
Published in Transactions on Machine Learning Research (06/2023)

Learning to Incentivize Improvements from Strategic Agents

Yatong Chen ychen592@ucsc.edu
Computer Science and Engineering
University of California, Santa Cruz

Jialu Wang faldict@ucsc.edu
Computer Science and Engineering
University of California, Santa Cruz

Yang Liu yangliu@ucsc.edu
Computer Science and Engineering
University of California, Santa Cruz

Reviewed on OpenReview: https://openreview.net/forum?id=W98AEKQ38Y

Abstract

Machine learning systems are often used in settings where individuals adapt their features
to obtain a desired outcome. In such settings, strategic behavior leads to a sharp loss in
model performance in deployment. In this work, we aim to address this problem by learning
classifiers that encourage decision subjects to change their features in a way that leads to
improvement in both predicted and true outcome. We frame the dynamics of prediction and
adaptation as a two-stage game, and characterize optimal strategies for the model designer
and its decision subjects. In benchmarks on simulated and real-world datasets, we find
that classifiers trained using our method maintain the accuracy of existing approaches while
inducing higher levels of improvement and less manipulation.

1 Introduction

Individuals subject to a classifier’s predictions may act strategically to influence their predictions. Such
behavior, often referred to as strategic manipulation (Hardt et al., 2016a), may lead to sharp deterioration in
classification performance. However, not all strategic behavior is detrimental: in many applications, model
designers stand to benefit from strategic adaptation if they deploy a classifier that incentivizes decision
subjects to perform adaptations that improve their true outcome (Haghtalab et al., 2020; Shavit et al., 2020).
For example:

• Lending: In lending, a classifier predicts a loan applicant’s ability to repay their loan. If the classifier is
designed so as to incentivize the applicants to improve their income, it will also improve the likelihood of
repayment.

• Content Moderation: In online shopping, a recommender system suggests products to customers based
on their relevance. Ideally, the algorithm should incentivize the product sellers to publish accurate product
descriptions by aligning this with improved recommendation rankings.

• Course design: an instructor designs schoolwork to incentivize students to invest their efforts on studying
rather than cheating on an exam (Kleinberg & Raghavan, 2020).

• Car insurance determination: an auto insurer tries to predict drivers’ expected accident costs, and by
designing a determination criterion, encourages safe driving behavior (Haghtalab et al., 2020; Shavit et al.,
2020).

1

https://openreview.net/forum?id=W98AEKQ38Y

Published in Transactions on Machine Learning Research (06/2023)

In this work, we study the following mechanism design problem: a model designer needs to train a classifier
that will make predictions over decision subjects who will alter their features to obtain a specific prediction.
Our goal is to learn a classifier that is accurate and that incentivizes decision subjects to adapt their features
in a way that improves both their predicted and true outcomes. Our main contributions are as follows:

1. We introduce a new approach to handle strategic adaptation in machine learning, based on a new concept
we call the constructive adaptation risk, which trains classifiers that incentivize decision subjects to adapt
their features in ways that improve true outcomes. Under the assumption of a feature taxonomy that
distinguishes improvable features (features that, if changed, lead to changes in the true qualification) from
non-causal features (which do not lead to changes in the true qualification), we provide formal evidence
that this risk captures both the strategic and constructive dimensions of decision subjects’ behavior.

2. We characterize the dynamics of strategic decision subjects and the model designer in a classification
setting using a two-player sequential game. We begin by generalizing cost functions used in previous
works on strategic classification to the Mahalanobis distance, which provides a way to capture correlations
between changes in different features. Under this generalization, we derive closed-form expressions for the
decision subjects’ optimal strategies (Theorem 1). These expressions (Section 3.3) reveal insights about
decision subjects’ behavior when the model designer uses non-causal features (features that do not affect
the true outcome) as predictors.

3. We formulate the problem of training such a desired classifier as a risk minimization problem. We evaluate
our method on simulated and real-world datasets to demonstrate how it can be used to incentivize
improvement or discourage adversarial manipulation. Our empirical results show that our method
outperforms existing approaches, even when some feature types are misspecified. In addition, we provide a
potential way to extend our main result into a non-linear setting using LIME (Ribeiro et al., 2016).

The details for reproducing our experimental results can be found at
https://github.com/UCSC-REAL/ConstructiveAdaptation.

1.1 Related work

Our paper builds on the strategic classification literature in machine learning (Hardt et al., 2016a; Cai et al.,
2015; Ben-Porat & Tennenholtz, 2017; Chen et al., 2018; Dong et al., 2018; Dekel et al., 2010; Chen et al.,
2020; Tsirtsis et al., 2019). We study the interactions between a model designer and decision subjects using a
sequential two-player Stackelberg game (see e.g., Hardt et al., 2016a; Brückner & Scheffer, 2011; Balcan et al.,
2015; Dong et al., 2018, for similar formulations). Departing from previous work, which aims to suppress
all adaptations, we consider a setting in which strategic adaptation can consist of manipulation as well as
improvement. Our broader goal of designing a classifier that encourages improvement is characteristic of
recent work in this area (see e.g., Kleinberg & Raghavan, 2020; Haghtalab et al., 2020; Shavit et al., 2020;
Rosenfeld et al., 2020). Specifically, Haghtalab et al. (2020) study how to design an evaluation mechanism
that incentivizes individuals to improve a desired quality. However, the success of their method requires
explicit assumptions on the linear mapping of features to true qualifications, as well as a projection matrix P
that maps the observed features back to the full features. Their setting also does not account for correlations
between different features. Another recent work by Shavit et al. (2020) also focuses on finding a decision rule
that maximizes decision subjects’ true qualifications. Their setting is similar to ours, but they focus on how
decision makers can perform causal interventions through the deployment of different decision rules, rather
than designing a classifier relying only on observational data. Moreover, they assume that decision subjects
take actions in some action space that maps linearly to features in feature space; this also does not capture
correlations between features.

This paper also broadly relates to work on recourse (Ustun et al., 2019; Venkatasubramanian & Alfano, 2020;
Karimi et al., 2020a; Gupta et al., 2019; Karimi et al., 2020b; von Kügelgen et al., 2020). Formally speaking,
recourse is defined as the ability of a person to obtain a desired outcome from a fixed model (Ustun et al.,
2019). In our paper, we aim to fit models that provide constructive recourse, i.e. actions that allow decision
subjects to improve both their predicted and true outcomes.

2

https://github.com/UCSC-REAL/ConstructiveAdaptation

Published in Transactions on Machine Learning Research (06/2023)

Our approach may be useful for mitigating the disparate effects of strategic adaptation (Hu et al., 2019;
Milli et al., 2019; Liu et al., 2020) that stem from differences in the cost of manipulation (see Proposition 4).
Our results may be helpful for developing robust classifiers in dynamic environments, where both decision
subjects’ features and the deployed models may vary across time periods (Kilbertus et al., 2020; Shavit
et al., 2020; Liu & Chen, 2017). Also relevant is the recent work on performative prediction (Perdomo et al.,
2020; Miller et al., 2021; Izzo et al., 2021; Mendler-Dünner et al., 2020), in which the choice of model itself
affects the distribution over instances. However, this literature differs from ours in that we focus on inducing
constructive adaptations from decision subjects at a single step, rather than finding an optimal policy that
incurs the minimum deployment error.

Due to page limit, we provide additional related work on strategic classification, algorithmic recourse, causal
modeling, and incentive design in Appendix E

2 Problem statement

In this section, we describe our approach to training a classifier that incentivizes improving actions.

2.1 Preliminaries

We consider a standard classification task of training a classifier h : Rd → {−1,+1} from a dataset of
n examples {(xi, yi)}

n
i=1, where example i consists of a vector of d features xi ∈ Rd and a binary label

yi ∈ {−1,+1}. Example i corresponds to an agent who wishes to receive a positive prediction h(xi) = +1,
and who will alter their features to obtain such a prediction once the model is deployed. We assume that an
agent’s true qualification (or label), denoted as y, is always a function of its feature vector x, and define the
true unknown qualification function y : X → {0, 1} as the mapping between the feature vector x ∈ Rd and
the true qualification/label y ∈ {0, 1}.

We formalize these dynamics as a sequential game between the following two players: the model designer,
and the decision subjects 1. The objectives for the two players are as follows:

1. A model designer, who trains a classifier h : X → {−1,+1} from a hypothesis class H,which is also their
action space.

2. Decision subjects, who adapt their features from x to x′ so as to be assigned h(x′) = +1 if possible. We
assume that decision subjects incur a cost for altering their features, which we represent using a cost
function c : X × X → R+. The action space for the decision subjects includes all feature vectors that are
within a given manipulation budget B, namely ∀x′ ∈ Rd such that c(x, x′) ≤ B.

We intentionally do not provide the formal definitions of the utilities for the two players here due to the need
to provide a clear and accessible introduction to our framework. We will provide more detailed discussions on
the agent and decision maker’s utility function in Section 3.2 and Section 2.3, respectively.

We assume that decision subjects know the model designer’s classifier, and the model designer knows the
decision subjects’ cost function. Decision subjects alter their features based on their current features x, the
cost function c, and the classifier h, so that their altered features can be written x∗ = ∆(x;h, c) where ∆(·)
is the best response function. The model designer only observes the altered feature x∗ but not the original
and private one x the decision subject holds. In other words, we consider the standard setting in strategic
classification where the model designer has no strong verification power to verify truthfulness of x∗.

We allow adaptations that alter the true qualification y. In practice, the relationship between features and
true qualification is unknown, and in fact it is known that distinguishing causal features (features that affect
the true outcome) from non-causal features reduces to solving a non-trivial causal inference problem Miller
et al. (2020). Addressing this aspect is not the aim of the present work; instead, we will assume that changes
in certain features are known to affect the qualification – for example, in loan application, such features can

1Throughout the paper, we will also use strategic agents, or agents, interchangeably.

3

Published in Transactions on Machine Learning Research (06/2023)

be the agent’s education level and salary, and changing those features will affect qualification is the agent’s
ability to pay for the loan.

When an agent adapts its feature vector from x to ∆(x), its qualification becomes y(∆(x)), which may differ
from y(x). We consider a setting in which during the training process, the decision maker cannot observe how
decision subjects’ true qualifications change after they alter their features. We introduced the shorthand
notation y to refer to y(x), the qualification for the original feature vector, for the sake of simplicity. For the
rest of our paper, a label y always denotes the true qualification before adaptation.
2.2 Background

In a standard prediction setting, a model designer trains a classifier that minimizes the empirical risk:

h∗
ERM ∈ arg min

h∈H
RERM(h)

where RERM(h) = Ex∼D[1(h(x) ̸= y)]. This classifier performs poorly in a setting with strategic adaptation,
since the model is deployed on a population with a different distribution over X (as decision subjects alter
their features) and y (as changes in features may alter true outcomes).

Existing approaches in strategic classification tackle these issues by training a classifier that is robust to
all adaptation. This approach treats all adaptation as undesirable, and seeks to maximize accuracy by
discouraging it entirely. Formally, they train a classifier that minimizes the strategic risk:

h∗
SC ∈ arg min

h∈H
RSC(h)

where RSC(h) = Ex∼D[1(h(x∗) ̸= y)], and x∗ = ∆(x, h; c) denotes the features of a decision subject after
adaptation. However, this classifier still has suboptimal accuracy because y changes as a result of the
adaptation in x. Further, this design choice misses the opportunity to encourage a profile x to truly improve
to change their y.

