mean and the expected value of p2
is approximately ρµ; see Figure 10 for illustration. Note that t analogues to Proposition 4.1 is the
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(a) rR(A) v.s. ρ (b) rR(A) v.s. c (c) rS(A) v.s. ρ (d) rS(A) v.s. c

Figure 12: Plots illustrating the group-wise social welfare S1(A),S2(A), and the social welfare ratio rS(A)
as functions of the parameters ρ, c, and α for the truncated normal distribution. By default, we set (ρ, c, α) =
(0.8, 0.1, 0.5). A dotted line within these plots indicates the threshold at which rS(A) = 0.8.

solution of the following equation:

(1− α) ·
ϕ( v−µ

σ )− ϕ( 1−µ
σ )

Φ( 1−µ
σ )− Φ(−µ

σ )
+ α ·

ϕ( v−ρµ
σ )− ϕ( 1−ρµ

σ )

Φ( 1−ρµ
σ )− Φ(−ρµ

σ )
= 1− c. (8)

Unlike the uniform distribution case, it is hard to derive closed-form expressions for metrics on
the outcomes of the contest. However, one can do numerical computations and we plot solution
t, representation ratio rR(A) and group-wise social welfare Sℓ(A) together with social welfare
ratio rS(A) in Figures 11 and 12 respectively. All plots exhibit a monotonic behavior similar to
that observed with the uniform distribution. Next, we highlight some distinctions with the uniform
distribution.

No inflection point. A notable feature of the truncated normal distribution is its lack of an inflection
point. This trait is observed not only for t, but also in the behaviors of rR(A) and rS(A). This
difference arises because the domain Ω2 = [0, 1] remains consistent across all values of ρ.

Representation ratio. Figure 12 shows that to achieve a representation ratio rR(A) ≥ 0.8, it is
necessary to adjust ρ to a minimum of 0.979 or increase c to at least 0.862. The need to elevate c is
more pronounced than the required 0.5 observed with the uniform distribution in Figure 2(b). This
difference arises because the truncated normal distribution tends to be more focused around its mean,
leading to a higher number of agents in G1 possessing valuations greater than the expected value
≈ 0.4 of p2.

E Proof of Theorem 3.1: two-group contest

In this section, we begin by providing a more detailed technical overview of the proof of Theorem 3.1
(Section E.1). Next, we present a more comprehensive version of Theorem 3.1, including the explicit
form of A(n) (Theorem E.2 in Section E.2). Finally, we provide the proof of Theorem E.2 (Section
E.3).

E.1 Technical overview

We present an overview of the proof of Theorem 3.1, which characterizes an NE policy for the
two-group contest. Recall that, there are n agents belonging to one of the two disjoint groups G1, G2

with |G1| = (1 − α)n and |G2| = αn. The valuations of agents in G1 come from the density p1
supported on Ω1 and those of G2 come from the density p2 supported on Ω2. Each agent has an initial
ability drawn from the density pa. The selectivity of the contest is a constant 0 < c < 1. Theorem
3.1 asserts that, as n→∞, there is an NE policy for the agents which is determined by a threshold
t ∈ (Ω1 ∪ Ω2) + Ωa when the (Ω1 ∪ Ω2) + Ωa is a connected subset of R≥0.

For ease of analysis, we first consider the simple case where pa is a point mass at 0, so that
agents’ policies only depend on their valuations. We then show that the extension to a general pa is
straightforward. We start by first quickly showing how to compute the NE policy in the special case
when p1 = p2 for finite n and why this approach does not extend to the two-group setting of interest
(Section E.1.1). In Section E.1.2 we show that even though there are major challenges in extending
the one-group case, it leads us to the right form of the NE policy for the two-group case as n→∞: a
single threshold function that defines the strategies of agents in both G1 and G2. This also explains
how we arrive at Equation (2) that characterizes the threshold t. Finally, in Section E.1.3, we present
the approach to formally argue about and prove the convergence of the finite n two-group contest to
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this pair of NE policies. This analysis also reveals why the conjectured policy is a Nash equilibrium.
With all the background, we conclude Theorem 3.1.

E.1.1 NE policy for the undifferentiated contest for finite n and obstacle in extending it

Here, we consider the special case when p1 = p2 = p is the density of the uniform distribution on
[0, 1], and pa is a point mass at 0. The argument for other densities is similar. First note that by
symmetry among agents, it is reasonable to assume that, at equilibrium, each agent will follow the
same policy s. Moreover, since the domain of p1 is nonnegative reals, it is reasonable to assume
that the NE policy is monotone in an agent’s valuation. The following calculations show that both
symmetry and monotonicity hold.

Recall that an agent i with valuation v is selected if the effort s(v) is among the top c fraction of
efforts. Thus, assuming that all agents follow s, agent i is selected if and only if there are at least
(1 − c)n distinct agents j with s(vj) < s(v). (We ignore the issue that there may be ties for this
discussion.) Since s is a monotone function, s(vj) < s(v) holds if and only if vj < v. Thus, the
probability of selection of this agent is

Pi(s(v);A−i) =

n−1∑
j=(1−c)n

(
n− 1

j

)
vj(1− v)n−1−j .

Hence, its expected payoff is πi(v, s(v);A−i) = Pi(s(v);A−i)·v−s(v). (See Section 2 for notation).
A key observation is that the calculation of Pi(s(v);A−i) only depends on density p1 and v, and is
independent of the choice of s, under the monotonicity and symmetry assumptions on s. If s is to be
an NE, then it must satisfy that for any other effort e, πi(v, s(v);A−i) ≥ πi(v, e;A−i). This follows
from the condition that the derivative with respect to v, π′

i(v, s(v);A−i) = P ′
i (s(v);A−i)·v−s′(v) =

0. As noted above, Pi(s(v);A−i) does not depend on s, so we get a simple differential equation

involving the derivative of s′(v) =
(∑n−1

j=(1−c)n

(
n−1
j

)
vj(1− v)n−1−j

)′
· v. Thus,

s(v) = (1− c) ·
n∑

j=(1−c)n+1

(
n

j

)
vj(1− v)n−j (9)

is the unique NE for the undifferentiated contest and it that this s is monotone. For a general density
p, we can apply a similar analysis to obtain that

s(v) := Qp(v) · v −
∫ v

Ω

Qp(x) dx, (10)

where Qp(v) =
∑n−1

i=n−k

(
n−1
i

)
· Fp(v)

i · (1 − Fp(v))
n−i−1 for any v ∈ Ω. We also note that the

computation of s can become significantly more complicated for a general density pa, as it requires
considering the stability condition for two partial derivatives: ∂s(v,a)

∂v and ∂s(v,a)
∂a .

We now attempt to extend the analysis above to the two-group contest. Since each agent in each
group uses the same valuation density, we can still hope for a symmetric and monotone NE policy for
each group; say s1 for G1 and s2 for G2. However, we can no longer assume that s1 = s2. There
are simple examples (see Section B) for which it can be shown that s1 ̸= s2. This considerably
complicates the calculation of probability Pi for the ith agent getting selected since the order of
agents’ valuations may differ from that of agents’ efforts. For instance, it is now possible that for
agent i ∈ G1 and agent j ∈ G2, vi < vj but s1(vi) > s2(vj). Thus, Pi must depend on functions s1
and s2, instead of only depending on density p = p1 and v as in the undifferentiated case. Thus, it is
no longer possible to write a simple differential equation as in the undifferentiated case.

E.1.2 A conjectured NE policy in two-group contests for large n

Since it seems intractable to find an NE policy for the two-group case, we study whether the situation
becomes easier when n is large. This hope is rooted in the observation that for the undifferentiated
contest when n is large, the NE policy s(v) defined in Equation (9) converges to a threshold function.
To see this, recall that for the uniform distribution, s(v) = (1− c) ·

∑n
j=(1−c)n+1

(
n
j

)
vj(1− v)n−j .

Since s(v) is the probability associated with a sum of i.i.d. random variables, it follows from the
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Chernoff bound that as n→∞, s(v)→ 1− c for any v > 1− c and s(v)→ 0 for any v < 1− c.
This argument is not specific to the uniform distribution and extends to any density p1 with NE policy
defined in Equation (10). In particular, if F1 denotes the CDF of p1, the limiting NE is given by
s(v) = F−1

1 (1−c) if v ≥ F−1
1 (1−c) and s(v) = 0 otherwise. The threshold F−1

1 (1−c) guarantees
that the expected fraction of agents that put in a nonzero effort is 1 − F1(F

−1
1 (1 − c)) = c. The

rationale for s(v) = F−1
1 (1− c) when v is above the threshold is twofold: 1) agents would not exert

effort beyond their valuation, ensuring s(F−1
1 (1− c)) ≤ F−1

1 (1− c), and 2) agents with valuations
below F−1

1 (1− c) are disincentivized from participating, leading to s(F−1
1 (1− c)) ≥ F−1

1 (1− c).

Thus, one may hope that in a two-group contest, as n→∞, the NE policy might similarly converge
to two threshold functions s1 and s2, each with a corresponding threshold tℓ. While this assumption
allows us to give an explicit form for the probability Pi of agent i getting selected, this expression is
quite complicated and, importantly, depends on t1 and t2. Thus, we are unable to obtain conditions
that determine t1 and t2 from the NE condition.

Going back to the setting when p1 is the density of the uniform distribution over [0, 1] and p2 = p2
is the density of the uniform distribution over [0, ρ], first observe that as ρ→ 0, t2 → 0. Thus, one
would expect t1 to be more than t2. We now argue that counterintuitive to the above observation,
t1 > t2 cannot lead to an NE. To see this, first observe that when t1 > t2, if an agent puts in effort t1,
then it will get selected. Thus, the probability of an agent in G1 getting selected is 1−F1(t1). Hence,
if 1− F1(t1) <

c
1−α , fewer than cn agents in G1 get selected. Thus, agents in G1 getting selected

will find that putting in effort slightly larger than t2 instead of t1 suffices to ensure their effort is
larger than all agents in G2, and consequently, they will still be selected. Through this reduction in
effort, they can gain an additional payoff of t1 − t2, which violates the stability condition. A similar
argument holds for G2 when 1 − F1(t1) >

c
1−α . Thus, t1 > t2 leads to instability. Similarly, we

can argue that t1 < t2 also leads to instability. Thus, in case the NE policies for G1 and G2 are
thresholds, it must be the case that t1 = t2 when n is large. However, it is not clear how this can hold
given that the domains of p1 and p2 are different.

