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Abstract
Scaling model size and training data has led to
great advances in the performance of Large Lan-
guage Models (LLMs). However, the diminishing
returns of this approach necessitate alternative
methods to improve model capabilities, particu-
larly in tasks requiring advanced reasoning. Large
reasoning models, which leverage long chain-of-
thoughts, bring unprecedented breakthroughs in
problem-solving capabilities but at a substantial
deployment cost associated to longer generations.
Reducing inference costs is crucial for the eco-
nomic feasibility, user experience, and environ-
mental sustainability of these models.

In this work, we propose to train large reasoning
models to reason efficiently. Our method incen-
tivizes models to minimize unnecessary compu-
tational overhead while largely maintaining ac-
curacy, thereby achieving substantial deployment
efficiency gains. It enables the derivation of a fam-
ily of reasoning models with varying efficiency
levels, controlled via a single hyperparameter. Ex-
periments on two open-weight large reasoning
models demonstrate significant reductions in in-
ference cost while preserving most of the accu-
racy.

1. Introduction
Large language models (LLMs) have made significant ad-
vancements by pre-training larger models with extensive
datasets (Kaplan et al., 2020), but this approach faces dimin-
ishing returns due to limited high-quality training data. An
alternative to improve model capabilities, especially in do-
mains involving careful reasoning, involves allowing models
to “think" before answering, as seen in frontier reasoning
models like OpenAI’s o1 (OpenAI et al., 2024), Gemini
2.0 Flash Thinking Experimental, and DeepSeek-R1 (Guo
et al., 2025). These models produce intermediate tokens dur-
ing inference, collectively referred to as chain-of-thoughts
(Wei et al., 2022), to perform additional computations be-
fore returning an answer. The process of generating a long
chain of thought before answering the user query is called
reasoning. More precisely, large reasoning models with

chain-of-thoughts capable of performing advanced reason-
ing emerge from RL (Sutton & Barto, 2018; Guo et al.,
2025) on base models using ground-truth scoring functions
(e.g., correctness on math problems).

These reasoning models use test-time compute in the form
of very long chain-of-thoughts, an approach that incur a
high inference cost due to the quadratic cost of the atten-
tion mechanism and linear growth of the KV cache for
transformer-based architectures (Vaswani, 2017). However,
effective deployment of LLMs demands models that are
not only capable but also computationally efficient to serve.
Even for resource-rich organizations such as large tech com-
panies that have the resources to train reasoning models, ex-
cessive inference costs may mean operating at a loss rather
than at a profit in order to match the competitor’s offer-
ing. Furthermore, reducing inference costs often reduces
latency, improves responsiveness, and therefore improves
user experience. Finally, lowering the inference computa-
tion positively benefits the environment by reducing carbon
emissions.

To achieve this goal, we use policy gradient methods (Sut-
ton & Barto, 2018) to train the model to use lower number
of tokens to reach the correct solution, thereby minimizing
inference costs, ideally without compromising on accuracy.
We use a modified reinforcement learning reward function
which encourages the model to produce correct answers
with short chain-of-thoughts. At the time of the initial pub-
lication of our pre-print on arXiv, we were among the first
to consider training the model to be efficient at inference
time, and we discuss concurrent as well as related literature
in Section 2. Our method allows the user to control the
reduction in inference compute by adjusting a scalar coef-
ficient in an intuitive way. In other words, starting from a
reasoning model, our procedure allows us to derive a family
of models, each with increased generation efficiency (i.e.,
shorter chain-of-thoughts).

We perform numerical experiments on two recently released
open-weight large reasoning models, DeepSeek-R1-Distill-
Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B (Guo et al.,
2025) and derive models with a substantial reduction in
reasoning cost while approximately maintaining accuracy,
see Figure 1 for a summary of our results. We observe
that our training procedure allows us to gracefully navigate
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Figure 1. This figure describes the results of our training procedure aggregated on 5 evaluation datasets on both 1.5B and 7B scales. The
x-axis represents response length normalized by the performance of the R1-Distilled model and the y-axis represents accuracy normalized
by the accuracy of the R1-Distilled model. Each value of α has been aggregated over 3 seeds. Our training reward design allows us to
easily and effectively navigate the token-accuracy tradeoff curve. Increasing the value of α generally results in models that have lower
response lengths.

the compute-performance tradeoff curve, that is, reduce
compute significantly with minimal loss in performance.
For instance, for the 7B model, we can achieve a reduction
of 50% in tokens with less than 5% reduction in accuracy.

We also observe that the reduction in response length de-
pends on the hardness of the problem. For the 7B model, our
method can reduce token usage by 16% on the competition-
level benchmark: American Invitational Mathematics Ex-
amination 2024 with a drop of 3.3% points in accuracy, up
to 37% tokens on the MATH500 (Hendrycks et al., 2021)
dataset with a drop of 2.2% in accuracy, and up to 65%
tokens on the GSM8K (Cobbe et al., 2021b) dataset with a
drop of 1.7% in accuracy.

Our work only requires a couple of lines of changes to any
standard reinforcement learning implementation. Beyond
its simplicity, an attractive property of our approach is its
computational efficiency: although training reasoning mod-
els with large scale RL has a prohibitive cost (Guo et al.,
2025), our procedure shows that training them to reason
efficiently is highly viable even with modest academic re-
sources: our models are obtained with only 100 RL steps
(∼ 200 gradient updates). The fact that we achieve a perfor-

mance comparable to that of the original reasoning model
with a short training is surprising because in a few RL steps
the model learns to optimize for shorter, more efficient rea-
soning patterns compared to the original model. All of our
code and trained models would be made public.

2. Related Work
Improving model capabilities with test-time compute
Several techniques such as Chain of Thoughts (Wei et al.,
2022), Self Consistency (Wang et al., 2022), Best-of-N,
Monte Carlo Tree Search (Silver et al., 2017), Tree-of-
thoughts (Yao et al., 2024), Stream-of-Search (Gandhi et al.,
2024), Graph-of-Thoughts (Besta et al., 2024), Process Re-
ward Models (Lightman et al., 2024) and Self-Correction
(Kumar et al., 2024; Welleck et al., 2023) have been pro-
posed to improve performance by spending more inference
time compute. It has also been shown that in some cases
scaling inference compute can be more effective than scaling
model size (Snell et al., 2025; Liu et al., 2025a). While the
above mentioned techniques can be effective in specialized
scenarios, modern large scale reasoning models are trained
with large scale RL with verifiable rewards and perform
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autoregressive generation.