2.3 CA risk: minimizing error while encouraging constructive adaptation

In many applications, model designers are better off when decision subjects adapt their features in a way
that yields a specific true outcome, such as y = +1. Consider a typical lending application where a model is
used to predict whether a customer will repay a loan. In this case, a model designer benefits from y = +1, as
this means that a borrower will repay their loan.

2.3.1 Ideal objective function for the decision maker

Ideally, the decision maker should aim to classify the agents correctly using their adapted features with
respect to the corresponding new qualification. Mathematically, this corresponds to training a classifier h∗

that minimizes the following quantity:

h∗ ∈ arg min
h∈H

Ex∼D[1(h(∆(x)) ̸= y(∆(x))] (1)

where ∆(x) is the agent’s adapted feature, and y(∆(x)) is the true qualification after the adaptation. However,
since the true mapping function y : Rd → {0, 1} is unknown, and the decision maker cannot observe how
decision subjects’ true qualifications change after they alter their features, we need to propose an alternative
approach to achieve similar goals of this ideal objective function, which we call CA risk minimization.

2.3.2 Our proposed CA risk

To help explain our proposed approach, we assume that we can write x = [xI | xM | xIM] where xI, xM and
xIM denote the following categories of features:

• Immutable features (xIM), which cannot be altered (e.g. race, age).

4

Published in Transactions on Machine Learning Research (06/2023)

• Improvable features (xI), which can be altered in a way that will either increase or decrease the true
outcome y(x) (e.g. increasing education level might help improve the probability of repayment).

• Manipulable features (xM), which can be altered without changing the true outcome y(x) (e.g. social media
presence, which can be used as a proxy for influence). Notice that it is the change in these features that is
undesirable; the features themselves may still be useful for prediction.

Incomplete taxonomy of features. There may also be features that can be altered but whose effect is
unknown. In this work, we treat them as manipulable features. We would like to point out that in practice,
implementing our proposed solution does not require the decision-maker to know exactly how to characterize
every single feature. In fact, our method can be applied to settings where the decision-makers only know
some features are improvable and focus on incentivizing adaptations on them, while treating changes on
the rest of the features as undesirable. In this case, using our training method is still strictly better than
performing no intervention (i.e. simply letting decision subjects perform their unconstrained best response).

Z1 X1

Y

X2Z2

M1

M2

Figure 1: A causal DAG for the toy data. Z1 and Z2 are improvable features that determine the true
qualification Y , X1 = Z1, and X2 is a noisy proxy for Z2. In our context, all we require is the knowledge that
X1, X2 are the factors that causally affect Y , rather than complete knowledge of the DAG. We can directly
observe X1 and X2 but not Z1 or Z2. In addition, M1 and M2 are manipulated features that correlate with
Y .

Please see Figure 1 for a demonstration of the differences between improvable and manipulable features. We
also use xA = [xI | xM] to denote the actionable features, and dA to denote its dimension. Note that the
question of how to decide which features are of which type is beyond the scope of the present work; however,
this is the topic of intense study in the causal inference literature (Miller et al., 2020). Analogously, we define
the following variants of the best response function ∆:

• xI
∗ = ∆I(x, h; c): the improving best response, which involves an adaptation that only alters improvable

features.
• xM

∗ = ∆M(x, h; c): the manipulating best response, which involves an adaptation that only alters manipulable
features.

Note that in reality, a decision subject can still alter both types of features, which means that they will
perform ∆(x, h; c), unless the model designer explicitly forbids changing certain features. However, it still
worth distinguishing different types of best responses when the model designer designs the classifier: we
can think of the improving best response ∆I as the best possible adaptation which only consists of honest
improvement, while the manipulating best response ∆M is the worst possible adaptation that consists of
pure manipulation. The model designer would like to design a classifier such that for the decision subjects,
∆(x, h; c) appears to be close to ∆I(x, h; c). We therefore propose to train a classifier that minimizes the
constructive adaptation (CA) risk RCA, which balances robustness to manipulation and incentivization of
improvement:

h∗
CA ∈ arg min

h∈H
RCA(h) := RM(h) + λ ·RI(h) (2)

The first term, RM(h) = Ex∼D[1(h(xM
∗) ̸= y)], is the manipulation risk, which penalizes pure manipulation.

The second term, RI(h) = Ex∼D[1(h(xI
∗) ̸= +1)], is the improvement risk, which rewards decision subjects for

5

Published in Transactions on Machine Learning Research (06/2023)

playing their improving best response. The parameter λ > 0 trades off between these competing objectives.
Setting λ → 0 results in an objective that simply discourages manipulation, whereas increasing λ → ∞ yields
a trivial classifier that always predicts +1.

A natural question to ask is: how good the proposed objective function Equation (2) is compared to the ideal
objective function in Equation (1)? We show that the two terms in the objective function can be viewed as
proxies for the ideal objective function. In particular, in Section 4, we show that under reasonable conditions,
the following hold:

• The first term, RM(h), is an upper bound on RSC(h). Thus minimizing the manipulation risk also minimizes
the traditional strategic risk (Proposition 5).

• A decrease in the second term, RI(h) reflects an increase in Pr(y(xI
∗) = +1). Thus improvement in the

prediction outcome aligns with improvement in the true qualification (Proposition 6).

3 Decision subjects’ best response

We now characterize the decision subjects’ best response.

3.1 Setup

We restrict our analysis to the setting in which a model designer trains a linear classifier h(x) = sign(wTx),
where w = [w0, w1, . . . , wd] ∈ Rd+1 denotes a vector of d+ 1 weights. We capture the cost of altering x to x′

through the Mahalanobis norm of the changes:2

c(x, x′) =
√

(xA − xA
′)TS−1(xA − xA

′)

Here, S−1 ∈ RdA × RdA is a symmetric cost covariance matrix in which S−1
j,k represents the cost of altering

features j and k simultaneously. To ensure that c(·) is a valid norm, we require S−1 to be positive definite,
meaning xA

TS−1xA > 0 for all xA ̸= 0 ∈ RdA . Additionally, we assume S−1 is a block matrix of the form

S−1 =
[

(S−1)I (S−1)IM
(S−1)MI (S−1)M

]
, or S =

[
SI SIM
SMI SM

]
(3)

Notice that the I-th block of matrix S−1 (i.e. (S−1)I) does not necessarily equal to its inverse’s I-th block
component (i.e. SI

−1).

We allow the cost matrix to contain non-zero elements on non-diagonal entries. This means that our results
hold even when there are interaction effects when altering multiple features. This generalizes prior work on
strategic classification in which the cost is based on the ℓ2 norm of the changes, which is tantamount to
setting S−1 = I, and therefore assumes the change in each feature contributes independently to the overall
cost (see e.g., Hardt et al., 2016a; Haghtalab et al., 2020).

3.2 Decision subject’s best response model

Given the assumptions of Section 3.1, we can define and analyze the decision subjects’ best response. We
start by defining the decision subject’s payoff function. Given a classifier h, a decision subject who alters
their features from x to x′ derives total utility

U(x, x′) = h(x′) − c(x, x′)

Naturally, a decision subject tries to maximize their utility; that is, they play their best response:
Definition 3.1 (F-Best Response Function). Let F ∈ {I,M,A}, and let X ∗

F (x) denote the set of vectors that
differ from x only in features of type F. Let ∆F : X → X denote the F-best response of a decision subject
with features x to h, defined as:

∆F(x) = arg max
x

′∈X ∗
F (x)

U(x, x′)

2Since immutable features xIM cannot be altered, the cost function involves only the actionable features xA.

6

Published in Transactions on Machine Learning Research (06/2023)

Setting F = I gives the improving best response ∆I(x), in which the adaptation changes only the improvable
features; setting F = M yields the manipulating best response ∆M(x), in which only manipulable features
are changed. Setting F = A, we get the standard unconstrained best response ∆A(x) in which any actionable
features can be changed. As we mentioned earlier, we will also use xF

∗ := ∆F(x) as shorthand for the F-best
response, and we denote ∆(x) := ∆A(x).

Intuitively, the cost of manipulation should be smaller than the cost of actual improvement. For example,
improving one’s coding skills should take more effort, and thus be more costly, than simply memorizing
answers to coding problems. As a result, one would expect the gaming best response ∆M(x) and the
unconstrained best response ∆(x) to flip a negative decision more easily than the improving best response
∆I(x). In Section 3.3, we formalize this notion (Proposition 2).

For ease of notation, let ŜF := ((S−1)F)−1.We prove the following theorem characterizing the decision subject’s
different best responses:
Theorem 1 (F-Best Response in Closed-Form). Given a linear threshold function h(x) = sign(wTx) and a
decision subject with features x such that h(x) = −1, reorder the features so that x = [xF | xA\F | xIM], and
let ΩF = wF

TŜFwF. Then x has F-best response

∆F(x) =

[
xF − w

T
x

ΩF
ŜFwF

]
| xA\F | xIM, if |wT

x|√
ΩF

≤ 2

x, otherwise
(4)

with corresponding cost

c(x,∆F(x)) =

|wT

x|√
ΩF
, if |wT

x|√
ΩF

≤ 2

0 otherwise
.

All proofs in this section are included in Appendix B.

Example: When F = M, xF = xM and xA\F = [xI]. After reordering features, we get the following closed-form
expression for the manipulating best response:

∆M(x) =

[
xI | xM − w

T
x

ΩM
ŜMwM | xIM

]
if |wT

x|√
ΩM

≤ 2

x, otherwise

with corresponding cost

c(x,∆M(x)) =

|wT

x|√
ΩM
, if |wT

x|√
ΩM

≤ 2

0 otherwise
.

3.3 Discussion

We now discuss the implications of different decision subject’s responses derived in Theorem 1. In this
section, we consider a slightly more structured cost matrix that is diagonal blocked matrix (in which case,
S−1

IM = S−1
MI = 0), which corresponds to a setting where there are no correlations between the cost of changing

manipulated feature versus the cost of changing improvable features. We include the proofs in Appendix C.

Firstly, we demonstrate a basic limitation for the model designer: if the classifier uses any manipulable
features as predictors, then decision subjects will find a way to exploit them. Hence the only way to avoid
any possibility of manipulation is to train a classifier without such features.
Proposition 1 (Preventing Manipulation is Hard). Suppose there exists a manipulated feature x(m) whose
weight in the classifier w(m)

A is nonzero. Then for almost every x ∈ X , ∆(m)(x) ̸= x(m). 3

3In our paper, the subscript (e.g. xm) refers to the entire feature vector (e.g., xm ∈ R
dm , where dm is the total number of

the manipulative features), while the superscript (m) refers to the particular index of a particular manipulation feature.

7

Published in Transactions on Machine Learning Research (06/2023)

Next, we show that the unconstrained best response ∆(x) dominates the improving best response ∆I(x), thus
highlighting the difficulty of inducing decision subjects to change only their improvable features when they
are also allowed to change manipulable features.
Proposition 2 (Unconstrained Best Response Dominates Improving Best Response). Suppose there exists
a manipulable feature x(m) whose weight in the classifier w(m)

A is nonzero. Then, if a decision subject can
flip her decision by playing the improving best response, she can also do so by playing the unconstrained best
response. The converse is not true: there exist decision subjects who can flip their predictions through their
unconstrained best response but not their improving best response.

