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Abstract When applying a neural network to address a new learning problem, rather than training a

network from scratch, it is common practice to utilise a network pre-trained on a related

dataset and then fine-tune it to the data of the target task. This poses the question: which

pre-trained network should be selected? This work investigates this problem in the context

of three different dataset relationships: same-source, same-domain, and cross-domain. We

utilise Meta-Album, which offers an extensive collection of datasets from various unrelated

domains. We first split each of the 30 datasets of Meta-Album into a meta-train dataset and

meta-test dataset, then create pre-trained models for each meta-train dataset, and finally

compare the performances of the pre-trained models in a fine-tuning context when applied

to meta-test tasks. We categorise the performances into the three dataset relationship groups

and find that the same-source category performs best in terms of accuracy. Then, using

meta-features calculated on the meta-train dataset and meta-test tasks, we train statistical

meta-models that are employed to select the best pre-trained model for a given meta-test

task. Our best meta-model identifies the best-performing model in ∼ 25% of the cases. It

improves upon a baseline that selects the best average model by more than 30%.

1 Introduction

Solving learning problems with neural networks commonly requires large amounts of data and

resources. For this reason, a popular approach to solving new learning problems is to select a

neural network that was pre-trained on related data and fine-tune it to the new task instead of

training from scratch. This way, fewer data and computational resources are required to achieve

good results. As more fully trained neural models are publicly released, model hubs or model zoos
offer an ever-growing collection of resources that can be used to transfer to a different task [35, 37].

This can, for example, be achieved by adapting pre-trained models using regularisation methods

specifically designed for the fine-tuning setting [51, 25, 13, 19]. However, a successful selection

strategy to equip the optimal pre-trained model for a target task does not exist yet. Since deep

learning methods often require computationally expensive operations before they can be evaluated

(e.g., training via backpropagation), it is unrealistic to search exhaustively for the best match. This

motivates us to develop a data-centric method to select the most appropriate auxiliary data for a

deep metalearning or deep transfer learning problem.

The key question guiding our research is: Given an image classification task and a collection of
pre-trained classification models, can we select the best one using a set of meta-features describing
the data on which this model was pre-trained? To answer this question, we employ the recently

published Meta-Album [43], which currently bundles 30 image datasets from 10 different domains.

The diversity of Meta-Album allows us to test how meta-train and meta-test datasets relate to

each other in a fine-tuning context for three different dataset relationships: same-source, same-
domain (where the meta-train and meta-test dataset belong to the same domain but do not have the

same source), and cross-domain (where the meta-train and meta-test dataset belong to different
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domains). We use the different datasets of Meta-Album to record the performance of different

pre-trained models when fine-tuned to tasks from various datasets and domains. Then, we train

meta-models to predict this performance for a given pre-trained model and task combination, using

basic pixel-based statistics of the datasets and the validation accuracy after one epoch of fine-tuning

as meta-features.

Related work. The following works have approached a slightly related problem using a

deep metalearning approach [18], in the sense that they train one large model encompassing all

data. (1) SUR (Selecting from Universal Representations) by Dvornik et al. [6], where the feature

representations of different pre-trained models are selected and linearly combined to solve unseen

tasks and its expansion to a multi-headed URT (Universal Representation Transform) by Liu et al.

[26]. (2) Quick-Tune by Pineda-Arango et al. [32], where Bayesian optimization is used to find the

best candidate for a fine-tuning job, given the fine-tuning validation accuracy. (3) ATS (Adaptive
Task Scheduler) by Yao et al. [50], where meta-learning training tasks are selected based on their

expected contribution to the learner instead of random sampling. Contrary to those works, our

work takes a more modular approach. As such, we compare our work to standard baselines from

the algorithm selection literature [2, 40]. This work is a compressed version based on the work

done in a master’s thesis [44].