Large Reasoning Models Frontier reasoning such as Ope-
nAI o1, Deepseek R1 and QwQ-Preview rely on long, mono-
lithic chain-of-thoughts to perform advanced reasoning.
They are trained with large scale reinforcement learning
(Guo et al., 2025), which leads them to develop abilities
such as branching, verification and backtracking. Our ap-
proach aims to make these models more efficient.

Efficient Serving While we focus on developing reason-
ing models that can be served efficiently, our approach is
orthogonal to existing methods from the literature of effi-
cient LLMs; see Zhou et al. (2024) for a recent survey. For
example, system-level techniques build a system to accel-
erate inference. Some examples include speculative decod-
ing (Leviathan et al., 2023) and batch engines like vLLM
(Kwon et al., 2023a); both can be directly combined with our
method. Model-based techniques, on the other hand, act di-
rectly on the model to accelerate inference. Some examples
include weight pruning (Liu et al., 2018) and quantization
(Lin et al., 2024), which are all complementary and can
combined with our methodology.

Concurrent works Chen et al. (2024) investigate the over-
thinking phenomena and propose methods to mitigate it by
using heuristics such as First-Correct Solutions (FCS) and
Greedy Diverse Solutions (GDS) to generate preference data
which is then used for offline policy optimization. However,
this method doesn’t allow easily tuning the model to the
user’s compute budget. At the time of our pre-print coming
online on arXiv, several papers with similar objectives were
released as well. For instance, the Kimi k1.5 (Team et al.,
2025) also report a method to shorten the chain-of-thought
using a length penalty in the reward function while doing
online RL, a procedure similar in principle but not identical
to ours. We note that their procedure does not appear to
have a tunable parameter which allows to obtain a family
of models–each with varying trade-offs–as we do. Another
work in this direction is O1-Pruner (Luo et al., 2025) which
proposes a slightly different offline RL objective to mini-
mize tokens while maintaining accuracy while we use online
RL. Subsequent to our pre-print, multiple works have tried
to look into this research direction. For instance, (Qu et al.,
2025) pose the problem of minimizing compute usage as a
meta-RL problem and use online RL to solve it. (Aggarwal
& Welleck, 2025) train reasoning models to follow exact
token constraints specified in prompts. (Xia et al., 2025)
prune tokens from Chain-of-Thoughts using semantic impor-
tance and perform SFT to obtain models with controllable
compression.

Efficiency of Chain-of-Thought Jin et al. (2024) find that
lengthening chain-of-thought has a correlation with improv-
ing performance. Conditional training as done by Kang
et al. (2024) is also another approach to the problem of

generating shorter chain-of-thoughts. Explicitly trying to
control the number of tokens by prompt engineering has
been explored by Nayab et al. (2025) and Han et al. (2024).
However, none of these methods have explored models that
generate a long CoT and don’t use RL to train models to
be less verbose. Also, they hinge on the critical assumption
that models can follow instructions of the format: ‘Please
answer this query in less than X tokens’. However, we find
that distilled reasoning models are not capable of following
such instructions. In fact, there has been work on this after
our pre-print was released which trains models to explicitly
follow such instructions (Aggarwal & Welleck, 2025). See
Appendix Section F for a detailed discussion.

3. Setup
Let p be a language model. When provided with a prompt x,
the language model produces a response y = (y1, y2, ..., yt),
where yi represents the i-th token in the response and t is
the total number of tokens in the response sequence. More
precisely, the generation is auto-regressive, meaning that
given the prompt x and the tokens y≤k = (y1, y2, ..., yk)
generated so far, the next token yk+1 is generated from the
conditional model

yk+1 ∼ p(· | x, y≤k). (1)

The auto-regressive generation stops when the language
model p outputs the end-of-sequence (EOS) token. There-
fore, if y = (y1, y2, ..., yt) is a full response, yt is always
the EOS token. With a little abuse of notation, we also
let y ∼ p(· | x) denote the process of sampling the full
response y = (y1, y2, ..., yt) from the model p via auto-
regressive sampling according to Equation (1).

Chain-of-Thoughts Chain of thoughts, introduced by
(Wei et al., 2022), is a key framework to implement rea-
soning. Given a prompt x, the LLM is said to produce a
“chain of thought” when it produces intermediate tokens that
are not part of the output before generating the final answer
in an autoregressive way. Typically, the final answer is not
formally separated from the chain-of-thoughts, and so we
let y denote the full output of the model y ∼ p(x).

Objective function and reinforcement learning We con-
sider problems where the responses generated from an LLM
can be evaluated by a scoring function f(x, y) 7→ R, often
called reward model or verifier, that measures the suitabil-
ity of the response. For math problems, such as those that
we consider in this paper, the reward function establishes
whether the solution to the problem is correct (Cobbe et al.,
2021b; Hendrycks et al., 2021)

f(x, y) = 1{y = y⋆(x)} (2)
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where y⋆(x) is the correct answer to the math problem
x. Since y is the full output of the model, including the
chain of thought, the relation y = y⋆(x) tests whether the
final answer generated by the model coincides with the
gold answer, rather than checking the equivalence between
strings.

Large reasoning models (Guo et al., 2025) are reportedly
trained with reinforcement learning (Sutton & Barto, 2018).
When a chain of thoughts is used, the objective function to
maximize can be written as

ACCURACY(p) = Ex∼ρEy∼p(x)

[
1{y = y⋆(x)}

]
. (3)

where ρ is the prompt distribution. In the sequel, we sim-
ply write E to denote the expectation. For math problems,
maximizing Equation (3) directly maximizes the probability
that the model correctly solves a random question from the
prompt distribution.

4. Method
We aim to design a method that trains models to use lower
amount of inference time compute to arrive at the correct an-
swer. For simpler math problems, such as those in GSM8K
(Cobbe et al., 2021b), the model should recognize when it
has reached the correct solution within a few hundred tokens.
In contrast, for competition-level problems like those in the
American Invitational Mathematics Examination (AIME),
the model should be capable of expending thousands of
tokens if that is necessary to find a strategy that solves these
exceptionally challenging questions.

