
Improving Molecular Graph Generation with
Flow Matching and Optimal Transport

Xiaoyang Hou1,2∗ Tian Zhu1,2∗ Milong Ren1,2 Dongbo Bu1,2,3 Xin Gao6

Chunming Zhang1,4,5 Shiwei Sun1,2,4†

1. Key Laboratory of Intelligent Information Processing, Institute of Computing Technology.
2. School of Computer Science and Technology, University of Chinese Academy of Sciences.

3. Central China Research Institute for Artificial Intelligence Technologies.
4. Western Institute of Computing Technology.

5. Phil Rivers Technology.
6. King Abdullah University of Science and Technology.

Abstract

Generating molecular graphs is crucial in drug design and discovery but remains
challenging due to the complex interdependencies between nodes and edges. While
diffusion models have demonstrated their potentiality in molecular graph design,
they often suffer from unstable training and inefficient sampling. To enhance
generation performance and training stability, we propose GGFlow, a discrete
flow matching generative model incorporating optimal transport for molecular
graphs and it incorporates an edge-augmented graph transformer to enable the
direct communications among chemical bounds. Additionally, GGFlow introduces
a novel goal-guided generation framework to control the generative trajectory of
our model, aiming to design novel molecular structures with the desired properties.
GGFlow demonstrates superior performance on both unconditional and conditional
molecule generation tasks, outperforming existing baselines and underscoring its
effectiveness and potential for wider application.

1 Introduction

De novo molecular design is a fundamental but challenging task in drug discovery and design. While
the searching space of the molecular graph is extremely tremendous, as large as 1033 [Polishchuk
et al., 2013]. Machine learning methods have been introduced to generate molecular graphs due to the
large amount of data in the field. These models are typically categorized into autoregressive and one-
shot types. Autoregressive models, such as GraphDF [Luo et al., 2021], generate graphs sequentially,
often overlooking the interdependencies among all graph components. In contrast, one-shot methods
generate entire graphs in a single step, more effectively capturing the joint distribution [Kong et al.,
2022].

Diffusion models have shown great promise and achieved significant performance in various domains
[Ho et al., 2020, Song et al., 2020, Ho et al., 2022]. In the context of molecular graph generation,
diffusion models have been adopted to enhance generative capacity. EDP-GNN and GDSS are

∗Contributed equally: Author order is randomized and can be adjusted as needed for individual purposes.
†Correspondence should be addressed to Shiwei Sun (dwsun@ict.ac.cn)

AI for New Drug Modalities at NeurIPS 2024.

among the first to utilize diffusion models for graph generation, adding continuous Gaussian noise to
adjacency matrices and node types, which may lead to invalid molecular graph structures [Niu et al.,
2020, Jo et al., 2022b]. Due to the inherent sparsity and discreteness of molecular graph structures,
GSDM enhances model fidelity by introducing Gaussian noise within a continuous spectrum space
of the graph, and DiGress and CDGS apply discrete diffusion models for graphs [Luo et al., 2023,
Vignac et al., 2022, Austin et al., 2021, Haefeli et al., 2022, Huang et al., 2023].

Despite their potential, diffusion models often face challenges with unstable training and inefficient
sampling. Flow matching generative models offer a more stable and efficient alternative by trans-
forming the generative process from stochastic differential equations (SDEs) to ordinary differential
equations (ODEs), enhancing generative efficiency [Lipman et al., 2022, Song et al., 2024, Yim et al.,
2023]. Additionally, the use of optimal transport straightens the marginal probability path, reducing
training variance and speeding up sampling [Bose et al., 2023, Tong et al., 2023, Klein et al., 2024,
Pooladian et al., 2023]. However, the application of OT in graph-based systems is often hampered by
significant computational demands, primarily due to the complexity of the OT metric [Chen et al.,
2020b, Petric Maretic et al., 2019].

In this paper, we introduce GGFlow, a novel generative model that leverages discrete flow matching
techniques with optimal transport to improve sampling efficiency and training stability in molecular
graph generation. GGFlow incorporates an edge-augmented graph transformer to model direct
chemical bond relations, benefiting chemical bond generation tasks. The model preserves graph
sparsity and permutation invariance, essential for valid molecular graph generation. Additionally,
GGFlow employs a goal-guided framework using reinforcement learning for molecule design with
target properties. GGFlow achieves state-of-the-art results in both unconditional and conditional
molecule generation tasks and surpasses existing methods with fewer inference steps. Its effectiveness
in conditional generation tasks underscores the practical impact of our approach.

Our contribution can be summarized as:

• GGFlow introduces the first discrete flow matching generative model with optimal transport
for molecular graph data, improving sampling efficiency and training stability. It also
incorporates an edge-augmented graph transformer to enhance generation tasks.

• GGFlow proposes a novel guidance framework using reinforcement learning to control
probability flow during molecular graph generation, targeting specific properties.

• GGFlow demonstrates state-of-the-art performance in various unconditional and conditional
molecular graph generation tasks, consistently outperforming existing methods across
diverse graph types and complexities.

2 Related Work

2.1 Flow Matching and Diffusion Models

Diffusion models have gained widespread popularity in various fields, including computer vision,
natural language processing, and biological sciences, demonstrating notable success in generative
tasks [Ho et al., 2020, Song et al., 2020, Watson et al., 2023, Ingraham et al., 2023, Liu et al., 2024a,
Ren et al., 2024, Zhu et al., 2024]. However, these models often suffer from inefficiencies in sampling
due to the complexity of their underlying diffusion processes and the convergence properties of the
generative process.

Flow matching generative models have emerged as a more efficient and stable alternative (details in
Appendix A.1), improving sampling by straightening the generative probability path [Lipman et al.,
2022, Song et al., 2024, Campbell et al., 2024]. Some approaches further enhance performance by
incorporating optimal transport. The generative processes of these models are summarized in Figure
1.

Previous works [Campbell et al., 2024, Gat et al., 2024] extended flow matching to discrete spaces,
while Eijkelboom et al. [2024] applied variational flow matching to graphs, but without adequately
addressing key graph-specific properties such as adjacency matrix sparsity. GGFlow tackles these
challenges by introducing a discrete flow matching model with optimal transport tailored for graph
data. Furthermore, we propose a novel framework for guiding the generative process, enhancing its
practical applicability.

2

Flow	Matching Flow	Matching
+	Optimal	Transport

Diffusion

Figure 1: Illustration of generative trajectories using different methods. The generative trajectories
are learned by the diffusion model (left), flow matching model (center), and flow matching model
with optimal transport (right).