2 Experimental Methodology
Our methods consist of five consecutive stages, further illustrated in the appendix.

1. Data preparation. For a fair evaluation of the fine-tuning performance of the different

pre-trained networks, we need to ensure that the classes of the meta-train dataset do not overlap

with the classes of the meta-test dataset. For this, we uniformly split each Meta-Album dataset

into a meta-train and meta-test set. This split is based on classes (some belong to the meta-train

set, others to the meta-test set). This split is controlled by a single seed 𝑠 . Since seed 𝑠 controls

which classes are used to train the pre-trained models and which classes are used to fine-tune these

models later on, we can create different models by changing 𝑠 . The resulting meta-test dataset after

the uniform class-split is split further on a class level into different 𝑁 -way 𝑘-shot classification

tasks (with 𝑁 = 5, 𝑘 = 32). This task split is also performed uniformly using seed 𝑡 . See Figure 4 for

more details.

2. Pre-training models. We use the meta-train datasets from the previous stage to create

pre-trained classification models. We split the meta-train dataset on an instance level into two

stratified sets: a support set, which contains the training examples, and a query set, which we will

use to validate the performance of the model in between training epochs. We perform this uniform

split based on a fixed seed. For each training epoch, we record the loss and accuracy of the model on

the support and query set. After the model is trained, we store it to be used later in the fine-tuning

stage of our method. See Figure 5 for more details.

3. Fine-tuning. After all meta-test tasks have been formed and all models have been pre-trained,

we fine-tune every pre-trained model to every task (generated using the same seed 𝑠 to ensure

class separation). Fine-tuning all pre-trained models on all datasets allows us to investigate which

pre-trained models transfer well to which tasks. The data of each task (meta-test set) is split into a

support and query set, similar to how the meta-train dataset was split in the previous step. The

support set is then provided to the pre-trained model as training data. We do this for 50 epochs.

Note that the support set contains only 160 images, so that an epoch is relatively fast. We record

the loss and accuracy on the support and query set for each epoch of fine-tuning. We measure the

mean accuracy of the last 10 epochs to express fine-tuning performance, which is later used to

train the meta-models. See Figure 6 for more details.

4. Meta-model training. This step provides a methodology that, given a target dataset, selects a

proper pre-trained model to fine-tune. We create a meta-dataset, where each record contains meta-

features describing the dataset the network was trained on (pre-training data) and meta-features
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48±5 33±7 36±6 54±5 34±7 31±5 56±6 43±6 27±6 66±6 75±6 30±8 40±4 37±5 40±5 52±7 67±9 48±6 29±4 40±5 26±5 68±12 37±6 86±5 46±5 30±5 43±4 19±5 19±3 20±4
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56±9 36±5 40±6 64±6 40±6 33±8 68±9 45±3 35±6 73±5 85±3 38±11 52±8 36±7 34±7 61±6 75±9 64±7 32±5 46±4 28±6 80±7 42±7 90±4 51±8 34±5 46±10 19±4 21±4 26±3

58±7 34±8 40±8 66±8 40±7 34±6 70±9 46±4 33±5 72±9 85±4 34±9 51±9 31±5 32±6 57±5 74±9 58±6 59±6 53±4 30±4 83±7 39±6 90±4 49±8 33±6 47±8 18±3 22±4 24±7

45±8 35±5 39±7 63±6 34±6 34±6 65±9 41±6 26±4 68±5 78±6 34±5 48±7 36±5 35±5 54±6 69±7 53±6 33±7 55±5 28±5 78±6 39±6 87±4 46±7 33±4 44±7 17±2 20±4 24±5

51±7 34±4 38±6 60±7 34±7 31±6 67±8 44±5 29±5 70±7 81±5 31±5 46±6 36±7 31±6 52±5 69±9 50±5 35±4 46±5 38±4 75±6 37±6 86±5 49±7 33±4 45±6 19±2 21±4 24±6

58±7 42±5 42±5 68±7 41±7 34±5 71±10 47±7 35±6 80±6 88±3 43±10 66±7 51±7 38±5 66±5 84±5 64±8 38±7 51±4 31±5 96±2 47±9 94±3 60±5 39±6 58±8 20±4 20±4 24±6