One attractive option is to train the model on an objec-
tive function derived from Equation (3) that encourages
the model to produce correct solutions with the minimum
amount of tokens. In order to achieve the latter goal, we
penalize the length of the correct responses

E
[
1{y = y⋆(x)}(1− αf(LEN(y))

]
(4)

using a monotonic function f of the input and a tunable
parameter α ∈ [0, 1). The choice α = 0 yields the rein-
forcement learning objective (3); increasing α increases the
regularization towards shorter—but correct—responses.

In order to ensure that the length regularization is effective,
we first normalize the length of the responses and then use
the sigmoid function σ to soft-clip it, obtaining

f(LEN(y)) = σ

(
LEN(y)− MEAN(x)

STD(x)

)
(5)

where
MEAN(x) = E

y∼p(x),
s.t. 1{y=y⋆}=1

[LEN(y)]

STD(x) =
√

Var
y∼p(x),

s.t. 1{y=y⋆}=1

[LEN(y)]

are the per-prompt mean and standard deviation of the
length, respectively. The per-prompt normalization ensures
that longer chains of thought on hard problems are not dis-
proportionately penalized compared to shorter ones on eas-
ier problems. When α ∈ [0, 1), the sigmoid ensures that the
objective function is always bounded between [0, 1] even
for abnormally long or short generations, and that correct re-
sponses, even if long, are always preferred to incorrect ones.
In practice, both the standard deviation and the mean are
directly estimated from the rollouts during online training.

4.1. Optimizing the objective function with
Reinforcement Learning

Since optimizing Equation (4) involves sampling from
the model auto-regressively, the objective function is non-
differentiable; however, it can be optimized with reinforce-
ment learning, for instance with policy gradient methods
(Sutton & Barto, 2018).

One popular option is proximal policy optimization (PPO)
(Schulman et al., 2017) which considers the (local) objective
function

min{f t
θ(y, x)A(y<t, x), clip1+ϵ

1−ϵ[f
t
θ(y, x)]A(y<t, x)}

defined using the density ratio

f t
θ(y, x) =

πθ(y
t|x+ y<t)

πold(yt|x+ y<t)

and for a suitable choice for the advantage estimator
A(y<t, x). Traditionally, in deep reinforcement learning
(Schulman et al., 2017) the advantage estimator involves a
neural network.

With language models, maintaining a separate value network
to obtain a variance-reduced advantage estimator (Schul-
man et al., 2017) may add significant computational and
implementation complexity without necessarily increasing
performance (Kool et al., 2019; Ahmadian et al., 2024).
One simple and effective alternative is to just estimate the
advantage using Monte Carlo (MC) as proposed by (Kool
et al., 2019; Ahmadian et al., 2024). Such estimator is also
called REINFORCE Leave One Out (RLOO) estimator. To
be precise, the trajectory advantage can be estimated as

A(yi, x) = R(yi, x)−
1

n− 1

∑
j ̸=i

R(yj , x)

where R is the trajectory return and yi is the ith generation
for prompt x. We then simply use the sequence level ad-
vantage as the token level advantage, namely A(y<t, x) =
A(y, x). In essence, we use PPO with the RLOO advantage
estimator.
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Figure 2. Pipeline depicting our method. For every prompt, multiple solutions are sampled and rewarded based on correctness and
response length. The shortest correct answers are rewarded the highest and the language model is then updated using policy gradients.

4.2. Population-level optimality guarantees

In this section we analyze the population-level maximizer
of Equation (4) in a highly simplified setup and show how
this can lead to the desired behavior of shortening the chain-
of-thoughts without compromising accuracy. Additionally,
we establish that the population-level maximizer is a model
that generates the shortest correct response for any prompt
in X .

Consider the following simplified setup, where the language
model pθ conditioned on a prompt x is a multinomial dis-
tribution over N possible responses y1, . . . , yN . More pre-
cisely, given |X | multinomial distributions p(· | x) on the
prompt space X , there exists a value of the parameter θ that
realizes such a choice. This is formalized by the following
Assumptions.

Assumption 4.1 (Tabular Representation). For every choice
of p such that

p(yi | x) ∈ [0, 1], ∀x ∈ X , i ∈ [N ] (6)∑
i

p(yi | x) = 1, ∀x ∈ X (7)

there exists a θ such that

pθ(yi | x) = p(yi | x), ∀i ∈ [N ],∀x ∈ X . (8)

This assumption can be justified by the expressive power of
the neural network. The following assumption ensures cov-
erage, namely that for every prompt, there exists at least a
correct response that the LLM can output for an appropriate
value of θ. It encodes the fact that an LLM can learn the
correct solution if given enough data.

Assumption 4.2 (Coverage). For all prompts x ∈ X , ∃
y ∈ {yi}Ni=1 such that y = y⋆(x).

Let pθ⋆ denote the reasoning model that is the population
level maximizer of the accuracy:

θ⋆ = argmax
θ

Ex∼ρEy∼pθ(x)

[
1{y = y⋆(x)}

]
(9)

where ρ is the distribution over the prompts. From our
simplified setup, in particular from Assumption 4.1 and
Assumption 4.2 it is easy to see that

ACCURACY(pθ⋆) = 1. (10)

In other words, if the language model has enough expressive
power that it can cover the correct solution for each of the
prompts, maximization of the population level RL training
objective (9) leads to a model that can output the correct
solution over each prompt in the training dataset.

Let θ⋆eff denote the population-level parameters of the rea-
soning model obtained by maximizing Equation (4), i.e.,

θ⋆eff = argmax
θ

{
Ex∼ρEy∼pθ(x)

[
1{y = y⋆(x)}(1−αf(LEN(y))

]}
(11)

for a certain choice of a monotonically increasing function
f(·) ∈ [0, 1] and scalar value α ∈ [0, 1).

We can prove that the population-level maximizer pθ⋆
eff

is
as accurate as the population-level maximizer pθ⋆ and that
it recovers the shortest solution for every prompt in X . For
brevity, the proofs are moved to Section E in the Appendix.
Proposition 4.3 (Accuracy is Preserved). With the setup
just described,

ACCURACY(pθ⋆
eff

) = 1. (12)

5
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Proposition 4.4 (Training Objective yields the Shortest Cor-
rect Solution). Under the assumptions listed, ∀x ∈ X , ∀y′
such that y′ = y∗(x),

Ey∼pθ⋆
eff

(x)

[
LEN(y)

]
≤ LEN(y′) (13)

Note that our claim is about the population-level maximizer;
finite-sample guarantees can be obtained for parametric
and nonparametric models using standard techniques from
statistics (Wainwright, 2019).