Next, we show how correlations between features affect the cost of adaptation. This can be demonstrated by
looking at any cost matrix and adding a small nonzero quantity τ to some i, j-th and j, i-th entries. Such a
perturbation can reduce every decision subject’s best-response cost:
Proposition 3 (Correlations between Features May Reduce Cost). For any cost matrix S−1 and any
nontrivial classifier h, there exist indices k, ℓ ∈ [dA] and τ ∈ R such that every feature vector x has lower
best-response cost under the cost matrix S̃−1 given by

S̃−1
ij = S̃−1

ji =
{
S−1
ij + τ, if i = k, j = ℓ

S−1
ij , otherwise

than under S−1; that is, c
S̃

−1(x,∆(x)) < c
S

−1(x,∆(x)) for all x.

In many applications, decision subjects may incur different costs for modifying their features, resulting in
disparities in prediction outcomes (see Hu et al., 2019, for a discussion). To formalize this phenomenon,
suppose Φ and Ψ are two groups whose costs of changing improvable features are identical, but members of Φ
incur higher costs for changing manipulable features. Let ϕ ∈ Φ and ψ ∈ Ψ be two people from these groups
who share the same profile, i.e. xϕ = xψ. We show the following:

Proposition 4 (Cost Disparities between Subgroups). Suppose there exists a manipulated feature x(m) whose
corresponding weight in the classifier w(m)

A is nonzero. Then if decision subjects are allowed to modify any
features, ϕ must pay a higher cost than ψ to flip their classification decision.

Proposition 4 highlights the importance for a model designer to account for these differences when serving
a population with heterogeneous subgroups. Indeed, when one group achieves more favorable prediction
outcomes due to a lower cost of manipulation, our method mitigates the cost disparities between different
subgroups by encouraging changes in improvable features and penalizing manipulation.

4 Constructive adaptation risk minimization

In this section we analyze the training objective for the model designer, formulating it as an empirical risk
minimization (ERM) problem. Any omitted details can be found in Appendix D.

The model designer’s goal is to publish a classifier h that maximizes the classification accuracy while
incentivizing individuals to change their improvable features. By Theorem 1, we have

xM
∗ =

[
xI | xM − w

T
x

ΩM
S̃MwM | xIM

]
if |wT

x|√
ΩM

≤ 2

x, otherwise
(5)

xI
∗ =

[
xI − w

T
x

ΩI
S̃IwI | xM | xIM

]
, if |wT

x|√
ΩI

≤ 2

x, otherwise
(6)

Recall from Section 2.3 that the model designer’s optimization program is as follows:

min
h∈H

E
x∼D

[1(h(xM
∗) ̸= y)] + λ E

x∼D
[1(h(xI

∗) ̸= +1)]

s.t. xM
∗ in Eq. (5), xI

∗ in Eq. (6) (7)

8

Published in Transactions on Machine Learning Research (06/2023)

Interpreting the objective. The two terms in the objective function can be viewed as proxies for two
other familiar objectives. The first term, Ex∼D [1(h(xM

∗) ̸= y)], directly penalizes pure manipulation. But as
the following proposition suggests, minimizing this term also minimizes the traditional strategic risk when
the true qualification does not change:
Proposition 5. Assume that the manipulating best response is more likely to result in a positive prediction
than the unconstrained best response, given that the true labels do not change. Then

E
x∼D

[1[h(x∗) ̸= y] | ∆(y) = y] ≤ E
x∼D

[1(h(xM
∗) ̸= y)] .

Intuitively, the assumption within Proposition 5 may be fulfilled in settings where a population of agents each
have the same fixed budget on the cost or effort they are willing to expend, and manipulative or cheating-type
actions (for instance, (controlling recent purchase behaviors and borrowing money from family members
right before applying for a credit card) confer greater immediate advantages than honest improvement (e.g.
spending frugally and accruing savings from personal income over several years).

The second term, Ex∼D [1(h(xI
∗) ̸= +1)], explicitly rewards decision subjects for playing their improving best

response (closely related to the notion of recourse). Of course, without positing a causal graph, we cannot
know whether performing the improving best response leads to a positive change in the true qualification,
namely whether ∆I(Y) = +1; however, when the distribution of X may change but not the conditional label
distribution Pr(Y |X), we can show that an increase in Pr(h(X) = +1) reflects an increase in Pr(Y = +1).
This gives formal evidence that our prediction outcome aligns with improvement in the true qualification:
Proposition 6. Let D∗ be the new distribution after decision subject’s best response. Denote ωh(x) =
PrD∗ (X=x)
PrD(X=x) denote the amount of adaptation induced at feature vector x. Suppose y(X) and h(X) are both

positively correlated with ωh(X), and that the distribution of the true label Y given a particular feature vector
X is unchanged is the same before and after adaptation. Then the following are equivalent:

Pr[h(xI
∗) = +1] > Pr[h(x) = +1] ⇐⇒ Pr[y(xI

∗) = +1] > Pr[y(x) = +1].

Proofs of Propositions 5 and 6 can be found in Appendix D.1 and D.2. We also provide further derivation for
model designer’s objective function in Appendix D.3.

Here we provide some motivation for the premise of Proposition 6. An unchanged Pr(Y |X) means that
the mapping from feature vector X to its corresponding true qualification Y (X) remains the same despite
a population-level distribution shift. This is a useful and natural simplification in numerous settings. An
example is in credit card applications: suppose X is an applicant’s credit score and Y is whether they are
truly qualified. For people with the same credit score, we assume they have equal chances of being truly
qualified.

Algorithm 1 Best Response for Non-Linear Model
Input: Non-Linear classifier h, an individual data point x
Result: xM

∗ and xI
∗

Step 1. Call LIME to get the approximated weights w̃ of a local linear classifier for non-linear model h
around the individual point x

Step 2. Substitute w̃ into Eq. (5) and Eq. (6) to get xM
∗ and xI

∗, respectively

Extension to non-linear models. The above approach in Eq. (7) presumes a linear classifier such that we
can derive a close-form solution of the agent’s best response. However, the recourse scheme will be typically
infeasible with non-linear classifiers. To extend our approach to nonlinear models, we propose to substitute
xM

∗ and xI
∗ in Eq. (7) with an approximated best response acquired from a local linear classifier. We note that

a prior work LIME (Ribeiro et al., 2016) can provide an approximate linear decision boundary for arbitrary
individual points to any non-linear models. The idea is to sample the spherical neighborhood of the data
point and fit a local linear model with the target model’s certified predictions. As shown in Algorithm 1,

9

Published in Transactions on Machine Learning Research (06/2023)

we integrate LIME into the oracle that can return us any decision subjects’ best response in terms of the
approximated local linear classifier. Once we get the best response xM

∗ and xI
∗, we iteratively plug them back

to Eq. (7) as the learning objective of the non-linear classifier. We will demonstrate the effectiveness of
this oracle procedure when optimizing a non-linear neural network with gradient descent in Appendix F.5.
Nonetheless, even with the above extension, all of our theoretical guarantees is not straightforwardly clear to
analysis with an oracle of non-linear models’ best response, so we let the current paper focus on linear models.

5 Experiments

In this section, we present empirical results to benchmark our proposed method on synthetic and real-world
datasets. We test the effectiveness of our approach in terms of its ability to incentivize improvement as well
as to disincentivize manipulation (see Evaluation Criteria for details). We also compare its performance
with other standard approaches (see Methods). Our submission includes all datasets, scripts, and source
code used to reproduce the results in this section.

5.1 Setup

Datasets and Cost Matrix. We consider five datasets:

toy, a synthetic dataset based on the causal DAG in Fig. 1; credit, a dataset for predicting whether an
individual will default on an upcoming credit payment (Yeh & Lien, 2009); adult, a census-based dataset for
predicting adult annual incomes; german, a dataset to assess credit risk in loans; and spambase, a dataset for
email spam detection. The last three are from the UCI ML Repository (Dua & Graff, 2017). We provide a
detailed description of each dataset along with a partitioning of features in Table 3 in the Appendix.

We assume the cost of manipulation is lower than that of improvement and refer the specific cost matrix
S to Appendix F.2; in particular, we specify the cost matrix S as follows: use cost matrices SI

−1 = I and
SM

−1 = 0.2I. We also provide results for non-diagonal cost matrix in the Appendix F.4.

S−1
ij =

1, if i = j and i ∈ I
0.2, if i = j and j ∈ M
1, if the cost of changing features i

and j are negatively correlated
−1, if the cost of changing features i

and j are positively correlated
0, otherwise

We use the credit dataset as a demonstration of how we specify the non-diagonal element in the cost
matrix. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance and
SavingsAccountBalance, we assign −1 to the corresponding elements in the cost matrix S. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix. In practice, the cost matrix S should be determined using
domain expertise. The purpose of the cost matrix used in these experiments is not to accurately specify costs
per se, but to demonstrate the relative difficulty of changing different features.

Methods. We fit linear classifiers for each dataset using the following methods: ST, a static classifier trained
using ℓ2-logistic regression without accounting for strategic adaptation; DF, a classifier trained using ℓ2-logistic
regression without any manipulated features; MP, a classifier that considers the agent’s unconstrained best
response (i.e. with changes in any actionable features xA allowed) during training, as typically done in the
strategic classification literature (Hardt et al., 2016a); CA, a linear logistic regression classifier that results
from solving the optimization program in Eq. (23), which is a smooth differentiable surrogate version of
the objective function Eq. (7). Please refer to Appendix D.3 for a detailed derivation. Using the BFGS
algorithm (Byrd et al., 1995). CA represents our approach.

Evaluation Criteria. We run each method with 5-fold cross-validation and report the following:

10

Published in Transactions on Machine Learning Research (06/2023)

10 2 10 1 100 101

lambda (log scale)

0.30

0.32

0.34

0.36

0.38

0.40

0.42
te

st
 e

rro
r a

t d
ep

lo
ym

en
t

test error at deployment
improvement rate

0.4

0.5

0.6

0.7

0.8

0.9

im
pr

ov
em

en
t r

at
e

(a) credit

10 2 10 1 100 101

lambda (log scale)

0.28

0.30

0.32

0.34

te
st

 e
rro

r a
t d

ep
lo

ym
en

t

test error at deployment
improvement rate

0.4

0.5

0.6

0.7

0.8

im
pr

ov
em

en
t r

at
e

(b) adult

10 2 10 1 100 101

lambda (log scale)

0.35

0.40

0.45

0.50

te
st

 e
rro

r a
t d

ep
lo

ym
en

t

test error at deployment
improvement rate

0.4

0.5

0.6

0.7

0.8

0.9

im
pr

ov
em

en
t r

at
e

(c) german

10 2 10 1 100 101

lambda (log scale)

0.15

0.20

0.25

0.30

te
st

 e
rro

r a
t d

ep
lo

ym
en

t

test error at deployment
improvement rate

0.3

0.4

0.5

0.6

0.7

0.8

im
pr

ov
em

en
t r

at
e

(d) Spambase

Figure 2: We plot the trade-off between test error at deployment and improvement rate in terms of cost
matrix. We observe that the test error increases consistently with the increase of the improvement rate.
Table 1: Performance metrics for different specifications (Spec.) in which features may be misspecified. For
each method, we report test error, deployment error, and improvement rate. In Full, the model designer
has full knowledge of the causal DAG. In Mis. I, M1 is mistaken for an improvable feature. In Mis. II, the
improvable feature X1 is miscategorized as manipulable.

