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Abstract

This paper provides a comprehensive comparative analysis of representa-
tive molecular dynamics force fields—CHARMM, AMBER, OPLS, ANI,
AMOEBA, ReaxFF, and PCFF—focusing on their structural character-
istics, evaluation criteria, and applications in chemistry. We discuss the
strengths and weaknesses of each force field in terms of accuracy, transfer-
ability, computational efficiency, and application areas, and present prac-
tical guidelines to help researchers select the most suitable force field for
their simulation objectives [1].

Terminology Definition

In this review, we use the term force field to refer to the complete set of mathematical
functions, parameters, and rules that define the potential energy of a molecular system
in molecular dynamics (MD) simulations. A force field typically includes all bonded and
nonbonded interaction terms, parameter sets, and functional forms required to compute en-
ergies and forces for a given class of molecules. The term potential function (or potential
energy function) refers specifically to the mathematical expressions within a force field that
describe individual energy contributions, such as bond stretching, angle bending, torsion,
van der Waals, and electrostatic interactions. In this context, ’force field’ is the overarching
framework, while ’potential function’ denotes the specific energy terms used within that
framework. Throughout this paper, we use ’force field’ as the primary term for the over-
all methodology, and reserve ’potential function’ for discussion of specific energy terms or
mathematical forms [2].

1 Force Fields

1.1 CHARMM Force Field Potential Energy

The potential energy function of the CHARMM force field is [3]:
ECHARMM =

∑
bonds kb(b − b0)2 +

∑
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In this equation, kb, kθ, kU , kϕ, and

kω represent the force constants for bonds, angles, Urey-Bradley 1,3 interactions, dihedrals,
and improper torsions, respectively. The variables b and b0 denote the bond length and
its equilibrium value, while θ and θ0 correspond to the bond angle and its equilibrium
value. The Urey-Bradley term uses S and S0 to describe the distance between 1,3 atoms
and its equilibrium value. For dihedral angles, n is the periodicity and δ is the phase. The
improper torsion angle and its equilibrium value are given by ω and ω0. The Lennard-Jones
parameters for each atom pair i, j are ϵij and Rmin,ij , and the electrostatic interactions are



determined by the atomic charges qi, qj , the interatomic distance rij , and the dielectric
constant ϵ. The inclusion of the Urey-Bradley term enhances the modeling of ring systems
and vibrational spectra, while the NBFIX correction is applied to specific ion pairs, such
as Lys+–Cl− and Arg+–Asp−, to improve the accuracy of protein-ligand and membrane
system simulations by correcting overestimated interactions.

1.2 AMBER Force Field Potential Energy

The potential energy function of the AMBER force field is [4]: EAMBER =∑
bonds kb(b − b0)2 +

∑
angles kθ(θ − θ0)2 +

∑
dihedrals
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Here, kb and kθ are the force constants for

bonds and angles, Vn is the barrier height for the dihedral term, n is the periodicity, and γ
is the phase. ϵij and Rmin,ij are the Lennard-Jones parameters, while qi and qj are atomic
charges, rij is the interatomic distance, and ϵ is the dielectric constant. AMBER scales 1-4
electrostatic and Lennard-Jones terms (by 0.8333 and 0.5, respectively) for atoms separated
by three bonds. RESP charges are derived from HF/6-31G* calculations to reproduce
molecular electrostatic potentials. Here, bonds and angles are described by harmonic
terms, torsions by periodic cosine functions, and nonbonded terms by Lennard-Jones 12-6
potentials and Coulomb terms. The core of AMBER is its sophisticated reparameterization
strategy for the torsion term. The ϕ/ψ backbone dihedrals and side-chain χ angles are
iteratively refined based on QM calculations and NMR experimental data, reproducing
the relative stability of α-helices and β-sheets in a balanced manner. Another structural
feature is the special treatment of 1–4 interactions. AMBER scales the electrostatic term
by about 0.8333 and the Lennard-Jones term by half, adjusting repulsion and attraction,
which is crucial for the formation and maintenance of protein secondary structures.
Charge modeling uses RESP charges obtained from HF/6-31G* level electronic structure
calculations, which maintains an additive point charge model while realistically reproducing
structures and dynamics in protein and nucleic acid environments. The evolution of the
AMBER series also demonstrates its originality. Starting from ff94 and ff99, updates
such as ff99SB (recalibrated backbone parameters), ff99SB-ILDN (refined side-chain χ1),
ff14SB (revised backbone and side-chain parameters), and ff19SB (residue-specific backbone
parameters) have dramatically improved the balance of protein secondary structures and
the stability of long MD trajectories.