To explore this, we consider a scenario when α = 0.5, p1 is the density of the uniform distribution
over [0, 1] and p2 is the density of the uniform distribution over [0, 0.5] (ρ = 0.5). With high
probability, there would be more than 0.1n agents from G1 whose valuation is larger than 0.5. Hence,
if we set c = 0.1, no agent from G2 will have any incentive to put in an effort while for agents in
G1 a threshold of t1 = 0.8 suffices. The key observation is that even though the two policies are
different, the policy of G2 is just 0. This suggests that both policies can be seen as restrictions of the
same threshold function to their respective domains.

Now we show how to compute the threshold t. The idea is to reduce the two-group contest to an
undifferentiated one whose density p = (1− α)p1 + αp2, supported on the domain Ω1 ∪ Ω2. In this
undifferentiated contest, as n→∞, it is likely that (1− α)-fraction of agents with valuation come
from p1 and α-fraction of agents come from p2. This suggests that these two contests are increasingly
indistinguishable as n grows, leading to the same limiting threshold t = F−1

p (1− c). Thus, threshold
t is the solution of the equation (1− α)F1(v) + αF2(v) = 1− c – the one denoted in Equation (2).
This argument can be extended to general pa, resulting in the following lemma.

Lemma E.1 (Unique solution). Let α, c ∈ (0, 1), p1 be a density supported on the domain Ω1 ⊆
R≥0, p2 be a density supported on the domain Ω2 ⊆ R≥0, and pa is a density supported on the
domain Ωa ⊆ R≥0. If (Ω1 ∪ Ω2) + Ωa is connected and each density p1, p2, pa is positive at any
point of its domain, then there exists a unique solution t ∈ Ω1 ∪ Ω2 for the following equation:
(1− α)F1(ζ) + αF2(ζ) = 1− c, where for any ζ ∈ R≥0, Fℓ(ζ) = Prv∼pℓ,a∼pa [v + a ≤ ζ].

The assumption is naturally met in cases such as the uniform distribution and the truncated normal
distribution discussed in Section 2. Since Fℓ is a CDF, it must be strictly monotonic across its domain
Ωℓ+Ωa. For any ζ, ζ ′ ∈ (Ω1∪Ω2)+Ωa with ζ < ζ ′, if (1−α)F1(ζ)+αF2(ζ) = (1−α)F1(ζ

′)+
αF2(ζ

′), we must have both Fℓ(ζ) = Fℓ(ζ
′) holds. Then (ζ, ζ ′) ∩ ((Ω1 ∪ Ω2) + Ω) = ∅, which

contradicts the connected domain assumption. Hence, (1− α)F1(ζ) + αF2(ζ) is strictly monotonic
across the domain (Ω1 ∪ Ω2) + Ωa, which ensures the uniqueness of solution t. The proof can be
found in Section E.3.1.

30



E.1.3 Proving convergence to the conjectured NE policy

Now we outline how to prove that, as n→∞, the NE policy for the two-group contest converges
to the threshold policy corresponding to t as guaranteed by Lemma E.1. To do so, first, we have to
make it precise what convergence means. Towards this, we revisit the undifferentiated contest. While
we argued that in this case, as n → ∞, the NE policy tends to a threshold function, recall that we
used the explicit form of the NE policy for finite n. Unfortunately, since we do not have an explicit
form for the two-group contest (for finite n), we need a strategy for the undifferentiated case that
works without the knowledge of the explicit NE for finite n.

Let A be the NE policy of the undifferentiated contest as n → ∞, characterized by a function s
which is a threshold with parameter t. It suffices to prove that for policy A and every ε > 0 there is
an nε such that for n ≥ nε, A is an ε-NE. However, we find that there exists an ε > 0 such that for
any n ≥ 1, A is not an ε-NE policy. We revisit the simple example of uniform distribution discussed
above, in which c = 0.5, p1 is the density of the uniform distribution on [0, 1], and pa is a point mass
at 0. Recall that the threshold t = 1− c = 0.5. Then, in expectation, 0.5n agents have valuations at
least 0.5 and put in effort 0.5. As n→∞, it follows from symmetry that the probability that fewer
than 0.5n agents with valuation ≥ t approaches approximately 0.5. Thus, an agent i with a valuation
v = 0.2 and putting in an effort e = 0.01 would have about a 0.5 probability of being selected, i.e.,
Pi(e;A−i) ≈ 0.5. Since s(v) = 0, the probability Pi(Ai(v);A−i) = 0. Thus, we have

πi(v, e;A−i)− πi(v,Ai(v);A−i) = Pi(e;A−i) · v − e− 0 ≈ 0.2 ∗ 0.5− 0.01≫ 0.

This inequality implies that when ε = 0.08, for any n ≥ 1, A is not an ε-NE policy.

To bypass this, we consider a sequence of proxies for A, denoted by A(n), and characterized by
threshold functions s(n). These proxies aim to ensure that the winning probability Pi(e;A−i) ≈ 0
and hence, serve as an approximate NE policy (see Definition 3.1). Therefore, we need A(n) to satisfy
two conditions:

1. A(n) converges to A as n approaches infinity, i.e., limn→∞ s(n) = s, and

2. The winning probability under A(n) approaches zero in the limit, i.e.,
limn→∞ Pi(e;A

(n)
−i )→ 0.

Ensuring Pi(e;A
(n)
−i ) ≈ 0 essentially involves guaranteeing that the probability of having fewer

than cn agents with valuation ≥ t is negligible. Specifically, for the uniform case, by adjusting
the threshold by

√
log n/n = o(1), we define the policy s(n)(v) as follows: s(n)(v) = t if v ≥

t −
√
log n/n and s(n)(v) = 0 otherwise. By concentration, this s(n) ensures that the probability

Pi(e;A
(n)
−i ) is bounded above by

√
1/n (Lemma E.4). This bounded probability ensures A(n) to be

an
√
1/n-NE policy (Lemma E.6). This concludes the proof that the policy A is an NE in the large n

limit for the uniform distribution case for one group.

Finally, we adapt this new proof technique of constructing A(n) to the two-group case with general
densities p1 and p2. Mirroring the strategy employed in the uniform distribution case, we would like
to shift the threshold of s(n) to ensure that, in expectation, a (c+

√
log n/n)-fraction of agents put

in effort t. To satisfy this, we define the following threshold ∆n (Definitions E.1 and E.2) for the
policy A(n):

∆n := min
{
F−1
1 (F1(t)−

√
log n/n), F−1

2 (F2(t)−
√
log n/n)

}
.

Consequently, we define the policy s(n) as follows: s(n)(v) = t if v ≥ t − ∆n and s(n)(v) = 0
otherwise (see Theorem E.2). We find that limn→∞ ∆n = t, indicating that s(n) converges to s.
Crucially, such a ∆n ensures that (1 − α)F1(∆n) + αF2(∆n) ≤ 1 − (c +

√
log n/n), thereby

maintaining at least a (c+
√
log n/n)-fraction of agents, in expectation, putting in effort t. Using

this property, we establish a bound for the winning probability Pi analogous to the undifferentiated
contest: Pi(e;A

(n)
−i ) ≤ n−(1−α) + n−α if e < t (see Lemma E.4). The factors n−(1−α) and n−α

derive from concentration bounds applicable to group G1 and G2, respectively. Furthermore, this
minimal winning probability guarantees that A(n) is an εn-NE with limn→∞ εn = 0 (Lemma E.6).
The extension to the general pa is straightforward. The main difference is that the initial ability a

31



may already surpass the threshold t, in which case the agent does not need to exert any effort to be
selected. This is characterized by the amount of effort s(n)(v, a) = max {t− a, 0} if v ≥ t−∆n.

To summarize, we first arrived at a policy A that is characterized by a function s which is parameter-
ized by a threshold t defined by Lemma E.1 and then we constructed a sequence of “proxies” A(n)

that converge to A as n→∞. Moreover, we construct a sequence ε1, . . . , εn, . . . with limit 0 such
that A(n) is an εn-NE policy for every n. This implies that A is an NE policy as n→∞. Thus, the
overview above allows us to prove Theorem 3.1.

E.2 A more comprehensive version of Theorem 3.1: convergence form

Now we show how to construct a series of policies {A(n)}n that approach A, the NE policy from
Equation (3) in Theorem 3.1, as n→∞. The most technical part will be to prove that A(n) acts as
an εn-NE policy, where εn → 0 with increasing n.

Suppose (Ω1 ∪ Ω2) + Ωa is connected and let t ∈ (Ω1 ∪ Ω2) + Ωa be a unique solution of the
equation (1 − α)F1(ζ) + αF2(ζ) = 1 − c (the uniqueness of t is ensured by Lemma E.1). Since
c ∈ (0, 1), we have that either F1(t) > 0 or F2(t) > 0. Accordingly, we define a threshold nt as
follows.
Definition E.1 (Threshold nt). Given a value t ∈ Ω1 ∪ Ω2, we define a threshold nt as follows:

• If both F1(t) > 0 and F2(t) > 0, let nt be the smallest integer such that Fℓ(t)−
√

lognt

nt
> 0

for ℓ = 1, 2.

• If F1(t) > 0 and F2(t) = 0, let nt be the smallest integer such that F1(t)−
√

lognt

nt
> 0.

• If F1(t) = 0 and F2(t) > 0, let nt be the smallest integer such that F2(t)−
√

lognt

nt
> 0.