Intuitively, the average length is reduced by virtue of our
objective function (4), while accuracy is preserved in the
idealized setting that we consider. Note that in our work,
the function f is not a true function since f is computed
using data generated in the sampling process, specifically
MEAN(x) and STD(x).

5. Experiments
In our experiments, we aim to study the performance of our
algorithm, specifically, can it effectively tradeoff accuracy
and efficiency. Additionally, we compare with some simple
baselines. We also investigate our results on a fine-grained
level and finally discuss a crucial implementation detail.

5.1. Setup

Models and Datasets We evaluate all algorithms on the
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B (Guo et al., 2025) models. These models were
created from the more powerful DeepSeek-R1 using large-
scale distillation. Along with a LLaMA-variant distilled
by the same authors (Guo et al., 2025), they are the only
open-weight reasoning models of their size.

For post-training the model using our technique, we choose
3.2k prompts from the MATH, cn_k12, AIME, AoPS and
the Olympiad subsets of the Numina Math dataset (LI et al.,
2024). The dataset includes problems that lack an objective
answer, such as proof-based questions. We filter out such
problems and ensure that the selected training problems
have a numerical answer that can be parsed.

Evaluation We report the training logs and also evaluate
the models on three test datasets namely: GSM8K (Cobbe
et al., 2021a), which contains grade-school-level math prob-
lems, MATH500 (Hendrycks et al., 2021) which is a stan-
dard benchmark containing harder problems than GSM8K,
and The American Invitational Mathematics Examination
(AIME) 2024, a competition-level dataset of challenging
mathematical problems. Additionally, to verify the robust-
ness of our training methodology to datasets other than those
based on mathematics, we evaluate models on Common-
SenseQA and Logical Deduction from BIG-Bench (Srivas-
tava et al., 2023).

For all models, we set the temperature to 0.6 as suggested
in the model’s card1 and set the token limit to 32K. We use
vLLM (Kwon et al., 2023b) for efficient batch inference. We
use the parser created by the Qwen Team for the evaluation
of their models2 to measure correctness. We report the
average pass rate@k for all models. Specifically, for each
prompt, we sample k responses and compute the average
accuracy per prompt, which is then averaged across the
entire dataset. For GSM8K, we set k = 1 due to its large
number of test samples. In contrast, for MATH500, we use
k = 3, and for AIME2024, we set k = 10 given its limited
set of only 30 questions. Implementation details along with
computational requirements are given in Section A of the
Appendix.

5.2. Baselines

Apart from the concurrent and related work discussed in
Section 2, to our knowledge there are no prior studies in this
setting. Alongside our method, we introduce and implement
simple baseline approaches that help balance inference cost
and accuracy.

1. Generation Cutoff: This simple baseline imposes a
maximum token limit during the vLLM generation. If
a response exceeds the token limit and remains incom-
plete, it is assigned a score of 0. We evaluate token
cutoffs at 8,000, 16,000, 24,000, and 32,000.

2. Rejection Sampling + SFT: In this baseline, we gener-
ate 8 solutions per prompt using the distilled 1.5B and
7B models. From the generated solutions, we select the
shortest correct responses and perform SFT on those
responses. For a dataset of 3,200 prompts, this process
yields approximately 2,200 and 2,500 valid responses
for the 1.5B and 7B models, respectively. We experi-
ment with three learning rates: 1×10−5, 5×10−6, and
2 × 10−6. We find that 5 × 10−6 effectively reduces
response length in a meaningful way.

3. DPO: Using the same dataset as above, we select re-
sponse pairs consisting of the longest and shortest cor-
rect solutions and apply Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) on these preference
pairs. While other preference optimization algorithms
are applicable in this setting, we choose DPO for its
popularity and ease of use. Similar to the SFT baseline,
we experiment with three learning rates: 1 × 10−5,
5 × 10−6, and 2 × 10−6. We observe that 1 × 10−5

effectively reduces response length.
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Figure 3. Our procedure trains models to be more token-efficient on easier problems, such as GSM8K, while preserving accuracy on
harder problems, such as AIME2024. Full Reasoning refers to the reasoning model DeepSeek-R1-Distill-Qwen-7B. It is noteworthy that
for the same value of α, there is higher reduction in tokens for an easier dataset (GSM8K) vs. a harder dataset (AIME2024)

5.3. Results

We train DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-
R1-Distill-Qwen-7B models using different values of α ∈
[0, 0.05, 0.1, 0.2, 0.4] to illustrate the trade-offs between
models with different lengths for the chain-of-thoughts. We
report the aggregate results in Figure 1 and discuss the
detailed results below. Note that the Generation Cutoff base-
line has been excluded to make the figure more readable.
Results including the Generation Cutoff baseline can be
found in Figure 5.

5.3.1. PERFORMANCE ON THE TEST SETS

We provide results for MATH500, GSM8K and AIME2024
in Figure 3. Detailed results for all datasets are provided
in Section C of the Appendix. As evident from Figure 1,
our method enables smooth trade-offs of compute cost and
accuracy, allowing models to be tailored to the specific re-
quirements of downstream tasks or users based on different
values of α. For instance, with α = 0.1, the length of the
chain-of-thought of the 7B model on the MATH dataset
decreases by 36% (from ∼ 4000 to ∼ 2600 tokens) while
the accuracy loss is only 2.2%. Similarly, in the AIME
dataset, setting α = 0.2 reduces token usage by 27% (from
∼ 13,000 to ∼ 9,000) while incurring only a 4% accuracy
drop compared to the DeepSeek-R1-Distill-Qwen-7B. We
offer several remarks:

Firstly, our training method allows for a more performant
model compared to SFT and DPO given the same token
usage as seen in Figure 1. This shows the effectiveness
of the online RL training. An additional benefit of our
methodology is the fact that the decrease in token usage is
controllable using α, however its unclear how to do it using
SFT or DPO.

1https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

2https://github.com/QwenLM/Qwen2.5-Math

Secondly, increasing the value of α results in a greater
decrease in response length as seen in Figure 6. This is
expected since the magnitude of the reward difference be-
tween shortest and longest correct responses increases as α
increases. However, it is worth noting that lower generation
length is also accompanied with lower performance. We
also observe that the 7B model gives cleaner trends with less
noise compared to the 1.5B model. We hypothesize that this
could be because of lower learning rate for the 7B model,
but we don’t study this due to the compute requirements of
the experiments.

