
Natural continual learning: success is a journey, not
(just) a destination

Ta-Chu Kao1* Kristopher T. Jensen1* Gido M. van de Ven1,2

Alberto Bernacchia3 Guillaume Hennequin1

1. Department of Engineering, University of Cambridge
2. Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine

3. MediaTek Research, Cambridge
{tck29, ktj21}@cam.ac.uk ven@bcm.edu

alberto.bernacchia@mtkresearch.com gjeh2@cam.ac.uk

Abstract

Biological agents are known to learn many different tasks over the course of their
lives, and to be able to revisit previous tasks and behaviors with little to no loss
in performance. In contrast, artificial agents are prone to ‘catastrophic forget-
ting’ whereby performance on previous tasks deteriorates rapidly as new ones
are acquired. This shortcoming has recently been addressed using methods that
encourage parameters to stay close to those used for previous tasks. This can be
done by (i) using specific parameter regularizers that map out suitable destinations
in parameter space, or (ii) guiding the optimization journey by projecting gradients
into subspaces that do not interfere with previous tasks. However, these methods of-
ten exhibit subpar performance in both feedforward and recurrent neural networks,
with recurrent networks being of interest to the study of neural dynamics supporting
biological continual learning. In this work, we propose Natural Continual Learning
(NCL), a new method that unifies weight regularization and projected gradient
descent. NCL uses Bayesian weight regularization to encourage good performance
on all tasks at convergence and combines this with gradient projection using the
prior precision, which prevents catastrophic forgetting during optimization. Our
method outperforms both standard weight regularization techniques and projection
based approaches when applied to continual learning problems in feedforward and
recurrent networks. Finally, the trained networks evolve task-specific dynamics that
are strongly preserved as new tasks are learned, similar to experimental findings in
biological circuits.

1 Introduction

Catastrophic forgetting is a common feature of machine learning algorithms where training on a new
task often leads to poor performance on previously learned tasks. This is in contrast to biological
agents which are capable of learning many different behaviors over the course of their lives with
little to no interference across tasks. The study of continual learning in biological networks may
therefore help inspire novel approaches in machine learning, while the development and study of
continual learning algorithms in artificial agents can help us better understand how this challenge is
overcome in the biological domain. This is particularly true for more challenging continual learning
settings where task identity is not provided at test time, and for continual learning in recurrent neural

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

networks (RNNs), which is important due to the practical and biological relevance of RNNs. However,
continual learning in these settings has recently proven challenging for many existing algorithms,
particularly those that rely on parameter regularization to mitigate forgetting [12, 13, 47]. In this
work, we address these shortcomings by developing a continual learning algorithm that not only
encourages good performance across tasks at convergence but also regularizes the optimization path
itself using trust region optimization. This leads to improved performance compared to existing
methods.

Previous work has addressed the challenge of continual learning in artificial agents using weight
regularization, where parameters important for previous tasks are regularized to stay close to their
previous values [1, 17, 24, 32, 37, 54]. This approach can be motivated by findings in the neuroscience
literature of increased stability for a subset of synapses after learning [49, 50]. More recently,
approaches based on projecting gradients into subspaces orthogonal to those that are important for
previous tasks have been developed in both feedforward [40, 53] and recurrent [12] neural networks.
This is consistent with experimental findings that neural dynamics often occupy orthogonal subspaces
across contexts in biological circuits [3, 14, 20, 22]. While these methods have been found to
perform well in many continual learning settings, they also suffer from several shortcomings. In
particular, while Bayesian weight regularization provides a natural way to weigh previous and current
task information, this approach can fail in practice due to its approximate nature and often requires
additional tuning of the importance of the prior beyond what would be expected in a rigorous Bayesian
treatment [46]. In contrast, while projection-based methods have been found empirically to mitigate
catastrophic forgetting, it is unclear how the ‘important subspaces’ should be selected and how such
methods behave when task demands begin to saturate the network capacity.

In this work, we develop natural continual learning (NCL), a new method that combines (i) Bayesian
continual learning using weight regularization with (ii) an optimization procedure that relies on a trust
region constructed from an approximate posterior distribution over the parameters given previous
tasks. This encourages parameter updates predominantly in the null-space of previously acquired
tasks while maintaining convergence to a maximum of the Bayesian approximate posterior. We show
that NCL outperforms previous continual learning algorithms in both feedforward and recurrent
networks. We also show that the projection-based methods introduced by Duncker et al. [12] and
Zeng et al. [53] can be viewed as approximations to such trust region optimization using the posterior
from previous tasks. Finally, we use tools from the neuroscience literature to investigate how the
learned networks overcome the challenge of continual learning. Here, we find that the networks learn
latent task representations that are stable over time after initial task learning, consistent with results
from biological circuits.

2 Method

Notations We use X>, X−1, Tr(X) and vec(X) to denote the transpose, inverse, trace, and
column-wise vectorization of a matrix X . We use X ⊗ Y to represent the Kronecker product
between matrices X ∈ Rn×n and Y ∈ Rm×m such that (X ⊗ Y)mi+k,mj+l = XijYkl. We
use bold lower-case letters x to denote column vectors. Dk refers to a ‘dataset’ corresponding to
task k, which in this work generally consists of a set of input-output pairs {x(i)

k ,y
(i)
k } such that

`k(θ) := log p(Dk|θ) =
∑
i log pθ(y

(i)
k |x

(i)
k) is the task-related performance on task k for a model

with parameters θ. Finally, we use D̂k to refer to a dataset generated by inputs from the kth task
where {ŷ(i)

k ∼ pθ(y|x(i)
k)} are drawn from the model distributionM.