Note that such nt is finite and always exists since
√

logn
n → 0 as n → ∞. Also note that nt is

monotonically decreasing to t across the domain Ω1 ∪Ω2. This value of nt is useful for defining ∆n,
which is essential for the construction of policy A(n).
Definition E.2 (Threshold ∆n). Let n ≥ nt be an integer. We define a threshold ∆n as follows:

• If both F1(t) > 0 and F2(t) > 0, let 5

∆n := min

{
F−1
1 (F1(t)−

√
log n

n
), F−1

2 (F2(t)−
√

log n

n
)

}
.

• If F1(t) > 0 and F2(t) = 0, let ∆n := F−1
1 (F1(t)−

√
logn
n ).

• Otherwise if F1(t) = 0 and F2(t) > 0, let ∆n := F−1
2 (F2(t)−

√
logn
n ).

The requirement that n ≥ nt ensures the proper definition of ∆n. As the number of agents n grows

indefinitely, the term
√

logn
n approaches 0, leading ∆n to converge towards t. The threshold function

s(n) defined as in Equation (11), designed as a threshold function, incorporates ∆n as its threshold.
The convergence of ∆n to t as n → ∞ is crucial for ensuring that A(n) gradually aligns with the
policy A over large populations.

We are ready to provide the formal statement of Theorem 3.1.
Theorem E.2 (Two-group contest: Large n limit). Let α, c ∈ (0, 1). For ℓ = 1, 2, let pℓ be a
density supported on a domain Ωℓ ⊆ R≥0. Let m : R≥0 → R≥0 be a merit function that is strictly
increasing. Suppose Ω1 ∪ Ω2 is connected and each density pℓ is positive at any point of domain

5If the inverse function F−1
ℓ (Fℓ(t) −

√
logn
n

) yields multiple values, it is defined to be the maximum of
these values.
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Ωℓ. Let t ∈ Ω1 ∪ Ω2 be a unique solution of the equation (1 − α)F1(v) + αF2(v) = 1 − c (the
uniqueness of t is ensured by Lemma E.1). Let nt be defined as in Definition E.1. Let n ≥ nt be an
integer and let ∆n be defined as in Definition E.2. Define

s(n)(v, a) :=

{
0 if v < ∆n

max{t− a, 0} if v ≥ ∆n
(11)

gives rise to a policy for the two-group contest: Under this policy, agent i ∈ G1 uses the restric-
tion A

(n)
i = s(n)|Ω1 , while each agent j ∈ G2 uses the restriction A

(n)
j = s(n)|Ω2 . We have

limn→∞ s(n) = s, where s is the threshold function defined as in Equation (3). Moreover, the
sequence of policies A(nt), A(nt+1), . . . satisfies the following property:

∀ε > 0, ∃nε ≥ nt, s.t. ∀n ≥ nε, A
(n) is an ε-NE policy. (12)

This theorem establishes how an NE policy for the two-group contest approaches a limit as the
number of agents, n, grows indefinitely. It reveals that the sequence of policies {A(n)}n not only
converges to A but also aligns with an NE policy for the two-group contest. Thus, it validates the
assertion made in Theorem 3.1 that A serves as an NE policy for the two-group contest in the limit as
n→∞.

E.3 Proof of Theorem E.2

We provide an overview of the proof, summarized as follows.

1. In Section E.3.1, we prove Lemma E.1 for the uniqueness of solution t that decides the
threshold function s.

2. In Section E.3.2, we bound the winning probabilities Pi(e;A
(n)
−i ) under policy A(n); sum-

marized by Lemma E.4. Its proof relies on the winning probability for the undifferentiated
contest (Lemma E.5), whose computation is via an auxiliary function defined in Definition
E.3.

3. In Section E.3.3, we apply Lemma E.4 to prove that A(n) is approximate NE (Lemma E.6).

4. Finally in Section E.3.4, we show that Theorem E.2 is a corollary of Lemma E.6.

For simplicity, we first assume that pa is a point mass at 0, such that policies depend
solely on valuations. In this case, s(v, a), Pi(e; a,A−i), π(v, a, e;A−i) are simplified to
s(v), Pi(e;A−i), π(v, e;A−i) respectively. At the end, we will show how to extend this to a general
pa.

E.3.1 Proof of Lemma E.1: solution uniqueness

Instead of proving Lemma E.1, we directly prove for the general multi-group case. Let G1, . . . , Gm

be m ≥ 2 groups where each Gℓ has size nℓ = αℓn and valuation distribution pℓ on the domain
Ωℓ ⊆ R≥0. We have αℓ ∈ (0, 1) for every ℓ ∈ [m] and

∑
ℓ∈[m] αℓ = 1. We have the following

lemma that generalizes Lemma E.1.

Lemma E.3 (Unique solution for multiple groups). Suppose (∪ℓ∈[m]Ωℓ) + Ωa is connected
and each density pℓ and pa is positive at any point of its domain. There exists a unique solution
t ∈ ∪ℓ∈[m]Ωℓ for the equation

∑
ℓ∈[m] αℓFℓ(ζ) = 1 − c, where for any ζ ∈ R≥0, Fℓ(ζ) =

Prv∼pℓ,a∼pa
[v + a ≤ ζ].

Proof: Fix ℓ ∈ [m]. Recall that we expand the domain of every CDF Fℓ to R≥0. We have the
following properties for Fℓ:

1. Fℓ(·) is non-decreasing across the domain R≥0, i.e., for any ζ, ζ ′ ∈ R≥0 with ζ < ζ ′,
Fℓ(ζ) ≤ Fℓ(ζ

′) holds.

2. Fℓ(·) is strictly monotonous across the domain Ωℓ +Ωa, i.e., for any ζ, ζ ′ ∈ Ωℓ +Ωa with
ζ < ζ ′ and (ζ, ζ ′) ∩ (Ωℓ +Ωa) ̸= ∅, we have Fℓ(v) < Fℓ(v

′).
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Define a function g : R≥0 → R≥0 such that for any ζ ∈ R≥0, g(ζ) =
∑

ℓ∈[m] αℓFℓ(ζ). Since g(·)
is a convex combination of Fℓ(·)’s, we know that g(·) is also non-decreasing across the domain R≥0.
Moreover, since (

⋃
ℓ∈[m] Ωℓ) + Ωa is connected, for any ζ, ζ ′ ∈ (

⋃
ℓ∈[m] Ωℓ) + Ωa with ζ < ζ ′,

there must exist at least one ℓ ∈ [m] such that Fℓ(ζ) < Fℓ(ζ
′) and (ζ, ζ ′) ∩ (Ωℓ +Ωa). This implies

that g(·) is strictly monotonous across the domain (
⋃

ℓ∈[m] Ωℓ) + Ωa.

Now let L and U denote the infimum and the supremum of domain (
⋃

ℓ∈[m] Ωℓ) + Ωa respectively.
We have 0 = g(L) < 1−c < g(U) = 1. Thus, there must exist a unique point t ∈ (

⋃
ℓ∈[m] Ωℓ)+Ωa

such that g(t) = 1− c. This completes the proof. □

E.3.2 Bounding winning probability

We first have the following lemma that bounds the winning probability under policy A(n).
Lemma E.4 (Bounding winning probability). For every integer n ≥ nt, we have

∀i ∈ [n], Pi(e;A
(n)
−i ) = 1 if e ≥ t; and Pi(e;A

(n)
−i ) ≤ n−α + n−(1−α) if e < t.

For preparation, we define the following function that is useful for computing the winning probability
Pi(e;A−i) for the undifferentiated contest.
Definition E.3 (Function for computing winning probability). Given integers n, k ≥ 1 and a
density p1 supported on Ω ⊆ R≥0, we denote a function Q

(n,k)
p : Ω→ R≥0 to be for any v ∈ Ω,

Q(n,k)
p (v) =

n−1∑
i=n−k

(
n− 1

i

)
· F1(v)

i · (1− F1(v))
n−i−1 =

n−1∑
i=n−k

B(n− 1, i, F1(v)), (13)

where B(n, k, x) =
(
n
k

)
xk(1− x)n−k is the Bernstein polynomial.

By definition, Q(n,k)
p (v) represents the probability that, when sampling n − 1 independent and

identically distributed (i.i.d.) values v1, . . . , vn−1 from distribution p1, the value v ranks among the
top k values in the set {v1, . . . , vn−1, v}. Given its algebraic significance, the function Q

(n,k)
p (·) is

monotonically increasing to v across the domain Ω. This means that as v increases, the probability of
v being in the top k also increases. Also note that for any integers n, n′ ≥ 1 with n < n′,

Q(n,k)(v) ≥ Q(n′,k)(v). (14)

This means that as the number of agents n increases, v is less likely to be in the top k. This function
can be used to compute Pi(e;A−i) for the undifferentiated contest in the following sense.
Lemma E.5 (Computation of winning probability for the undifferentiated contest). Let n, k ≥ 1
be integers and p1 be a density supported on Ω ⊆ R≥0. Let A = (A1, . . . , An) be a symmetric
policy for the undifferentiated contest satisfying that every Ai is strictly monotonically increasing to
v across the domain Ω. Then for every i ∈ [n] and v ∈ Ω, we have Pi(Ai(v);A−i) = Q

(n,k)
p (v).

Proof: By symmetric, we only need to prove the lemma for i = n, i.e., proving
Pn(An(v);A−n) = Q

(n,k)
p (v). Let v1, . . . , vn−1 be i.i.d. samples from p1. Since Ai is

strictly monotonically increasing to v across the domain Ω, we note that the sequence v, v1, . . . , vn−1

should have the same order as the sequence An(v), A1(v1), . . . , An−1(vn−1). Hence, An(v) is
among the top k of {A1(v1), . . . , An−1(vn−1), An(v)} if and only if v is among the top k of
{v1, . . . , vn−1, v}. By the definition of winning probabilities and Definition E.3, this implies that
Pn(An(v);A−n) = Q

(n,k)
p (v). This completes the proof of Lemma E.5. □

Now we are ready to prove Lemma E.4.