42±4 29±5 38±5 61±7 35±5 27±5 56±6 34±7 28±4 62±5 76±5 32±4 41±5 28±4 26±6 46±5 63±9 56±6 31±7 44±6 26±6 72±8 43±7 85±4 41±8 32±5 39±7 18±3 19±2 21±4

63±7 41±7 48±6 74±6 47±8 38±6 77±8 48±6 37±5 85±5 93±2 51±6 66±6 47±6 38±5 73±5 86±6 68±7 40±9 52±8 36±4 95±2 50±7 98±0 61±4 40±6 58±10 19±4 21±5 26±3

61±5 39±6 49±5 69±7 40±5 38±5 72±7 50±4 38±5 79±4 90±2 42±5 56±5 40±7 35±5 62±5 80±7 59±7 36±6 49±7 38±6 87±2 44±4 92±3 67±7 41±4 59±7 21±4 24±3 22±4

57±6 34±7 45±6 64±7 41±5 33±4 68±8 46±4 34±5 74±5 83±6 36±6 50±6 36±3 36±5 57±6 74±7 57±9 31±5 45±5 31±5 81±6 37±7 89±3 53±10 39±6 49±7 21±2 20±4 21±6

54±7 36±7 43±5 65±6 42±8 34±3 68±7 47±5 30±4 75±6 84±5 35±4 51±7 34±7 35±7 57±5 75±6 55±5 35±6 48±5 29±5 85±7 40±8 91±3 57±7 35±6 55±7 16±3 21±3 21±5

47±5 28±7 33±7 75±7 36±4 30±6 56±7 35±5 27±3 65±6 86±3 39±6 47±8 32±5 24±4 38±8 56±5 53±6 37±7 48±5 35±7 67±9 41±5 81±5 40±7 30±6 33±5 91±3 81±5 82±5

41±10 29±7 30±5 67±5 34±6 29±5 50±9 34±5 26±7 60±8 83±5 35±5 40±5 30±5 27±6 36±6 51±10 46±6 31±9 49±5 35±5 54±10 33±4 78±8 35±8 27±5 34±6 61±7 94±3 67±5

41±7 25±6 30±6 76±4 35±7 30±6 56±6 33±6 27±5 64±7 87±4 38±8 42±7 32±8 26±5 47±6 56±9 50±7 33±6 55±3 33±6 67±10 39±5 80±4 39±7 30±6 35±8 70±6 62±6 96±1

Figure 1: Matrix showing how the different datasets of Meta-Album relate to each other in a fine-tuning

context. Each cell reports the mean and standard deviation of the transfer validation accuracy

of the pre-trained models originating from the dataset of its row label fine-tuned to tasks

from the dataset of its column label. The black accented lines that bundle groups of 9 cells

separate the different dataset domains as defined by the authors of Meta-Album. The cells are

coloured relatively to other cells in the same column, where green corresponds to a higher

relative value and red to a lower relative value.

describing the task it was fine-tuned to. The target value is the network’s validation accuracy on

the task to which it was fine-tuned. An overview of all the different meta-features [2, 40] that we

use in this work is shown in Table 3 (more details about the used features can be found in Section 3).

This dataset forms our meta-dataset and serves as training and test data for different meta-models

that predict the fine-tuning validation accuracy. After the meta-dataset is constructed, it is split

into a training and test partition, which are used to train and validate the meta-models. See Figure 7

for more details.

5. Meta-model evaluation. The different meta-models and baseline models are evaluated on

their ability to select the most suitable pre-trained model for a given meta-test task. We apply

the meta-models to the test split of our meta-dataset and collect their predictions. Since the meta-

models predict validation accuracy on the task it was fine-tuned to, we transform the predictions

into a ranked representation, ranking the pre-trained models in order of predicted performance. In

this form, the predictions of the meta-models can be used as a selection strategy, where we pick

the pre-trained model with the highest predicted rank for a given fine-tuning task. To evaluate the

meta-model, we report the actual rank of the selected model and calculate the selection loss, which
is the difference between the performance of the selected pre-trained model and the performance

of the best-performing pre-trained model on that dataset. See Figure 8 for more details.