2.2 Molecular Graph Generative Models

Molecular Graph generative models are typically categorized into two main types: autoregressive and
one-shot models. Autoregressive models, such as generative adversarial networks [Wang et al., 2018],
recurrent neural networks [You et al., 2018], variational autoencoders [Jin et al., 2018], normalizing
flows [Shi et al., 2019, Luo et al., 2021] and diffusion model [Kong et al., 2023], generate graphs
sequentially. While effective, these models are often computationally expensive and fail to account
for permutation invariance, a crucial property for graph data, resulting in potential inefficiencies.
In contrast, one-shot models aim to capture the distribution of all molecular graph components
simultaneously [De Cao and Kipf, 2018, Ma et al., 2018, Zang and Wang, 2020], better reflecting
the inherent interactions within molecular graphs. Despite the advantages, diffusion-based one-shot
models [Niu et al., 2020, Jo et al., 2022b, Vignac et al., 2022, Chen et al., 2023, Bergmeister et al.,
2023, Luo et al., 2023, Haefeli et al., 2022, Yan et al., 2023, Jang et al., 2023, Madeira et al., 2024,
Bergmeister et al., 2024, Chen et al., 2023, Minello et al., 2024, Zhao et al., 2024, Xu et al., 2024]
show promising results in downstream tasks but remain limited by sampling efficiency. GGFlow
addresses these limitations by employing a discrete flow-matching generative model, achieving
superior generative performance with fewer sampling steps.

3 Methods

In this section, we present our methodology, GGFlow. Section 3.1 outlines the discrete flow matching
method for molecular graph generation. Section 3.2 covers optimal transport for graph flow matching.
Section 3.3 introduces GraphEvo, our neural network for graph generation. Section 3.4 examines the
permutation properties of GGFlow, and Section 3.5 discusses goal-guided molecule generation using
reinforcement learning.

3.1 Discrete Flow Matching for Molecular Graph Generation

A molecular graph G = (V,E), where V and E denote the sets of nodes and edges, has a distribution
denoted by p(G) = (pV (V), pE(E)). The attribute spaces for nodes and edges are V and E , with
cardinalities n and m, respectively. The attributes of node i and edge ij are denoted by vi ∈ V and
eij ∈ E , so the node and edge probability mass functions (PMF) are pV (vi = a) and pE(eij = b)
where a ∈ {1, . . . , n} and b ∈ {1, . . . ,m}. The node and edge encodings in the graph are given
by matrices V ∈ Ra×n and E ∈ Ra×a×m, respectively. We denote the transpose of matrix A as
A∗ and At represents the state of matrix A at time t. We use discrete flow matching to model the
molecular graph generation process.

Source and target distribution GGFlow aims to transform prior distribution G0 ∼ pref to target
data distribution G1 ∼ pdata. The training data (G0, G1) are sampled from a joint distribution
π(G0, G1), satisfying the marginals constraints pref =

∑
G1 π(G0, G1), pdata =

∑
G0 π(G0, G1).

In the simplest case, the joint distribution π(G0, G1) is modeled as the independent coupling, i.e.
π(G0, G1) = pref · pdata.

3

To account for graph sparsity, the prior distribution pref = (pVref , p
E
ref) is designed to approximate

the true data distribution closely. To ensure the permutation invariance of the model, the priors are
structured as products of single distributions for all nodes and edges:

∏
i vi ×

∏
ij eij [Vignac et al.,

2022]. Further details on the prior can be found in Appendix B.1.

Probability path We define a probability path pt(Gt) that interpolates between source distribution
pref and target distribution pdata i.e. p0 = pref and p1 = pdata. The marginal probability path is
given by:

pt(G
t) =

∑
(G0,G1)∼π

pt(G
t|G0, G1)π(G0, G1), (1)

where
pt(G

t|G0, G1) = Cat
(
tδ{G1, G}+ (1− t)pref

)
= Cat

(
tδ{V 1, V }+ (1− t)pVref , tδ{E1, E}+ (1− t)pEref

)
,

δ is the Kronecker delta, indicating equality of the indices, and Cat(p) denotes a Categorical
distribution with probabilities p. Given the sparsity of both the prior and data distributions, we can
infer that the intermediate distribution is similarly sparse, aiding model training.

We define a probability velocity field ut(G,Gt) = (uVt (V, V
t), uEt (E,E

t)) for GGFlow, which
generates the probability path from Equation 1. The probability velocity field ut(G,Gt) is derived
from the conditional probability velocity field ut(G,Gt|G0, G1), and can be expressed as:

ut(G,G
t) =

∑
(G0,G1)∼π

ut(G,G
t|G0, G1)pt(G

0, G1|Gt), (2)

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0, G1)π(G0, G1)∑
G0,G1 pt(Gt|G0, G1)π(G0, G1)

. (3)

GGFlow chooses the conditional marginal probability ut(G,Gt|G0, G1) as:

ut(G,G
t|G0, G1) =

1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G, (4)

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. More details about the

conditional vector field are provided in Appendix B.2.

Training objective Given the intractability of the posterior distribution p1|t(G1|Gt, G0), we ap-
proximate it as p̂1|t(G1|Gt, G0) using neural network, as detailed in Section 3.3. The training
objective is formulated as:

L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)], (5)

where U(t; 0, 1) is a uniform distribution on [0, 1].

Sampling Procedure In the absence of the data distributionG1 during sampling, we reparameterize
the conditional probability pt(G0, G1|Gt) as:

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0)p(G0)∑
G0 pt(Gt|G0)p(G0)

.

pt(G
t|G0) = Cat

(
tδ{V 1, V }+ (1− t)prefV , tδ{E1, E}+ (1− t)prefE

)
And we can simplify the generative process pt+∆t|t(G

t+∆t|Gt, G0) without the calculation of the
full expectation over conditional vector field ût(G,Gt|G0, G1):

pt+∆t|t(G
t+∆t|Gt, G0) = Ep̂1|t(G1|Gt,G0)[δ(G

t, Gt+∆t) + ut(G
t, Gt+∆t|G0, G1)∆t]

=
∑
G1

pt+∆t|t(G
t+∆t|G1, Gt, G0)p̂1|t(G

1|Gt, G0). (6)

We first sample the Ĝ1 using the approximate distribution p̂1|t(G1|Gt, G0) and then sample the next
state Gt+∆t using sampled Ĝ1. The sampling procedure pt+∆t|t(G

t+∆t|G1, Gt, G0) can thus be
formulated as:

Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t.
Further details on the sampling and training procedures are provided in Algorithms 1 and 4.

4

Algorithm 1 Sampling Procedure of GGFlow

Require: t = 0, G0 ∼ (prefV , prefE), ut(G,Gt|G0, G1), Nsteps

1: ∆t = 1/Nsteps

2: for n ∈ {0, . . . , Nsteps − 1} do
3: p̂1|t(G

1|G0, Gt) = GraphEvo(Gt, G0, t)

4: Ĝ1 ∼ p̂1|t(·|G0, Gt)
5: // Sampling from the conditional velocity field
6: Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t
7: t = t+∆t
8: end for
9: return G1 = (V 1, E1)

3.2 Optimal transport for graph flow matching

Optimal transport (OT) has been effectively applied to flow matching generative models in continuous
variable spaces, to improve generative performance [Tong et al., 2023, Bose et al., 2023, Song et al.,
2024]. To generalize this for graphs, we extend the joint distribution π(G0, G1) from independent
coupling to the 2-Wasserstein OT map ϕ∗, which minimizes the 2-Wasserstein distance between pref
and pdata. To optimize the computational efficiency of OT and preserve permutation invariance, we
define the distance via the Hamming distance H(G1, G0) [Bookstein et al., 2002]:

ϕ∗(p0, p1) = arg inf
ϕ∈Φ

∫
Rd×Rd

H(G0, G1)dϕ(G0, G1), (7)

where
H(G0, G1) =

∑
i

δ(v0i , v
1
i) + λ

∑
i,j

δ(e0ij , e
1
ij). (8)

Here Φ represents the set of all joint probability measures on Rd × Rd that are consistent with the
marginal distributions p0 and p1, where GK = (V K = {vKi }, EK = {eKij }ij), K = 0, 1.