Proof [: of Lemma E.4] It suffices to prove for the case that both F1(t) > 0 and F2(t) > 0. Proof
for the other two cases is identical. By Definition E.2, we have

∆n = min

{
F−1
1 (F1(t)−

√
log n

n
), F−1

2 (F2(t)−
√

log n

n
)

}
.
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Let event E(n,e)
1 be that there are at least (1− F1(t))(1− α)n agents in G1 \ {i} that put in effort

larger than e; and let E(n,e)
2 be that there are at least (1− F2(t)) · αn agents in G2 \ {i} that put in

effort larger than e. Note that
(1− F1(t))(1− α)n+ (1− F2(t)) · αn = cn.

When e ≥ t, we have

Pi(e;A
(n)
−i ) ≥ Pr

[
E

(n,e)
1 ∪ E

(n,e)
2

]
≥ 1− Pr

[
E

(n,e)
1

]
− Pr

[
E

(n,e)
2

]
.

Then to prove Pi(e;A
(n)
−i ) = 1, it suffices to show that Pr

[
E

(n,e)
1

]
= Pr

[
E

(n,e)
2

]
= 0. Note that

by policy A(n), the maximum effort put in by an agent is t ≤ v. Hence, no agent can put in effort
larger than e, which implies that Pr

[
E

(n,e)
1

]
= Pr

[
E

(n,e)
2

]
= 0. This completes the proof of

Pi(e;A
(n)
−i ) = 1 when e ≥ t.

When e < t, we note that if both E
(n,e)
1 and E

(n,e)
2 happen, there are at least k agents that put in

effort t. Since events E(n,e)
1 and E

(n,e)
2 are independent, we have

Pi(e;A
(n)
−i ) ≤ 1− Pr

[
E

(n,e)
1 ∩ E

(n,e)
2

]
= 1− Pr

[
E

(n,e)
1

]
· Pr

[
E

(n,e)
2

]
.

Then to prove Pi(e;A
(n)
−i ) ≤ n−α + n−(1−α), it suffices to show that Pr

[
E

(n,e)
1

]
≥ 1 − n−(1−α)

and Pr
[
E

(n,e)
2

]
≥ 1− n−α.

We first bound Pr
[
E

(n,e)
1

]
. Note that there are at least (1− α)n agents in G1 ∪ {i}. Also, note that

an agent j ∈ G1 \ {i} puts in effort Aj(vj) > e if and only if their valuation vj ≥ ∆n holds. Now
consider the undifferentiated contest among G1 ∪ {i} with k1 = (1− F1(t))(1− α)n and density
p1. By Lemma E.5, we have

Pr
[
E

(n,e)
1

]
= 1−Q(|G1∪{i}|,k1)

p1
(∆n) (Lemma E.5)

≥ 1−Q((1−α)n,k1)
p1

(∆n) (Ineq. (14))

≥ 1−Q((1−α)n,k1)
p1

(F−1
1 (F1(t)−

√
log n

n
)) (Defn. of ∆n)

= 1−
(1−α)n−1∑

j=(1−α)n−1−k1

B((1− α)n− 1, j, F1(t)−
√

log n

n
). (Eq. (13))

(15)

Let X1, . . . , Xn be (1−α)n−1 i.i.d. random variables where each Xi = 0 with probability F1(t)−√
logn
n and otherwise Xi = 1. We note that

∑(1−α)n−1
j=(1−α)n−1−k1

B((1− α)n− 1, j, F1(t)−
√

logn
n )

is equivalent to the probability that
∑

i∈[n−1] Xi ≤ k1 − 1. Also note that

E

 ∑
i∈[(1−α)n−1]

Xi

 = ((1− α)n− 1) · (1− F1(t) +

√
log n

n
). (16)

Then by the Chernoff bound, we have
(1−α)n−1∑

j=(1−α)n−1−k1

B((1− α)n− 1, j, F1(t)−
√

log n

n
)

= Pr

 ∑
i∈[(1−α)n−1]

Xi ≤ k1 − 1


≤ Pr

 ∑
i∈[(1−α)n−1]

Xi ≤ E

 ∑
i∈[(1−α)n−1]

Xi

− (1− α)n ·
√

log n

n

 (Eq. (16) and Defn. of k1)

≤ e−
2(1−α)2n log n

(1−α)n−1 ≤ n−(1−α). (Chernoff bound)
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Combining with Inequality (15), we prove that Pr
[
E

(n,e)
1

]
≥ 1− n−(1−α). By a similar argument,

we can also prove Pr
[
E

(n,e)
2

]
≥ 1 − n−α. Overall, we prove that Pi(e;A

(n)
−i ) ≤ n−α + n−(1−α)

when e < t. This completes the proof of Lemma E.4.

E.3.3 Proof that A(n) is approximate NE

Based on Lemma E.4, we are now ready to prove the approximate degree of A(n) to be an NE policy.

Lemma E.6 (A(n) is approximate NE). For any n ≥ nt, A(n) is an εn-NE policy, where εn =
(n−α + n−(1−α))∆n + t−∆n.

Proof: Fix ℓ = 1, 2, i ∈ Gℓ, and v, e ∈ Ωℓ. We discuss the value πi(v, e;A
(n)
−i ) −

πi(v,A
(n)
i (v);A

(n)
−i ). By Lemma E.4, we know that

πi(v, e;A
(n)
−i ) = v − e if e ≥ t; and πi(v, e;A

(n)
−i ) ≤ (n−α + n−(1−α))v − e if e < t.

Then if v < ∆n, we have πi(v,A
(n)
i (v);A

(n)
−i ) = πi(v, 0;A

(n)
−i ) = 0, which implies that

πi(v, e;A
(n)
−i )−πi(v,A

(n)
i (v);A

(n)
−i ) ≤

{
(n−α + n−(1−α))v − e ≤ (n−α + n−(1−α))∆n if e < t
v − e ≤ 0 if e ≥ t

Otherwise if v ≥ ∆n, we have πi(v,A
(n)
i (v);A

(n)
−i ) = πi(v, t;A

(n)
−i ) = v − t, which implies that

πi(u, v;A
(n)
−i )− πi(u,A

(n)
i (v);A

(n)
−i ) ≤

{
(n−α + n−(1−α))v − e+ t− v if e < t
t− e ≤ 0 if e ≥ t

Note that when v ≥ ∆n and e < t,

(n−α + n−(1−α))v − e+ t− v ≤ (n−α + n−(1−α))∆n + t−∆n.

Overall, we conclude that the following inequality always holds:

πi(v, e;A
(n)
−i )− πi(v,A

(n)
i (v);A

(n)
−i ) ≤ (n−α + n−(1−α))∆n + t−∆n = εn.

This verifies that A(n) is an εn-NE policy for the two-group contest. □

E.3.4 Completing the proof of Theorem E.2

Proof [: of Theorem E.2] Assume pa is a point mass at 0. We first prove that limn→∞ s(n) = s.
This is a direct corollary of the fact that limn→∞ ∆n = t. Consequently, for any v ∈ R≥0, there
exists nv such that for any integer n ≥ nv , s(n)(v) = s(v) holds.

By Lemma E.6, A(n) is a εn-NE policy, where εn = (n−α + n−(1−α))∆n + t − ∆n. Since
limn→∞ ∆n = t, we have

lim
n→∞

εn = lim
n→∞

(n−α + n−(1−α))∆n + t−∆n = 0,

This completes the proof of Equation (12).

Uniqueness of A. To prove that A is the unique NE, we first recall Corollary 3.2 of [20] that says
that a subset of symmetric agents should have the same policy in an NE. Thus, assuming A′ is an
NE policy for the two-group contest as n→ R≥0, all agents i ∈ G1 use a common threshold policy
s1, and those in G2 use s2. Suppose the threshold for sℓ is tℓ. We next prove that t1 = t2, which
implies that s1 = s2. When t1 > t2, if an agent puts in effort t1, then it will get selected. Thus, the
probability of an agent in G1 getting selected is 1 − F1(t1). Hence, if 1 − F1(t1) <

c
1−α , fewer

than cn agents in G1 get selected. Thus, agents in G1 getting selected will find that putting in effort
slightly larger than t2 instead of t1 suffices to ensure their effort is larger than all agents in G2, and
consequently, they will still be selected. Through this reduction in effort, they can gain an additional
payoff of t1 − t2, which violates the stability condition. A similar argument holds for G2 when
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1− F1(t1) >
c

1−α . Thus, A′ is not an NE when t1 > t2. Similarly, we can prove that A′ is not an
NE when t1 < t2. Thus, we must have t1 = t2 = t and s1 = s2 = s.

If (1−α)F1(t)+αF2(t) > 1− c, then fewer than cn agents put in a non-zero effort and get selected.
Thus, an agent with valuation t′ < t, has a willingness to put in an effort ε slightly larger than 0
instead of 0. Through this increase in effort, it can gain an additional payoff of t′ − ε. Thus, A′ is not
an NE. Similarly, we can prove that A′ is not an NE if (1− α)F1(t) + αF2(t) < 1− c. Thus, for an
NE policy, t must be the solution of (1− α)F1(v) + αF2(v) = 1− c. By Lemma E.1, the equation
(1− α)F1(v) + αF2(v) = 1− c has a unique solution. Thus, A′ = A, which proves the uniqueness.

Extension to general pa. For general pa, the solution t of Equation (3) represents a score that a
c-fraction of agents can achieve without making their expected payoff negative (v + a ≥ t). The
proof is almost identical to that when pa is a point mass at 0, except that the effort an agent with
v + a ≥ t is willing to put in should be s(v, a) = max{t − a, 0} instead of t. This is because t
represents the score that the agent aims to reach, rather than the effort itself.

Overall, we complete the proof of Theorem E.2.

Remark E.7 (Extension of Theorem 3.1). Using the same proof technique, Theorem 3.1 can be
extended to handle multiple groups and non-identical effort costs. Let G1, . . . , Gm represent m ≥ 2
groups, where |Gℓ| = αℓn and the valuation density for each group is pℓ over the domain Ωℓ ⊆ R≥0.
Each αℓ ∈ (0, 1) satisfies the condition

∑
ℓ∈[m] αℓ = 1. Recall that pa represents the initial ability

density over the domain Ωa ⊆ R≥0, and we introduce an additional effort cost density pκ over the
domain Ωκ ⊆ R>0. Each agent i ∈ [n] knows its type θi = (vi, ai, κi) and selects an effort level
ei ≥ 0. The agent’s score is given by m(ei + ai), and their expected payoff is Pivi − κiei. It is
important to note that agents’ costs of effort κi may vary and affect only their expected payoff, not
their score.