Thirdly, we also observe that the decrease in response length
is greater for easier problems compared to harder problems.
For instance, in Figure 3, we observe that in the 7B model,
α = 0.2 brings a token saving of 27% on AIME2024 and
of 83% on GSM8K. We hypothesize that this is because
there is a larger relative ‘spread’ in easier problems as com-
pared to harder problems, that is, reasoning models are
more wasteful on easier problems (see Appendix I for a
more detailed study). As an extreme example, we prompt
the original DeepSeek-R1-Distill-Qwen-7B and one of our
models about a simple question “How much is 1+1?”. While
DeepSeek-R1-Distill-Qwen-7B reasoning model expends
several tokens (more than a page in Appendix B) to arrive
at the correct solution, the model trained with our method
reaches the same conclusion within a few tokens.

Finally, even without any length penalty (i.e., α = 0), we
observe a reduction in response length on both the MATH
and AIME datasets. We find that this is because of the re-
cently discovered biased nature of RLOO’s implementation
Liu et al. (2025b) in popular open-source libraries such as
OpenRLHF which normalizes the loss by the length of the
response. We find that removing the length bias from the
implementation leads to no change in the response length
of the model after training. Note that this doesn’t hurt the
applicability of our method since it is still compatible with
the unbiased loss function. See Appendix Section G for
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Figure 4. Advantage normalization rapidly decreases the response
length alongside accuracy.

more details.

5.4. Ablations

We perform an ablation to study a critical design component
in the implementation of our method, namely the decision
of not normalizing the advantage function in the RL training
procedure.

In fact, it is a common practice (e.g., GRPO (Shao et al.,
2024)) to normalize the token-level advantage function and
obtain Âi,t = ri−rmean

rstd
where rmean is the mean reward

and rstd is the standard deviation of the rewards. While
this choice is sensible in a more standard setting, it can
have unintended consequences when the objective function
contains the length penalty.

Consider the case where for a prompt x, all responses are
correct. In that case, all rewards will be distributed within
[1− α, 1]. Assume that the reward distribution is uniformly
distributed in [1 − α, 1]. In that case, the mean reward
is 1 − α

2 and the standard deviation is α√
12

. The normal-
ized advantage value for a correct response with maximum
value r = 1 (i.e., the shortest correct response) becomes

1−(1−α/2)
α√
12

=
√
3 which is independent of α! In other words,

the advantage normalization, can bring a length decrease
independent of α. Figure 4 shows that the resulting length
decrease is generally too substantial for the model to absorb,
leading to a sharp drop in accuracy.

6. Limitations
Our optimization procedure, while effective, is somewhat
more involved than SFT or DPO-derived techniques be-
cause of the reinforcement learning setup. Furthermore, the
choice of the penalty coefficient α affects the overall gener-
ation cost but does not precisely target a precise generation
length, which may be required by some latency-constrained
applications. This precise problem has been tackled by (Ag-
garwal & Welleck, 2025). Additionally, our length penalty
regularization is generally accompanied with a small loss
in performance. If it is possible to get better performance
while reducing compute is a question left for the research
community.

7. Conclusion
In this work, we introduced a novel and simple methodology
that significantly reduces the inference cost for reasoning
models while minimally affecting its accuracy. Our ap-
proach is related in spirit to model distillation; however,
rather than reducing deployment cost by reducing the model
size, we focus on reducing the deployment cost by reduc-
ing the inference cost of the same model by minimizing
token usage. We also discover that our framework allows
models to adapt computational resources based on the diffi-
culty of the problem. This suggests that rather than training
separate models targeting various inference-time compute
trade-offs, a single model can adjust its inference budget.
This property holds promise for applications requiring scal-
able, cost-effective AI solutions that are highly efficient
without compromising on accuracy.
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A. Implementation Details
We build on the OpenRLHF codebase (Hu et al., 2024). For the 1.5B model, we use 4 GH200 GPUs on one low-density
node and for the 7B model, we use 8 GH200 GPUs distributed across two low-density nodes (4 GPUs per node). We set
vLLM to the maximum context length (32K) during generation and set the generation temperature to 1. For training the 1.5B,
ZeRO Stage 2 (Rajbhandari et al., 2020) is used and for the 7B, ZeRO Stage 3 with activation checkpointing is required to
prevent out of memory errors. The training precision is set to bfloat16. We generate 8 responses for each prompt. For every
iteration, 32 prompts are selected from the dataset and the global batch size is set to 128 which leads to 2 gradient steps
per RL iteration. For the 1.5B, the learning rate is set to 5 · 10−6 and for the 7B, it is set to 2 · 10−6. For all experiments,
Adam (Kingma & Ba, 2017) is used as the standard optimizer. We experiment with 4 values of α in the following range:
0.05, 0.1, 0.2 and 0.4. For all RL experiments, the value of the KL coefficient is set to 1 · 10−3. The experiments on both
model take approximately 20 hours. We use the same prompt template for all models which can be found in Appendix D.

B. Qualitative examples of the model before and after training
We prompt the Distilled 7B model and our model trained with α = 0.4 on a simple prompt.

Prompt: Please reason step by step, and put your final answer within \boxed{}. Question: What is 1+1?

Model (before training):