The practical application of OT to large datasets is computationally intensive, often requiring cubic
time complexity and quadratic memory [Tong et al., 2020, Villani, 2009]. To address these challenges,
we use a minibatch approximation of OT [Fatras et al., 2021].

3.3 GraphEvo: Edge-augmented Graph Transformer

Our neural network, GraphEvo, predicts the posterior distribution p1|t(G1|Gt, G0) using the inter-
mediate graph Gt. In graph-structured data, edge and structural information are as critical as node
attributes, and incorporating edge relations enhances chemical bond generation tasks [Hussain et al.,
2024, Hou et al., 2024, Jumper et al., 2021]. To capture these relations, GraphEvo extends the graph
transformer by introducing a triangle attention mechanism for edge updates, along with additional
graph features y, such as cycles and the number of connected components [Vignac et al., 2022]. This
enables GraphEvo to efficiently and accurately capture the joint distribution of all graph components.
The key self-attention mechanisms are outlined in Algorithm 2, where node, edge, and graph features
are represented as X ∈ Rbs×n×dx, E ∈ Rbs×n×dx, and y ∈ Rbs×n×dy , where bs denotes batch size,
n is the number of nodes, and dx and dy are the feature dimensions for node and global features,
respectively. Further details are provided in Appendix C.

3.4 Permutation Property Analysis

Graphs are invariant to random node permutations, and GGFlow preserves this property. To ensure
permutation invariance, we analyze the permutation properties of our neural network, training
objectives, and conditional probabilities path. First, we analyze the permutation invariance of the
training objectives [Vignac et al., 2022]. Since the source and target distributions, along with the
Hamming distance, are permutation invariant, the optimal transport map derived from Equation 7 and
independent coupling also exhibit this invariance.
Theorem 1. If the distributions p(G0) and p(G1) are permutation invariant and the cost func-
tion maintains this invariance, then the optimal transport map ϕ also respects this property, i.e.,
ϕ(G0, G1) = ϕ(πG0, πG1), where π is a permutation operator.

5

Algorithm 2 Self-attention Mechanism in GraphEvo

Require: X ∈ Rbs×n×dx,E ∈ Rbs×n×dx,y ∈ Rbs×n×dy

1: Q,K,V← Linear(X)

2: Y ← Q×K√
dY

// Calculation attention score for node embedding
3: Y ← FiLM(Y,E) // Incorporate edge features to self-attention scores
4: E← Y
5: Qe,Ke,Ve,b,g← Linear(E)

6: Ye ← Qe×Ke√
dYe

+ b // Calculation triangle attention score for edge embedding

7: E← Ye ∗Ve ∗ sigmoid(g)

8: E← Linear
(
FiLM(E,y)

)
// Incorporate global structural features to edge embedding

9: X← Y ∗V
10: X← Linear

(
FiLM(X,y)

)
// Incorporate global structural features to node embedding

11: y← Linear
(
Linear(y) + PNA(X) + PNA(E)

)
12: return X,E,y

Proof of this theorem can be found in Appendix B.4. Thus, the training objective is permutation
invariant. To ensure that the generated graph retains its identity under random permutations, the
generated distribution must remain exchangeable, and GraphEvo must be permutation equivariant.
Proposition 1. The distribution generated by the conditional flow is exchangeable with respect to
nodes and graphs, i.e. p(V,E) = p(π∗V, π∗Eπ), where π is a permutation operator.

Proposition 2. GraphEvo is permutation equivariant.

The proofs of Proposition 1 and 2 are provided in Appendix B.3 and Appendix C.1, respectively.

3.5 Goal-Guided Framework For Conditional Molecule Generation

We propose a goal-guided framework for discrete flow matching, employing reinforcement learning
(RL) to guide graph flow matching models for non-differentiable objectives. The goal of the guidance
method is to map the noise distribution p0 to a preference data distribution p∗1 using a reward function
R(Gt, t).

We formulate the inference process of flow matching as a Markov Decision Process (MDP), where
(Gt, t) and Gt+∆t are the state space st and action space at, p0 is an initial noise distribution,
p(Gt+∆t|Gt, t) is the transition dynamics and policy network π(at|st), R(Gt, t) = r(G1)I[t = 1]
is the reward function

To enable exploration, we introduce a temperature parameter T for the policy network during
sampling, allowing the model to explore a broader space at higher temperatures:

π(at|st) = π(Gt+∆t|Gt, t) = Cat
(
(δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t)/T

)
(9)

The goal of RL training is to maximize the reward function. To prevent overfitting to the reward
preference distribution, we add a Kullback–Leibler (KL) divergence term between the Reinforcement
learning fine-tuned model pRL

θ (·) and pre-trained model pθ(·) [Ouyang et al., 2022].

We employ the policy gradient method to update the network, where the policy is refined to π(at|st) =
p
(T)
θ (G1|Gt)q(Gt+∆t|G1) to π(at|st) = p

(T)
θ (G1|Gt) [Sutton et al., 1999, Liu et al., 2024b], directly

increasing the probability of generatingG1 with higher rewards at all timestep t. The training objective
is:

LRL = −Epθ(G0:t:1)[αR(G1)

t=1∑
t=0

log pRL
θ (G1|Gt)− β

t=1∑
t=0

KL(pRL
θ (G1|Gt)||pθ(G1|Gt))] (10)

where pθ(G0:t:1) represents pdata(G1)U(t; 0, 1)π(G0, G1)pt(G
t|G0, G1). Using this optimization

objective, we fine-tune the pre-trained flow matching model to generate data following the preference

6

distribution. By integrating optimal transport, we optimize the pairing of prior data and high-reward
training data [Chen et al., 2020a]. The pseudo-code for the guided GGFlow training is provided in
Algorithm 5 and a toy example is shown in Appendix D.

4 Experiment

To validate the performance of our method, we compare GGFlow with state-of-the-art graph gener-
ative baselines on molecule generation and generic graph generation, over several benchmarks in
Section 4.1 and Section 4.2, respectively. The ability of GGFlow to perform conditional molecule
generation is analyzed in Section 4.3.

4.1 Moleuclar Graph Generation

We evaluated GGFlow on two standard molecular datasets, QM9 [Ramakrishnan et al., 2014]
and ZINC250k [Irwin et al., 2012], using several metrics: Validity, Validity without correction,
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) Maximum Mean Discrepancy (MMD),
and Frechet ChemNet Distance (FCD). To calculate these metrics, we sampled 10,000 molecules.
We compared GGFlow against various molecule generation models, including GraphAF, GraphDF,
MolFlow [Zang and Wang, 2020], EDP-GNN, GraphEBM [Liu et al., 2021], GDSS, PS-VAE [Kong
et al., 2022], MolHF [Zhu et al., 2023], GruM, SwinGNN, DiGress, and GSDM. Detailed descriptions
of the datasets, baselines and metrics are provided in Appendix E.