3 Selecting Pre-trained Models

We first analyze the general results of the various pre-trained models fine-tuned to various tasks.

Figure 1 shows a matrix where the performance of the different pre-trained models on all different

meta-test datasets is visualized. The results on the diagonal represent the tasks that were fine-tuned

to a task that comes from the same source. As the diagonal is generally green, this indicates that
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these models perform better than models that were pre-trained on other datasets. The fine-tuning

jobs belong to the top-5 models in 298 out of the 450 cases (66%). We also show the distribution of

our meta-data on the left of Figure 2.

Next, we train different meta-models to predict fine-tuning performance based on different

feature sets. The meta-models take the meta-features corresponding to the meta-test task and the

available pre-trained models as input and predict the performance of this pre-trained model on

this task. This prediction can be used to select a pre-trained model for a given dataset, and this

is how we evaluate these meta-models. To ensure a realistic setting, we exclude the same-source

pre-trained model to be selected by the meta-model, corresponding to the real-world setting where

a model pre-trained on the same data generally does not exist. Additionally, we show various

baseline models.

Setup. The previously introduced meta-dataset provides the training data and validation data

for the different meta-models and baseline meta-models. From this meta-dataset, we split off all

records where the meta-test task is derived from a specific meta-test dataset and use the remainder

as training data for the meta-model. The meta-models are created using random forest regression.

The meta-model is trained to predict the transfer validation accuracy of the split-off records. The

model predictions are then ranked according to the predicted transfer validation accuracy. For each

meta-test task, the predicted top-ranking combination is selected. When multiple combinations

are given the same top-ranking prediction (i.e. the model has a tie between various options), the

pre-trained model with the actual lowest fine-tuning performance is selected to mitigate potential

randomness in the evaluation. This is to avoid an overly optimistic reported performance. We

use the so-called selection loss to evaluate the predictions of the meta-models and the baselines.

We define the selection loss as the difference between the selected pre-trained model’s actual

fine-tuning performance and the best pre-trained model; therefore, lower values indicate better

performance. This procedure is repeated for all meta-test datasets, resulting in a leave-one-out (the

chosen meta-test dataset) cross-validation setting.

Our initial meta-models were trained on feature sets that include only statistical measures of

the raw data (see the upper section of Table 3). Although these meta-models performed better than

the random selection baseline, their performances were underwhelming, with only a ∼ 7% accuracy

in selecting the best model out of 30. This motivated us to add a low-cost proxy (LCP) to our feature

sets. We define the LCP as the validation fine-tuning accuracy after one epoch of fine-tuning.

We compare the results for our meta-models with three baseline selection methods. The model
average baseline model uses the average fine-tuning performance value of a pre-trained model as

the prediction for a fine-tuning job involving this pre-trained model. This can be interpreted as

taking all values of a row (corresponding to a model dataset), except for a single cell (corresponding

to a column of the meta-test dataset), from Figure 1, and using the average value as a prediction for

the excluded cell. The random expected baseline model visualizes the expected outcome of a model

that randomly selects a pre-trained model for a given task. Finally, we use the LCP baseline model,

which selects pre-trained models purely on the fine-tuning validation accuracy after one epoch of

fine-tuning.

Results. In Figure 3, we show how often the different meta-models selected a pre-trained

model in the best, top-2, etc. category for the given tasks. On the right of Figure 2, we compare

our best initial (pixel-based) meta-model meta-model, our best meta-model using the LCP feature

meta-model + LCP, and the baseline meta-models in their ability to minimize the loss with respect

to the best performing (available) pre-trained model. In Figure 2, we compare the distributions of

selection loss of the different pre-trained models and baselines.