<think> Okay, so I need to figure out what 1 plus 1 is. Hmm, let me think about
this. I remember in school, they taught us that adding numbers is like combining
groups of things. So, if I have one apple and someone gives me another apple,
how many apples do I have? I guess that’s two apples. Wait, let me try to
visualize it. Imagine I have one block here and another block there. If I put
them together, how many blocks do I have in total? That’s right, two blocks.
So, 1 plus 1 equals 2. But hold on, is this always the case? Like, in different
number systems or something? I mean, I know in binary, 1 plus 1 is 10, but I
think that’s a different topic. The question is about regular addition, right?
So, in standard arithmetic, 1 plus 1 is definitely 2. I can also think about the
number line. If I start at 1 and move one step forward, where do I land? That’s
2. So, that makes sense too. Maybe I can use my fingers to check. If I hold
up one finger and then hold up another finger, how many fingers am I showing?
Two fingers. Yep, that confirms it. Is there a more mathematical way to look
at this? I remember something about addition being the simplest arithmetic
operation. It’s the basis for more complex calculations. So, 1 plus 1 is the
first step in understanding addition. I also recall that in set theory, the sum
of two sets with one element each results in a set with two elements. So, if set
A has one element and set B has one element, then the union of A and B has two
elements. That’s another way to see that 1 plus 1 equals 2. Wait, but in some
programming languages, like Python, what happens if I write 1 + 1? Let me think.
If I open a Python interpreter, and type 1 + 1, it should output 2. Yeah, that’s
correct. So, even in code, it’s 2. Is there any context where 1 plus 1 doesn’t
equal 2? Like in different mathematical structures or something? Hmm, in
Boolean algebra, sometimes 1 plus 1 is 1, but that’s not standard arithmetic
anymore. It’s more like a logical OR operation. But the original question is
about regular addition, so that’s not applicable here. Also, in some contexts
like in a group where the operation is defined differently, 1 + 1 might not be 2,
but again, that’s beyond the scope of basic arithmetic. I guess another way to
think about it is using the Peano axioms, which are the foundation of arithmetic.
According to these axioms, 1 is a natural number, and the successor of 1 is 2.
So, adding 1 to 1 gives you the successor of 1, which is 2. That’s pretty solid.
Maybe I can also use real-life examples. If I have a glass with one liter of
water and I pour another liter into it, how much water do I have? Two liters.
So, that’s another practical demonstration that 1 plus 1 equals 2. I wonder

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Training Language Models to Reason Efficiently

if there’s a geometric interpretation. If I have a line segment of length 1
and another line segment of length 1, and I place them end to end, the total
length would be 2. Yep, that works too. So, after thinking through all these
different angles--counting, number lines, sets, programming, Boolean algebra,
axioms, real-life examples, and geometry--it all consistently points to the fact
that 1 plus 1 equals 2. There doesn’t seem to be any situation within the realm
of standard arithmetic where this isn’t true. I guess another way to reinforce
this is by using objects I have at hand. Like, if I have one book and someone
gives me another book, how many books do I have? Two books. Or if I have
one toy car and find another toy car, now I have two toy cars. This practical
application really helps solidify the concept. I also remember learning about
the commutative property of addition, which states that the order of numbers
being added doesn’t change the result. So, 1 + 1 is the same as 1 + 1, which
is still 2. And the associative property, which allows us to add more than two
numbers together without changing the result. Although, in this case, we’re only
adding two numbers, so that might not apply directly, but it’s good to know for
more complex problems. Additionally, thinking about money could help. If I have
one dollar and I receive another dollar, how much money do I have? Two dollars.
That’s another real-world example supporting the idea that 1 plus 1 equals 2.
I suppose another way to view it is through tally marks. If I make one tally
mark and then make another tally mark, how many marks do I have? Two tally marks.
So, that’s another visual method to confirm it. I also recall that in some early
number systems, like Roman numerals, 1 is represented by ’I’, and adding another
’I’ gives you ’II’, which stands for two. So, even in different numeral systems,
the concept holds. Thinking about the history of mathematics, the concept of
1 plus 1 equals 2 was established long ago. Euclid defined numbers and their
operations in his "Elements," laying the foundation for arithmetic as we know
it today. So, this basic principle has been consistent throughout history. In
conclusion, after considering all these various perspectives--counting, number
lines, sets, programming, Boolean algebra, axioms, real-life examples, geometry,
and even the history of math--it’s clear that 1 plus 1 equals 2 in standard
arithmetic. There’s no ambiguity or alternative result in these different
contexts. So, I can confidently say that the answer is 2. </think> 1 plus 1
equals 2. This is consistently true across various mathematical contexts, from
basic arithmetic to more complex structures. 2

Model (after training, α = 0.4): <think> To solve (1 + 1), I start by identifying the
two numbers involved, which are both 1. Next, I add these two numbers together.
Finally, the sum of 1 and 1 is 2. </think> To solve 1 + 1, follow these simple
steps: 1. **Identify the numbers to add:** Both numbers are 1. 2. **Perform
the addition:** 1 + 1 = 2 Therefore, the final answer is 2 .
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Figure 5. This figures describes the results of our training on 5 evaluation benchmarks. The green triangles represent the vLLM-cutoff
baseline at different values of the token cutoff limit. As we can observe, the vLLM-cutoff baseline performs poorly, because we can get
higher performing models with lower compute requirements.

C. Extended Results
Here, we provide detailed results in tabular and graphical format for all the models and baselines. Firstly, we present the
vLLM-cutoff baseline along with the other baselines in Figure 5. Secondly, Figure 6 contains a sensitivity plot of the
model’s accuracy and token usage as α increases. The numbers are present in the numerical format for ease of future usage
by researchers in Tables 1 to 10.

Next, we provide results on all datasets in Figures 7 to 11.
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Figure 6. This plot demonstrates the change in normalized accuracy and normalized token usage as a function of the α parameter for the
1.5B and 7B models after training. We use three seeds to create the error bars and aggregate over 5 datasets. As evident, the token usage
significantly reduces after training with little drop in accuracy.
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Figure 7. Detailed results on the AIME 2024 dataset.
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Figure 8. Detailed results on the MATH500 dataset.
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Figure 9. Detailed results on the GSM8K dataset.
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Figure 10. Detailed results on the CommonSenseQA dataset.
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Figure 11. Detailed results on the Logical Deduction dataset.
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Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 15184 0.297 32k

Distill - 15476 0.320 32k
Distill - 14525 0.320 24k
Distill - 11960 0.307 16k
Distill - 7232 0.227 8k

RL 0 11083 ± 2022.255 0.287 ± 0.007 32k
RL 0.05 9196 ± 897.023 0.291 ± 0.010 32k
RL 0.1 10552 ± 1219.273 0.290 ± 0.000 32k
RL 0.2 9459 ± 208.410 0.316 ± 0.037 32k
RL 0.4 6945 ± 1661.037 0.246 ± 0.006 32k
SFT - 13922 0.243 32k

Table 1. AIME2024 results for 1.5B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 4548 0.844 32k

Distill - 5278 0.833 32k
Distill - 5037 0.829 24k
Distill - 4602 0.825 16k
Distill - 3634 0.792 8k