Methods
Spec. Metrics ST DF MP CA

Full
test error
deployment error
improvement rate

10.29
35.79
11.54

28.0
35.15
13.13

11.91
24.1
14.63

11.62
20.61
23.49

Mis. I
test error
deployment error
improvement rate

11.39
37.37
37.23

10.52
10.53
39.74

11.26
19.79
0.62

11.04
25.30
23.04

Mis. II
test error
deployment error
improvement rate

10.58
12.37
1.12

35.77
41.51
5.74

29.52
27.68
3.36

10.80
23.58
19.82

• Test Error : the error of a classifier after training but before decision subjects’ adaptations, i.e.
E(x,y)∼D 1[h(x) ̸= y].

• (Worst-Case) Deployment Error : the test error of a classifier after decision subjects play their manipulating
best response, i.e. E(x,y)∼D 1[h(xM

∗) ̸= y].
• (Best-Case) Improvement Rate: the percent of improvement, defined as the proportion of the population

who originally would be rejected but are accepted if they perform constructive adaptation (improving best
response), i.e. E(x,y)∼D 1[h(xI

∗) = +1 | y(x) = −1].

5.2 Controlled experiments on synthetic dataset

We perform controlled experiments using a synthetic toy dataset to test the effectiveness of our model at
incentivizing improvement in various situations. As shown in Fig. 1, we set Z1 and Z2 as improvable features,
X1 and X2 as their corresponding noisy proxies, M1 and M2 as manipulable features, and Y as the true
outcome. Since we have full knowledge of this DAG structure, we can observe the changes in the true outcome
after the decision subject’s best response. As shown in Table 1, Our method achieves the lowest deployment
error (20.61%) and the best improvement rate (23.04%) when the model designer has full knowledge of the
causal graph.

We also run experiments in which some features are misspecified, simulating realistic scenarios in which
the model designer may not be able to observe all the improvable features (Haghtalab et al., 2020; Shavit
et al., 2020), or mistakes one type of feature for another. We model these situations by changing M1 into an
improvable feature and X1 into a manipulable feature; the results, shown in Table 1, show that our classifier
maintains a relatively high improvement rate in these cases, without sacrificing much deployment accuracy.

11

Published in Transactions on Machine Learning Research (06/2023)

Table 2: Performance metrics for all methods over 4 real data sets with non-diagonal cost matrix. We report
the mean and standard deviation for 5-fold cross validation. The constructive adaptation (CA) consistently
achieves a high accuracy at deployment while providing the highest improvement rates across all four datasets.

Methods
Dataset Metrics ST DF MP CA

CREDIT

test error
deploy error
improvement rate

29.52 ± 0.37
31.25 ± 0.56
46.35 ± 3.81

29.66 ± 0.40
29.66 ± 0.40
44.71 ± 4.75

29.65 ± 0.41
29.41 ± 0.32
36.76 ± 0.53

29.60 ± 0.44
29.49 ± 0.38
48.27 ± 5.50

ADULT

test error
deploy error
improvement rate

23.05 ± 0.47
38.64 ± 4.46
30.92 ± 3.31

33.55 ± 0.73
33.55 ± 0.73
60.63 ± 29.40

24.94 ± 0.52
26.85 ± 0.59
36.70 ± 1.62

27.22 ± 0.65
29.34 ± 0.45
63.79 ± 7.80

GERMAN

test error
deploy error
improvement rate

30.85 ± 0.82
33.40 ± 1.78
41.20 ± 5.77

36.10 ± 1.97
36.10 ± 1.97
42.10 ± 9.07

33.25 ± 1.44
34.60 ± 1.94
33.50 ± 2.53

34.70 ± 2.15
34.25 ± 1.78
56.10 ± 6.40

SPAMBASE

test error
deploy error
improvement rate

7.11 ± 0.52
22.40 ± 3.14

40.04 ± 13.06

10.18 ± 0.45
10.18 ± 0.45
32.46 ± 14.63

11.52 ± 0.12
12.92 ± 0.58
26.42 ± 4.80

14.37 ± 0.24
14.70 ± 0.36
43.98 ± 6.18

5.3 Results

We summarize the performance of each method in Table 4. To wrap up, our method produces classifiers
that achieve almost the highest deployment accuracy while providing the highest percentage of improvement
across all four datasets. The static classifier, which does not account for adaptations, is vulnerable to strategic
manipulation and consequently has the highest deployment error on every dataset. Naively cutting off the
manipulated features may harm the accuracy at test time – DF incurs high test errors on Adult (33.55%)
and German (36.10%). In particular, the strategic classifier MP induces the lowest improvement rates on the
Credit (36.76%) and German (34.50%) datasets.

Effect of trade-off parameter λ. Fig. 2 shows the performance of linear classifiers for different values of
λ on four real datasets. Note that, since the objective function is non-convex, the trends for test error at
deployment are not necessarily monotonic. In general, we observe a trade-off between the improvement rate
and deployment error: both increase as λ increases from 0.01 to 10 in all four datasets.

6 Conclusion

In this work, we study how to train a linear classifier that encourages constructive adaption. We characterize
the equilibrium behavior of both the decision subjects and the model designer, and prove other formal
statements about the possibilities and limits of constructive adaptation. Finally, our empirical evaluations
demonstrate that classifiers trained via our method achieve favorable trade-offs between predictive accuracy
and inducing constructive behavior. Our work has several limitations:

1. As a first foray into strategic classification with constructive adaptation, our focus on linear threshold
classifiers helps us capture the challenges unique to this setting; indeed, this is ultimately what allows
for a closed-form best response (Theorem 1) even with a significantly more general cost function than in
preceding literature. However, this is clearly not true of many models actually in deployment.

2. In order to focus on the strategic aspects of constructive adaptation, we assume that the feature taxonomy
is simply given; however, distinguishing improvable features from non-improvable features is an interesting
question in its own right, and has been shown to be reducible to a nontrivial causal inference problem
(Miller et al., 2020).

12

Published in Transactions on Machine Learning Research (06/2023)

3. In real-world scenarios, causal features are often intertwined with non-causal features, and improving one
may affect the other. While in our paper, we simplify the setting by assuming independence between the
effects, we acknowledge that this is not always the case in practice. One potential way to address this
issue is to incorporate additional modeling techniques that account for the causal interactions between
features, such as causal inference methods or structural equation modeling.

Boarder Impact. Since our method incentivizes people to behave in a certain way, to ensure it works
fairly and accurately in practice, it should be paired with a rigorous study of the causal relationship between
features to decide which are improvable versus manipulable.

Acknowledgments

This work is partially supported by the National Science Foundation (NSF) under grants IIS-2143895 and
IIS-2040800.

References

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A reductions
approach to fair classification. In International Conference on Machine Learning, pp. 60–69. PMLR, 2018.

Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. Commitment without regrets:
Online learning in stackelberg security games. In Proceedings of the sixteenth ACM conference on economics
and computation, pp. 61–78, 2015.

Yahav Bechavod, Katrina Ligett, Zhiwei Steven Wu, and Juba Ziani. Causal feature discovery through
strategic modification, 2020.

Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya Kannan,
Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, et al. Ai fairness 360: An
extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. arXiv preprint
arXiv:1810.01943, 2018.

Omer Ben-Porat and Moshe Tennenholtz. Best response regression. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 1498–1507, 2017.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh,
Ruchir Puri, José MF Moura, and Peter Eckersley. Explainable machine learning in deployment. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–657, 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 547–555,
2011.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, September 1995.

Yang Cai, Constantinos Daskalakis, and Christos Papadimitriou. Optimum statistical estimation with
strategic data sources. In Conference on Learning Theory, pp. 280–296. PMLR, 2015.

Yiling Chen, Chara Podimata, Ariel D Procaccia, and Nisarg Shah. Strategyproof linear regression in high
dimensions. In Proceedings of the 2018 ACM Conference on Economics and Computation, pp. 9–26, 2018.

Yiling Chen, Yang Liu, and Chara Podimata. Learning strategy-aware linear classifiers, 2020.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153–163, 2017.

13

Published in Transactions on Machine Learning Research (06/2023)

Sarah Dean, Sarah Rich, and Benjamin Recht. Recommendations and user agency: the reachability of
collaboratively-filtered information. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pp. 436–445, 2020.

Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning. Journal of
Computer and System Sciences, 76(8):759–777, 2010.

Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic classification
from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and Computation,
pp. 55–70, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

Frederick Eberhardt and Richard Scheines. Interventions and causal inference. Philosophy of Science, 74(5):
981–995, 2007. ISSN 00318248, 1539767X.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 259–268, 2015.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2013.

Vivek Gupta, Pegah Nokhiz, Chitradeep Dutta Roy, and Suresh Venkatasubramanian. Equalizing recourse
across groups. arXiv preprint arXiv:1909.03166, 2019.

Nika Haghtalab, Nicole Immorlica, Brendan Lucier, and Jack Z. Wang. Maximizing welfare with incentive-
aware evaluation mechanisms. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 160–166. International Joint Conferences on
Artificial Intelligence Organization, 2020. doi: 10.24963/ijcai.2020/23. URL https://doi.org/10.
24963/ijcai.2020/23.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification. In
Proceedings of the 2016 ACM conference on innovations in theoretical computer science, pp. 111–122, 2016a.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, pp. 3323–3331, 2016b.

Miguel A. Hernán, Wei Wang, and David E. Leaf. Target Trial Emulation: A Framework for Causal Inference
From Observational Data. JAMA, 328(24):2446–2447, 12 2022. ISSN 0098-7484. doi: 10.1001/jama.2022.
21383.

Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. The disparate effects of strategic manipulation.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 259–268, 2019.

Zachary Izzo, Lexing Ying, and James Zou. How to learn when data reacts to your model: Performative
gradient descent. CoRR, 2021.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic recourse:
definitions, formulations, solutions, and prospects, 2020a.

Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse
under imperfect causal knowledge: a probabilistic approach, 2020b.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.24963/ijcai.2020/23
https://doi.org/10.24963/ijcai.2020/23

Published in Transactions on Machine Learning Research (06/2023)

Niki Kilbertus, Manuel Gomez Rodriguez, Bernhard Schölkopf, Krikamol Muandet, and Isabel Valera. Fair
decisions despite imperfect predictions. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pp. 277–287. PMLR, 2020. URL http://proceedings.mlr.press/
v108/kilbertus20a.html.

Jon Kleinberg and Manish Raghavan. How do classifiers induce agents to invest effort strategically? ACM
Transactions on Economics and Computation (TEAC), 8(4):1–23, 2020.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 4066–4076. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/6995-counterfactual-fairness.pdf.

Lydia T Liu, Ashia Wilson, Nika Haghtalab, Adam Tauman Kalai, Christian Borgs, and Jennifer Chayes.
The disparate equilibria of algorithmic decision making when individuals invest rationally. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 381–391, 2020.

Yang Liu and Yiling Chen. Machine-learning aided peer prediction. In Proceedings of the 2017 ACM
Conference on Economics and Computation, pp. 63–80, 2017.