The results, presented in Table 1, indicate that GGFlow effectively captures the distribution of molec-
ular data, showing significant improvements over the baselines. The high Validity without correction
suggests that GGFlow successfully learns chemical valency rules. Additionally, GGFlow achieves su-
perior NSPDK and FCD scores on both datasets, demonstrating its ability to generate molecules with
distributions closely resembling those of natural molecules. Visualizations of molecules generated by
different models are shown in Figure 2, with additional results on GGFlow provided in Appendix F.

Table 1: Generation results on the QM9 and ZINC250k datasets. Results are the means of 3 different
runs. The best results and the second-best results are marked bold and bold.

Method QM9 ZINC250k Step
Val. Val. w/o

corr.
NSPDK FCD Val. Val. w/o

corr.
NSPDK FCD

Training Set 100 100 0.0001 0.040 100 100 0.0001 0.062 -

GraphAF 100 67.14 0.0218 5.246 100 67.92 0.0432 16.128 -
GraphDF 100 83.14 0.0647 10.451 100 89.72 0.1737 33.899 -
MolFlow 100 92.03 0.0169 4.536 100 63.76 0.0468 20.875 -
GraphEBM 100 8.78 0.0287 6.402 100 5.29 0.2089 35.467 -
PS-VAE - - 0.0077 1.259 100 - 0.0112 6.320 -
MolHF - - - - 100 93.62 0.0387 23.940 -
EDP-GNN 100 47.69 0.0052 2.683 100 83.16 0.0483 16.819 1000
GDSS 100 96.17 0.0033 2.565 100 97.12 0.0192 14.032 1000
GSDM 100 99.90 0.0034 2.614 100 92.57 0.0168 12.435 1000
GruM 100 99.69 0.0002 0.108 100 98.32 0.0023 2.235 1000
SwinGNN 100 99.66 0.0003 0.118 100 86.16 0.0047 4.398 500
DiGress 100 98.29 0.0003 0.095 100 94.98 0.0021 3.482 500

GGFlow 100 99.91 0.0002 0.148 100 99.63 0.0010 1.455 500

4.2 Generic Graph Generation

We further evaluated GGFlow on three generic graph generation benchmarks of varying sizes: Ego-
small, Community-small, Grid and Planar. We employ the same train/test split as GraphRNN [You
et al., 2018], utilizing 80% of each dataset for training and the remaining for testing. We compared
GGFlow’s performance against well-known autoregressive models: DeepGMG [Li et al., 2018],
GraphRNN [You et al., 2018], GraphAF [Shi et al., 2019], and GraphDF [Luo et al., 2021] and

7

QM9

ZINC250k

GDSSGruMDiGressGFlow

Figure 2: Visualization of generated samples of different models in different molecular datasets

one-shot models: GraphVAE [Simonovsky and Komodakis, 2018], GNF [Liu et al., 2019], EDP-
GNN [Niu et al., 2020], GDSS [Jo et al., 2022a], DiGress [Vignac et al., 2022], GRASP [Minello
et al., 2024], GSDM [Luo et al., 2023], GruM [Jo et al., 2024], and SwinGNN [Yan et al., 2023].
Consistent with previous studies, we generated an equal number of graphs as the test set to compare
distributions of graph statistics, including degree distribution (Deg.), clustering coefficient (Clus.),
and the frequency of 4 node orbits (Orbit). Detailed descriptions of datasets, baselines, and metrics
are provided in Appendix E.

Table 2 presents our results, showing that GGFlow achieves superior performance across most metrics.
Additionally, GGFlow demonstrates comparable performance compared to state-of-the-art models in
generating large graphs on the Grid dataset. These findings underscore the effectiveness of GGFlow
at capturing the local characteristics and data distributions of graphs. We visualize the generated
graphs in Appendix F.

Table 2: Generation results on the generic graph datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and bold.

Method Ego-small Community-small Grid Step
Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

Training Set 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000 -

DeepGMG 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - - -
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043 -
GraphAF 0.031 0.107 0.001 0.046 0.178 0.204 0.022 0.135 - - - - -
GraphDF 0.039 0.128 0.012 0.046 0.060 0.116 0.030 0.069 - - - - -
GNF 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - - -
GraphVAE 0.137 0.166 0.051 0.118 0.358 0.969 0.551 0.626 1.594 0.000 0.904 0.833 -
EDP-GNN 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340 1000
GDSS 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088 1000
GSDM - - - - 0.020 0.050 0.005 0.053 0.002 0.000 0.000 0.001 1000
DiGress 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051 500
SwinGNN 0.017 0.060 0.003 0.027 0.006 0.125 0.018 0.050 0.000 0.000 0.000 0.000 500

GGFlow 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015 500

4.3 Conditional Molecule Generation

To further evaluate the performance of our model, we conducted conditional generation experiments
on the QM9 dataset, focusing on generating molecules with molecular properties µ that closely match
a target value µ∗. In the experiment, we set the target value as 1, i.e. µ∗ = 1.

For the experiment, we employed a reinforcement learning-based guidance method and compared it
to the guided version of DiGress, which also proposes an effective approach for discrete diffusion
models in conditional generation tasks. The reward function was defined as |µ− µ∗|, and the model
was trained over 10,000 steps using the training settings detailed in Section 4.1. To evaluate the
effectiveness of our guidance method, we compared it against three baselines: (1) Guidance for
DiGress [Vignac et al., 2022]. (2) Direct supervised training (ST) (3) Supervised fine-tuning (SFT).
Additionally, we calculated the mean and variance of |µ− µ∗|for samples generated unconditionally
by both DiGress and GGFlow to provide a baseline comparison. Further details of the experiment are
provided in Appendix E.5.

8

The results, detailed in Table 3, demonstrate the superiority of our reinforcement learning-based
conditional generation method over both ST and SFT approaches. Notably, our method surpasses the
guidance techniques used in diffusion models, showcasing its enhanced ability to steer the generative
process toward desired outcomes. Additionally, our approach achieves higher validity in conditional
generated tasks, highlighting its robustness and superior performance in goal-directed generation.

Table 3: Mean absolute error of molecular property µ on conditional generation on the QM9 dataset.

Methods DiGress GGFlow

Uncondition +Guidance Unconditition Supervised Training +SFT +RL

Mean 1.562 1.092 1.569 1.184 1.223 0.672
Variance 1.641 0.894 1.987 1.579 1.893 0.647
Val. w/o 98.29 74.2 99.91 86.1 87.0 92.2

5 Conclusion

In this paper, we introduced GGFlow, a discrete flow matching generative model for molecular graphs
that incorporates optimal transport and an innovative graph transformer network. GGFlow achieves
state-of-the-art performance in unconditional molecular graph generation tasks. Additionally, we
presented a novel guidance method using reinforcement learning to control the generative trajectory
toward a preferred distribution. Furthermore, our model demonstrates the ability to achieve the best
performance across various tasks with fewer inference steps compared to other baselines which
highlights the practical impact of our guidance method. A primary limitation is scalability to
larger graphs like protein (|V| > 500), attributable to the increased time complexity from triangle
attention updates and spectral feature computations. Future work will focus on enhancing our model’s
scalability in larger graphs.