2.1 Bayesian continual learning

Problem statement In continual learning, we train a model on a set of K tasks {D1, . . . ,DK} that
arrive sequentially, where the data distribution Dk for task k in general differs from D6=k. The aim is
to learn a probabilistic model p(D|θ) that performs well on all tasks. The challenge in the continual
learning setting stems from the sequential nature of learning, and in particular from the common
assumption that the learner does not have access to “past” tasks (i.e., Dj for j < k) when learning
task k. While we enforce this stringent condition in this paper, our approach may be easily combined
with memory-based techniques such as coresets or generative replay [8, 10, 13, 32, 34, 36, 38, 42,
43, 45, 48].

2

Bayesian approach The continual learning problem is naturally formalized in a Bayesian frame-
work whereby the posterior after k−1 tasks is used as a prior for task k. More specifically, we choose
a prior p(θ) on the model parameters and compute the posterior after observing k tasks according to
Bayes’ rule:

p(θ|D1:k) ∝ p(θ)

k∏
k′=1

p(Dk′ |θ)

∝ p(θ|D1:k−1)p(Dk|θ), (1)

where D1:k is a concatenation of the first k tasks (D1, . . . ,Dk). In theory, it is thus possible to
compute the exact posterior p(θ|D1:k) after k tasks, while only observing Dk, by using the posterior
p(θ|D1:k−1) after k − 1 tasks as a prior. However, as is often the case in Bayesian inference, the
difficulty here is that the posterior is typically intractable. To address this challenge, it is common to
perform approximate online Bayesian inference. That is, the posterior p(θ|D1:k−1) is approximated
by a parametric distribution with parameters φk−1. The approximate posterior q(θ;φk−1) is then
used as a prior for task k.

Online Laplace approximation A common approach is to use the Laplace approximation whereby
the posterior p(θ|D1:k−1) is approximated as a multivariate Gaussian q using local gradient infor-
mation [17, 24, 37]. This involves (i) finding a mode µk of the posterior during task k, and (ii)
performing a second-order Taylor expansion around µk to construct an approximate Gaussian poste-
rior q(θ;φk) = N (θ;µk,Λ

−1
k), where Λk is the precision matrix and φk = (µk,Λk). In this case,

gradient-based optimization is used to find the posterior mode on task k (c.f. Equation 1):

µk = arg max
θ

log p(θ|Dk,φk−1) (2)

= arg max
θ

log p(Dk|θ) + log q(θ;φk−1) (3)

= arg max
θ

`k(θ)− 1

2
(θ − µk−1)>Λk−1(θ − µk−1)︸ ︷︷ ︸

:= Lk(θ)

(4)

The precision matrix Λk is given by the Hessian of the negative log posterior at µk:

Λk = − ∇2
θ log p(θ|Dk,φk−1)

∣∣
θ=µk

= H(Dk,µk) + Λk−1, (5)

where H(Dk,µk) = − ∇2
θ log p(Dk|θ)

∣∣
θ=µk

is the Hessian of the negative log likelihood of Dk.

Continual learning with the online Laplace approximation thus involves two steps for each new
task Dk. First, given Dk and the previous posterior q(θ;µk−1,Λ

−1
k−1) (i.e. the new prior), µk is

found using gradient-based optimization (Equation 4). This step can be interpreted as optimizing
the likelihood of Dk while penalizing changes in the parameters θ according to their importance
for previous tasks, as determined by the prior precision matrix Λk−1. Second, the new posterior
precision matrix Λk is computed according to Equation 5.

Approximating the Hessian In practice, computing Λk presents two major difficulties. First,
because q(θ;φk) is a Gaussian distribution, Λk has to be positive semi-definite (PSD), which is not
guaranteed for the Hessian H(Dk,µk). Second, if the number of model parameters nθ is large, it
may be prohibitive to compute a full (nθ × nθ) matrix. To address the first issue, it is common to
approximate the Hessian with the Fisher information matrix (FIM; 17, 30, 37):

Fk = Ep(D̂k|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)>

]∣∣∣
θ=µk

≈ H(Dk,µk) (6)

The FIM is PSD, which ensures that Λk =
∑k
k′=1 Fk′ is also PSD. Computing Fk may still be

impractical if there are many model parameters, and it is therefore common to further approximate the
FIM using structured approximations with fewer parameters. In particular, a diagonal approximation
to Fk recovers Elastic Weight Consolidation (EWC; 24), while a Kronecker-factored approxima-
tion [31] recovers the method proposed by Ritter et al. [37]. We denote this method ‘KFAC’ and use
it in Section 3 as a comparison for our own Kronecker-factored method.

3

A convex loss

Laplace Projected NCL (ours) Task 1 Task 2 Global

B non-convex loss

Figure 1: Continual learning in a toy problem. (A) Loss landscapes of task 1 (`1; left), task 2 (`2;
middle) and the combined loss `1+2 = `1 + `2 (right). Stars indicate the global optima for `1 (red),
`2 (blue), and `1+2 (purple). We assume that θ has been optimized for `1 and consider how learning
proceeds on task 2 using either the Laplace posterior (‘Laplace’, green), projected gradient descent
on `2 with preconditioning according to task 1 (‘Projected’, pink), or NCL (black dashed). Laplace
follows the steepest gradient of `1+2 and transiently forgets task 1. NCL follows a flat direction of `1
and converges to the global optimum of `1+2 with good performance on task 1 throughout. Projected
gradient descent follows a similar optimization path to NCL but eventually diverges towards the
optimum of `2. (B) As in (A), now with non-convex `2 (center), leading to a second local optimum
of `1+2 (right) while `1 is unchanged (left). In this case, Laplace can converge to a local optimum
which has ‘catastrophically’ forgotten task 1. Projected gradient descent moves only slowly in ‘steep’
directions of `1 but eventually converges to a minimum of `2. Finally, NCL finds a local optimum of
`1+2 which retains good performance on task 1. See Appendix K for further mathematical details.