In this extended multi-group contest, for ℓ ∈ [m], we extend CDF Fℓ to be Fℓ(ζ) =
Prv∼pℓ,a∼pa,κ∼pκ

[
v
κ + a ≤ ζ

]
. Now suppose domains

⋃
ℓ∈[m] Ωℓ, Ωa, Ωκ are connected and den-

sities pℓ, pa, pκ are positive at any point of their own domains. Let t be the unique solution to the
equation

∑
ℓ∈[m] αℓFℓ(ζ) = 1− c. The infinite NE policy (3) extends to:

s(v, a) := 0 if v
κ + a < t and s(v) := max {t− a, 0} if v

κ + a ≥ t.

E.4 Comparing with a distributional two-group contest

Recall that the technical challenges for Theorem 3.1 are mainly caused by the asymmetric strategic
environment across groups. To avoid asymmetry, one may consider the following variant of the
two-group contest. Note that for simplicity, we also assume that pa is a point mass at 0.
Definition E.4 (Distributional two-group contest). Let n ≥ k ≥ 1 be integers, α ∈ (0, 1),
ρ ∈ (0, 1], and pℓ be a density supported on a domain Ωℓ ⊆ R≥0 for ℓ = 1, 2. Let each agent i ∈ [n]
belong to G1 with probability 1 − α and belong to G2 with probability α independently. Let the
valuation of each agent in G1 be drawn i.i.d. from p1, and the valuation of each agent in G2 be drawn
i.i.d. from p2. Assume that each agent i ∈ Gℓ (ℓ = 1, 2) knows n1, n2, k, p1, p2, the group it belongs
to and its valuation, and has to choose a policy Ai : Ωℓ → R≥0 to maximize its expected payoff. The
goal of the distributional two-group contest is to compute the NE policy satisfying Equation (1).

The main difference from the two-group contest is that this distributional variant’s group identity
is random and the valuation density of each agent is identical, say p = (1 − α)p1 + αp2. Thus,
using a similar argument as in an undifferentiated contest, it is easy to verify that the NE policy of
the distributional two-group contest is identical to that of an undifferentiated contest with density
p1. Consequently, in the infinite n case, the NE policy of the distributional two-group contest is
identical to that of the two-group contest, say A in Theorem 3.1. Then one may wonder whether this
distributional two-group contest can also be used to simplify the proof of Theorem 3.1, as the infinite
contest does. Below, we show that this is not the case and discuss the essential differences between
the two models. For simplicity, we call the two-group contest Model I and call the distributional
two-group contest Model II.

Model distinction. Firstly, Model I itself is of relevant interest as it captures real-world examples
in which group sizes are well understood, while in Model II the group sizes are random variables.
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Convergence distinction. Though Model I and Model II share the same NE policy A in the infinite
case, we would like to clarify that our main convergence result (Theorem E.2) cannot be inferred
simply from knowing that the limit of the NEs of the two models is the same. To put it in simplest
terms, consider two sequences a1, . . . , an, . . . and b1, . . . , bn, . . . that converge to the same limit
point z. The proof of convergence for the first sequence does not necessarily provide any information
about the convergence of the second sequence. Therefore, the convergence result for our model
cannot be simply inferred from prior work.

Analysis distinction. Moreover, the analysis of Model II relies heavily on symmetric policies for
all agents (enabled precisely by the fact that group sizes are random), allowing the use of order
statistics of p1. In contrast, in Model I, we expect asymmetric policies across groups. For example,
consider a two-agent case with k = 1: Agent 1’s valuation follows a uniform distribution on [0, 0.5],
while Agent 2’s valuation follows a uniform distribution on [0.5, 1]. In Section B, we show that the
NE policy for this example must be asymmetric. Any symmetric policy A would result in a near-zero
winning probability for Agent 1, leading to a negative expected payoff and implying that A is not an
NE. This negative payoff arises from the asymmetric strategic environment faced by Agents 1 and 2,
where the density of the highest valuation among other agents differs for each agent. Consequently,
the order of winning probabilities of agents (Pi) can differ from the order of valuations (vi), posing a
significant mathematical challenge for determining the NE. E.g., for strategies s1 and s2, let Fsℓ(v)
denote the cumulative distribution of efforts sℓ(v) when v ∼ pℓ. The cumulative distribution of the
(k − 1)-th effort e⋆ from an agent in G1 is then given by:

Pr[e⋆ ≤ v]

=

n−1∑
i=0

n−1−i∑
j=(1−c)n−i

(
n− 1

i

)(
n− 1− i

j

)
Fs1(v)

i(1− Fs1(v))
(1−α)n−1−iFs2(v)

j(1− Fs2(v))
αn−j .

Compare this to the expression for the symmetric case

Pr[e⋆ ≤ v] =

n−1∑
i=(1−c)n

(
n− 1

i

)
Fs(v)

i(1− Fs(v))
n−1−i.

Thus, the calculus and approximations for the expression for the two-group contest are significantly
more difficult, making it much harder to arrive at the equilibrium policies than for Model II.

E.5 An alternative proof using an infinite contest

Recall that Theorem 3.1 studies the case of n → ∞ for the two-group contest. To increase the
understanding of the infinite case, we propose the following infinite version of the two-group contest,
where every real number in the interval [0, 1− α] corresponds to an agent in G1 and in the interval
(1− α, 1] corresponds to an agent in G2. For simplicity, we still assume that pa is a point mass at 0.
Formally, we provide the following definition.
Definition E.5 (Infinite contest). Let k ≥ 1 be integers, α ∈ (0, 1), ρ ∈ (0, 1], and pℓ be a density
supported on a domain Ωℓ ⊆ R≥0 for ℓ = 1, 2. Let every real number in the interval [0, 1 − α]
correspond to an agent in group G1, and in the interval (1− α, 1] correspond to an agent in group
G2. For ℓ ∈ {1, 2}, let the valuation of every agent in Gℓ draw i.i.d. from pℓ. Assume that each agent
i ∈ Gℓ (ℓ = 1, 2) knows α, k, p1, p2, the group it belongs to and its valuation, and has to choose a
policy Ai : Ωℓ → R≥0 to maximize its expected payoff.

There are countless agents in this infinite contest. Also, note that G1 contains (1 − α)-fraction of
agents while G2 contains the remaining α-fraction. Below, we show how to use this infinite contest to
hypothesize the NE policy A for the two-group contest defined in Theorem 3.1. It mainly consists of
two steps: Showing that two-group contests converge to the infinite contest as n→∞ and computing
NE for the infinite contest.

Showing two-group contests converge to the infinite contest as n→∞. We first show that the
infinite contest is the limit of two-group contests. Let gn denote a two-group contest as defined in
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the two-group contest with an NE policy An. Let g denote the infinite game as defined in Problem
E.5. We view gn as a collection of n density functions of agents, with the i-th agent represented by
the real number i−1

n−1 . Agent i belongs to group G1 if 1 ≤ i ≤ (1− α)n and to group G2 otherwise.
From this viewpoint, we propose the following theorem.
Theorem E.8 (Two-group contests converge to the infinite contest). gn converges to g in the
following sense: For any ε > 0, there exists a sufficiently large n0 such that for all n ≥ n0,

• For any t ∈ [0, 1− α], |
∫ t

0
dx− |{i∈G1:

i−1
n−1≤t}|
n | ≤ ε, i.e., the difference in the fraction of

agents in G1 associated with real number at most t between g and gn, is at most ε.

• For any t ∈ (1− α, 1], |
∫ 1

t
dx− |{i∈G2:

i−1
n−1≥t}|
n | ≤ ε, i.e., the difference in the fraction of

agents in G2 associated with real number at least t between g and gn, is at most ε.

Note that the agents in gn can be captured by a uniform distribution µn over real numbers i−1
n−1

(i ∈ [n]). The convergence conditions in the theorem state that the limit of µn is the uniform density
µ over [0, 1], where µ represents the density of agents in g.

Proof:[of Theorem E.8] Let n0 = ⌈ε−1⌉. Then we have n ≥ ε−1. For any t ∈ [0, 1− α], we have∣∣∣∣∣∣
∫ t

0

dx−
|
{
i ∈ G1 : i−1

n−1 ≤ t
}
|

n

∣∣∣∣∣∣ =
∣∣∣∣t− ⌊(n− 1)t+ 1⌋

n

∣∣∣∣
and

t− t

n
≤ ⌊(n− 1)t+ 1⌋

n
≤ t+

1− t

n
.

We conclude that∣∣∣∣∣∣
∫ t

0

dx−
|
{
i ∈ G1 : i−1

n−1 ≤ t
}
|

n

∣∣∣∣∣∣ ≤ max

{
t

n
,
1− t

n

}
t∈[0,1−α]

≤ 1

n

n≥ε−1

≤ ε.

Similarly, for any t ∈ (1− α, 1], we can prove that
∣∣∣∣∫ 1

t
dx− |{i∈G2:

i−1
n−1≥t}|
n

∣∣∣∣ ≤ ε. This completes

the proof of Theorem E.8. □

Computing NE for the infinite contest. It follows from Theorem E.8 that the limit of the two-group
contests gn is the infinite contest g. Then, assuming the NE policy of gn is A(n), we can infer that
the limit of A(n) is the NE policy of the infinite contest. Thus, to hypothesize the NE policy for gn as
n→∞, it suffices to compute the NE policy for the infinite contest.

We first observe that the strategic environment for all agents in the infinite contest is the same, i.e.,
the probability that a given valuation v is among the top c-fraction is the same for all agents. This
property reduces the infinite contest to an undifferentiated contest (except for the different domains
of valuation densities), leading to a symmetric NE policy. Formally, we provide the following lemma
that shows that A is exactly the unique NE policy for the infinite contest.
Lemma E.9 (The infinite contest). Suppose Ω1 ∪ Ω2 is connected and each density pℓ is positive
at any point of domain Ωℓ. Then policy A defined in Equation (3) is the unique NE policy for the
infinite contest.