Acknowledge

This work was supported by the National Natural Science Foundation of China (62072435,
82130055, 32271297, 32370657), the National Key Research and Development Program of China
(2020YFA0907000), and Chongqing Municipal Key Special Project for Technological Innovation
and Application Development (CSTB2022TIAD-DEX0035). The data underlying this article will be
shared on reasonable request to the corresponding author.

References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured

Denoising Diffusion Models in Discrete State-Spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and
Scalable Graph Generation through Iterative Local Expansion. arXiv preprint arXiv:2312.11529,
2023.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In The Twelfth International
Conference on Learning Representations, 2024.

Abraham Bookstein, Vladimir A Kulyukin, and Timo Raita. Generalized Hamming Distance.
Information Retrieval, 5:353–375, 2002.

Joey Bose, Tara Akhound-Sadegh, Kilian FATRAS, Guillaume Huguet, Jarrid Rector-Brooks, Cheng-
Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander Tong.
SE (3)-Stochastic Flow Matching for Protein Backbone Generation. In The Twelfth International
Conference on Learning Representations, 2023.

9

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-
Design. arXiv preprint arXiv:2402.04997, 2024.

Liqun Chen, Ke Bai, Chenyang Tao, Yizhe Zhang, Guoyin Wang, Wenlin Wang, Ricardo Henao, and
Lawrence Carin. Sequence generation with optimal-transport-enhanced reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7512–7520,
2020a.

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
transport for cross-domain alignment. In International Conference on Machine Learning, pages
1542–1553. PMLR, 2020b.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and Degree-Guided Graph Generation
via Discrete Diffusion Modeling. In Proceedings of the 40th International Conference on Machine
Learning, pages 4585–4610, 2023.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
2018.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. arXiv preprint arXiv:2406.04843,
2024.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792,
2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. In NeurIPS 2022 Workshop: New Frontiers
in Graph Learning, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video Diffusion Models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Xiaoyang Hou, Tian Zhu, Milong Ren, Bo Duan, Chunming Zhang, Dongbo Bu, and Shiwei Sun.
Gtam: A molecular pretraining model with geometric triangle awareness. Bioinformatics, page
btae524, 2024.

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
structures for molecular graph generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 4302–4311, 2023.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Triplet interaction
improves graph transformers: Accurate molecular graph learning with triplet graph transformers.
In Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=iPFuWc1TV2.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, pages 1–9, 2023.

10

https://openreview.net/forum?id=iPFuWc1TV2
https://openreview.net/forum?id=iPFuWc1TV2

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. ZINC: A
Free Tool to Discover Chemistry for Biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Yunhui Jang, Seul Lee, and Sungsoo Ahn. A Simple and Scalable Representation for Graph
Generation. In The Twelfth International Conference on Learning Representations, 2023.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
Molecular Graph Generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations. arXiv:2202.02514, 2022a. URL https://arxiv.
org/abs/2202.02514.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations. In International Conference on Machine Learning,
pages 10362–10383. PMLR, 2022b.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
Forty-first International Conference on Machine Learning, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pages 17391–17408. PMLR, 2023.

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:
2550–2563, 2022.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative
Models of Graphs. arXiv preprint arXiv:1803.03324, 2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Matching
for Generative Modeling. In The Eleventh International Conference on Learning Representations,
2022.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph Normalizing Flows.
Advances in Neural Information Processing Systems, 32, 2019.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular Graph Generation
with Energy-Based Models. arXiv preprint arXiv:2102.00546, 2021.

Shiwei Liu, Tian Zhu, Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Predicting muta-
tional effects on protein-protein binding via a side-chain diffusion probabilistic model. Advances
in Neural Information Processing Systems, 36, 2024a.

Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph Diffusion Policy
Optimization. arXiv preprint arXiv:2402.16302, 2024b.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular Graph
Generation. In International conference on machine learning, pages 7192–7203. PMLR, 2021.

11

https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2202.02514

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained Generation of Semantically Valid Graphs via
Regularizing Variational Autoencoders. Advances in Neural Information Processing Systems, 31,
2018.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. arXiv preprint arXiv:2406.17341, 2024.

Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph
generation via spectral diffusion. arXiv preprint arXiv:2402.18974, 2024.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation Invariant Graph Generation via Score- Based Generative Modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got: an
optimal transport framework for graph comparison. Advances in Neural Information Processing
Systems, 32, 2019.

Pavel G Polishchuk, Timur I Madzhidov, and Alexandre Varnek. Estimation of the size of drug-like
chemical space based on gdb-17 data. Journal of computer-aided molecular design, 27:675–679,
2013.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Milong Ren, Tian Zhu, and Haicang Zhang. Carbonnovo: Joint design of protein structure and
sequence using a unified energy-based model. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=FSxTEvuFa7.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective Classification in Network Data. AI magazine, 29(3):93–93, 2008.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a
Flow-based Autoregressive Model for Molecular Graph Generation. In International Conference
on Learning Representations, 2019.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pages 412–422. Springer, 2018.

Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber,
Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al.
PSI4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of chemical
physics, 152(18), 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2020.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and
Wei-Ying Ma. Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule
Generation. Advances in Neural Information Processing Systems, 36, 2024.

12

https://openreview.net/forum?id=FSxTEvuFa7

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. Advances in neural information
processing systems, 12, 1999.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pages 9526–9536. PMLR, 2020.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
FATRAS, Guy Wolf, and Yoshua Bengio. Improving and Generalizing Flow-Based Generative
Models with Minibatch Optimal Transport. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Cédric Villani. Optimal Transport, volume 338 of. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], page 71, 2009.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In
Proceedings of the AAAI conference on artificial intelligence, 2018.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with RFdiffusion. Nature, 620(7976):1089–1100, 2023.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
arXiv preprint arXiv:2405.11416, 2024.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646, 2023.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In International conference on machine
learning, pages 5708–5717. PMLR, 2018.

Chengxi Zang and Fei Wang. MoFlow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 617–626, 2020.

Lingxiao Zhao, Xueying Ding, and Leman Akoglu. Pard: Permutation-invariant autoregressive
diffusion for graph generation. arXiv preprint arXiv:2402.03687, 2024.

Tian Zhu, Milong Ren, and Haicang Zhang. Antibody design using a score-based diffusion model
guided by evolutionary, physical and geometric constraints. In Forty-first International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=1YsQI04KaN.

Yiheng Zhu, Zhenqiu Ouyang, Ben Liao, Jialu Wu, Yixuan Wu, Chang-Yu Hsieh, Tingjun Hou, and
Jian Wu. Molhf: a hierarchical normalizing flow for molecular graph generation. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, pages 5002–5010,
2023.

13

https://openreview.net/forum?id=1YsQI04KaN

Appendix

A Background

A.1 Continuous Flow Matching Generative Model

The generative model aims to establish a mapping f : Rd → Rd that transforms a noise distribution
q0 into a target data distribution q1. This transformation is dependent on a density function p0
over Rd, and an integration map ψt, which induces a pushforward transformation pt = [ψt]#(p0).
This denotes the density of points x ∼ p0 transported from time 0 to time t along a vector field
u : [0, 1]× Rd → Rd.