2.2 Natural continual learning

While the online Laplace approximation has been applied successfully in several continual learning
settings [24, 37], it has also been found to perform sub-optimally on a range of problems [12,
46]. Additionally, its Bayesian interpretation in theory prescribes a unique way of weighting the
contributions of previous and current tasks to the loss. However, to perform well in practice, weight
regularization approaches have been found to require ad-hoc re-weighting of the prior term by
several orders of magnitude [24, 37, 46]. These shortcomings could be due to an inadequacy of the
approximations used to construct the posterior (Section 2.1). However, we show in Figure 1 that
standard gradient descent on the Laplace posterior has important drawbacks even in the exact case.
First, we show that exact Bayesian inference on a simple continual regression problem can produce
indirect optimization paths along which previous tasks are transiently forgotten as a new task is being
learned (Figure 1A; green). Second, when the loss is non-convex, we show that exact Bayesian
inference can still lead to catastrophic forgetting (Figure 1B; green).

An alternative approach that has found recent success in a continual learning setting involves pro-
jection based methods which restrict parameter updates to a subspace that does not interfere with
previous tasks [12, 53]. However, it is not immediately obvious how this projected subspace should
be selected in a way that appropriately balances learning on previous and current tasks. Additionally,
such projection-based algorithms have fixed points that are minima of the current task, but not
necessarily minima of the (negative) Bayesian posterior. This can lead to catastrophic forgetting in
the limit of long training times (Figure 1; pink), unless the learning rate is exactly zero in directions
that interfere with previous tasks.

To combine the desirable features of both classes of methods, we introduce “Natural Continual
Learning” (NCL) – an extension of the online Laplace approximation that also restricts parameter
updates to directions which do not interfere strongly with previous tasks. In a Bayesian setting, we
can conveniently express what is meant by such directions in terms of the prior precision matrix
Λ. In particular, ‘flat’ directions of the prior (low precision) correspond to directions that will not
significantly affect the performance on previous tasks. Formally, we derive NCL as the solution of a
trust region optimization problem. This involves minimizing the posterior loss Lk(θ) within a region
of radius r centered around θ with a distance metric of the form d(θ,θ + δ) =

√
δ>Λk−1δ/2 that

takes into account the curvature of the prior via its precision matrix Λk−1:

δ = arg min
δ

Lk(θ) +∇θLk(θ)>δ subject to
1

2
δ>Λk−1δ ≤ r2, (7)

where Lk(θ + δ) ≈ Lk(θ) + ∇θLk(θ)>δ is a first-order approximation to the updated Laplace
objective. The solution to this subproblem is given by δ ∝ Λ−1k−1∇θ`k(θ) − (θ − µk−1) (see

4

Appendix A for a derivation), which gives rise to the NCL update rule

θ ← θ + γ
[
Λ−1k−1∇θ`k(θ)− (θ − µk−1)

]
(8)

for a learning rate parameter γ (which is implicitly a function of r in Equation 7). To get some
intuition for this learning rule, we note that Λ−1k−1 acts as a preconditioner for the first (likelihood)
term, which drives learning on the current task while encouraging parameter changes predominantly
in directions that do not interfere with previous tasks. Meanwhile, the second term encourages θ to
stay close to µk−1, the optimal parameters for the previous task. As we illustrate in Figure 1, this
combines the desirable features of both Bayesian weight regularization and projection-based methods.
In particular, NCL shares the fixed points of the Bayesian posterior while also mitigating intermediate
or complete forgetting of previous tasks by preconditioning with the prior covariance. Notably, if the
loss landscape is non-convex (as it generally will be), NCL can converge to a different local optimum
from standard weight regularization despite having the same fixed points (Figure 1B).

Implementation The general NCL framework can be applied with different approximations to
the Fisher matrix Fk in Equation 6 (see Section 2.1). In this work, we use a Kronecker-factored
approximation [31, 37]. However, even after making a Kronecker-factored approximation to Fk
for each task k, it remains difficult to compute the inverse of a sum of k Kronecker products (c.f.
Equation 5). To address this challenge, we derived an efficient algorithm for making a Kronecker-
factored approximation to Λk = Fk + Λk−1 ≈ Ak ⊗Gk when Λk−1 = Ak−1 ⊗Gk−1 and Fk are
also Kronecker products. This approximation minimizes the KL-divergence between N (µk, (Ak ⊗
Gk)−1) and N (µk, (Λk−1 + Fk)−1) (see Appendix G for details). Before training on the first task,
we assume a spherical Gaussian prior θ ∼ N (0, p−2w I). The scale parameter pw can either be set to a
fixed value (e.g. 1) or treated as a hyperparameter, and we optimize pw explicitly for our experiments
in feedforward networks. NCL also has a parameter α which is used to stabilize the matrix inversion
Λ−1k−1 ≈ (Ak−1 ⊗Gk−1 + α2I)−1 (Appendix E). This is equivalent to a hyperparameter used for
such matrix inversions in OWM [53] and DOWM [12], and it is important for good performance with
these methods. The pw and α are largely redundant for NCL, and we generally prefer to fix α to a
small value (10−10) and optimize the pw only. However, for our experiments in RNNs, we instead
fix pw = 1 and perform a hyperparameter optimization over α for a more direct comparison with
OWM and DOWM. The NCL algorithm is described in pseudocode in Appendix E together with
additional implementation and computational details. Finally, while we have derived NCL with a
Laplace approximation in this section for simplicity, it can similarly be applied in the variational
continual learning framework of Nguyen et al. [32] (Appendix J). Our code is available online1.