1.3 OPLS Force Field Potential Energy

The potential energy function of the OPLS force field is [5]: EOP LS =
∑
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angles kθ(θ − θ0)2
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In this equation, kr and kθ denote the force constants

for bonds and angles, respectively. The terms V1 through V4 are Fourier coefficients that
define the dihedral angle contributions. The parameters ϵij and σij represent the Lennard-
Jones well depth and collision diameter for each atom pair, respectively. The variables qi

and qj are the atomic charges, rij is the interatomic distance, and ϵ is the dielectric constant.
OPLS scales 1-4 nonbonded terms by 0.5. Charges are derived from QM-based methods
(e.g., CM1A, CM5) and may be locally corrected (LBCC). +
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Where: Here, kb and kθ are the force

constants for bonds and angles, Vn is the barrier height for the dihedral term, n is the
periodicity, and γ is the phase. ϵij and Rmin,ij are the Lennard-Jones parameters, while qi

and qj are atomic charges, rij is the interatomic distance, and ϵ is the dielectric constant.
AMBER scales 1-4 electrostatic and Lennard-Jones terms (by 0.8333 and 0.5, respectively)
for atoms separated by three bonds. RESP charges are derived from HF/6-31G* calculations
to reproduce molecular electrostatic potentials.
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A distinctive feature of OPLS is the rule of scaling both electrostatic and Lennard-Jones 1–4
intramolecular nonbonded terms by 0.5. OPLS defines charges by scaling QM-based charges
such as CM1A and CM5 (e.g., 1.14CM1A, 1.20CM5) or applying Local Bond Charge Correc-
tion (LBCC) for specific bond types. This approach provides more consistent accuracy for
condensed-phase free energies and liquid properties, and is implemented in automated tools
like LigParGen. The reparameterization of torsion terms is a key axis of OPLS development.
OPLS-AA/M (2019) performed high-level QM scans (ωB97X-D/6-311++G(d,p)) for the α
and γ dihedrals of the RNA backbone, and adjusted parameters using experimental NMR
3J coupling data as benchmarks, along with sugar puckering and glycosidic torsion terms.
This improved the unphysical conformer sampling issues seen in previous OPLS-AA and
enhanced the stability of the A-form helix structure in RNA.

1.4 ANI force field Potential Energy

ANI (Accurate Neural Network Potentials for Organic Molecules) is a representative example
of a machine learning-based force field (MLFF), bridging the gap between classical force fields
and quantum mechanical methods for organic and small molecules [6].

The total energy in ANI is: EANI =
∑N

i=1 Ei(Gi) where Ei is the atomic energy predicted
by a neural network from the atomic environment vector (AEV) Gi for atom i. The AEV
encodes the local chemical environment (neighbor types, distances, angles). ANI uses a
multilayer perceptron (MLP) to predict Ei from Gi, summing over all atoms to obtain the
total energy. This approach enables large-scale MD simulations and free energy exploration
with DFT-level accuracy for molecules up to 50 atoms, especially for C, H, O, N, S, and
halogens.