Celestine Mendler-Dünner, Juan Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization for
performative prediction. Advances in Neural Information Processing Systems, 33, 2020.

John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in disguise. In
International Conference on Machine Learning, pp. 6917–6926. PMLR, 2020.

John Miller, Juan Perdomo, and Tijana Zrnic. Outside the echo chamber: Optimizing the performative risk,
2021.

Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 230–239, 2019.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In
International Conference on Machine Learning, pp. 7599–7609. PMLR, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939778. URL https://doi.
org/10.1145/2939672.2939778.

Nir Rosenfeld, Sophie Hilgard, Sai Srivatsa Ravindranath, and David C. Parkes. From predictions to decisions:
Using lookahead regularization, 2020.

Yonadav Shavit, Benjamin Edelman, and Brian Axelrod. Causal strategic linear regression. pp. 8676–8686,
2020.

Stratis Tsirtsis, Behzad Tabibian, Moein Khajehnejad, Adish Singla, Bernhard Schölkopf, and Manuel Gomez-
Rodriguez. Optimal Decision Making Under Strategic Behavior. arXiv e-prints, pp. arXiv:1905.09239, May
2019.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In Proceedings
of the Conference on Fairness, Accountability, and Transparency, pp. 10–19, 2019.

Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 284–293, 2020.

Julius von Kügelgen, Umang Bhatt, Amir-Hossein Karimi, Isabel Valera, Adrian Weller, and Bernhard
Schölkopf. On the fairness of causal algorithmic recourse, 2020.

15

http://proceedings.mlr.press/v108/kilbertus20a.html
http://proceedings.mlr.press/v108/kilbertus20a.html
http://papers.nips.cc/paper/6995-counterfactual-fairness.pdf
http://papers.nips.cc/paper/6995-counterfactual-fairness.pdf
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

Published in Transactions on Machine Learning Research (06/2023)

Hao Wang, Berk Ustun, and Flavio Calmon. Repairing without retraining: Avoiding disparate impact with
counterfactual distributions. In International Conference on Machine Learning, pp. 6618–6627. PMLR,
2019.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert Systems with Applications, 36(2):2473–2480, 2009.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gummadi. Fairness
constraints: A flexible approach for fair classification. Journal of Machine Learning Research, 20(75):1–42,
2019. URL http://jmlr.org/papers/v20/18-262.html.

16

http://jmlr.org/papers/v20/18-262.html

Published in Transactions on Machine Learning Research (06/2023)

Appendix

A Organization of the Appendix

The Appendix is organized as follows.

• Section A provides the organization of the appendix.
• Section B provides the proof of Theorem 1.
• Section C includes notations and proofs for the discussion in section 3.3.
• Section D includes the proofs and derivations for section 4.
• Section E presents additional related works.
• Section F shows additional experimental details and results, including basic information on each dataset

and the computing infrastructure.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. To simplify our discussion, we focus on the unconstrained
best response, i.e. the case in which F = A. The proofs for the other two types of best response (F = M, F = I)
follow the same arguments except that the inverse of (S−1)I does not equal to S, but equals to ((S−1)I)

−1.

We first prove two lemmas that allow us to reformulate the best response as an optimization problem. The
first states that the decision subject’s goal is to maximize their utility, but they are unwilling to pay a cost
greater than 2:
Lemma 1 (Decision Subject’s Best-Response Function). Given a classifier h : X → {−1,+1}, a cost function
c : X × X → R, and a set of realizable feature vectors X † ⊆ X , the best response of a decision subject with
features x ∈ X † is the solution to the following optimization program:

max
x

′∈X †
U(x, x′) s.t. c(x, x′) ≤ 2

Proof. Since the classifier in our game outputs a binary decision (−1 or +1), decision subjects only have an
incentive to change their features from x to x′ when c(x, x′) ≤ 2. To see this, notice that an decision subject
originally classified as −1 receives a default utility of U(x, x) = f(x) − 0 = −1 by presenting her original
features x. Since costs are always non-negative, she can only hope to increase her utility by flipping the
classifier’s decision. If she changes her features to some x′ such that f(x′) = +1, then the new utility will be
given by

U(x, x′) = f(x′) − c(x, x′) = 1 − c(x, x′)

Hence the decision subject will only change her features if 1 − c(x, x′) ≥ f(x) = −1, or c(x, x′) ≤ 2.

The next lemma turns the above maximization program into a minimization program, in which the decision
subject seeks the minimum-cost change in x that crosses the decision boundary. If the cost exceeds 2, which
is the maximum possible gain from adaptation, they would rather not modify any features.
Lemma 2. Let x⋆ be an optimal solution to the following optimization problem:

x⋆ = arg min
x

′∈X ∗
A (x)

c(x, x′)

s.t. sign(wTx′) = 1

If no solution is returned, we say an x⋆ such that c(x, x⋆) = ∞ is returned. Define ∆(x) as follows:

∆(x) =
{
x⋆, if c(x, x⋆) ≤ 2
x, otherwise

17

Published in Transactions on Machine Learning Research (06/2023)

Then ∆(x) is an optimal solution to the optimization problem in Lemma 1.

Proof. Recall that the utility function of the decision subject is U(x, x′) = f(x′) − c(x, x′), and that, by
Lemma 1, they will only modify their features if the utility increases, i.e. if they achieve f(x′) = +1 and
while incurring cost c(x, x′) ≤ 2.

Consider two cases for x′ ̸= x:

1. When c(x, x′) > 2, there are no feasible points for the optimization problem of Lemma 1.

2. When c(x, x′) ≤ 2, we only need to consider those feature vectors x′ that satisfy f(x′) = 1, because if
f(x′) = −1, the decision subject with features x would prefer not to change anything. Since maximizing
U(x, x′) = f(x′) − c(x, x′) is equivalent to minimizing c(x, x′) if f(x′) = 1, we conclude that when
c(x, x′) ≤ 2, the optimum of the program of Lemma 1 is the same as the optimum of the program in
Lemma 2.

Lemma 2 enables us to re-formulate the objective function as follows. Recall that c(x, x′) =√
(xA − xA

′)TS−1(xA − xA
′) where S−1 is symmetric positive definite. Thus S−1 has the following di-

agonalized form, in which Q is an orthogonal matrix and Λ−1 is a diagonal matrix:

S−1 = QTΛ−1Q = (Λ− 1
2Q)T(Λ− 1

2Q)

With this, we can re-write the cost function as

c(x, x′) =
√

(xA − xA
′)TS−1(xA − xA

′)

=
√

(xA − xA
′)T(Λ− 1

2Q)T(Λ− 1
2Q)(xA − xA

′)

=
√

(Λ− 1
2Q(xA − xA

′))T(Λ− 1
2Q(xA − xA

′))

= ∥Λ− 1
2Q(xA − xA

′)∥2

Meanwhile, the constraint in Lemma 2 can be written

sign(w · x′) = sign(wA · xA
′ + wIM · xIM)

= sign(wA · xA
′ − (−wIM · xIM)) = 1

Hence the optimization problem can be reformulated as

min
xA

′∈X ∗
A

∥(Λ− 1
2Q(xA − xA

′))∥2 (8)

s.t. sign(wA · xA
′ − (−wIM · xIM)) = 1 (9)

The above optimization problem can be further simplified by getting rid of the sign(·):
Lemma 3. If xA

∓ is an optimal solution to Eq. (8) under constraint Eq. (9), then it must satisfy wA · xA
∓ −

(−wIM · xIM) = 0.

Proof. We prove by contradiction. Let x∓
A is an optimal solution to Eq. (8) and suppose towards contraction

that wAx
∓
A > −wIM · xIM. Since the original feature vector x was classified as −1, we have

wA · x∓
A > −wIM · xIM, wA · xA < −wIM · xIM

18

Published in Transactions on Machine Learning Research (06/2023)

By the continuity properties of linear vector space, there exists µ ∈ (0, 1) such that:

wA

(
µ · xA

∓ + (1 − µ)xA

)
= −wIM · xIM

Let xA
′′ = µ · xA

∓ + (1 − µ)xA. Then sign(wAxA
′′ − (−wIM · xIM)) = 1, i.e., x′′

A also satisfies the constraint.
Since xA

∓ is an optimum of Eq. (8), we have

∥Σ− 1
2Q(xA

∓ − xA)∥ ≤ ∥Σ− 1
2Q(xA

′′ − xA)∥

However, we also have:

∥Σ− 1
2Q(xA

′′ − xA)∥ = ∥Σ− 1
2Q(µ · xA

∓ + (1 − µ)xA − xA)∥

= ∥Σ− 1
2Q(µ · (xA

∓ − xA))∥

= µ∥Σ− 1
2Q(xA

∓ − xA)∥

< ∥Σ− 1
2Q(xA

∓ − xA)∥

contradicting our assumption that x∓
A is optimal. Therefore x∓

A must satisfy wAx
∓
A = −wIM · xIM.

As a result of Lemma 3, we can replace the constraint in Eq. (8) with its corresponding equality constraint
without changing the optimal solution.4 The decision subject’s best-response program from Lemma 1 is
therefore equivalent to

min
xA

′∈X ∗
A

∥(Λ− 1
2Q(xA − xA

′))∥2 (10)

s.t. wA · xA
′ − (−wIM · xIM) = 0 (11)

The following lemma gives us a closed-form solution for the above optimization problem:

Lemma 4. The optimal solution to the optimization problem defined in Eq. (10) and Eq. (11)

has the following closed form:

xA
∓ = xA − wTx

wA
TSwA

SwA.

Proof. Notice that the above program has the form

min
xA

′∈xA
∗

∥AxA
′ − b∥2

s.t. CxA
′ = d

where A = Λ− 1
2Q, b = Λ− 1

2QxA, C = wA
T, and d = −wIM

TxIM. Note the following useful equalities:

ATA = (Λ− 1
2Q)TΛ− 1

2Q = S−1

(ATA)−1 = S

ATb = (Λ− 1
2Q)TΛ− 1

2QxA = S−1xA

4A similar argument was made by Haghtalab et al. (2020) but here we provide a proof for a more general case, where the
objective function is to minimize a weighted norm instead of simply ∥xA − xA

′∥2.

19

Published in Transactions on Machine Learning Research (06/2023)

The above is a norm minimization problem with equality constraints, whose optimum xA
∓ has the following

closed form (Boyd & Vandenberghe, 2004):

xA
∓ = (ATA)−1

(
ATb− CT(C(ATA)−1CT)−1(C(ATA)−1ATb− d)

)
= S

(
S−1xA − wA(wA

TSwA)−1(wA
TS(S−1xA) − (−wIM

TxIM))
)

= xA − S
(
wA(wA

TSwA)−1(wA
TxA + wIM

TxIM)
)

= xA − wTx

wA
TSwA

SwA

We can now compute the cost incurred by an individual with features x who plays their best response x∓:

c(x, x∓) =
√

(xA − xA
∓)TS−1(xA − xA

∓)

=

√√√√(wTx

wA
TSwA

SwA

)T

S−1

(
wTx

wA
TSwA

SwA

)

= |wTx|√
wA

TSwA

Hence an decision subject who was classified as −1 with feature vector x has the unconstrained best response

∆(x) =

x, if |wT
x|√

wA
T
SwA

≥ 2[
xA − w

T
x

wA
T
SwA

SwA | xIM

]
, otherwise

which completes the proof of Theorem 1.