Proof: We first note that for any agent (whether in G1 or G2), the probability that a given valuation v
is among the top c-fraction is given by:

p1(v) := lim
n→∞

n−1∑
i=(1−c)n

(
n− 1

i

)
F (v)i(1− F (v))n−1−i,

where F is the CDF of the joint density (1− α)p1 + αp2. Recall that t is the unique solution to the
equation

F (v) = (1− α)F1(v) + αF2(v) = 1− c,

39



i.e., t = F−1(1− c). Then through a straightforward calculation, it follows that p1(v) = 1 for v > t
and p1(v) = 0 for v < t. Since the winning probability function p1 is identical for all agents, the
strategic environment for all agents in the infinite contest is the same. Recall that by Corollary 3.2 of
[20], symmetric agents will use a symmetric policy in an NE. Thus, we can assume an increasing
symmetric policy s : Ω1 ∪ Ω2 → R≥0 for all agents.

By the equilibrium condition, for any valuation v and effort e,

p1(v)v − s(v) ≥ P (s−1(e))v − e.

By a similar argument as for Equation (10) (undifferentiated contest), we can compute that s(v) = t
for v > t and s(v) = 0 for v < t. This turns out to be the threshold function defined in Equation (3).
Thus, the policy A, where each agent restricts s to its valuation the domain, is indeed the unique NE
for the infinite contest. This completes the proof of Lemma E.9. □

Using the infinite game to provide an alternative proof of Theorem E.2. As shown in Lemma
E.9, instead of relying on observations from the finite case as in Section E.1.2, we can use this infinite
contest to hypothesize the NE policy A for the two-group contest in the infinite n case.

Once we have a solid guess for the NE policy A using the infinite contest, we need to show that
A remains an NE as n → ∞. While this approach simplifies the initial hypothesis, the challenge
remains in proving that A is indeed an NE. Similar to our current proof of Theorem 3.1, we must
construct a series of proxies that converge to A and increasingly approximate an NE policy. As
detailed in Section E.2, this step remains technically challenging.

Overall, using the infinite contest could provide an alternative proof of Theorem E.2. Moreover, the
symmetric strategic environment of this infinite contest can provide deeper insights into why the NE
policy remains symmetric, even when valuations are asymmetric across groups.

F Omitted details for uniform distribution analysis from Sections 3 and 4

Theorem F.1 (Restatement of Theorem 3.2). Assume p2(v) = 1
ρp1

(
v
ρ

)
for some ρ ∈ (0, 1] and pa

is a mass point at 0. Let policy A be defined as in Theorem 3.1, characterized by t being the unique
solution of Equation (4). Then for any density p1,

rR(A) = 1−F1(t/ρ)
1−F1(t)

, rS(A) =
ρ
∫ ∞
t/ρ

(v−t/ρ)p2(v)dv∫ ∞
t

(v−t)p1(v)dv
, andRV(A,m) = m(t).

Moreover, rR(A) is monotonically increasing w.r.t. ρ, c, and α, whileRV(A,m) is monotonically
increasing w.r.t. ρ and monotonically decreasing w.r.t. c and α, for any merit function m.

Proof: We discuss three metrics separately.

MetricRV(A,m). Recall that A is a threshold function characterized by t. Thus, agents with the
sum of valuation and initial ability v + a > t get spots. Since pa is a point mass at 0, we know that
the score of each selected agent is exactly t. Thus, the average revenueRV(A,m) = m(t).

Next, we prove the monotonicity ofRV(A,m). Since m is monotonically increasing, we only need
to prove the monotonicity of t with respect to ρ, c, α. Recall that t is the solution of Equation (4),
which can be rewritten as

(1− α)F1(ζ) + αF1(
ζ

ρ
) = 1− c.

Let f(ζ) = (1− α)F1(ζ) + αF1(
ζ
ρ ) + c. Then t is the solution of f(ζ) = 1.

Since F1(
ζ
ρ ) is a monotonically decreasing function of ρ, we know that f(ζ) is also a monotonically

decreasing function of ρ. Thus, the solution t increases with ρ. Since Fa(ζ − ρv) ≥ Fa(ζ − v), f(ζ)
is an increasing function of α. Also note that f(ζ) is an increasing function of c. Thus, as c or α
increase, solution t decreases.

Overall, we prove thatRV(A,m) is monotonically increasing w.r.t. ρ and monotonically decreasing
w.r.t. c and α, for any merit function m.
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Metric rR(A). Recall that Fℓ is a cumulative density function (CDF) of the sum of valuation and
initial ability such that for any ζ ∈ R≥0, Fℓ(ζ) = Prv∼pℓ,a∼pa [v + a ≤ ζ]. Thus, Fℓ is the CDF of
pℓ when pa is a point mass at 0. Then the linearity of expectation yields:

Evi,ai
[|S ∩G1|] = (1− α)n(1− F1(t)) and Evi,ai

[|S ∩G2|] = αn(1− F2(t)).

This translates to:

E[R1(A)] =
Evi,ai

[|S ∩G1|]
(1− α)n

= 1− F1(t) and E[R2(A)] =
Evi,ai

[|S ∩G2|]
αn

= 1− F2(t).

Since p2(v) = 1
ρp1

(
v
ρ

)
, we know that F2(t) = F1(t/ρ) and F1(t) ≤ F2(t). Thus, we have

E[R2(A)] ≤ E[R1(A)].

As n→∞, it suffices to prove that

rR(A)→ min

{
E[R1(A)]

E[R2(A)]
,
E[R2(A)]

E[R1(A)]

}
=

1− F2(t)

1− F1(t)
=

1− F1(t/ρ)

1− F1(t)
.

We first note that |S ∩Gℓ| is highly concentrated at Evi,ai
[|S ∩G1|] since all agents in Gℓ are i.i.d.

Concretely, the following inequality holds for any t > 0 by the Chernoff bound:

Pr [||S ∩Gℓ| − Evi,ai
[|S ∩Gℓ|]| ≥ t · Evi,ai

[|S ∩Gℓ|]] ≤ 2e−
t2·Evi,ai

[|S∩Gℓ|]
3 .

Hence, for t = o(
√

1
n ), we have Pr [||S ∩Gℓ| − Evi,ai

[|S ∩Gℓ|]| ≥ t · Evi,ai
[|S ∩Gℓ|]]→ 0. This

implies that as n→∞,

rR(A) = Evi,ai

[
min

{
R2(A)

R1(A)
,
R1(A)

R2(A)

}]
→ min

{
E[R1(A)]

E[R2(A)]
,
E[R2(A)]

E[R1(A)]

}
,

which completes the proof of the formula of rR(A).

Next, we prove the monotonicity of rR(A) with respect to ρ. Recall that t is monotonically increasing
with ρ. We know that 1 − F1(t) is a monotonically decreasing function of ρ. Since 1 − F2(t) =
1−c−(1−α)(1−F1(t))

α , we know that 1 − F2(t) is monotonically increasing with ρ. Thus, rR(A) =
1−F1(t/ρ)
1−F1(t)

is an increasing function of ρ.

Metric rS(A). By a similar argument as for rR(A), we first have that as n→∞,

rS(A)→ min

{
E[S1(A)]

E[S2(A)]
,
E[S2(A)]

E[S1(A)]

}
.

Also note that

E[Sℓ(A)] = E[
1

|Gℓ|
∑
i∈Gℓ

(I(i selected) · vi − ei)] =

∫ ∞

t

(v − t)pℓ(v)dv.

Then we have

E[S2(A)] =
1

ρ

∫ ∞

t

(v − t)p1(
v

ρ
)dv =

∫ ∞

t
ρ

(ρv − t)p1(v)dv ≤ E[S1(A)].

Combining the above all, we obtain that rS(A) =
∫ ∞
t

(v−t)p2(v)dv∫ ∞
t

(v−t)p1(v)dv
. Since p2(v) =

1
ρp1(

v
ρ ), we have

rS(A) =

∫∞
t

(v − t)p2(v)dv∫∞
t

(v − t)p1(v)dv
=

ρ
∫∞
t/ρ

(v − t/ρ)p1(v)dv∫∞
t

(v − t)p1(v)dv

Next, we analyze the monotonicity of rS(A) with respect to ρ. Let g(x) =
∫∞
x

(v−x)p1(x)dx, which
is monotonically decreasing of x. We have rS(A) = ρ·g(t/ρ)

g(t) . Since t is monotonically increasing
with ρ, g(t) is also monotonically increasing with ρ. Thus, to prove that rS(A) is monotonically
increasing with ρ, it suffices to prove that t/ρ is monotonically decreasing with ρ. Recall that we
have shown that F1(t/ρ) = F2(t) is monotonically decreasing with ρ. This implies that t/ρ is indeed
monotonically decreasing with ρ, completing the proof.

Overall, we have completed the proof of the theorem. □
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(a) pa is uniform on [0, 1] (b) pa is a point mass at 0

Figure 13: Plots of t versus ρ for various c with α = 0.5 for the uniform distribution.

Remark F.2 (Monotonicity of rR(A) and rS(A) w.r.t. c, α). By Theorem 3.2, we note that when
fixing ρ, both rR(A) and rS(A) are functions of t. Since t is monotonically decreasing with respect
to c and α, we only need to investigate the monotonicity of rR(A) and rS(A) with respect to t.
Proposition 4.1 demonstrates that rR(A) and rS(A) are monotonically decreasing with t, and hence,
monotonically increasing with c and α. Below, we provide an example with p1 to show that this
monotonicity does not always hold.