The vector field u is formulated as:
dx = ut(x)dt.

The solution ψt(x) to this ODE, with the initial condition ψ0(x) = x, represents the trajectory of the
point x governed by u from time 0 to time t.

The evolution of the density pt, viewed as a function p : [0, 1] × Rd → R, is encapsulated by the
continuity equation:

∂p

∂t
= −∇ · (ptut),

with the initial condition given by p0. Here, u is the probability flow ODE for the path of marginal
probabilities p, generated over time.

In practical applications, if the probability path pt(x) and the generating vector field ut(x) are known
and pt(x) is tractably sampled, we leverage a time-dependent neural network vθ(·, ·) : [0, 1]×Rd →
Rd to approximate u. The neural network is trained using the flow matching objective:

LFM(θ) = Et∼U(0,1),x∼pt(x)∥vθ(t, x)− ut(x)∥
2, (11)

which enhances the model’s capability to simulate the target dynamics accurately. Avoiding the
explicit construction of the intractable vector field, recent works express the probability path as a
marginal over a joint involving a latent variable z: p(xt) =

∫
p(z)pt|z(xt|z). [Lipman et al., 2022,

Tong et al., 2023] and the pt|z(xt|z) is a conditional probability path, satisfying some boundary
conditions at t = 0 and t = 1.

The conditional probability path also satisfies the transport equation with the conditional vector field
ut(x|x1):

∂pt(x|xt)
∂t

= −∇ · (ut(x|x1)pt(xt|x1)). (12)

We can construct the marginal vector field ut(x) via the conditional probability path pt|1(xt|x1) as:

ut(x) = Ex1∼p1|t [ut(x|x1)]. (13)

We can replace the flow matching loss LFM with an equivalent loss regressing the conditional vector
field ut(x|x1) and marginalizing x1 instead:

LCFM(θ) = EU(t;0,1),x1∼q,xt∼pt(x|x1)[uθ(t, x)− ut(x|x1)].
∇θLFM(θ) = ∇θLCFM(θ).

So we can use LCFM(θ) instead to train the parametric vector field uθ.

B Proofs

B.1 Optimal Prior Distribution

This prior is structured as a product of a single distribution v for all nodes and a single distribution e
for all edges,

∏
i v ×

∏
i,j e, to ensure exchangeability across the graph components.

Theorem 2 (Optimal prior distribution). Consider the class C = {
∏

i u×
∏

i,j v, (u, v) ∈ P(V)×
P(E)} of distributions over graphs, which factorize as the product of a uniform distribution v over

14

node attribute space V and a uniform distribution e over edge attribute space E . Given any arbitrary
distribution P over graphs (viewed as a tensor of order n + n2), with qV and qE as its marginal
distributions for node and edge attributes respectively, then the orthogonal projection of P onto C is
defined as ϕG =

∏
i qV ×

∏
i,j qE . This projection minimizes the Euclidean distance:

ϕG ∈ arg min
(v,e)∈C

∥P −
∏

1≤i≤n

v ×
∏

1≤i,j≤n

e∥22.

The details and proof of Theorem 2 are extensively discussed in DiGress [Vignac et al., 2022].

B.2 Choice of conditional velocity field

In GGFlow, the conditional vector field for discrete flow matching is defined as [Campbell et al.,
2024]:

ut(G,G
t|G0, G1) =

ReLU(∂tpt|1(G|G1)− ∂tpt|1(Gt|G1))

Zt · pt|1(Gt|G1)

=
1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G,

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. ut(G,Gt|G0, G1) = 0 when

pt(G|G1, G0) = 0 and pt(Gt|G1, G0) = 0. When Gt = G, the rate matrix R(Gt, Gt|G0, G1) =
−
∑

Gt ̸=GR(G
t, G|G0, G1). For simplification, the graph G is denoted as variable x

Proof. Consider the conditional probability pt|1(xt|x1, x0) = pt(x
t|x1, x0) = Cat

(
tδ{x1, xt} +

(1− t)qx
)

, where qx is the prior distribution. We derive its time derivative:

∂tpt|1(x
t|x1, x0) = δ{x1, xt} − qx, (14)

We then construct the conditional rate matrix ut(xt, x|x1, x0) as:

ut(x
t, x|x1, x0) =

ReLU(∂tpt|1(x|x1, x0)− ∂tpt|1(xt|x1, x0))
Zt · pt|1(xt|x1, x0)

=
ReLU(δ{x, x1} − qx − δ{xt, x1}+ qx)

Zt(tδ{x1, xt}+ (1− t)qx)

=
ReLU(δ{x, x1} − δ{xt, x1})
Zt(tδ{x1, xt}+ (1− t)qx)

.

The expression simplifies under the assumption that xt ̸= x. The only non-zero values occur when
x = x1 and xt ̸= x1, thus yielding:

ut(x
t, x|x1) = 1

Zt(1− t)qx
δ{x, x1}(1− δ{xt, x1}), xt ̸= j (15)

where Zt = |{xt : pt|1(xt|x1, x0) > 0}|.

B.3 Proof of Proposition 1

Proof. The Kolmogorov forward equations for discrete flow matching are expressed as:

∂tpt = utpt, (16)

If we establish the permutation invariance of the prior distributions pref and the permutation equivari-
ance of conditional flow probabilities, then it follows that p(G1) is permutation exchangeable.

According to the Theorem 2, we deduce the permutation invariance of the prior distribution pref .
Given the conditional probabilities p(Gt+∆t|Gt) = Cat

(
δ{Gt, Gt+∆t} + ût(G

t, Gt+∆t)∆t
)

, it

15

suffices to demonstrate the permutation equivariance of the conditional probabilities. This requires
showing the permutation equivariance of the vector field ut. Consider the case for nodes:

πuVt (V
t
i , V

t+∆t
i) = π

(
Ep̂V

1|t(V
1
i |V t

i)[u
V
t (V

t
i , V

t+∆t
i |V 1

i , V
0
i)]

)
,

LHS = uVt (V
t
π−1(i), V

t+∆t
π−1(i)),

RHS =
(
Ep̂V

1|t(V
1
π−1(i)

|V t
π−1(i)

)[u
V
t (V

t
π−1(i), V

t+∆t
π−1(i)|V

1
π−1(i), V

0
π−1(i))]

)
,

= uVt (V
t
π−1(i), V

t+∆t
π−1(i)) = LHS.

where π is a permutation operator. This establishes the permutation equivariance of ut and the
exchangeability of the generated distribution.

B.4 Proof of Theorem 1

Proof. Building on the foundations established in Theorem 2 and Proposition 1, we confirm the
permutation invariance of both the target and source distributions. The Hamming distance is invariance
under random permutations π, as shown by:

H(G0, G1) =
∑
i

δ(v0i , v
1
i) +

1

2

∑
i,j

δ(e0ij , e
1
ij)

=
∑
i

δ(v0π−1(i), v
1
π−1(i)) +

1

2

∑
i,j

δ(e0π−1(i)π−1(j), e
1
π−1(i)π−1(j))

= H(πG0, πG1)

This property of the Hamming distance ensures the permutation invariance of the optimal transport
map ϕ∗.