C Proofs of Propositions in Section 3.3

Notation. We make use of the following additional notation:

• v(i) denotes the i-th element of a vector v

• For any F ∈ {A, I,M}, ∆F ∈ RdF denotes the vector containing only features of type F within the best
response ∆(x).

• 0 denotes the vector whose elements are all 0

• A ≻ B indicates that matrix A−B is positive definite

• ei denotes the vector containing 1 in its i-th component and 0 elsewhere

C.1 Proof of Proposition 1

Proof. Let w(m)
M ̸= 0, and consider an decision subject with original features x who was classified as −1. By

Theorem 1, the actionable sub-vector of x’s unconstrained best response is

∆A(x) = wTx

wA
TSwA

S · wA = wTx

wA
TSwA

[
SI 0
0 SM

] [
wI
wM

]
= wTx

wA
TSwA

[
SI · wI
SM · wM

]

20

Published in Transactions on Machine Learning Research (06/2023)

And in particular,

∆M(x) = wTx

wA
TSwA

SM · wM

Since x was initially classified as −1, we have wTx < 0, which means w
T
x

wASwA
̸= 0. For convenience, let

c = w
T
x

wASwA
. We have

∆M(x) − xM = cSMwM − xM = SM(cwM − SM
−1xM)

Now examine the following:

(cwM − SM
−1xM)(m) = cw

(m)
M − (S−1

M xM)(m)

= cw
(m)
M −

dM∑
i=1

(S−1
M)(im)xM

(m)

Recall that cw(m)
M ̸= 0. Hence if

∑dM
i=1(S−1

M)(im) = 0, or if

x
(m)
M ̸=

cw
(m)
M∑dM

i=1(S−1
M)(im) ,

then (cwM −SM
−1xM)(m) ̸= 0, and therefore cwM −S−1

M xM ̸= 0. Since SM is positive definite, it has full rank,
which implies

∆M(x) − xM = SM(cwM − S−1
M xM) ̸= 0

as required. With this, we have shown that when there exists a manipulated feature x(m) whose corresponding
coefficient wA

(m) ̸= 0, the classifier is vulnerable to changes in the manipulated features by the vast majority
of decision subjects.

C.2 Proof of Proposition 2

Proof. Consider a decision subject with features x such that h(x) = −1. Suppose x can flip this classification
result by performing the improving best response ∆I(x), which implies that the cost of that action is no
greater than 2 for this decision subject. We therefore have:

2 ≥ c(x,∆I(x)) = |wTx|√
wI

TSIwI

>
|wTx|√

wI
TSIwI + wM

TSMwM

= |wTx|√
wA

TSwA

= c(x,∆(x))

where the strict inequality is due to the fact that SM ≻ 0 and wM ̸= 0. As we have shown that c(x,∆(x)) < 2,
we conclude whenever an decision subject can successfully flip her decision by the improving best response,
she can also achieve it by performing the unconstrained best response.

On the other hand, consider the case when the unconstrained best response of a decision subject with features
x∗ has cost exactly 2:

2 = c(x∗,∆(x∗)) = |wTx∗|√
wA

TSwA

= |wTx∗|√
wI

TSIwI + wM
TSMwM

<
|wTx∗|√
wI

TSIwI

= c(x∗,∆I(x
∗))

where the strict inequality is due to the fact that SM ≻ 0 and wM ̸= 0. As we have shown that c(x∗,∆I(x
∗)) > 2,

we conclude that while the unconstrained best response is viable for this decision subject, the improving best
response is not.

21

Published in Transactions on Machine Learning Research (06/2023)

C.3 Proof of Proposition 3

Proposition 7 (Correlations between Features May Reduce Cost). For any cost matrix S−1 and any
nontrivial classifier h, there exist indices k, ℓ ∈ [dA] and τ ∈ R such that every feature vector x has lower
best-response cost under the cost matrix S̃−1 given by

S̃−1
ij = S̃−1

ji =
{
S−1
ij + τ, if i = k, j = ℓ

S−1
ij , otherwise

than under S−1; that is, c
S̃

−1(x,∆(x)) < c
S

−1(x,∆(x)) for all x.

Proof. Consider any cost matrix S−1 ∈ RdA×dA and any nontrivial classifier h (i.e. h does not assign every x
the same prediction). Since S−1 is positive definite, so is its inverse S, and all of their diagonal entries are
positive. And since h is nontrivial, it must contain a nonzero coefficient wi ̸= 0. Additionally, let wj be any
other coefficient.

Let S̃−1 = S−1 + τ(eie
T
j + eje

T
i) for some constant τ ∈ R to be set later. We claim that there exists τ such

that the best-response adaptation always costs less under S̃−1 than S−1. To do so, we compute the inverse
of S̃−1 and invoke the closed-form cost expression given by Theorem 1.

To begin computing the inverse, note that by the Sherman-Morrison-Woodbury formula (Golub & Van Loan,
2013),

S̃ =
(
S̃−1

)−1
= S − τS

[
ei ej

](
I + τ

[
eT
j

eT
i

]
S
[
ei ej

])−1 [
eT
j

eT
i

]
S (12)

= S − τS
[
ei ej

](
I + τ

[
Sij Sjj
Sii Sij

])−1 [
eT
j

eT
i

]
S (13)

= S − τS
[
ei ej

] [
τ

(
1
τ
I +

[
Sij Sjj
Sii Sij

])]−1 [
eT
j

eT
i

]
S (14)

= S − τS
[
ei ej

]
τ−1

[1
τ + Sij Sjj
Sii

1
τ + Sij

]−1 [
eT
j

eT
i

]
S (15)

= S − S
[
ei ej

] [1
τ + Sij Sjj
Sii

1
τ + Sij

]
︸ ︷︷ ︸

T

−1 [
eT
j

eT
i

]
S (16)

Clearly, we can ensure that T is invertible by setting τ so that det(T) ̸= 0. But as the following lemmas show,
we can actually say much more: det(T) can be made either positive or negative, and moreover, both can be
accomplished with a choice of τ > 0 or τ < 0. This flexibility in choosing τ will become crucial later.

First, we need the following useful fact about positive definite matrices:

Lemma 5 (Off-diagonal entries of a positive definite matrix). If A ∈ Rn×n is symmetric positive definite,
then for all i, j ∈ [n],

√
AiiAjj > |Aij |.

Proof. By positive definiteness, we have, for any nonzero α, β ∈ R,

(αei + βej)
TA(αei + βej) = α2Aii + β2Ajj + 2αβAij > 0

For a choice of α = −Aij and β = Aii, we have

A2
ijAii +A2

iiAjj − 2A2
ijAii = Aii(AiiAjj −A2

ij) > 0

Since Aii > 0, we must have AiiAjj −A2
ij > 0, from which the claim follows.

22

Published in Transactions on Machine Learning Research (06/2023)

Now we can characterize the possible settings of τ and det(T):

Lemma 6 (Possible settings of τ). There exist τmax, τmin > 0 such that the following hold:

1. det(T) > 0 for any τ ∈ R such that τmax ≥ |τ | > 0.

2. det(T) < 0 for any τ ∈ R such that τmin ≤ |τ |.

Proof. To prove the first claim, note that having

det(T) =
(

1
τ

+ Sij

)2
− SiiSjj > 0

is equivalent to ∣∣∣∣1τ + Sij

∣∣∣∣ >√SiiSjj
It suffices to choose τ such that ∣∣∣∣1τ

∣∣∣∣−
∣∣Sij∣∣ >√SiiSjj

1
|τ |

>
√
SiiSjj + |Sij |

So any τ such that 0 < |τ | <
(√

SiiSjj + |Sij |
)−1 results in det(T) > 0. Analogously, for the second claim, a

sufficient condition for det(T) < 0 is that

1
|τ |

<
√
SiiSjj − |Sij |

By Lemma 5, the right-hand side is positive. Hence it suffices to pick any τ such that

|τ | >
(√

SiiSjj − |Sij |
)−1

.

With this lemma in place, we can describe the difference between the inverses of S−1 and S̃−1. Denote this
matrix by E = S − S̃. We show the following:

Lemma 7 (Difference between inverse cost matrices). The k, ℓ-th entry of E has the following form:

Ekℓ = 1
det(T)

(
E′
kℓ + 1

τ
E′′
kℓ

)
where E′

kℓ and E′′
kℓ do not depend on τ .

Proof. Assume that τ has been chosen so that det(T) ̸= 0, as Lemma 6 showed to be possible. We then have

T−1 = 1
det(T)

[1
τ + Sij −Sjj
−Sii 1

τ + Sij

]
Thus continuing from equation 16, we have

S̃ = S − 1
det(T)S

[
ei ej

] [1
τ + Sij −Sjj
−Sii 1

τ + Sij

] [
eT
j

eT
i

]
︸ ︷︷ ︸

V

S

23

Published in Transactions on Machine Learning Research (06/2023)

It can be verified that V is a dA × dA matrix whose only nonzero entries are

Vii = −Sjj , Vjj = −Sii, Vij = Vji = 1
τ

+ Sij

Next we evaluate the dA × dA matrix SV S. For any k, ℓ ∈ [dA], we have

(SV S)kℓ =
dA∑
i

′=1

dA∑
j

′=1

Ski′Vi′j′Sj′
ℓ

= SkiViiSiℓ + SkiVijSjℓ + SkjVjiSiℓ + SkjVjjSjℓ (V has four nonzero entries)
= ViiSkiSiℓ + VjjSkjSjℓ + Vij(SkiSjℓ + SkjSiℓ) (Vij = Vji)

= −SjjSkiSiℓ − SiiSkjSjℓ +
(

1
τ

+ Sij

)
(SkiSjℓ + SkjSiℓ)

= −SjjSkiSiℓ − SiiSkjSjℓ + Sij(SkiSjℓ + SkjSiℓ)︸ ︷︷ ︸
E

′
kℓ

+ 1
τ

(SkiSjℓ + SkjSiℓ)︸ ︷︷ ︸
E

′′
kℓ

which proves the claim.

We now compute the marginal best-response cost incurred due to the difference between the inverse cost
matrices, E = S − S̃. We have

wA
TEwA =

dA∑
k=1

dA∑
ℓ=1

wkwℓEkℓ

= 1
det(T)

dA∑
k=1

dA∑
ℓ=1

wkwℓ

(
E′
kℓ + 1

τ
E′′
kℓ

)
(by Lemma 7)

= 1
det(T)

dA∑
k=1

dA∑
ℓ=1

wkwℓE
′
kℓ︸ ︷︷ ︸

E
′

+ 1
τ

dA∑
k=1

dA∑
ℓ=1

wkwℓE
′′
kℓ︸ ︷︷ ︸

E
′′

By Lemma 6, there exists τ ̸= 0 such that

sign(det(T)) = −sign(E′) and sign(τ) = −sign(det(T)) · sign(E′′)

Such a choice of τ results in wA
TEwA < 0. Finally by Theorem 1, we have for all x that

c
S̃

−1(x,∆
S̃

−1(x)) = |wTx|√
wA

TS̃wA

= |wTx|√
wA

TSwA − wA
TEwA

<
|wTx|√
wA

TSwA

= c
S

−1(x,∆
S

−1(x))

which completes the proof.