2.3 Related work

As discussed in Section 2.1, our method is derived from prior work that relies on Bayesian inference
to perform weight regularization for continual learning [17, 24, 32, 37]. However, we also take
inspiration from the literature on natural gradient descent [2, 25] to introduce a preconditioner that
encourages parameter updates primarily in flat directions of previously learned tasks (Appendix H).

Recent projection-based methods [12, 40, 53] have addressed the continual learning problem using
an update rule of the form

θ ← θ + γPL∇θ`k(θ)PR, (9)

wherePL andPR are projection matrices constructed from previous tasks which encourage parameter
updates that do not interfere with performance on these tasks. Using Kronecker identities, we can
rewrite Equation 9 as

θ ← θ + γ(PR ⊗ PL)∇θ`k(θ). (10)

This resembles the NCL update rule in Equation 8 where we identify PR ⊗PL with the approximate
inverse prior precision matrix used for gradient preconditioning in NCL, Λ−1k−1 = A−1k−1 ⊗G

−1
k−1.

Indeed, we note that for a Kronecker-structured approximation to Fk, the matrixAk−1 approximates
the empirical covariance matrix of the network activations experienced during all tasks up to k − 1
(4, 31, Appendix D), which is exactly the inverse of the projection matrix PR used in previous
work [12, 53]. We thus see that NCL takes the form of recent projection-based continual learning
algorithms with two notable differences:

1https://github.com//tachukao/ncl

5

https://github.com/tachukao/ncl

(i) NCL uses a left projection matrix PL designed to approximate the posterior covariance of previous
tasks Λ−1k−1 ≈ PR ⊗PL (i.e., the prior covariance on task k; Appendix D), while Zeng et al. [53] use
the identity matrix I and Duncker et al. [12] use the covariance of recurrent inputs (Appendix F).
Notably, both of these choices of PL still provide reasonable approximations to Λ−1k−1, and thus the
parameter updates of OWM and DOWM can also be viewed as projecting out steep directions of the
prior on task k (Appendix F).
(ii) NCL includes an additional regularization term (θ − µk−1) derived from the Bayesian posterior
objective, while Duncker et al. [12] and Zeng et al. [53] do not use such regularization. Importantly,
this means that while NCL has a similar preconditioner and optimization path to these projection
based methods, NCL has stationary points at the modes of the approximate Bayesian posterior while
the stationary points of OWM and DOWM do not incorporate prior information from previous tasks
(c.f. Figure 1).

It is also interesting to note that previous Bayesian continual learning algorithms include a hyperpa-
rameter λ that scales the prior compared to the likelihood term for the current task [27]:

L(λ)
k (θ) = log p(Dk|θ)− λ(θ − µk−1)>Λk−1(θ − µk−1). (11)

To minimize this loss and thus find a mode of the approximate posterior, it is common to employ
pseudo-second-order stochastic gradient-based optimization algorithms such as Adam [23] that
use their own gradient preconditioner based on an approximation to the Hessian of Equation 11.
Interestingly, this Hessian is given by Hk = −H(Dk,θ) − λΛk−1, which in the limit of large λ
becomes increasingly similar to preconditioning with the prior precision as in NCL. Consistent with
this, previous work using the online Laplace approximation has found that large values of λ are
generally required for good performance [24, 37, 46]. Recent work has also combined Bayesian
continual learning with natural gradient descent [33, 44], and in this case a relatively high value of
λ = 100 was similarly found to maximize performance [33].

3 Experiments and results

3.1 NCL in feedforward networks

To verify the utility of NCL for continual learning, we first compared our algorithm to standard
methods in feedforward networks across two continual learning benchmarks: split MNIST and split
CIFAR-100 (see Appendix B for task details). For each benchmark, we considered three continual
learning settings [47]. In the ‘task-incremental’ setting, task identity is available to the network at
test time, in our case via a multi-head output layer [5]. In the ‘domain-incremental’ setting, task
identity is unavailable at test time, and the output layer is shared between all tasks. Finally, in the
‘class-incremental’ setting, the network has to both infer task identity and solve the task, in our case
by performing classification over all possible classes irrespective of which task the input in question
is drawn from.

van de Ven and Tolias previously showed that parameter regularization methods such as EWC
perform poorly in the domain- and class-incremental settings [47]. We therefore applied NCL as
well as synaptic intelligence [SI; 54], online EWC [41], Kronecker factored EWC [KFAC; 37],
and orthogonal weight modification [OWM; 53] to split MNIST and split CIFAR-100 in the task-,
domain- and class-incremental learning settings. For these continual learning problems, we found
that NCL outperformed all the baseline methods in the task- and domain-incremental learning settings
(Figure 2). In the class-incremental settings, we found that NCL performed comparably to but slightly
worse than OWM. However, both OWM and NCL comfortably outperformed the other compared
methods in this setting. These results suggest that the subpar performance of parameter regularization
methods can be alleviated by regularizing their optimization paths, particularly in the domain- and
class-incremental learning settings.

For the split MNIST and split CIFAR-100 experiments, each baseline method had a single hyper-
parameter (c for SI, λ for EWC and KFAC, α for OWM, and pw for NCL; Appendix E) that was
optimized on a held-out seed (see Appendix I.2). However, by setting the NCL prior to a unit
Gaussian, we were also able to achieve good performance across task sets in a hyperparameter-free
setting, further highlighting the robustness of the method (see “NCL (no opt)” in Figure 2).