RL 0 3077 ± 478.990 0.840 ± 0.004 32k
RL 0.05 2606 ± 189.452 0.835 ± 0.009 32k
RL 0.1 2536 ± 162.608 0.819 ± 0.010 32k
RL 0.2 2105 ± 203.024 0.790 ± 0.025 32k
RL 0.4 1395 ± 263.378 0.749 ± 0.009 32k
SFT - 3731 0.775 32k

Table 2. MATH500 results for 1.5B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 907 0.779 32k

Distill - 705 0.797 32k
Distill - 705 0.797 24k
Distill - 705 0.797 16k
Distill - 682 0.797 8k

RL 0 1108 ± 114.065 0.859 ± 0.008 32k
RL 0.05 766 ± 145.017 0.854 ± 0.012 32k
RL 0.1 788 ± 130.661 0.840 ± 0.010 32k
RL 0.2 300 ± 80.443 0.784 ± 0.023 32k
RL 0.4 149 ± 14.366 0.730 ± 0.036 32k
SFT - 515 0.757 32k

Table 3. GSM8K results for 1.5B model
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Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 623 0.464 32k

Distill - 1172 0.477 32k
Distill - 1058 0.476 24k
Distill - 931 0.476 16k
Distill - 799 0.475 8k

RL 0 671 ± 67.573 0.467 ± 0.012 32k
RL 0.05 626 ± 109.267 0.468 ± 0.013 32k
RL 0.1 793 ± 199.640 0.460 ± 0.009 32k
RL 0.2 682 ± 211.393 0.460 ± 0.007 32k
RL 0.4 273 ± 77.614 0.445 ± 0.015 32k
SFT - 951 0.471 32k

Table 4. CommonSenseQA results for 1.5B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 8418 0.440 32k

Distill - 9246 0.450 32k
Distill - 8701 0.427 24k
Distill - 8322 0.390 16k
Distill - 6121 0.297 8k

RL 0 6212 ± 1793.041 0.390 ± 0.092 32k
RL 0.05 4320 ± 851.996 0.400 ± 0.027 32k
RL 0.1 4032 ± 1464.899 0.329 ± 0.070 32k
RL 0.2 2715 ± 1257.025 0.314 ± 0.053 32k
RL 0.4 1326 ± 373.231 0.241 ± 0.016 32k
SFT - 8825 0.411 32k

Table 5. Logical Deduction results for 1.5B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 13147 0.523 32k

Distill - 12837 0.563 32k
Distill - 12091 0.570 24k
Distill - 10467 0.543 16k
Distill - 6814 0.390 8k

RL 0 11800 ± 593.175 0.541 ± 0.026 32k
RL 0.05 11328 ± 578.224 0.518 ± 0.014 32k
RL 0.1 10802 ± 371.321 0.530 ± 0.019 32k
RL 0.2 9410 ± 84.672 0.523 ± 0.010 32k
RL 0.4 8798 ± 811.499 0.499 ± 0.032 32k
SFT - 5806 0.183 32k

Table 6. AIME2024 results for 7B model
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Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 3277 0.908 32k

Distill - 4086 0.932 32k
Distill - 4009 0.927 24k
Distill - 3818 0.926 16k
Distill - 3316 0.889 8k

RL 0 3416 ± 192.578 0.927 ± 0.005 32k
RL 0.05 2976 ± 143.409 0.912 ± 0.004 32k
RL 0.1 2568 ± 206.046 0.910 ± 0.010 32k
RL 0.2 2121 ± 121.491 0.891 ± 0.020 32k
RL 0.4 1678 ± 152.337 0.844 ± 0.020 32k
SFT - 1407 0.782 32k

Table 7. MATH500 results for 7B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 506 0.859 32k

Distill - 1547 0.920 32k
Distill - 1547 0.920 24k
Distill - 1545 0.919 16k
Distill - 1530 0.920 8k

RL 0 1271 ± 72.028 0.926 ± 0.002 32k
RL 0.05 746 ± 224.053 0.907 ± 0.011 32k
RL 0.1 528 ± 177.573 0.903 ± 0.008 32k
RL 0.2 263 ± 45.282 0.872 ± 0.018 32k
RL 0.4 133 ± 30.929 0.836 ± 0.007 32k
SFT - 427 0.881 32k

Table 8. GSM8k results for 7B model

Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 577 0.664 32k

Distill - 727 0.670 32k
Distill - 720 0.670 24k
Distill - 713 0.670 16k
Distill - 706 0.670 8k

RL 0 623 ± 17.082 0.662 ± 0.012 32k
RL 0.05 532 ± 17.618 0.673 ± 0.014 32k
RL 0.1 524 ± 44.455 0.662 ± 0.011 32k
RL 0.2 464 ± 9.552 0.664 ± 0.004 32k
RL 0.4 415 ± 21.115 0.653 ± 0.007 32k
SFT - 725 0.657 32k

Table 9. CommonSenseQA results for 7B model
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Model Type α Tokens Avg. Pass Rate Ctx.
DPO - 2880 0.803 32k

Distill - 3905 0.826 32k
Distill - 3855 0.826 24k
Distill - 3792 0.829 16k
Distill - 3388 0.803 8k

RL 0 3411 ± 292.207 0.822 ± 0.006 32k
RL 0.05 2703 ± 224.043 0.796 ± 0.029 32k
RL 0.1 2485 ± 262.447 0.806 ± 0.030 32k
RL 0.2 2023 ± 182.110 0.803 ± 0.008 32k
RL 0.4 1627 ± 216.580 0.777 ± 0.022 32k
SFT - 3566 0.830 32k

Table 10. Logical Deduction results for 7B model
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D. Prompt template for training
For all training purposes, we use the following prompt template:

Please reason step by step, and put your final answer within \boxed{}. Question:
$QUESTION

E. Omitted short proofs
E.1. Proof of Proposition 4.3

Proof. Notice that the objective function Equation (4) can be written as

1

|X |
∑
x∈X

1

N

∑
i∈[N ]

pθ(yi | x)g(yi) (14)

for a positive function g(·) > 0. Consider the following lemma.

Lemma E.1. For a given prompt x, if there exist a correct answer y′ = y⋆, then the the population maximizer pθ of
Equation (14) places no mass on the incorrect answers for that prompt, i.e.,

pθ(y | x) = 0, if y ̸= y⋆. (15)

Proof. Suppose the above claim did not hold; in other words, suppose that for some incorrect answer y ̸= y⋆, we have that
pθ(y | x) > 0 and that pθ maximizes Equation (14). Then consider the distribution pθ′ defined as

pθ′(y | x) = 0, if y ̸= y⋆ (16)
pθ′(y | x) ∝ pθ(y | x), if y = y⋆. (17)

It can be verified that such distribution increases the value of the objective function (14) because it places more mass on the
positive terms, contradicting the optimality of pθ.