In Figure 3, we observe that the meta-model + LCP meta-model correctly identifies the best-

performing pre-trained model in ∼ 25% of cases. In terms of selection loss, all our meta-models

could select models that never miss out on more than 35% fine-tuning performance, and half of

their selections have a selection loss of ∼ 7% or less.
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Figure 2: (left) Violin plots with embedded box plots of the fine-tuning performance for records that

belong to the same-source (diagonal), same-domain and cross-domain dataset relationships.

The dashed red line indicates the baseline fine-tuning performance at 20%. (right) Violin plot

with embedded box plots showing the selection loss of different meta-models and baseline

methods.
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Figure 3: Bar chart showing how often the different meta-models selected a pre-trained model that

was in the top-1 (best), top-2, etc., for the given meta-test task.

4 Discussion

We investigated dataset relatedness in a fine-tuning context. We confirmed that pre-trained models

perform best when they are fine-tuned to unseen tasks from the same source dataset as their

original training data, compared to their performance on tasks from the same domain or data

from completely different domains. This result implies the importance of validating deep transfer

learning and deep metalearning methods using multiple data sources, as validation with partitions

of a large, singular dataset does not resemble real-world applications and can return biased results.

Subsequently, we trained meta-models that predict fine-tuning performance for a given pre-

train dataset and task, using pixel-based features of the aforementioned datasets and the validation

accuracy after one epoch of fine-tuning. Our meta-models could identify the best performing

pre-trained model in ∼ 25% of cases, improving upon the baseline that selects the average best

pre-trained model. Interestingly, the LCP feature (being a model trained on 1 epoch) in isolation was

also a good indicator, suggesting further research towards aggressive early discarding methods [7].
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A Data

We use Meta-Album as the primary data source for our experiments. Meta-Album is a collection

of image classification datasets designed for metalearning research [43]. The current version of

Meta-Album features 30 datasets from 10 domains, each containing three datasets to the total.

An overview of all domains and corresponding datasets can be seen in Table 1. The diverse and

extensive set of domains that Meta-Album offers makes it a suitable choice for experiments in

cross-domain settings. For this reason, Meta-Album was chosen to form the heart of this research.

Each dataset of Meta-Album is available in four different versions.

• Original data. This version features the dataset as it was originally published. The resolution

and processing of images differ between datasets. See Table 1 for references to the sources of the

original data.

• Extended. In the extended version, all images have been up- or down-scaled to a resolution of

128x128 using various processing steps, depending on the original data. All classes of the dataset

have at least 40 examples. The number of classes per dataset is at least 20 and differs between

different datasets.

• Mini. The mini version is the same as the extended version, except that it is class-balanced. Each

class now has exactly 40 examples. The number of classes is still at least 20 and differs between

datasets.

• Micro. The micro version is the same as the mini version, but in the micro version, every dataset

features exactly 20 classes.

In this work, we use the mini version of the Meta-Album datasets to ensure class-balance in

our experiments.

The creators of Meta-Album have carefully processed all images to remove potential biases

between the different datasets. This includes up- or down-scaling all images to a resolution of

128x128. The processing steps were adapted to the different datasets to reduce artefacts and

to facilitate the up- or down-scaling. These processing steps were also adjusted to preserve

recognizability by the human eye.

B Implementation

B.1 Setup

For our experiments, we apply the following methods described in Section 2. In the data preparation

stage, we use an 80 versus 20 percent train-test ratio for the meta-train and meta-test datasets,

respectively. This means that the meta-train dataset contains 80 percent of the original dataset

classes versus 20 percent in the meta-test dataset. The class split is performed randomly, based on

a chosen seed 𝑠 . The meta-test datasets are split further into five 5-way tasks, again using an 80

versus 20 percent ratio for the support set and query set. The task split is also performed randomly,

based on a chosen seed 𝑡 , where 𝑡 corresponds directly to the task number. Since every class has

exactly 40 examples, this results in a 32-image per class support set and an 8-image per class query

set for every task. We repeat the procedure for every Meta-Album dataset, resulting in a collection

of 30 meta-train datasets and 150 meta-test tasks per seed 𝑠 .