1.5 AMOEBA force field Potential Energy

The AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications)
force field is a polarizable force field that extends atom-centered charges to multipoles—
monopole (q), dipole (µ), and quadrupole (Θ)—and includes explicit induced dipoles solved
self-consistently [7].
The total potential energy of AMOEBA is: EAMOEBA = Ebond + Eangle + Edihedral +
EvdW + Eelec,perm + Epol Where: The terms Ebond, Eangle, and Edihedral repre-
sent the standard bonded interactions in the AMOEBA force field. The van der
Waals energy, EvdW , is modeled using Halgren’s buffered 14-7 function: EvdW =

ϵij

[
(1 + δ) R0

ij

Rij+δR0
ij

]7 [
(1 + γ) R0

ij

Rij+γR0
ij

]7
In this expression, δ and γ are buffering constants,

R0
ij is the equilibrium distance, and ϵij is the well depth. The term Eelec,perm denotes the

permanent electrostatic interaction between atomic multipoles, while Epol accounts for the
polarization energy arising from induced dipoles. The induced dipole moment µi for atom
i is calculated as µi = αi

(
Eext

i +
∑

j ̸=i Tijµj

)
, where αi is the atomic polarizability and

Tij is the dipole interaction tensor. AMOEBA+ further introduces charge penetration cor-
rections to improve the accuracy of short-range electrostatics. Long-range interactions are
treated using multipole Particle Mesh Ewald (PME) or Ewald summation methods.

1.6 ReaxFF force field Potential Energy

ReaxFF (Reactive Force Field) is designed for reactive systems, allowing bond formation
and breaking. The total energy is [8]: EReaxF F = Ebond +Eover/under +Eangle +Etorsion +
EvdW + ECoulomb + Epenalty In this expression, Ebond, Eangle, and Etorsion represent the
standard bonded interactions, each weighted by the bond order. The term Eover/under

provides corrections for over- or under-coordination of atoms. The van der Waals inter-
actions are described by EvdW , which uses a shielded potential, while ECoulomb accounts
for shielded Coulomb interactions with atomic charges determined by charge equilibration
(QEq) or ACKS2 models. The Epenalty term includes additional penalties to prevent unphys-
ical configurations. In ReaxFF, bond order is decomposed into σ, π, and ππ components,
each decaying exponentially with interatomic distance. The QEq method solves for atomic
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charges by electronegativity equalization, while ACKS2 provides improved polarization and
field response. Importantly, all energy terms vanish as the bond order approaches zero,
which enables dynamic changes in molecular topology during simulations.

1.7 PCFF Potential Energy

Polymer Consistent Force Field (PCFF) is designed for polymers and amorphous materials,
expanded from CFF91. The total potential energy is [9]: EP CF F =

∑
bonds(k2(r − r0)2 +

k3(r− r0)3 +k4(r− r0)4) +
∑

angles(k2(θ− θ0)2 +k3(θ− θ0)3 +k4(θ− θ0)4) Where k2, k3, k4
are force constants for quadratic, cubic, and quartic terms, respectively. This polynomial
expansion allows for large deformations and nonlinear flexibility.

The torsion term is a Fourier series: Etorsion =
∑4

n=1 Vn[1 + cos(nϕ − γn)] where Vn are
Fourier coefficients and γn are phase angles.
PCFF also includes cross terms (bond–angle, angle–torsion) for correlated deforma-
tions. Nonbonded terms use the Lennard-Jones 9–6 potential: Enonbonded =∑

i<j
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where σij is the collision diameter (distance at

which the potential is zero), ϵij is the well depth. This form is suitable for volumetric and
thermal properties of polymers.
Long-range electrostatic interactions are handled by Ewald summation. Although polariza-
tion effects are not explicitly included, macroscopic properties such as the bulk properties of
amorphous polymers and glasses can be reproduced relatively stably. These features lead to
several advantages: first, the polynomial-based internal coordinate terms provide numerical
stability even for large structural deformations or long simulations; second, the introduc-
tion of cross terms allows for more precise modeling of deformation behaviors related to
polymer flexibility; third, the use of Lennard-Jones 9–6 potentials is suitable for reproduc-
ing volumetric properties, thermal expansion coefficients, and compressibility of liquids and
polymers.

2 Evaluation Criteria

Clear evaluation criteria are necessary to compare force fields in a balanced way. These
criteria go beyond simple accuracy assessment and provide a framework for determining
practical applicability and scientific validity, serving as the basis for analyzing the strengths
and weaknesses of each force field [10].