Lemma E.1 can be applied to establish the following: if for prompt x there exists a correct answer y = y⋆, then

pθ⋆
eff

(y | x) = 0, if y ̸= y⋆ (18)

which implies that both pθ⋆
eff

has its support on the correct answers only, proving the claim.

E.2. Proof of Proposition 4.4

Proof. Assume the contrapositive, that is ∃ x ∈ X ,∃ y′ such that y′ = y∗(x)

Ey∼pθ∗
eff

(x)

[
LEN(y)

]
> LEN(y′)

Then consider the modified distribution pθ′ which places all mass on the response y′, that is,

pθ′(y|x) = 1{y = y′}

then
Ey∼pθ∗

eff
(x)

[
LEN(y)

]
> LEN(y′) = Ey∼pθ′ (x)

[
LEN(y)

]
Since f is a monotonically increasing function bounded in [0, 1] and α ∈ [0, 1)

Ey∼pθ∗
eff

(x)

[
1− α · f(LEN(y))

]
< Ey∼pθ′ (x)

[
1− α · f(LEN(y))

]
Since ACCURACY(pθ∗

eff
) = ACCURACY(pθ′) = 1, we have that

⇒ Ey∼pθ∗
eff

(x)

[
1{y = y∗(x)}(1− α · f(LEN(y))

]
) < Ey∼pθ′ (x)

[
1{y = y∗(x)}(1− α · f(LEN(y)))

]
This would imply that θ∗eff is not the population-level maximizer which is a contradiction.
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F. Do Distilled Models follow Length Constraints?
One simple way to improve efficiency of reasoning models would be to simply prompt with an instruction saying: ‘Respond
in less than X tokens’. This would prevent very verbose responses from the model. However, we perform an experiment to
check whether the distilled models even have such a capability. For the MATH500 test set, we prompt the model in the
following manner:

Please think step by step and answer in less than X tokens.

Question: {question}

Answer:

We vary X in the range 256, 512, 1024, 2048, 4096 and measure the number of output tokens. The results for the 1.5B
and 7B Distilled models are in Tables 11 and 12. The results clearly demonstrate that their is no correlation between the
requested number of tokens and the number of tokens that are actually generated by the model. This leads us to believe that
the Distilled models are not capable of following length constraints out-of-the-box.

Token Limit Tokens Generated
256 4609.34
512 4915.71
768 5228.85

1024 4913.84
1280 5306.68
2048 5064.06
4096 5245.11

Table 11. This table lists the average number of tokens generated by Distilled-R1-Qwen-1.5B for varying token limits as mentioned in the
prompt for the MATH500 test set.

Token Limit Tokens Generated
256 3434.56
512 3587.05
768 3518.34

1024 3716.17
1280 3524.46
2048 3688.01
4096 3815.11

Table 12. This table lists the average number of tokens generated by Distilled-R1-Qwen-7B for varying token limits as mentioned in the
prompt for the MATH500 test set.
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G. Length Reduction without Length Penalty?
Reduction in length when α = 0 is an intriguing observation. Recent work by (Liu et al., 2025b) pointed out a bias in
the GRPO loss function: it averages per-token loss across entire sequences, which unintentionally favors shorter correct
sequences over longer correct ones, and longer incorrect sequences over shorter incorrect ones. Another inadvertent
issue that this creates is that it increases loss weightage on problems which are easier since they generally have shorter
Chain-of-Thoughts. This may explain the unexpected reduction in reasoning length, even when α = 0. We tested the fix
proposed by (Liu et al., 2025b) and observed that the length reduction disappears when the fix is applied. Table 13 below
shows changes in normalized accuracy and token usage (relative to a baseline 7B distilled model). The average results
highlight that the fix mitigates the unintended length bias.

Dataset
RLOO+Fix

(∆ NT)
RLOO+Fix

(∆ NA)
RLOO
(∆ NT)

RLOO
(∆ NA)

Baseline
(NT)

Baseline
(NA)

MATH500 2.3 -0.4 -17.4 -0.6 100 100
AIME2024 8 -3 -10.9 -3.6 100 100
GSM8k -12.2 -3.37 -17.2 1.08 100 100

Average -0.64 -2.25 -15.16 -1.04 100 100

Table 13. Table showing the effects of fixes proposed by (Liu et al., 2025b) ∆ NT refers to change in normalized tokens. ∆ NA refers to
change in normalized accuracy. All numbers are normalized based on the Baseline scores. All experiments have been conducted on the
7B Distilled model.

H. Training dynamics
We present the performance on the training dataset in Figure 12. Notably, setting α = 0 corresponds to applying RL
without any length penalty. Increasing α results in a significant reduction in token usage—up to 50% compared to the
initial model—while maintaining the same level of accuracy as at the beginning of RL training. Lower values of α improve
performance while still reducing the number of tokens.
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Figure 12. The figure shows the dynamics of the training accuracy and the corresponding generation lengths with varying values of α for
the 7B model. The training accuracy and response length have been smoothed out using running averages over 25 training iterations.
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I. Difficulty based analysis
As discussed in the Results 5.3 earlier, we observe a bigger reduction in easier datasets like GSM8K as compared to harder
datasets such as AIME2024. We hypothesize that this is because for easier datasets, reasoning models have a larger relative
‘spread’. To study this rigorously, we compute the quantities: STD(x)

MEAN(x) and MEAN(x)−MIN(x)
MEAN(x) for GSM8K, MATH500

and AIME2024 datasets for the Distilled 7B model. The values we get are reported in Table I. As we can see that the
relative spread is much larger for the easier dataset (GSM8K) compared to the hardest dataset (AIME2024). This clearly
demonstrates that reasoning models waste relatively more tokens thinking about easier problems compared to hard problems.

Dataset STD(x)
MEAN(x)

MEAN(x)−MIN(x)
MEAN(x)

GSM8K 0.357 0.437
MATH500 0.271 0.323

AIME 0.254 0.264

Table 14. Relative spread for different datasets for the Distilled 7B model. We only aggregate over prompts where there is atleast 1 correct
response out of 8 generations.
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