Let ε > 0 be a sufficiently small number and ρ = 0.5. Let p1 be supported on Ω1 = [0, 2] such that
p1(v) = 1 − ε for v ∈ [0, 0.5] ∪ [1.5, 2] and p1(v) = ε for v ∈ (0.5, 1.5). Then F1(v) = (1 − ε)v
for v ∈ [0, 0.5], 0.5 − ε + εv for v ∈ (0.5, 1.5), and (1 − ε)v + 2ε − 1. By Theorem 3.2, we
have rR(A) = 1−F1(t/ρ)

1−F1(t)
. Then in this case, rR(A) = 1−(1−ε)/2

1−(1−ε)/4 ≈
2
3 when t = 0.25; while

rR(A) = 1−(1−ε)/2−0.5ε
1−(1−ε)/2 ≈ 1. Thus, rR(A) is not monotonically decreasing with t. A similar

computation can be done for rS(A).

By a similar argument as for Theorem 3.2, we provide the following formulas of metrics for general
densities. The computation is straightforward and we omit here.
Theorem F.3 (Metrics in general). Let policy A be defined as in Theorem 3.1, characterized by t
being the unique solution of Equation (2). Then for any densities p1, p2, and pa,

rR(A) = min
{

1−F2(t)
1−F1(t)

, 1−F1(t)
1−F2(t)

}
,

rS(A) = min

{ ∫ ∞
t

∫
Ω2

min{v,ζ−t}p2(v)pa(ζ−v)dvdζ∫ ∞
t

∫
Ω1

min{v,ζ−t}p1(v)pa(ζ−v)dvdζ
,

∫ ∞
t

∫
Ω1

min{v,ζ−t}p1(v)pa(ζ−v)dvdζ∫ ∞
t

∫
Ω2

min{v,ζ−t}p2(v)pa(ζ−v)dvdζ

}
,

RV(A) = 1−α
1−c

∫∞
t

∫
Ω1

m(max{t− ζ + v, 0})p1(v)pa(ζ − v)dvdζ

+ α
1−c

∫∞
t

∫
Ω2

m(max{t− ζ + v, 0})p1(v)pa(ζ − v)dvdζ.

In the following, we complete the analysis from Sections 3 and 4 for the case where p1 and p2 are
uniform densities. The visualization of t for them can be found in Figure 13. We first give the proof
of Equation (5) for the case that pa is uniform.
Proposition F.4 (Complete version of Equation (5)). Let α, c ∈ (0, 1) and ρ ∈ (0, 1]. Let p1 be
uniform on [0, 1], p2 be uniform on [0, ρ], and pa be uniform on [0, 1]. Let t ∈ [0, 2] be the solution
to the equation

∫ 1

0
(1 − α) · min{1, (ζ − v)+}dv +

∫ ρ

0
α
ρ · min{1, (ζ − v)+}dv = 1 − c. Then if

0 < c ≤ 1−α
2 ,

t =


2−

√
2c

1− α
, ρ < 1−

√
2c

1−α ,

2− α+ α/ρ

1− α+ α/ρ
−

√
2c(1− α+ α/ρ)− α(1− α)(1− ρ)2/ρ

1− α+ α/ρ
, ρ ≥ 1−

√
2c

1−α ,

if 1−α
2 < c ≤ 1

2 ,
2− α+ α/ρ

1− α+ α/ρ
−

√
2c(1− α+ α/ρ)− α(1− α)(1− ρ)2/ρ

1− α+ α/ρ
, ρ < 2c−1+α

α ,

− α

1− α
+

√
α2 + (1− α)(2 + αρ− 2c)

1− α
, ρ ≥ 2c−1+α

α ,
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if 1
2 < c ≤ 1,

− α

1− α
+

√
α2 + (1− α)(2 + αρ− 2c)

1− α
, ρ <

−α+
√

α2+8(1−α)(1−c)

2(1−α) ,√
2(1− c)

1− α+ α/ρ
, ρ ≥ −α+

√
α2+8(1−α)(1−c)

2(1−α) .

Proof: Let f(ζ) =
∫ 1

0
(1 − α) ·min{1, (ζ − v)+}dv +

∫ ρ

0
α
ρ ·min{1, (ζ − v)+}dv. We first note

that f(ζ) is a monotone increasing function with f(0) = 0 and f(2) = 1. By analyzing the value of
min{1, (ζ − v)+}, we also have the following equation:

min{1, (ζ − v)+} =


0, 0 ≤ ζ ≤ v,

ζ − v, v ≤ ζ ≤ v + 1,

1, v + 1 ≤ ζ ≤ 2.

Accordingly, we know that

f(ζ) =



(1− α)(ζ − v) |ζ0 +
α

ρ
(ζ − v) |ζ0, 0 ≤ ζ ≤ ρ,

(1− α)(ζ − v) |ζ0 +
α

ρ
(ζ − v) |ρ0, ρ ≤ ζ ≤ 1,

(1− α)
(
ζ − 1 + (ζ − v) |ζζ−1

)
+

α

ρ

(
ζ − 1 + (ζ − v) |ρζ−1

)
, 1 ≤ ζ ≤ 1 + ρ,

(1− α)
(
ζ − 1 + (ζ − v) |ζζ−1

)
+ α, 1 + ρ ≤ ζ ≤ 2.

Thus, f is a piecewise-polynomial function of ζ. Solving f(ζ) = 1− c results in Corollary F.4. □

Proposition F.5 (Restatement of Proposition 4.1). Let p1 be uniform on [0, 1], p2 be uniform on
[0, ρ], and pa be a point mass at 0. Let A be the NE policy for the two-group contest as n→∞. Then

t = 1− c

1− α
if ρ < 1− c

1−α and t =
ρ(1− c)

ρ− αρ+ α
if ρ ≥ 1− c

1−α .

rR(A) = 0 if ρ < 1− c
1−α and rR(A) =

ρ− αρ+ α+ c− 1

α− αρ+ cρ
if ρ ≥ 1− c

1−α .

rS(A) = 0 if ρ < 1− c
1−α and rS(A) =

ρ(ρ− αρ+ α+ c− 1)2

(α− αρ+ cρ)2
if ρ ≥ 1− c

1−α .

Moreover, RV(A,m) = m(t) for any merit function m(·); rR(A) and rS(A) are monotonically
increasing functions of parameters ρ, c, α.

Proof: Note thatRV(A,m) = m(t) is directly from Theorem 3.2.

Computation of t. Note that F1(v) = v and F2(v) = min
{
1, v

ρ

}
. Let g(v) = (1 − α)v +

αmin
{
1, v

ρ

}
. We note that g(·) is a piece-wise linear function of v with an inflection point v = ρ.

Plugging v = ρ into the equation, we obtain that ρ = 1− c
1−α which is an inflection point of t. Then

if solution t > ρ, we have that t is the solution of the equation (1 − α)v + α = 1 − c, implying
that t = 1− c

1−α . The condition for this case is ρ < 1− c
1−α = t. Otherwise if solution t ≤ ρ, we

have that t is the solution of the equation (1− α)v + α v
ρ = 1− c, implying that t = ρ(1−c)

ρ−αρ+α . The
condition for this case is ρ ≥ 1− c

1−α . This completes the proof for t.

Analysis for rR(A). By Theorem 3.2, we have rR(A) =
1−min{1, tρ}

1−t . By the form of t, we can
verify the explicit form of rR(A).

Note that when ρ ≥ 1− c
1−α , we have

rR(A) =
ρ− αρ+ α+ c− 1

α− αρ+ cρ
= 1− (1− c)(1− ρ)

α− αρ+ cρ
.
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Let

f(ρ, c, α) = 1− (1− c)(1− ρ)

α− αρ+ cρ
.

Define the auxiliary functions:

X(ρ, c, α) = (1− c)(1− ρ), Y (ρ, c, α) = α− αρ+ cρ.

Then when ρ ≥ 1− c
1−α , we have

f(ρ, c, α) = 1− X

Y
, and X(ρ, c, α), Y (ρ, c, α) > 0.

The partial derivatives w.r.t. ρ, c, α are:

∂f

∂ρ
=

(1− c)Y + (c− α)X

Y 2
=

c(1− c)

Y 2
≥ 0,

∂f

∂c
=

(1− ρ)Y + ρX

Y 2
≥ 0,

∂f

∂α
=

1− ρ

Y 2
≥ 0.

Thus, rR(A) is monotonically increasing with ρ, c, α when ρ ≥ 1− c
1−α . Moreover, the threshold

1− c
1−α is monotonically decreasing with c, α. Thus, we conclude that rR(A) is a monotonically

increasing function of parameters ρ, c, α.

Analysis for rS(A). By a similar argument as for rR(A), we can obtain the formulas of rS(A)
using Theorem 3.2 and the form of t. Note that rS(A) = ρrR(A)2. Thus, rS(A) is monotonically
increasing with ρ, c, α.

Overall, we have completed the proof of the proposition. □

G Additional details to Section 4

In this section, we first illustrate details for how to estimate perceived bias from JEE Advanced 2024
(Section G.1). Then we provide a robustness analysis for key findings in Section 4 by varying α and
c (Section G.2). Next, we give an illustrative example for the practical use of our model, including
how to make interpretable predictions and policy interventions (Section G.3). Finally, we provide
omitted details for alternative interventions in Section 4.

G.1 Case study — estimating perceived bias from JEE Advanced 2024

To illustrate our framework in a high-stakes meritocratic setting, we calibrate the model using
data from JEE Advanced 2024, the entrance examination for admission to the Indian Institutes of
Technology (IITs). The gender-disaggregated statistics were published by the Government of India’s
Press Information Bureau [71]:

Group Candidates Appeared Qualified
Male 139,180 40,284
Female 41,020 7,964
Total 180,200 48,248

Model calibration. We define the disadvantaged group as female candidates and the advantaged
group as male candidates. From the data:

• Proportion of disadvantaged applicants:

α =
41,020

180,200
≈ 0.228
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• Selection rate for the entire applicant pool:

c =
48,248

180,200
≈ 0.268

• Admit rate for each group:

Female admit rate =
7,964

41,020
≈ 0.194, Male admit rate =

40,284

139,180
≈ 0.289

• Observed representation ratio:

robs =
0.194

0.289
≈ 0.671

Solving for the bias parameter ρ. Using the closed-form expression for the representation ratio in
the uniform-valuations model:

rR(ρ, c, α) = 1− (1− c)(1− ρ)

α− αρ+ cρ
,

we plug in rR = 0.671, c = 0.268, and α = 0.228 to solve for ρ:

0.671 = 1− (1− 0.268)(1− ρ)

0.228− 0.228ρ+ 0.268ρ
.