2.1 Transferability

Transferability is an indicator of whether a force field (FF) can maintain consistent predictive
performance in new environments beyond the chemical space for which it was parameterized.
The degree of transferability is a key factor determining the generality and practical appli-
cability of a force field, and is typically evaluated by three criteria. First, the coverage of
parameter space reflects how many types of atoms, bonding patterns, functional groups, and
charge states are included. Second, predictive reliability in out-of-distribution (OOD) envi-
ronments shows whether the FF can produce stable results under conditions different from
the training data. Third, agreement with experimental properties and high-level quantum
mechanical (QM) calculations—such as free energy, density, and torsional barriers—serves
as a direct means of verifying transferability. These criteria are essential for defining the
practical scope of a model, beyond mere accuracy.

2.2 Long-Range Interactions

Long-range interactions are factors that determine the structural and thermodynamic accu-
racy of MD simulations, playing a decisive role especially in polar environments or interfa-
cial phenomena. Evaluation is mainly performed in three dimensions. First, the method of
handling interactions, including electrostatic and polarization terms, is key—whether fixed
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charges, induced dipoles, or multipole expansions are used. Second, the use of techniques
such as Ewald summation, Particle Mesh Ewald (PME), and Thole damping is examined to
see if long-range terms are physically implemented. Third, the reproducibility of macroscopic
properties such as dielectric constant, liquid density, and interfacial energy quantitatively
demonstrates the accuracy of long-range modeling. Precise treatment of long-range inter-
actions is critical for the reliability of FFs in practical applications such as ion solvation,
protein–ligand binding, and electrode–electrolyte interface reactions.

2.3 Numerical Stability

Numerical stability is a criterion for evaluating the computational robustness of a force field,
directly related to the ability to perform long simulations and maintain physical consistency.
The first indicator is energy drift, which checks how well the total energy is maintained in
the NVE ensemble. The second is the maintenance of long-term trajectories, with RMSD,
structural integrity, and the persistence of local interaction networks as key metrics. The
third is the convergence of iterative numerical processes, including stable convergence of
induced dipoles or charge equilibration, and the possibility of unphysical phenomena (e.g.,
charge runaway). Numerical stability is not just a matter of algorithmic performance, but a
decisive criterion for determining whether the predicted dynamics are physically valid.

2.4 Interpretability and Uncertainty Quantification

Interpretability refers to how directly the parameters of a force field are connected to phys-
ical and chemical concepts, serving as a criterion for evaluating model transparency and
the ability to analyze failure causes. The clearer the physical meaning of the parameters,
the easier it is to trace the operating principles and limitations of the model. Uncertainty
quantification (UQ) is the process of numerically expressing the reliability of FF predictions,
with representative techniques including Bayesian inference, ensemble modeling, and active
learning. These techniques help detect instability in OOD environments and provide predic-
tive confidence. Thus, interpretability and UQ are essential evaluation axes that go beyond
simple performance metrics, enabling researchers to use results based on scientific evidence.

3 Application

Recently, molecular dynamics (MD) simulation has become a core tool in computational
chemistry applications, with explosive use in three fields in particular: battery materials,
drug development, and catalysis research [11]. According to Web of Science analysis, since
2020, MD-based research in these three fields accounts for more than 35