6

0.9

1.0
task

M
NI

ST
ac

cu
ra

cy
0.6

0.8

1.0
domain

0.2

0.6

1.0
class

SI
EW

C
KFA

C
OWM

NCL (
no

 op
t)

NCL
0.6

0.7

0.8

CI
FA

R
ac

cu
ra

cy

SI
EW

C
KFA

C
OWM

NCL (
no

 op
t)

NCL

0.2
0.3
0.4

SI
EW

C
KFA

C
OWM

NCL (
no

 op
t)

NCL

0.1

0.3

0.5

Figure 2: NCL performance in feedforward networks. Average test accuracy after learning all
tasks on split MNIST (top row) and split CIFAR-100 (bottom-row) in the task-, domain- and class-
incremental learning setting. Dashed horizontal lines denote average performance when networks are
trained simultaneously on all tasks. Solid horizontal lines denote average performance when networks
are trained sequentially on each task without applying any continual learning methods. Error bars
denote standard error across 20 (MNIST) or 10 (CIFAR) random seeds. ‘NCL’ indicates natural
continual learning where the initial prior has been optimized on a held-out random seed, and ‘NCL
(no-prior)’ indicates NCL with a simple unit Gaussian prior and no hyperparameter optimization.
Numerical results for these experiments are provided in Table 2 in Appendix I.3.

3.2 NCL in recurrent neural networks

We then proceeded to consider how NCL compares to previous methods in recurrent neural networks
(RNNs), a setting that has recently proven challenging for continual learning [12, 13] and which is of
interest to the study of continual learning in biological circuits [12, 51]. In these experiments, the
task identity is available to the RNN (i.e., we consider the task-incremental learning setting).

Stimulus-response tasks In this section, we consider a set of neuroscience inspired ‘stimulus-
response’ (SR) tasks (51; details in Appendix B). We first compared the performance and behavior
of NCL to OWM, the top performing method in the feedforward setting (Figure 2), and to the
projection-based DOWM method designed explicitly for RNNs [12]. For a more direct comparison
with OWM and DOWM, we fixed the NCL prior to a unit Gaussian for all RNN experiments and
instead performed a hyperparameter optimization over ‘α’ used to regularize the matrix inversions
for all three methods (Section 2.2, Appendix E, Appendix I.2, 12, 53). Following previous work,
we trained RNNs with 256 recurrent units to sequentially solve six stimulus-response tasks [12, 50].
While NCL, OWM and DOWM all managed to learn the six tasks without catastrophic forgetting, we
found that NCL achieved superior average performance across tasks after training (Figure 3A).

We then compared NCL, OWM, and DOWM to KFAC, the top performing parameter regularization
method in our feedforward experiments (Figure 2) which uses Adam [23] to optimize the objective in
Equation 4 with a Kronecker-factored approximation to the posterior precision matrix (Section 2.1;
37). Consistent with the results shown in Duncker et al. [12], we found that NCL, OWM, and DOWM
outperformed KFAC with λ = 1 (Figure 3A; see also 12 for a comparison of DOWM and EWC). We
note that NCL and KFAC optimize the same objective function (Equation 4) and approximate the
posterior precision matrix in the same way, but they differ in the way they precondition the gradient
of the objective. These results thus demonstrate empirically that the choice of optimization algorithm
is important to prevent forgetting, consistent with the intuition provided by Figure 1.

In feedforward networks, poor performance with weight regularization approaches such as EWC
and KFAC has been mitigated by optimizing the hyperparameter λ, which increases the importance
of the prior term compared to a standard Bayesian treatment (Equation 11; Section 3.1, 24, 27, 37).
We confirmed this here by performing a grid search over λ, which showed that KFAC with λ ∈

7

NCL
DOWM

OWM

KF
AC (op

t)

KF
AC (

= 1)
0.02

0.03

0.04

lo
ss

A SR
0.56

NCL
DOWM

OWM

KF
AC (op

t)

KF
AC (

= 1)
0.05

0.10

0.15

cla
ss

ifi
ca

tio
n

er
ro

r

B SMNIST
0.24

1 5 10 15
task number

0.05
0.00
0.05
0.10
0.15

 e
rro

r

C SMNIST

Figure 3: Performance on SR and SMNIST tasks. (A) Mean loss of NCL, DOWM, OWM, KFAC
(optimal λ), and KFAC (λ = 1) across stimulus-response tasks after sequential training on all tasks.
Error bars indicate standard error across 5 random seeds. Here and in (B), KFAC with λ = 1 failed
catastrophically, and its performance is indicated in text as it does not fit on the axes. (B) Mean
classification error across SMNIST tasks after sequential training. (C) Difference between the mean
classification error of Laplace-DOWM and NCL as a function of task number. Error bars in (B) and
(C) indicate standard error across 100 random task permutations.

[100, 1000] could perform comparably to the projection-based methods (Appendix I.1; Figure 3A).
We hypothesize that the good performance provided by high λ is partly due to the approximate
second order nature of Adam which, together with the relative increase in the prior term compared
to the data term, leads to preconditioning with a matrix resembling the prior Λk−1 (Section 2.3).
In support of this hypothesis, we found that the KL divergence between the Adam preconditioner
and the approximate prior precision Λk−1 decreased with increasing λ, and that the performance of
KFAC with Adam could also be rescued by increasing λ only when computing the preconditioner
while retaining λ = 1 when computing the gradients (Appendix I.1).