C.4 Proof of Proposition 4

Proof. Let the cost covariance matrices for groups Φ and Ψ be

S−1
Ψ =

[
S−1

I 0
0 S−1

M,Φ

]
, S−1

Φ =
[
S−1

I 0
0 S−1

M,Ψ

]
Here, we see that both groups have the same cost of changing improvable features, as represented in the
cost submatrix SI

−1. However, the cost of manipulation for group Φ is higher than that of group Ψ, namely
S−1

M,Φ ≻ S−1
M,Ψ.

24

Published in Transactions on Machine Learning Research (06/2023)

We are now equipped to compare the costs for the two decision subjects:

c(xϕ,∆(xϕ)) =
|wTxϕ|√
wA

TSΦwA

= |wTx|√
wI

TSIwI + wM
T · SM,Φ · wM

c(xψ,∆(xψ)) =
|wTxψ|√
wA

TSΨwA

= |wTx|√
wI

TSIwI + wM
T · SM,Ψ · wM

Since S−1
M,Φ ≻ S−1

M,Ψ, we have SM,Φ ≺ SM,Ψ. And since wM ̸= 0, this implies 0 < wM
TSM,ΦwM < wM

T ·SM,Ψ ·wM.
As a result, c(xϕ,∆(xϕ)) > c(xψ,∆(xψ)) as required.

D Proofs and Derivations in Section 4

D.1 Proof of Proposition 5

Proof. We want to show that the standard strategic risk conditioned on an unchanged true label is upper-
bounded by the first term in our model designer’s objective, RM(h):

E
x∼D

[1[h(x∗) ̸= y] | ∆(y) = y] ≤ E
x∼D

[1(h(xM
∗) ̸= y)]

We assume that the manipulating best response is more likely to result in a positive prediction than the
unconstrained best response, given that the true labels do not change:

E
x∼D

[1[h(x∗) ̸= y] | ∆(y) = y] ≤ E
D

[1[h(xM
∗) ̸= y] | ∆M(y) = y] (17)

We therefore have:

E
x∼D

[1(h(xM
∗) ̸= y)]

= E
x∼D

[1(h(xM
∗) ̸= y) | ∆M(y) ̸= y] · Pr[∆M(y) ̸= y]

+ E
x∼D

[1(h(xM
∗) ̸= y) | ∆M(y) = y] · Pr[∆M(y) = y]

= E
x∼D

[1(h(xM
∗) ̸= y) | ∆M(y) = y] (Pr[∆M(y) = y] = 1)

≥ E
x∼D

[1(h(x∗) ̸= y) | ∆(y) = y] (by equation 17)

D.2 Proof of Proposition 6

Proof. Let D∗ be the distribution induced by deploying classifier h. By the covariate shift assumption,
PrD∗(Y = y|X = x) = PrD(Y = y|X = x). Therefore

Pr
x∼D∗

[y(x) = +1] = E
D∗

[1[y(x) = +1]]

=
∫
1[y(x) = +1] Pr

D∗
(X = x)dx

=
∫
1[y(x) = +1]PrD∗(X = x)

PrD(X = x) Pr
D

(X = x)dx

=
∫
1[y(x) = +1]ωh(x) Pr

D
(X = x)dx

=E
D

[ωh(x)1[y(x) = +1]]

25

Published in Transactions on Machine Learning Research (06/2023)

This implies

Pr
x∼D∗

[y(x) = +1] ≥ Pr
x∼D

[y(x) = +1] ⇐⇒ E
D

[(ωh(x) − 1)1[y(x) = +1]] ≥ 0 (18)

By similar reasoning, we have

Pr
x∼D∗

[h(x) = +1] = E
D∗

[1[h(x) = +1]] = E
D

[ωh(x)1[h(x) = +1]]

which implies

Pr
x∼D∗

[h(x) = +1] ≥ Pr
x∼D

[h(x) = +1] ⇐⇒ E
D

[(ωh(x) − 1)1[h(x) = +1]] ≥ 0 (19)

It is easy to verify that Ex∼D[ωh(x)] = 1, and this gives us

E
D

[(ωh(x) − 1)1[y(x) = +1]] = CovD(ωh(x),1[y(x) = +1]) (20)

E
D

[(ωh(x) − 1)1[h(x) = +1]] = CovD(ωh(x),1[h(x) = +1]) (21)

By equation 18, equation 19, and equation 20, the condition

Pr
x∼D∗

[h(x) = +1] ≥ Pr
x∼D

[h(x) = +1] ⇐⇒ Pr
x∼D∗

[y(x) = +1] ≥ Pr
x∼D

[y(x) = +1]

is equivalent to the condition

CovD(ωh(x),1[y(x) = +1]) ≥ 0 ⇐⇒ CovD(ωh(x),1[h(x) = +1]) ≥ 0

D.3 Derivations for the model designer’s objective function

Now that we have obtained a closed-form expression for both the unconstrained and improving best response
from the decision subjects, we can analyze the objective function for the model designer and the model that
would be deployed at equilibrium. Recall that the objective function for the model designer is

min
w∈Rd+1

E
x∼D

[1(h(∆M(x)) ̸= y)] + λ E
x∼D

[1(h(∆I(x)) ̸= +1)]

By Theorem 1, h(∆M(x)) has the closed form

h(∆M(x)) =
{

+1 if w · x ≥ −2
√
wM

TSMwM

−1 otherwise

= 2 · 1
[
w · x ≥ −2

√
wM

TSMwM

]
− 1

and similarly,

h(∆I(x)) = 2 · 1
[
w · x ≥ −2

√
wI

TSIwI

]
− 1

The model designer’s objective can then be re-written as follows:

Ex∼D [1[h(∆M(x)) ̸= y] + λ1[h(∆I(x)) ̸= +1]]

=Ex∼D

[
1 − 1

2(1 + h(∆M(x)) · y) + λ(1 − 1
2(1 + h(∆I(x)) · 1))

]
=Ex∼D

[
1
2(1 + λ) − 1

2h(∆M(x)) · y − λ

2h(∆I(x))
]

26

Published in Transactions on Machine Learning Research (06/2023)

Removing the constants, the objective function becomes:

min
w

Ex∼D [λ− h(∆M(x)) · y − λh(∆I(x))]

= min
w

Ex∼D

[
−
(

2 · 1
[
w · x ≥ −2

√
wM

TSMwM

]
− 1
)

· y(x) − 2λ · 1
[
w · x ≥ −2

√
wI

TSIwI

]]

Re-organizing the above equations, we can turn the model designer’s constrained optimization problem in
equation 7 into the following unconstrained problem:

min
w∈Rd

E
x∼D

[
−
(

2 · 1
[
wTx ≥ −2

√
ΩM

]
− 1
)

· y − 2λ · 1
[
wTx ≥ −2

√
ΩI

]]
(22)

The optimization problem in equation 22 is intractable since both the objective and the constraints are
non-convex. To overcome this difficulty, we train our classifier by replacing the 0-1 loss function with a convex
surrogate loss σ(x) = log

(
1

1+e−x

)
. This results in the following ERM problem:

min
w∈Rd

1
n

n∑
i=1

[
− σ

(
yi · (wTxi + 2

√
ΩM)

)
− λ · σ(wTxi + 2

√
ΩI)
]

(23)

Conditionally Actionable Features. In practice, individuals can often only change some features in either
a positive or negative direction, but not both. However, modeling this restriction on the decision subject’s
side precludes a closed-form solution. Instead, we strongly disincentivize such moves in the model designer’s
objective function. The idea is that if the model designer is punished for encouraging an illegal action, the
announced classifier will not incentivize such moves from decision subjects. The result is that decision subjects
encounter an implicit direction constraint on the relevant variables. To that end, we construct a vector
dir ∈ {−1, 0,+1}d where diri represents the prohibited direction of change for the corresponding feature xi;
that is, diri = +1 if xi should not be allowed to increase, −1 if it should not decrease, and 0 if there are no
direction constraints. We then append the following penalty term to the model designer’s objective in Eq. (7):

−η ·
d∑
i=1

max(diri · (∆(x) − x)i, 0) (24)

where η > 0 is a hyperparameter representing the weight given to this penalty term. Eq. (24) penalizes the
weights of partially actionable features so that decision subjects would prefer to move towards a certain
direction.

E Additional Related Work

Strategic Classification. There has been extensive research on strategic behavior in classification Hardt
et al. (2016a); Cai et al. (2015); Chen et al. (2018); Dong et al. (2018); Dekel et al. (2010); Chen et al.
(2020). Hardt et al. (2016a) was the first to formalize strategic behavior in classification based on a sequential
two-player game (i.e. a Stackelberg game) between decision subjects and classifiers. Since then, other similar
Stackelberg formulations have been studied Balcan et al. (2015). Dong et al. (2018) considers the setting in
which decision subjects arrive in an online fashion and the learner lacks full knowledge of decision subjects’
utility functions. More recently, Chen et al. (2020) proposes a learning algorithm with non-smooth utility
and loss functions that adaptively partitions the learner’s action space according to the decision subject’s
best responses.

Recourse. The concept of recourse in machine learning was first introduced in (Ustun et al., 2019). There,
an integer programming solution was developed to offer actionable recourse from a linear classifier. Our work
builds on theirs by considering strategic actions from decision subjects, as well as by aiming to incentivize
honest improvement. Venkatasubramanian & Alfano (2020) discusses a more adequate conceptualization and

27

Published in Transactions on Machine Learning Research (06/2023)

operationalization of recourse. Karimi et al. (2020a) provides a thorough survey of algorithmic recourse in
terms of its definitions, formulations, solutions, and prospects. Inspired by the concept of recourse, Dean et al.
(2020) develops a reachability problem to capture the ability of models to accommodate arbitrary changes
in the interests of individuals in recommender systems. Bellamy et al. (2018) builds toolkits for actionable
recourse analysis. Furthermore, Gupta et al. (2019) studies how to mitigate disparities in recourse across
populations.

Causal Modeling of Features. A flurry of recent papers have demonstrated the importance of under-
standing causal factors for achieving fairness in machine learning (Wang et al., 2019; Bhatt et al., 2020;
Bechavod et al., 2020; Miller et al., 2020; Shavit et al., 2020). Miller et al. (2020) studies distinctions between
gaming and improvement from a causal perspective. Shavit et al. (2020) provides efficient algorithms for
simultaneously minimizing predictive risk and incentivizing decision subjects to improve their outcomes in a
linear setting. In addition, Karimi et al. (2020b) develops methods for discovering recourse-achieving actions
with high probability given limited causal knowledge. In contrast to these works, we explicitly separate
improvable features from manipulated features when maximizing decision subjects’ payoffs. Our work also
broadly relates to the concept of intervention in the literature of causal inference (Eberhardt & Scheines,
2007). In our work, the actionability of a feature is always factual, meaning it is always feasible to change
those features. This is closely related to the concept of last trial in causal inference, which refers to the
interventions that one could run in the real-world (which would rule out the interventions on age) (Hernán
et al., 2022).