We use the meta-train datasets to create pre-trained models. A ResNet18 neural network

architecture [16] is used as the backbone of the models. We split the meta-train dataset into a

support and query set, again using an 80 versus 20 percent ratio. The support set is provided to the

model as training data in batches with a size of 16 examples. The network output is evaluated using

cross-entropy-loss with respect to the true label of the provided examples. Stochastic gradient
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Domain Name Dataset Name Dataset ID #Classes #Images Source
Birds BRD 315 12600 Birds 400 [33]

Large Animals Dogs DOG 120 4800 Stanford Dogs [20]

Animals with Attributes AWA 50 2000 AWA [47]

Plankton PLK 86 3440 WHOI [17]

Small Animals Insects 2 INS_2 102 4080 Pest Insects [45]

Insects INS 104 4120 SPIPOLL [38]

Flowers FLW 102 4080 Flowers [29]

Plants PlantNet PLT_NET 25 1000 PlantNet [12]

Fungi FNG 25 1000 Danish Fungi [31]

PlantVillage PLT_VIL 38 1520 PlantVillage [9]

Plant Diseases Medicinal Leaf MED_LF 25 1000 Medicinal Leaf [36]

PlantDoc PLT_DOC 27 1080 Plant Doc [39]

Bacteria BCT 33 1320 DiBas [52]

Microscopy PanNuke PNU 19 760 PanNuke [10, 11]

Subcel. Human Protein PRT 21 840 Protein Atlas [42]

RESICS RESISC 45 1800 RESICS45 [4]

Remote Sensing RSICB RSICB 45 1800 RSICB 128 [24]

RSD RSD 38 1520 RSD46 [27, 48]

Cars CRS 196 7840 Cars [21]

Vehicles Airplanes APL 21 840 Multi-type Aircraft [46]

Boats BTS 26 1040 MARVEL [14]

Textures TEX 64 2560 KTH-TIPS Kylberg UIUC [8, 28, 22, 23]

Manufacturing Textures DTD TEX_DTD 47 1880 Texture DTD [5]

Textures ALOT TEX_ALOT 250 10000 Texture ALOT [3]

100 Sports SPT 73 2920 100 Sports [34]

Human Actions Stanford 40 Actions ACT_40 39 1560 Stanford 40 Actions [49]

MPII Human Pose ACT_410 29 1160 MPII Human Pose [1]

OmniPrint-MD-mix MD_MIX 706 28240

Optical Char. Recog. OmniPrint-MD-5-bis MD_5_BIS 706 28240 OmniPrint [41]

OmniPrint-MD-6 MD_6 703 28120

Table 1: An overview of all featured datasets of Meta-Album with their corresponding domains. Table

taken from [43].

descent (SGD) is used to tune the model parameters with respect to the loss, using a learning rate of

1e−3 and a momentum of 0.9. After all batches of training data are processed, the model is evaluated

using the query set, on which it is not allowed to tune its parameters. The loss and accuracy of the

model on the query set are recorded and later used to inspect how the model progressed through

the epochs. After 50 epochs, the model is stored and forms the pre-trained model.

After all pre-trained models are created, we fine-tune them to the previously created meta-test

tasks. This is done similarly to how the models were trained. We split the meta-test task on an

instance level into a support and query set using an 80 versus 20 percent ratio. Again, 50 epochs

are performed using the same criterion, optimiser, and corresponding hyper-parameters as during

pre-training. This time, however, we freeze all layers of the ResNet18-architecture except for the

last layer before the output layer. After each epoch, we record the validation accuracy on the query

set of the meta-test task. After the 50 epochs have been completed, we take the mean validation

accuracy of the last ten epochs and include it in our meta-dataset. For the sake of readability,

we will refer to this average of the validation accuracy of the last ten epochs as the fine-tuning
performance (we take the mean value of the last ten epochs to limit possible distortions due to the
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Parameter Value
n_estimators 500

criterion squared_error

max_depth 7

min_samples_split 2

min_samples_leaf 1

max_features 0.5

Table 2: Overview of the parameters that we used to create the random forest models with the scikit-

learn RandomForestRegressor class implementation of random forest regression [30].

stochastic nature of the learning process). We repeat this for every model and task combination

within a seed 𝑠 , resulting in 30 × 30 × 5 = 4 500 records per seed.