Stroke MNIST One way to challenge the continual learning algorithms further is to increase the
number of tasks. We thus considered an augmented version of the stroke MNIST dataset [SMNIST;
9]. The original dataset consists of the MNIST digits transformed into pen strokes with the direction
of the stroke at each time point provided as an input to the network. Similar to Ehret et al. [13],
we constructed a continual learning problem by considering consecutive binary classification tasks
inspired by the split MNIST task set. We further increased the number of tasks by including a set of
extra digits where the x and y dimensions have been swapped in the input stroke data, and another
set where both the x and y dimensions have changed sign. We also added high-variance noise to the
inputs to increase the task difficulty. This gave rise to a total of 15 binary classification tasks, each
with unique digits not used in other tasks, which we sought to learn in a continual fashion using an
RNN with 30 recurrent units (see Appendix B for details).

As for the SR task set in Section 3.2, we found that NCL outperformed previous projection-based
methods (Figure 3B). We again found that weight regularization with a KFAC approximation per-
formed poorly with λ = 1, and that this poor performance could be partially rescued by optimizing
over λ (Figure 3B). To investigate how the difference in performance between NCL and DOWM was
affected by their different approximations to the Fisher matrix (Appendix F), we implemented NCL
using the DOWM projection matrices as an alternative approximation to the inverse Fisher matrix.
We refer to this method as Laplace-DOWM. We then considered how the performance on each task at
the end of training depended on task number, averaged over different task permutations (Figure 3C).
We found that while Laplace-DOWM outperformed NCL on the first task, this method generally
performed worse on subsequent tasks. Notably, Laplace-DOWM exhibited a near-monotonic decrease
in relative performance with task number, which is consistent with the intuition that DOWM overesti-
mates the dimensionality of the parameter subspace that matters for previous tasks (Appendix F). In
contrast, although neural circuits are known to use orthogonal subspaces in different contexts, there
is no general sense that learning more tasks in the past should systematically hinder learning in future
contexts for biological agents.

8

4
vs

 5
1

vs
 7

r2 = 0.14

k = 1

r2 = 1.0

k = 2

r2 = 1.0

k = 3

r2 = 0.98

k = 6

r2 = 0.95

k = 10

r2 = 0.95

k = 15

r2 = 0.0 r2 = 0.05 r2 = 1.0 r2 = 1.0 r2 = 0.99 r2 = 0.99

task 4/5
learned

task 1/7
learned

Figure 4: Latent dynamics during SMNIST. We considered two example tasks, 4 vs 5 (top) and
1 vs 7 (bottom). For each task, we simulated the response of a network trained by NCL to 100
digits drawn from that task distribution at different times during learning. We then fitted a factor
analysis model for each example task to the response of the network right after the correponding
task had been learned (squares; k = 2 and k = 3 respectively). We used this model to project the
responses at different times during learning into a common latent space for each example task. For
both example tasks, the network initially exhibited variable dynamics with no clear separation of
inputs and subsequently acquired stable dynamics after learning to solve the task. The r2 values
above each plot indicate the similarity of neural population activity with that collected immediately
after learning the corresponding task, quantified across all neurons (not just the 2D projection).

3.3 Dissecting the dynamics of networks trained on the SMNIST task set

To further investigate how the trained RNNs solve the continual learning problems and how this
relates to the neuroscience literature, we dissected the dynamics of networks trained on the SMNIST
task set using the NCL algorithm. To do this, we analyzed latent representations of the RNN activity
trajectories, as is commonly done to study the collective dynamics of artificial and biological networks
[15, 18, 20, 29, 52]. We considered two consecutive classification tasks, namely classifying 4’s vs
5’s (k = 2) and classifying 1’s vs 7’s (k = 3). For each of these tasks, we trained a factor analysis
model right after the task was learned, using network activity collected while presenting 50 examples
of each of the two input digits associated with the task. We then tracked the network responses to
the same set of stimuli at various stages of learning, both before and after the task in question was
acquired, using the trained factor analysis model to visualize low-dimensional summaries of the
dynamics (Figure 4).

Consistent with the network having successfully learned to solve these two tasks, we found that latent
trajectories diverged over time for the two types of inputs in each task. Critically, these diverging
dynamics only emerged after the task was learned, and remained highly stable thereafter (Figure 4).
The stability of the task-associated representations is consistent with recent work in the neuroscience
literature showing that, in a primate reaching task, latent neural trajectories remain stable after learning
[15]. Since here we have access to the activity of all neurons throughout the task, we proceeded to
quantify the source of this stability at the level of single units. The stability of such single-neuron
dynamics after learning has recently been a topic of much interest in biological circuits [7, 28, 39]. In
the RNNs, we found that the single-unit representations of a given digit changed during learning of the
task involving that digit but stabilized after learning, consistent with work in several distinct biological
circuits [6, 11, 16, 19, 21, 35]. Similar results were found using the DOWM algorithm, which was
explicitly designed to preserve network dynamics on previously learned tasks [12]. Interestingly, the
stable task representations learned by NCL and DOWM differed markedly from a network trained
with replay for continual learning, which instead led to task representations that continued to change
after initial task acquisition (Appendix I.4). This illustrates how different approaches to continual
learning can lead to qualitatively different circuit dynamics, and it suggests the use of continual
learning in artificial networks as a model system for biological continual learning.