3.1 Battery Research

In battery research, MD simulation is essential for understanding the structure of electrode–
electrolyte interfaces, electrolyte stability, and ion conduction mechanisms. ReaxFF and
PCFF are each well-suited for battery applications due to their unique strengths [12].
ReaxFF is currently the most widely used reactive force field in battery research. Several
reviews emphasize that ReaxFF can directly model chemical reactions at the electrode–
electrolyte interface, electrolyte decomposition, and solid electrolyte interphase (SEI/CEI)
formation at the atomic level [21]. For example, ReaxFF is essential in studies tracking
dendrite growth on lithium metal anodes or analyzing polysulfide conversion reactions in
sulfur cathodes. The core of ReaxFF is its definition of bond order as a continuous function
of interatomic distance, dynamically handling bond formation and breaking, and naturally
reflecting charge transfer during reactions through charge equilibration models such as QEq
and ACKS2. Thanks to this structure, ReaxFF exhibits high transferability and provides
stable predictions for new electrolyte compositions or electrode materials. Its computa-
tional efficiency—hundreds to thousands of times faster than AIMD—enables simulations
of tens of nanoseconds, making it widely used for evaluating interface stability and elec-
trolyte additive effects [18]. Recently, parameter optimization based on active learning and
uncertainty quantification techniques have further enhanced the reliability and interpretabil-
ity of battery research using ReaxFF. In contrast, while PCFF cannot model reactivity, it
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is frequently mentioned for its ability to reliably predict the structural and thermodynamic
properties of polymer and organic electrolytes. PCFF uses a comprehensive potential func-
tion that includes cross-terms, not just simple harmonic terms, allowing precise modeling
of bonds, angles, torsions, and van der Waals interactions, resulting in excellent structural
stability and numerical robustness. For example, reports show that the density and vis-
cosity of glyme-based electrolytes calculated with PCFF match experimental values well,
indicating high transferability [12]. PCFF also effectively handles long-range interactions,
making it suitable for reproducing the macroscopic properties of polymer electrolytes, elec-
trode binders, and composites. Such cases support PCFF as a reliable general-purpose force
field for electrolyte composition design and electrode stabilization studies [12,13].

3.2 Drug Development

In drug development, MD simulation is a key tool for predicting the binding modes, stabil-
ity, solubility, and interactions of candidate molecules with target proteins. The choice
of force field directly affects the reliability and transferability of computational results,
with CHARMM, AMBER, and AMOEBA being the most widely adopted systems [13].
CHARMM was developed from the outset with a focus on proteins and nucleic acids,
and was later expanded to include lipids and small molecules. This versatility makes it
strong for modeling drug target environments such as protein–ligand complexes and protein–
membrane protein interactions. For example, GPCRs are clinically important drug targets,
and CHARMM is widely used for analyzing drug binding modes by accurately reproduc-
ing membrane lipid environments ?. The inclusion of correction terms such as NBFIX
also improves the accuracy of binding affinity calculations by mitigating the overestima-
tion of charged ligand–protein interactions. AMBER is advantageous for capturing subtle
structural changes in drug–target interactions, as it has been precisely refined for protein
backbone and side-chain dihedral angles based on QM data and NMR experiments [7,15].
For example, in studies of target proteins sensitive to active site structural changes, such
as kinase inhibitors, the latest AMBER series (ff14SB, ff19SB) provides stable and reliable
results for free energy calculations and drug ranking evaluations [15]. Ligand parameters us-
ing the RESP charge model also show high compatibility in real protein environments and
are standard in virtual screening and optimization stages [7,15]. AMOEBA goes beyond
the limitations of traditional fixed-charge force fields by explicitly incorporating multipole
and induced polarization effects [10,16,17]. In drug research, where polar ligands, metal
ions, or hydrogen bond networks are important, AMOEBA provides improved accuracy
over conventional FFs. In fact, AMOEBA-based simulations have shown meaningful results
in protein–ligand binding free energy calculations and studies of ion transport protein mech-
anisms [16,17]. Its ability to accurately reproduce solvation free energies and interfacial
properties of water and ions also makes it effective for predicting drug delivery pathways
and in vivo behavior [10,16].