C Details of GraphEvo

GraphEvo is a novel edge-augmented graph transformer model designed for graph data. To enhance
the generative capabilities of GGFlow, GraphEvo introduces a triangle update mechanism, which
significantly improves the exchange of edge information. We incorporate FiLM and PNA layers into
our architecture [Vignac et al., 2022]:

FiLM(X1, X2) = X1(Linear(X2) + 1) + Linear′(X2)

PNA(X) = Linear
(
Cat(max(X),min(X),mean(X), std(X))

)
.

The full architecture of GraphEvo is illustrated in Algorithm 3 and is permutation equivariant. The
time complexity of GraphEvo is O(N3).

GraphEvo integrates global structural features to improve generation performance, including both
graph-theoretic and domain-specific attributes:

Graph-theoretic features: These encompass node-level properties such as the number of k-cycles
(k ≤ 5) containing this point and an estimate of the largest connected component, alongside graph-
level metrics like the total number of k-cycles (k ≤ 6) and connected components.

Molecular features: These account for the current valency of each atom and the molecular weight of
the entire molecule.

C.1 Proof of Proposition 2

Proof. Let Gt = (V t, Et) is a intermediate graph, and πGt = (π∗V, π∗Eπ) is the permutation. To
prove the permutation properties of the graph, we need to consider two aspects: additional structural
features and the model architecture.

16

Algorithm 3 Architecture of GraphEvo

Require: G, t,Nlayer

1: V,E← G
2: y← ExtractFeature(G), t← TimeEmbedding(t)
3: y← y + t
4: X,E,y← Linear(V),Linear(E),Linear(y)
5: for t = 0, 1, . . . , Nlayer do
6: X′,E′,y′ ← SelfAttention(X,E,y)

7: X← ReLU
(
LayerNorm(X+Dropout(X′))

)
8: E← ReLU

(
LayerNorm(E+Dropout(E′))

)
9: y← ReLU

(
LayerNorm(y +Dropout(y′))

)
10: end for
11: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y← Linear(V),Linear(E),Linear(y)

12: return p̂V1|t(V
1|V t, V 0), p̂E1|t(E

1|Et, E0),y

First, the spectral and structural features are permutation equivariant for node-level features and
invariant for graph-level features. Additionally, the FiLM blocks and Linear layers are permutation
equivariant, while the PNA pooling function is permutation invariant. Layer normalization is also
permutation equivariant.

As GraphEvo is built using permutation equivariant components, we conclude that the overall model
is permutation equivariant.

D Toy example of goal-guided graph generation

We demonstrate the utility of our goal-guided framework of flow matching with a toy example,
depicted in Figure S1: (a) shows a trained unconditional flow matching model mapping noise
distribution p0 to data distribution p1. (b, c) illustrate the effect of temperature T on the exploration,
with higher temperatures resulting in broader data point distribution. (d) shows how fine-tuning
according to Equation 10 concentrates data in regions with higher rewards. (e-f) illustrate the
corresponding flow matching trajectories.

E Implement Details

E.1 Algorithms of GGFlow

Details of the training procedure and guided training procedure are provided in Algorithm 4 and 5.

E.2 Baselines Implementation

To benchmark the performance of GGFlow, we ensure consistency by using identical splits of training
and test sets across all datasets. Below, we provide the implementation details for each baseline
model. To guarantee a fair comparison, most baseline models are retrained three times, and the
average results from these runs are reported as the final outcomes in unconditional generation tasks.
The results of the DeepGMG, GraphRNN and GNF for Ego-small and Community-small dataset are
taken from their original papers.

GraphAF [Shi et al., 2019] We follow the implementation guidelines provided in the TorchDrug
tutorials (https://torchdrug.ai/docs/tutorials/generation.html).

GraphDF [Shi et al., 2019] Model scripts are sourced from the DiG repository (https://github.
com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF).

17

https://torchdrug.ai/docs/tutorials/generation.html
https://github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF
https://github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF

（a） （b） （c） （d）

（e） （f） （g） （h）

Figure S1: (a-d) Data distribution of the flow matching model, π0 is the original distribution (orange),
π1 is the target data distribution (blue), and the red dots are the data distribution generated by the
model. (e-h) In reinforcement learning, the flow matching model conducts exploration/sampling
trajectories

Algorithm 4 Training Procedure of GGFlow

Require: G = (V,E), qV , qE ,
1: for n ∈ {0, . . . , Niter − 1} do
2: t ∈ U(0, 1), G1 = G
3: G0 = (V 0, E0) ∼ pref
4: (G0, G1) ∼ OptimalTransport(G0, G1)
5: // Sample from conditional probability flow.
6: V t = (tδ{V 1, ·}+ (1− t)V 0) and Et = (tδ{E1, ·}+ (1− t)E0)
7: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvoθn(V

t, Et, t, f t)

8: L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)]

9: θn+1 = optimizer_update(θn,L)
10: end for
11: θ∗ = θNiter

12: return θ∗

GraphVAE [Shi et al., 2019] Scripts are obtained from the GraphVAE section of
the GraphRNN repository (https://github.com/JiaxuanYou/graph-generation/tree/
master/baselines/graphvae).

MoFlow [Zang and Wang, 2020] Implementation scripts are taken from the MoFlow repository
(https://github.com/calvin-zcx/moflow).

GraphEBM [Liu et al., 2021] We use the implementation available in the GraphEBM repository
(https://github.com/biomed-AI/GraphEBM).

EDP-GNN [Niu et al., 2020] The model is implemented according to the scripts in the EDP-GNN
repository (https://github.com/ermongroup/GraphScoreMatching).

GDSS [Jo et al., 2022b] Implementation details are sourced from the GDSS repository (https:
//github.com/harryjo97/GDSS).

GSDM [Luo et al., 2023] Scripts are implemented from the GSDM repository (https://github.
com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion).

PS-VAE [Kong et al., 2022] Implementation details are sourced from the PS-VAE repository
(https://github.com/THUNLP-MT/PS-VAE).

18

https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae
https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae
https://github.com/calvin-zcx/moflow
https://github.com/biomed-AI/GraphEBM
https://github.com/ermongroup/GraphScoreMatching
https://github.com/harryjo97/GDSS
https://github.com/harryjo97/GDSS
https://github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion
https://github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion
https://github.com/THUNLP-MT/PS-VAE

Algorithm 5 Training Procedure of Guided GGFlow by Reinforcement Learning

Require: θ0, θ, α, β, T , Nsteps, traj, G0 ∼ pref , ut(Gt, G|G1, G0), T , Ntrain

1: θ ← θ0
2: for i ∈ {1, . . . , Ntrain} do
3: ∆t = 1/Nsteps

4: Collect flow trajectory
(
G0, t = 0,R(G0)

)
.

5: for n ∈ {0, . . . , Nsteps − 1} do
6: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvo(V t, Et, t)

7: Get Gt+∆t by sampling from Equation 9.
8: (V t+∆t, Et+∆t) = Gt+∆t

9: t = t+∆t
10: Compute the reward functionR(Gt+∆t).
11: Collect flow trajectory

(
Gt+∆t, t+∆t,R(Gt+∆t)

)
.