We accompany every record in our meta-dataset with features that describe the involved

datasets. Table 3 shows an overview of the different features we use. Averages and standard

deviations of colour channels are calculated over all pixels to prevent possible distortions from

taking double averages. In contrast, averages and standard deviations of colourfulness and entropy

are calculated per image and then averaged. Section B.2 provides more details on the different

features.

We repeat the complete procedure as described above for three seeds. The complete meta-

dataset contains 3 × 4 500 = 13 500 entries. It combines the validation accuracy of the fine-tuning

jobs with at most 40 features of their corresponding datasets, depending on the chosen feature set.

We repeated the procedure using a ResNet34 network backbone, but it did not result in (noteworthy)

different performances across the models.

e utilised the ALICE (Academic Leiden Interdisciplinary Cluster Environment) facility for our

experiments. The various GPU compute nodes that ALICE offers were used in parallel to run

our experiments, for which an overview can be found via the following link: https://pubappslu.
atlassian.net/wiki/spaces/HPCWIKI/pages/37519378/About+ALICE.

The scripts and procedures used to run the experiments can be found via the following GitHub

link: https://anonymous.4open.science/r/data-centric-meta-learning-469F.

B.2 Features and baselines

An overview of the different features that we provided to our meta-models can be found in Table 3.

The measure of colorfulness is calculated as follows (according to Hasler and Süsstrunk [15]).

𝑟𝑔 = 𝑅 −𝐺 (1)

𝑦𝑏 =
1

2

(𝑅 +𝐺) − 𝐵 (2)

𝜎𝑟𝑔𝑦𝑏 =

√︃
𝜎2

𝑟𝑔 + 𝜎2

𝑦𝑏
(3)

𝜇𝑟𝑔𝑦𝑏 =

√︃
𝜇2𝑟𝑔 + 𝜇2

𝑦𝑏
(4)

𝑀 = 𝜎𝑟𝑔𝑦𝑏 + 0.3 · 𝜇𝑟𝑔𝑦𝑏 (5)

Here,𝑀 is the measurement of colourfulness, whereas 𝑅,𝐺 , and 𝐵 represent the red, green, and

blue values (respectively) of a single image from the dataset. First,𝑀 is calculated in parallel for all

images in a given dataset. Subsequently, the average and standard deviation of𝑀 are calculated as

measures of colourfulness for the dataset.

In our experiments, we use the baselines model average, random expected and LCP. They are

implemented as follows:
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1. Model average. Given a training dataset providing the performance of the available pre-trained

models when fine-tuned to various tasks, select the pre-trained model for an unseen task with

the highest average performance in the provided training data.

2. Random expected. Given 𝑘 equals the number of available pre-trained models, expect to select

the n-th ranking model in 1/𝑘 selections.

3. LCP. Given a collection of pre-trained models and an unseen task, select the model with the

highest accuracy after one epoch of fine-tuning on the unseen task.

For the most factual description of our implementation, we refer to the GitHub repository.

Feature name Description

global mean the mean pixel brightness value of the dataset.

global std the standard deviation of the pixel brightness values of the dataset.

mean_c* the mean pixel value in channel c (r, g or b) of the dataset.

std_c* the standard deviation of pixel values in channel c (r, g or b) of the dataset.

colourfulness mean the mean colourfulness of the dataset (as defined by Hasler and Susstrunk [15]).

colourfulness std the standard deviation in colourfulness, as defined by Hasler and Susstrunk, of the dataset.

entropy mean the mean Shannon entropy of the dataset

entropy std the standard deviation in Shannon entropy of the dataset

low-cost proxy the validation accuracy of the first fine-tuning epoch

target accuracy

the average validation accuracy of the last 10 fine-tuning steps

of a foundation model applied to the target task

Table 3: A descriptive overview of the different meta-features calculated for all meta-training-set and

meta-test-task pairs. Features with the c* placeholder are calculated separately for the red,

green, and blue channels of the images. Except for target accuracy and low-cost proxy, all
features are calculated equally for the meta-training-set and the meta-test-task.