Incentive Design. Like our work, Kleinberg & Raghavan (2020) discusses how to incentivize decision
subjects to improve a certain subset of features. Next, Haghtalab et al. (2020) shows that an appropriate
projection is an optimal linear mechanism for strategic classification, as well as an approximate linear threshold
mechanism. Our work complements theirs by providing appropriate linear classifiers that balance accuracy
and improvement. Liu et al. (2020) considers the equilibria of a dynamic decision-making process in which
individuals from different demographic groups invest rationally, and compares the impact of two interventions:
decoupling the decision rule by group and subsidizing the cost of investment.

Algorithmic Fairness in Machine Learning. Our work contributes to the broad study of algorithmic
fairness in machine learning. Most common notions of group fairness include disparate impact Feldman
et al. (2015), demographic parity Agarwal et al. (2018), disparate mistreatment Zafar et al. (2019), equality
of opportunity Hardt et al. (2016b) and calibration Chouldechova (2017). Among them, disparities in the
recourse fraction can be viewed as equality of false positive rate (FPR) in the strategic classification setting.
Disparities in costs and flipsets are also relevant to counterfactual fairness Kusner et al. (2017) and individual
fairness Dwork et al. (2012). Similar to our work, von Kügelgen et al. (2020) also consider the intervention
cost of recourse in flipping the prediction across subgroups, investigating the fairness of recourse from a causal
perspective.

E.1 Agent’s Best Response with Partially Actionable Features

Let feature i represents those features that should only be non-increasing, and feature j represents those
features that should only be non-decreasing. Then the constraint can be represented as:

yi ≤ 0 ⇔ eT
i y ≤ 0

yj ≥ 0 ⇔ eT
j y ≥ 0

Assume that there are n− features that can only be changed negatively, and there are n+ features that can
only be changed increasingly. We can further combine those new constraints into a matrix form like Ey ≤ 0.
The other constraint can be re-written as:

wTy − b′ ≥ 0 ⇔ −wTy ≤ −b′,

28

Published in Transactions on Machine Learning Research (06/2023)

therefore the optimization problem can be rewritten as:

min 1
2y

TQy

s.t.

[
E

−wT

]
︸ ︷︷ ︸

A

y ≤
[

0
−b′

]
︸ ︷︷ ︸

b

where A is of the form:

A =

In−×n−
0 0

0 −In+×n+
0

˘˘ −wT ˘˘

(n++n−+1)×n

F Additional Experimental Details and Results

In this section, we provide additional experimental results. In particular, we provide the full results with
mean and standard deviation in Table 4.

F.1 Basic information of each dataset

Table 3: Basic information of each dataset.

Dataset Size Dimension Prediction Task
credit 20, 000 16 To predict if a person can repay their credit card loan.
adult 48, 842 14 To predict whether income exceeds 50K/yr based on

census data.
german 1, 000 26 To predict whether a person is good or bad credit risk.
spam 4601 57 To predict if an email is a spam or not.

F.2 Specific Cost Matrix

We specify the cost matrix as follows:

S−1
ij =

1, if i = j and i ∈ I
0.2, if i = j and j ∈ M
1, if the cost of changing features i

and j are negatively correlated
−1, if the cost of changing features i

and j are positively correlated
0, otherwise

We use the credit dataset as a demonstration of how we specify the non-diagonal element in the cost
matrix. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance and
SavingsAccountBalance, we assign −1 to the corresponding elements in the cost matrix S. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix.

F.3 Computing Infrastructure

We conducted all experiments on a 3 GHz 6-Core Intel Core i5 CPU. All our methods have relatively modest
computational cost and can be trained within a few minutes.

29

Published in Transactions on Machine Learning Research (06/2023)

Table 4: Performance metrics for all methods over 4 real data sets with non-diagonal cost matrix. We report
the mean and standard deviation for 5-fold cross validation. The constructive adaptation (CA) consistently
achieves a high accuracy at deployment while providing the highest improvement rates across all four datasets.

Methods
Dataset Metrics ST DF MP CA

CREDIT

test error
deploy error
improvement rate

29.52 ± 0.37
31.25 ± 0.56
46.35 ± 3.81

29.66 ± 0.40
29.66 ± 0.40
44.71 ± 4.75

29.65 ± 0.41
29.41 ± 0.32
36.76 ± 0.53

29.60 ± 0.44
29.49 ± 0.38
48.27 ± 5.50

ADULT

test error
deploy error
improvement rate

23.05 ± 0.47
38.64 ± 4.46
30.92 ± 3.31

33.55 ± 0.73
33.55 ± 0.73
60.63 ± 29.40

24.94 ± 0.52
26.85 ± 0.59
36.70 ± 1.62

27.22 ± 0.65
29.34 ± 0.45
63.79 ± 7.80

GERMAN

test error
deploy error
improvement rate

30.85 ± 0.82
33.40 ± 1.78
41.20 ± 5.77

36.10 ± 1.97
36.10 ± 1.97
42.10 ± 9.07

33.25 ± 1.44
34.60 ± 1.94
33.50 ± 2.53

34.70 ± 2.15
34.25 ± 1.78
56.10 ± 6.40

SPAMBASE

test error
deploy error
improvement rate

7.11 ± 0.52
22.40 ± 3.14

40.04 ± 13.06

10.18 ± 0.45
10.18 ± 0.45
32.46 ± 14.63

11.52 ± 0.12
12.92 ± 0.58
26.42 ± 4.80

14.37 ± 0.24
14.70 ± 0.36
43.98 ± 6.18

F.4 Results for non-diagonal cost matrix

In real life, the specification of the cost matrix might require examining the causal correlations among different
features. We consider a non-diagonal cost matrix setup based on common knowledge and describe the
rationale as below. For two feature variables that have a positive correlation, e.g., CheckingAccountBalance
and SavingsAccountBalance, we assign -1 to the corresponding elements in the cost matrix. For two feature
variables that have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we assign +1
to the corresponding elements in the cost matrix. We also note that the non-diagonal cost matrix must be
invertible under our assumption on the cost of modifying features. We provide more detailed results for each
dataset in Table 4, which shows the means and standard deviations of different metrics. Compared to the
empirical results of using a diagonal matrix, we achieve similar results with respect to the three evaluation
criteria across all four methods.

F.5 Additional Experimental Results for Non-Linear models

We also work with a three-layer neural network to validate the effectiveness of the oracle best response in
Algorithm 1. We note that the LIME program needs to learn a local linear model for each instance, which is
very time-consuming. Therefore, we downsample only 10% of data examples from the credit dataset. We
follow the same setting as the linear classifier experiments. We compare our method with the static classifier
in Table 5. We find out for this non-linear model setting, our approach has a higher improvement rate while
preventing manipulations with the deploy error 27.72% vs. 35.64%.

Table 5: Performance metrics for non-linear models.

Methods
Metrics ST CA
test error
deploy error
improvement rate

30.72%
35.64%
0.99%

30.01%
27.72%
2.97%

30

Published in Transactions on Machine Learning Research (06/2023)

F.6 Flipsets

We also construct flipsets for individuals in the german dataset using the closed-form solution Eq. (4) under
our trained classifier. The individual characterized as a “bad consumer” (−1) is supposed to decrease their
missed payments in order to flip their outcome of the classifier with respect to a non-diagonal cost matrix.
In contrast, even though the individual improves their loan rate or liable individuals, the baseline classifier
will still reject them. We also provide flipsets for conditionally actionable features on the credit dataset in
Table 7. The individual will undesirably reduce their education level when the classifier is unaware of the
partially actionable features. In contrast, the individual decreases their total overdue months instead when
the direction penalty is imposed during training. 5

Table 6: Flipset for a person denied credit by ManipulatedProof on the german dataset. The red up arrows ↑
represent increasing the values of features, while the red down arrows ↓ represent decreasing.

Feature Type Original LightTouch ManipulatedProof
LoanRateAsPercentOfIncome I 3 3 2 ↓
NumberOfOtherLoansAtBank I 1 1 1
NumberOfLiableIndividuals I 1 0 ↓ 2 ↑
CheckingAccountBalance ≥ 0 I 0 0 0
CheckingAccountBalance ≥ 200 I 0 0 0
SavingsAccountBalance ≥ 100 I 0 0 0
SavingsAccountBalance ≥ 500 I 0 0 0
MissedPayments I 1 0 ↓ 1
NoCurrentLoan I 0 0 0
CriticalAccountOrLoansElsewhere I 0 0 0
OtherLoansAtBank I 0 0 0
OtherLoansAtStore I 0 0 0
HasCoapplicant I 0 0 0
HasGuarantor I 0 0 0
Unemployed I 0 0 0
LoanDuration M 48 47 ↓ 47 ↓
PurposeOfLoan M 0 0 0
LoanAmount M 4308 4307 ↓ 4307 ↓
HasTelephone M 0 0 0
Gender U 0 0 0
ForeignWorker U 0 0 0
Single U 0 0 0
Age U 24 24 24
YearsAtCurrentHome U 4 4 4
OwnsHouse U 0 0 0
RentsHouse U 1 1 1
YearsAtCurrentJob ≤ 1 U 1 1 1
YearsAtCurrentJob ≥ 4 U 0 0 0
JobClassIsSkilled U 1 1 1
GoodConsumer - −1 +1 ↑ −1

5In this experiment, we implicitly assume that account balances reflect the agent’s true savings.

31

Published in Transactions on Machine Learning Research (06/2023)

Table 7: Flipset for an individual on Credit dataset with partially actionable features. The red up arrows ↑
represent any increasing values, while the red down arrows ↓ represent any decreasing values.

Feature Type dir Original η = 0 η = 100
EducationLevel I +1 3 2 ↓ 3
TotalOverdueCounts I 0 1 1 1
TotalMonthsOverdue I 0 1 1 0 ↓
MaxBillAmountOverLast6Months M 0 0 0 0
MaxPaymentAmountOverLast6Months M 0 0 0 0
MonthsWithZeroBalanceOverLast6Months M 0 0 0 0
MonthsWithLowSpendingOverLast6Months M 0 6 5 ↓ 6
MonthsWithHighSpendingOverLast6Months M 0 0 0 0
MostRecentBillAmount M 0 0 0 0
MostRecentPaymentAmount M 0 0 0 0
Married U 0 1 1 1
Single U 0 0 0 0
Age ≤ 25 U 0 0 0 0
25 ≤ Age ≤ 40 U 0 0 0 0
40 ≤ Age < 60 U 0 0 0 0
Age ≥ 60 U 0 1 1 1
HistoryOfOverduePayments U 0 1 1 1
NoDefaultNextMonth - - −1 +1 ↑ +1 ↑

32

	Introduction
	Related work

	Problem statement
	Preliminaries
	Background
	CA risk: minimizing error while encouraging constructive adaptation
	Ideal objective function for the decision maker
	Our proposed CA risk

	Decision subjects' best response
	Setup
	Decision subject's best response model
	Discussion

	Constructive adaptation risk minimization
	Experiments
	Setup
	Controlled experiments on synthetic dataset
	Results

	Conclusion
	Organization of the Appendix
	Proof of Theorem 1
	Proofs of Propositions in Section 3.3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Proofs and Derivations in Section 4
	Proof of Proposition 5
	Proof of Proposition 6
	Derivations for the model designer's objective function

	Additional Related Work
	Agent's Best Response with Partially Actionable Features

	Additional Experimental Details and Results
	Basic information of each dataset
	Specific Cost Matrix
	Computing Infrastructure
	Results for non-diagonal cost matrix
	Additional Experimental Results for Non-Linear models
	Flipsets