12: end for
13: Update network using Equation 10.
14: t = 0
15: end for
16: return Guided flow matching model θ∗

MolHF [Zhu et al., 2023] The model is implemented according to the scripts in the MolHF
repository (https://github.com/violet-sto/MolHF).

GRASP [Minello et al., 2024] Implementation details are sourced from the GRASP repository
(https://github.com/lcosmo/GRASP).

SwinGNN [Yan et al., 2023] Implementation details are sourced from the SwinGNN repository
(https://github.com/DSL-Lab/SwinGNN). The authors employ the ’gaussian_tv’ MMD kernel,
whereas other methods use ’gaussian_emd’ or ’gaussian’. To ensure a fair comparison, we adopt the
same kernel.

GruM [Jo et al., 2024] Scripts are implemented from the GruM repository (https://github.
com/harryjo97/GruM/).

DiGress [Vignac et al., 2022] The implementation is based on the DiGress repository (https:
//github.com/cvignac/DiGress).

E.3 Details of Molecule Datasets

E.3.1 Dataset

QM9 It is a subset of the GDB-17 database and consists of 134,000 stable organic molecules, each
containing up to 9 heavy atoms: carbon, oxygen, nitrogen, and fluorine [Ramakrishnan et al., 2014].
The dataset includes 12 tasks related to quantum properties. We follow the train/test split from GDSS,
using 12,000 molecules for training and the remaining 1,000 for testing.

ZINC250k It contains 250,000 drug-like molecules with a maximum of 38 atoms per molecule
[Irwin et al., 2012]. It includes 9 atom types and 3 edge types. For a fair comparison, we use the
same train/test split as previous works, such as GDSS and GSDM.

Table S1: Statistics of the molecular graph datasets
Dataset type Number of graphs Number of nodes Number of node types Number of edge types

QM9 Real 133,885 [1, 9] 4 3
ZINC250k Real 249,455 [6, 38] 9 3

19

https://github.com/violet-sto/MolHF
https://github.com/lcosmo/GRASP
https://github.com/DSL-Lab/SwinGNN
https://github.com/harryjo97/GruM/
https://github.com/harryjo97/GruM/
https://github.com/cvignac/DiGress
https://github.com/cvignac/DiGress

E.4 Details of Generic Datasets

E.4.1 Dataset

Ego-small This dataset consists of 200 small one-hop ego graphs derived from the Citeseer network
[Sen et al., 2008]. Each graph contains between 4 and 18 nodes.

Community-small This dataset includes 100 random community graphs, each formed by two
communities of equal size generated using the E-R model [Erdős et al., 1960] with a probability
parameter of p = 0.7. The graphs range in size from 12 to 20 nodes.

Grid The dataset consists of 100 standard 2D grid graphs with 100 ≤ |V | ≤ 400.

Table S2: Statistics of the generic graph datasets
Dataset type Number of graphs Number of nodes

Ego-small Real 200 [4, 18]
Community-small Synthetic 100 [12, 20]
Grid Synthetic 100 [100,400]

E.4.2 Metrics

Validity We permit atoms to exhibit formal charges during valency checks because of the presence
of formal charges in the training molecules. It is the fraction of valid molecules after valency
correction or edge resampling.

Validity w/o correction This metric explicitly evaluates the quality of molecule generation before
any correction phase, providing a baseline for raw generation performance.

FCD FCD quantifies the functional connectivity density within a molecule by computing distances
and connectivity between atoms, based on both structural and chemical features. It describes the
three-dimensional structure, topological features, and chemical properties of molecules, making it
valuable in fields such as drug design, compound screening, and molecular simulations.

NSPDK NSPDK assesses molecular similarity by comparing shortest paths within their graphical
structures. It captures connectivity patterns and chemical environments, effectively describing
relationships and similarities between molecules. For two distributions p and q, the MMD using
NSPDK is calculated as:

MMD2
NSPDK(p, q) =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

kNSPDK(Xi,Xj) +
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

kNSPDK(Yi,Yj) (17)

− 2

mn

n∑
i=1

m∑
j=1

kNSPDK(Xi,Yj) (18)

Here, kNSPDK(·) denotes the NSPDK kernel function. X is the set of molecules from distribution p.
Y is the set of molecules from distribution q. n and m represent the number of samples drawn from
distributions p and q, respectively. This formula quantifies the difference between the distributions p
and q using the NSPDK kernel.

For generic graph datasets, we employ Maximum Mean Discrepancy (MMD) to assess the distri-
butions of graph statistics, specifically degree distribution, clustering coefficient, the number of
occurrences of 4-node orbits, and eigenvalues of the normalized graph Laplacian. In alignment
with prior research [Jo et al., 2022b], we utilize specialized kernels for MMD calculations: the
Gaussian Earth Mover’s Distance (EMD) kernel for degree distribution and clustering coefficient,
the Gaussian Total Variation (TV) kernel for eigenvalues of the normalized graph Laplacian, and a
standard Gaussian kernel for the 4-node orbits. To ensure a fair comparison, the size of the prediction
set matches that of the test set.

20

E.5 Details of Conditional Generation

We included three guidance baselines in our conditional generation task:

DiGress model with guidance Utilizing the guidance method integrated into the DiGress model
[Vignac et al., 2022].

Direct supervised training (ST) It involved selecting training samples from the dataset that
satisfied |µ− µ∗| < 1.0 and retraining them using supervised learning settings identical to those in
Section 4.1.

Supervised fine-tuning (SFT) This method involved fine-tuning a pre-trained GGFlow model on
molecules generated with |µ− µ∗| < 1.0, maintaining the same training settings as in Section 4.1.

These models were trained over 10,000 steps using the training settings detailed in Section 4.1. We
then generated 1,000 samples to calculate the results for each guidance method and the unconditional
method, with the values of µ estimated using Psi4 [Smith et al., 2020]. We set the hyperparameters α
and β as 0.999 and 0.001.

F Visualization

21

Community	Small

Grid

QM9

ZINC250k

Figure S2: Visualization of generated samples of our model in different datasets

22

	Introduction
	Related Work
	Flow Matching and Diffusion Models
	Molecular Graph Generative Models

	Methods
	Discrete Flow Matching for Molecular Graph Generation
	Optimal transport for graph flow matching
	GraphEvo: Edge-augmented Graph Transformer
	Permutation Property Analysis
	Goal-Guided Framework For Conditional Molecule Generation

	Experiment
	Moleuclar Graph Generation
	Generic Graph Generation
	Conditional Molecule Generation

	Conclusion
	Background
	Continuous Flow Matching Generative Model

	Proofs
	Optimal Prior Distribution
	Choice of conditional velocity field
	Proof of Proposition 1
	Proof of Theorem 1

	Details of GraphEvo
	Proof of Proposition 2

	Toy example of goal-guided graph generation
	Implement Details
	Algorithms of GGFlow
	Baselines Implementation
	Details of Molecule Datasets
	Dataset

	Details of Generic Datasets
	Dataset
	Metrics

	Details of Conditional Generation

	Visualization