C More details on methods
More details and visualizations of the methods can be found in Figures 4, 5, 6, 7 and 8.

Figure 4: A schematic example of how we prepare the data for our experiments. Each dataset of Meta-

Album consists of multiple classes. We select a dataset (in this case, DOG) and randomly

split it on a class level using a random seed 𝑠 . This results in a meta-train dataset (top) and a

meta-test dataset (bottom), which we label DOG-mtr-s77 and DOG-mts-s77, respectively.

The meta-test dataset is split further into 𝑝 multi-class classification tasks (all having 𝑛

classes). A pre-trained network is trained on this meta-train set (see Figure 5). The meta-test

tasks are used to later fine-tune the pre-trained models (see Figure 6). This data preparation

is applied to all datasets of Meta-Album and can be repeated for multiple seeds 𝑠 to form

different pre-trained models and tasks.
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Figure 5: A schematic example of how we create the pre-trained models. We take a meta-train dataset

(for example, DOG-mtr-s77) as created in Figure 4 and randomly split it further into a meta-

train support dataset and a meta-train query dataset. The split is performed on an instance

level and in a stratified fashion, meaning that both the support and query datasets contain

different examples from the same classes and that the classes are equally represented. The

support set is then used to train a neural network, while the query set is used to validate

the performance during training. After training has been completed, the neural network

resembles a pre-trained model of the source dataset (DOG-s77), which will later be fine-tuned

for new tasks (see Figure 6). In this way, a pre-trained model is created for every Meta-Album

dataset.

Figure 6: A schematic example of fine-tuning a pre-trained model to a new task. We select a meta-test

task (DOG-mts-s77) as created in Figure 4 and split it further into a meta-test task support

dataset and a meta-test task query dataset, similarly to Figure 5. Next, we select a pre-trained

network (Cars with 𝑠 = 77, or CRS-s77) as created in Figure 5. The layers of the pre-trained

network are frozen except for the last layer. Then, the partially frozen pre-trained network

is fine-tuned to the meta-test task support set. The fine-tuning process is validated with the

meta-test task query set. After fine-tuning has been completed, the validation accuracy is

recorded and later used as the target value for the meta-models (see Figure 7).

16



Figure 7: A schematic example of the assembly of meta-data and the training of meta-models. The

meta-data consists of the recorded fine-tuning accuracy and meta-features of the involved

datasets per fine-tuning job. The meta-data is split into a train and test set. The train set of

the meta-data is used to train a meta-model that predicts the validation accuracy using the

provided features.

Figure 8: A schematic example of the meta-model validation. The test split of the meta-data is given to

a trained meta-model. The meta-model then outputs the predicted values for the validation

accuracy. The ranking of the predictions is compared to the true ranking of the validation

accuracy of the pre-trained models.
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D Results using pixel-based meta-features

Figure 9 shows the results of the methods that utilize primarily the pixel-based meta-features.
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Figure 9: (left) Bar chart comparing the rank of the selections of different meta-models and baseline

meta-models. Both rf separate and rf difference correspond to random forest meta-models

trained on different feature sets. (right) Violin plot with embedded box plots showing the

selection loss of different meta-models and baseline meta-models. Both rf separate and rf
difference correspond to random forest meta-models trained on different feature sets.

18


	Introduction
	Experimental Methodology
	Selecting Pre-trained Models
	Discussion
	Data
	Implementation
	Setup
	Features and baselines

	More details on methods
	Results using pixel-based meta-features