9

4 Discussion

In summary, we have developed a new framework for continual learning based on approximate
Bayesian inference combined with trust-region optimization. We showed that this framework en-
compasses recent projection-based methods and found that it performs better than naive weight
regularization. This was particularly evident when task identity was not provided at test time and
in recurrent neural networks, settings which have previously been challenging for many continual
learning algorithms [12, 13, 47]. Furthermore, we showed that our principled probabilistic approach
outperforms previous projection-based methods [12, 53], in particular when the number of tasks
and their complexity challenges the network’s capacity. Finally, we analyzed the dynamics of the
learned RNNs in a sequential binary classification problem, where we found that the latent dynamics
adapt to each new task. We also found that the task-associated dynamics were subsequently con-
served during further learning, consistent with experimental reports of stable neural representations
[11, 15, 19]. Importantly, our results suggest that preconditioning with the prior covariance can
lead to improved performance over existing continual learning algorithms. In future work, it will
therefore be interesting to apply this idea to other weight regularization approaches such as EWC
with a diagonal approximate posterior [24]. Finally, a separate branch of continual learning utilizes
replay-like mechanisms to reduce catastrophic forgetting [8, 26, 34, 42, 43, 46]. While our work has
focused on weight regularization, such regularization and replay are not mutually exclusive. Instead,
these two approaches have been found to further improve robustness to catastrophic forgetting when
combined [32, 45].

Impact and limitations While we have shown that NCL represents an important conceptual and
methodological advance for continual learning, it also comes with several limitations. One such
limitation arises from the relative difficulty of computing the prior Fisher matrix which is needed for
our projection step. Indeed the success of methods such as Adam [23] and EWC [24] is due in part
to their ease of implementation which facilitates broad applicability. It will therefore be interesting
to investigate how approximations such as a running average of a diagonal approximation to the
empirical Fisher matrix as used in Adam could facilitate the development of simple yet powerful
variants of NCL.

Furthermore, while NCL mitigates the need to overcount the prior from previous tasks via λ as in
KFAC, it does introduce two other (largely redundant) hyperparameters in the form of (i) the scale
of the prior before the first task, and (ii) the parameter α used to regularize the inversion of the
prior Fisher matrix, similar to OWM and DOWM [12, 53]. While α is an important hyperparameter
for OWM and DOWM and we also optimize it in the RNN setting for a more direct comparison
(Section 3.2), we find it more natural to set this parameter to a constant small value present only
for numerical stability (Appendix E). This leaves the prior scale which we optimize explicitly in
the feedforward setting (Section 3.1). However, in future work it would be interesting to consider
whether a good prior can be determined in a data free manner to make NCL a hyperparameter-free
method. Finally, computing the Fisher matrix used for pre-conditioning requires explicit knowledge
of task boundaries. In future work, it will therefore be interesting to develop an algorithm similar to
NCL which also works for online learning problems with continually changing task distributions.

Addressing these challenges is important since machine learning algorithms increasingly need to be
robust to changing data distributions and dynamic task specifications as they become more prominent
in our everyday lives. Much work has therefore gone into the development of methods for continual
learning in the machine learning community. However, with the increasing prevalence of practical
algorithms for continual learning, it also becomes increasingly important that we understand how
and why these algorithms work – insights that can also help us understand when they might fail. In
this work, we have therefore attempted to shed light on the relationship between recent methods for
continual learning as well as developing a new algorithm with a principled probabilistic interpretation
that makes its underlying assumptions more explicit. Taken together, we hope that this work will
help improve our understanding of methods for continual learning while also providing an avenue for
further research to increase the reliability and robustness of future continual learning algorithms.

10

Acknowledgements

We are grateful to Siddharth Swaroop, Lea Duncker, Laura Driscoll, Naama Kadmon Harpaz, and
Yashar Ahmadian for insightful discussions. We thank Siddharth Swaroop and Robert Pinsler for
useful comments on the manuscript.

Funding disclosure

KTJ was funded by a Gates Cambridge scholarship. GMV was supported by the Lifelong Learning
Machines (L2M) program of the Defence Advanced Research Projects Agency (DARPA) via contract
number HR0011-18-2-0025.

References
[1] Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018). Memory aware

synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 139–154.

[2] Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276.

[3] Ames, K. C. and Churchland, M. M. (2019). Motor cortex signals for each arm are mixed across
hemispheres and neurons yet partitioned within the population response. eLife, 8:e46159.

[4] Bernacchia, A., Lengyel, M., and Hennequin, G. (2018). Exact natural gradient in deep linear
networks and its application to the nonlinear case. Advances in Neural Information Processing
Systems, 31:5941–5950.

[5] Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018). Riemannian walk for incre-
mental learning: Understanding forgetting and intransigence. arXiv preprint arXiv:1801.10112.

[6] Chestek, C. A., Batista, A. P., Santhanam, G., Byron, M. Y., Afshar, A., Cunningham, J. P.,
Gilja, V., Ryu, S. I., Churchland, M. M., and Shenoy, K. V. (2007). Single-neuron stability during
repeated reaching in macaque premotor cortex. Journal of Neuroscience, 27(40):10742–10750.

[7] Clopath, C., Bonhoeffer, T., Hübener, M., and Rose, T. (2017). Variance and invariance of
neuronal long-term representations. Philosophical Transactions of the Royal Society B: Biological
Sciences, 372(1715):20160161.

[8] Cong, Y., Zhao, M., Li, J., Wang, S., and Carin, L. (2020). GAN memory with no forgetting.
Advances in Neural Information Processing Systems, 33.

[9] de Jong, E. D. (2016). Incremental sequence learning. arXiv preprint arXiv:1611.03068.

[10] De Lange, M. and Tuytelaars, T. (2020). Continual prototype evolution: Learning online from
non-stationary data streams. arXiv preprint arXiv:2009.00919.

[11] Dhawale, A. K., Poddar, R., Wolff, S. B., Normand, V. A., Kopelowitz, E., and Ölveczky, B. P.
(2017). Automated long-term recording and analysis of neural activity in behaving animals. eLife,
6:e27702.