Simplifying both sides:

0.329 =
0.732(1− ρ)

0.228 + 0.04ρ
,

0.329(0.228 + 0.04ρ) = 0.732(1− ρ).

Compute both sides:
0.0749 + 0.01316ρ = 0.732− 0.732ρ.

Bring all terms to one side:

0.74516ρ = 0.6571 ⇒ ρ ≈ 0.6571

0.74516
≈ 0.882.

The inferred bias parameter is:
ρ ≈ 0.882,

which reflects a perceived disadvantage for female candidates: they value qualification outcomes
at roughly 88.2% of their male counterparts’ valuation, consistent with the observed gender gap in
qualification rates. This example demonstrates how our model can be applied to quantify bias in
selection systems using real-world statistics.

G.2 Robustness analysis for findings in Section 4

In this section, we assess whether our core conclusions in Section 4 depend on the specific parameter
settings. To verify robustness, we conducted additional simulations varying α and c beyond the
default values. Below we summarize our findings:

Metric robustness across group sizes. We varied α from 0.5 to 0.3 (to represent smaller disadvan-
taged groups) and recalculated the representation ratio rR(A) and welfare ratio rS(A) across a grid
of disparity levels (ρ) and selection rates (c); see Figure 14. The overall trends remain consistent:
for example, rR(A) ≤ 0.2 still holds for c = 0.1 and ρ ≤ 0.85, confirming that strategic behavior
amplifies underrepresentation in highly selective settings.

Robustness of intervention takeaways. We varied c from 0.228 (derived from the JEE Advanced
data) to 0.1 and α from 0.268 to 0.5 and re-evaluated intervention strategies. Figure 15 plots optimal
interventions for various threshold τ . The overall trends remain consistent. For instance, in Figure
15(a), when τ ≤ 0.87, increasing access (raising c) remains more cost-effective. In contrast, when
τ > 0.87, improving group valuation (increasing ρ) becomes more impactful. This confirms that
the recommendation to prioritize access vs. valuation interventions depending on the disparity level
remains valid across reasonable choices of α and c.
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(a) rR(A) v.s. ρ (b) rR(A) v.s. c (c) rS(A) v.s. ρ (d) rS(A) v.s. c

Figure 14: Plots of the representation ratio rR(A) and the social welfare ratio rS(A) as parameters ρ and c
vary for Proposition 4.1, with default settings of (ρ, c, α) = (0.8, 0.1, 0.3). A dotted line in these plots indicates
the threshold at which rR(A) = 0.8 or rS(A) = 0.8.

(a) When c = 0.1 (b) When α = 0.5

Figure 15: Plot of optimal interventions (∆ρ,∆c) for various τ

G.3 An illustrative example: interpreting and applying the model

We provide a concrete example to illustrate how our theoretical framework can be used to diagnose
and compare policy interventions.

Interpretable diagnostics. Suppose a policymaker observes persistent underrepresentation of a
disadvantaged group (e.g., female students) in a selective admissions process. Given data on the
overall selection rate c, group size α, and the observed representation ratio rR(A), the policymaker
can use our model to infer the implied valuation gap parameter ρ (as shown in Section G.1). This
parameter summarizes how much lower the disadvantaged group perceives the value of success
relative to the advantaged group.

Although ρ is not directly observable, its interpretation is transparent: it attributes behavioral dispar-
ities (such as lower effort investment) to structural differences in perceived incentives rather than
to innate ability. In this way, the model provides a normative reading of observed disparities—as
equilibrium responses to valuation asymmetries.

Policy interventions. Once the implied parameters are estimated, the policymaker can consider
two classes of interventions:

• Valuation-based interventions: improving the perceived value of success (e.g., through
mentorship programs or financial aid), which effectively increases ρ;

• Access-based interventions: expanding the number of available slots, thereby increasing c.

Our framework allows simulation of the effects of each intervention on representation, welfare, and
efficiency, enabling counterfactual comparisons under a fixed behavioral model. For example, when
ρ is low, expanding access may yield larger gains in representation, while when ρ is already high,
improving valuation can be more cost-effective.

Implementation challenges. Estimating parameters such as ρ empirically is nontrivial and remains
an open direction. It would require auxiliary data sources (e.g., surveys, longitudinal effort–outcome
data) or structural assumptions about the effort cost function. Nonetheless, once such estimates are
available, our framework provides a transparent scaffold for interpreting behavioral disparities and
evaluating the relative effectiveness of competing policy interventions.

G.4 Details for alternative interventions

Below we provide more detailed theoretical analysis for alternative potential interventions discussed
in Section 4.
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Introducing preference heterogeneity. Recall that the institution applies group-specific merit
mappings of the form: for group Gℓ (ℓ = 1, 2) and for score s, mℓ(s) = xℓ · s+ yℓ for group-specific
parameters xℓ, yℓ ≥ 0. We have the following generalized theorem of Theorem 3.1
Theorem G.1 (Generalization of Theorem 3.1: Introducing preference heterogeneity). Let
α, c ∈ (0, 1). For ℓ = 1, 2, let pℓ be a density supported on a domain Ωℓ ⊆ R≥0. Let pa be
a density supported on a domain Ωa ⊆ R≥0. For ℓ = 1, 2, let mℓ be a merit function defined
above. For ℓ = 1, 2, let Fℓ be a cumulative density function (CDF) of the sum of valuation and
initial ability such that for any ζ ∈ R≥0, Fℓ(ζ) = Prv∼pℓ,a∼pa

[xℓv + yℓ + a ≤ ζ]. Suppose
(x1Ω1 + y1) ∪ (x2Ω2 + y2)) + Ωa is connected and densities p1, p2, pa are positive at any point of
their own domains. Let t be the unique solution to the equation

(1− α)F1(ζ) + αF2(ζ) = 1− c.

Then the threshold function of the NE policy defined in Eq. (3) extends to be: for ℓ = 1, 2,

sℓ(v, a) = 0 if v + a <
t− yℓ
xℓ

, and sℓ(v, a) = max

{
t− yℓ
xℓ

− a, 0

}
if v + a ≥ t− yℓ

xℓ
.

Moreover, the threshold t−y2

x2
for G2 is monotonically decreasing with x2, y2.

Proof: The proof for sℓ is almost identical to that of Theorem 3.1. We only need to note that for any
agent i ∈ Gℓ (ℓ = 1, 2) with valuation-ability pair (vi, ai) ∈ Ωℓ×Ωa, if its valuation vi ≥ t−yℓ

xℓ
−ai,

then its merit must be

mℓ(sℓ(vi, ai)) = xℓ ·
(
ai +max

{
t− yℓ
xℓ

− ai, 0

})
+ yℓ ≥ t,

which is within the top c-fraction and makes the agent get selected.

Regarding the monotonicity of t−y2

x2
, note that as x2 or y2 increases, Fℓ(ζ) decreases. Then the

solution t must increase, resulting in a higher threshold t−y1

x1
for group G1. This reduces the fraction

of agents in G1 to get selected, and consequently, increases the fraction of agents in G2 to get
selected. Then the threshold t−y2

x2
must decrease, which completes the proof. □

Note that when x1 = x2 = 1 and y1 = y2 = 0, this theorem is exactly Theorem 3.1, and hence, is a
generalization. This theorem implies that by increasing x2, y2, more agents in G2 are willing to put
in efforts due to lower valuation threshold t−y2

x2
. This supports the properties discussed in Section 4.

Setting group-specific selection rates. Assume that the institution selects a c-fraction of agents
from G1 and G2 independently. The model decomposes into two independent within-group contests,
each with its own Nash equilibrium.

For the disadvantaged group G2, let F2 denote the CDF of its combined signal v+a. The equilibrium
threshold t2 under group-specific capacity c is the unique solution to:

F2(t2) = 1− c.

In contrast, under a uniform selection rate c applied to the full population (original two-group contest),
the common threshold t solves:

(1− α)F1(t) + αF2(t) = 1− c.

Since G2 has lower valuations by assumption, we typically have F2(ζ) ≥ F1(ζ) for all ζ, which
implies t2 < t. That is, the disadvantaged group faces a lower selection bar under group-specific
quotas.

As a result, agents in G2 exert more effort on average under per-group capacities compared to the
uniform-c case. This is because effort is increasing in the probability of selection, which improves
when the threshold is lowered.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions are shown in Sections 2, 3, and 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section E and F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Section or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Algorithm 1 in Section C for the implementation of dynamics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Section, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All submissions are anonymous.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 4 demonstrates how our results can be used to mitigate the impact of
bias. Section B discusses the detrimental effects caused by biased valuations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

54

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Model and metrics
	Theoretical results: Nash equilibrium and metrics for large n
	Analysis: metric behavior and intervention design
	Conclusion, limitations, and future work
	Detailed related work
	Comparison of the two-group contest with relevant models

	Illustrative examples for the two-group case
	Analysis of finite NE policies in the uniform distribution case
	Empirical analysis
	Theoretical analysis

	Other bias models and analysis of metrics for their Nash equilibrium
	Other bias models
	Analysis of metrics for Nash equilibrium in the truncated normal distribution case

	Proof of Theorem 3.1: two-group contest
	Technical overview
	NE policy for the undifferentiated contest for finite n and obstacle in extending it
	A conjectured NE policy in two-group contests for large n
	Proving convergence to the conjectured NE policy

	A more comprehensive version of Theorem 3.1: convergence form
	Proof of Theorem E.2
	Proof of Lemma E.1: solution uniqueness
	Bounding winning probability
	Proof that A(n) is approximate NE
	Completing the proof of Theorem E.2

	Comparing with a distributional two-group contest
	An alternative proof using an infinite contest

	Omitted details for uniform distribution analysis from Sections 3 and 4
	Additional details to Section 4
	Case study — estimating perceived bias from JEE Advanced 2024
	Robustness analysis for findings in Section 4
	An illustrative example: interpreting and applying the model
	Details for alternative interventions