3.3 Catalysis Research

In catalysis research, the key is to model complex reaction pathways and the behavior of
active sites at the atomic level, and ANI, AMOEBA, and ReaxFF are used based on their
respective strengths [14]. ANI, as a machine learning-based force field, has high transferabil-
ity and is suitable for exploring new catalyst candidates. For example, studies predicting
ligand exchange reaction pathways in single-atom metal catalysts have reported that ANI
maintains DFT-level accuracy while greatly improving computational efficiency [18]. These
results show that ANI can be a useful tool in catalyst screening. AMOEBA is particu-
larly effective in biocatalyst systems where charge distribution and long-range interactions
are important, as it explicitly considers multipoles and induced polarization. In studies of
metalloenzyme catalysts, AMOEBA has been shown to accurately model the electrostatic
interactions between active site metal ions and substrates, helping to explain transition state
stabilization mechanisms [16,17]. ReaxFF is widely used in reactive catalyst research because
it can dynamically handle bond formation and breaking. Studies have reported direct mod-
eling of oxidation–reduction reactions on metal oxide surfaces, hydrocarbon cracking, and
coking phenomena on catalyst surfaces at the atomic level [19,18]. Its efficiency—hundreds
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of times greater than AIMD—makes it suitable for reproducing complex multi-step catalytic
reactions on long time scales.

4 Conclusion

In this review, we summarized the structural characteristics and strengths and weak-
nesses of representative molecular dynamics force fields—CHARMM, AMBER, OPLS, ANI,
AMOEBA, ReaxFF, and PCFF—and considered their applicability in major application ar-
eas such as batteries, drug development, and catalysis research. Traditional force fields
excel at stable modeling of biomolecules and organic molecules, polarizable force fields of-
fer precision in long-range interactions, and reactive force fields have unique advantages in
reflecting bond formation and breaking. Machine learning-based force fields also present
new possibilities in terms of transferability and computational efficiency, and their future
applications are highly anticipated. The future development of force fields will be directed
toward achieving a balance between accuracy, transferability, and computational efficiency,
which is expected to make a key contribution to solving various scientific and engineering
problems such as battery material innovation, acceleration of drug development, and next-
generation catalyst design.The summarized chart can be seen at the end of this paper.
tabularx
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Table 1: Comparison of Representative Molecular Dynamics Force Fields

Force Field Potential
Function

Strengths Weaknesses TransferabilityLong-
Range
Interac-
tion

CHARMM Harmonic
bonds/ an-
gles, Urey-
Bradley,
cosine di-
hedrals,
Lennard-
Jones 12-6,
Coulomb

Versatile,
well-
validated
for pro-
teins/ nu-
cleic acids

Parameterization
complex,
limited reac-
tivity

High
(biomolecules,
membranes)

Ewald sum,
NBFIX cor-
rections

AMBER Harmonic
bonds/ an-
gles, cosine
dihedrals,
Lennard-
Jones 12-6,
Coulomb

Accurate for
proteins/nu-
cleic acids,
refined tor-
sions

Limited to
biomolecules,
fixed
charges

High (pro-
teins, DNA/
RNA)

Ewald sum,
1-4 scaling

OPLS Harmonic
bonds/ an-
gles, Fourier
dihedrals,
Lennard-
Jones 12-6,
Coulomb

Good for or-
ganics, liq-
uids, drugs

Limited
polariza-
tion, fixed
charges

High (organ-
ics, drugs)

Ewald sum,
1-4 scaling

ANI Neural net-
work atomic
energy sum

DFT-level
accuracy,
fast, trans-
ferable

Limited ele-
ments, not
reactive

High (for
covered
elements)

No explicit
long-range,
can com-
bine

AMOEBA Harmonic
bonds/
angles,
multipole
electrostat-
ics, induced
dipoles,
buffered
14-7 vdW

Explicit po-
larization,
accurate for
water/ions

Expensive,
parame-
terization
difficult

High
(biomolecules,
ions)

Multipole
PME/
Ewald

ReaxFF Bond order-
dependent,
shielded
Coulomb/
vdW, dy-
namic
topology

Reactive,
bond break-
ing/ forma-
tion, many
elements

Complex
parame-
terization,
less inter-
pretable

High (many
elements/re-
actions)

Shielded
Coulomb,
QEq/
ACKS2

PCFF Polynomial
bonds/ an-
gles, Fourier
dihedrals,
Lennard-
Jones 9-6,
Coulomb,
cross terms

Good for
polymers,
stable for
large defor-
mations

Not reac-
tive, no
explicit
polarization

Moderate
(polymers,
organics)

Ewald sum,
no polariza-
tion
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