[12] Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M., and Sussillo, D. (2020). Organizing
recurrent network dynamics by task-computation to enable continual learning. Advances in Neural
Information Processing Systems, 33.

[13] Ehret, B., Henning, C., Cervera, M. R., Meulemans, A., von Oswald, J., and Grewe, B. F.
(2020). Continual learning in recurrent neural networks with hypernetworks. arXiv preprint
arXiv:2006.12109.

[14] Failor, S. W., Carandini, M., and Harris, K. D. (2021). Learning orthogonalizes visual cortical
population codes. bioRxiv.

11

[15] Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., and Miller, L. E. (2020). Long-
term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience,
23(2):260–270.

[16] Ganguly, K. and Carmena, J. M. (2009). Emergence of a stable cortical map for neuroprosthetic
control. PLoS Biology, 7(7):e1000153.

[17] Huszár, F. (2017). On quadratic penalties in elastic weight consolidation. arXiv preprint
arXiv:1712.03847.

[18] Jensen, K., Kao, T.-C., Tripodi, M., and Hennequin, G. (2020). Manifold GPLVMs for
discovering non-Euclidean latent structure in neural data. Advances in Neural Information
Processing Systems, 33.

[19] Jensen, K. T., Kadmon Harpaz, N., Dhawale, A. K., Wolff, S. B. E., and Ölveczky, B. P. (2021a).
Long-term stability of neural activity in the motor system. bioRxiv.

[20] Jensen, K. T., Kao, T.-C., Stone, J. T., and Hennequin, G. (2021b). Scalable Bayesian GPFA
with automatic relevance determination and discrete noise models. bioRxiv.

[21] Katlowitz, K. A., Picardo, M. A., and Long, M. A. (2018). Stable sequential activity underlying
the maintenance of a precisely executed skilled behavior. Neuron, 98(6):1133–1140.

[22] Kaufman, M. T., Churchland, M. M., Ryu, S. I., and Shenoy, K. V. (2014). Cortical activity in
the null space: permitting preparation without movement. Nature Neuroscience, 17(3):440–448.

[23] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[24] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526.

[25] Kunstner, F., Balles, L., and Hennig, P. (2019). Limitations of the empirical fisher approximation
for natural gradient descent. arXiv preprint arXiv:1905.12558.

[26] Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947.

[27] Loo, N., Swaroop, S., and Turner, R. E. (2020). Generalized variational continual learning.
arXiv preprint arXiv:2011.12328.

[28] Lütcke, H., Margolis, D. J., and Helmchen, F. (2013). Steady or changing? long-term monitoring
of neuronal population activity. Trends in Neurosciences, 36(7):375–384.

[29] Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84.

[30] Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193.

[31] Martens, J. and Grosse, R. (2015). Optimizing neural networks with Kronecker-factored
approximate curvature. In ICML, pages 2408–2417.

[32] Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual learning. arXiv
preprint arXiv:1710.10628.

[33] Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan, M. E.
(2019). Practical deep learning with Bayesian principles. arXiv preprint arXiv:1906.02506.

[34] Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E. (2020). Contin-
ual deep learning by functional regularisation of memorable past. arXiv preprint arXiv:2004.14070.

[35] Peters, A. J., Chen, S. X., and Komiyama, T. (2014). Emergence of reproducible spatiotemporal
activity during motor learning. Nature, 510(7504):263–267.

12

[36] Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). icarl: Incremental classifier
and representation learning. In CVPR.

[37] Ritter, H., Botev, A., and Barber, D. (2018). Online structured laplace approximations for
overcoming catastrophic forgetting. arXiv preprint arXiv:1805.07810.

[38] Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience replay for
continual learning. In Advances in Neural Information Processing Systems, pages 350–360.

[39] Rule, M. E., O’Leary, T., and Harvey, C. D. (2019). Causes and consequences of representational
drift. Current Opinion in Neurobiology, 58:141–147.

[40] Saha, G., Garg, I., and Roy, K. (2021). Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762.

[41] Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R.,
and Hadsell, R. (2018). Progress & compress: A scalable framework for continual learning. In
International Conference on Machine Learning, pages 4528–4537. PMLR.

[42] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative replay.
arXiv preprint arXiv:1705.08690.

[43] Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2020). Functional
regularisation for continual learning with gaussian processes. In International Conference on
Learning Representations.

[44] Tseran, H., Khan, M. E., Harada, T., and Bui, T. D. (2018). Natural variational continual
learning. In Continual Learning Workshop NeurIPS, volume 2.

[45] van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay for
continual learning with artificial neural networks. Nature Communications, 11(1):1–14.

[46] van de Ven, G. M. and Tolias, A. S. (2018). Generative replay with feedback connections as a
general strategy for continual learning. arXiv preprint arXiv:1809.10635.

[47] van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734.

[48] von Oswald, J., Henning, C., Sacramento, J., and Grewe, B. F. (2019). Continual learning with
hypernetworks. arXiv preprint arXiv:1906.00695.

[49] Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., and Zuo, Y.
(2009). Rapid formation and selective stabilization of synapses for enduring motor memories.
Nature, 462(7275):915–919.

[50] Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated
with lifelong memories. Nature, 462(7275):920–924.

[51] Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., and Wang, X.-J. (2019). Task
representations in neural networks trained to perform many cognitive tasks. Nature Neuroscience,
22(2):297–306.

[52] Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009).
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. Journal of Neurophysiology, 102(1):614–635.

[53] Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 1(8):364–372.

[54] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pages 3987–3995. PMLR.

13

