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ABSTRACT

Function learning concerns with the search for functional relationships among
datasets. It coincides with the formulations of various learning problems, particu-
larly supervised learning problems, and serves as the prototype for many learning
models, e.g., neural networks and kernel machines. In this paper, we propose a
novel framework to tackle function learning tasks from the perspective of ensem-
ble systems and control theory. Our central idea is to generate function learning
algorithms by using flows of continuous-time ensemble systems defined on infinite-
dimensional Riemannian manifolds. This immediately gives rise to the notion
of natural gradient flow that enables the generated algorithms to tackle function
learning tasks over manifolds. Moreover, we rigorously investigate the relationship
between the convergence of the generated algorithms and the dynamics of the
ensemble systems with and without an external forcing or control input. We show
that by turning the penalty strengths into control inputs, the algorithms are able
to converge to any function over the manifold, regardless of the initial guesses,
providing ensemble controllability of the systems. In addition to the theoretical in-
vestigation, concrete examples are also provided to demonstrate the high efficiency
and excellent generalizability of these “continuous-time" algorithms compared
with classical “discrete-time" algorithms.

1 INTRODUCTION

The core challenge in numerous scientific and engineering disciplines revolves around the learning of
nonlinear functions through the utilization of parametric or nonparametric models. This is frequently
achieved by minimizing error functions across continuous, high-dimensional spaces. Such function
learning (FL) tasks are centered on the representation of relationships between input and output data,
employing continuous variable functions. For example, in supervised learning, regression analysis
is usually formulated as the search of functions in a predetermined hypothesis space of candidate
functions that most closely fit the data (Abu-Mostafa et al., 2012; Goodfellow et al., 2016b), and
classification aims at learning functions (the decision boundary) taking values on finite sets consisting
of the class labels that map each datapoint to its class. On the other hand, many learning techniques
and tools also include FL as an essential step, e.g., reinforcement learning (RL). Notably, one of the
major uses of neural networks is to approximate functions as indicated by the universal approximation
theorem, and kernel machines are designed to parameterize feature maps, those are, functions that
transform raw data to feature vectors. Following the broad scope, FL is prevalent across diverse
domains of science and engineering, ranging from system identification (Schoukens & Ljung, 2019;
Ljung, 1999; Narendra & Kannan, 1990) and RL (Sutton & Barto, 1998; Bertsekas et al., 2000; Doya,
2000) to model learning and inverse problems (Tarantola, 2005).

The fundamental concept behind FL is the generation of a sequence of function estimates, starting
from an initial approximation, that progressively approach the target function by leveraging observa-
tion data. The primary challenges in efficiently addressing this problem encompass the formulation of
an effective update (learning) rule and the selection of an appropriate initial approximation to ensure
the convergence of the sequence towards the target function. Furthermore, when the learning process
involves searching for functions defined on or constrained to manifolds, it introduces an additional
layer of complexity, particularly when gradient-based techniques are employed (see Figure 1 (b)).
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Conversely, the problem of steering nonlinear functions that take values on manifolds has been
extensively explored within the field of ensemble dynamics and control theory. This intricate problem
finds applications in various domains such as quantum control, neuromodulation, swarm robotics,
among others (Li et al., 2011). The main objective of this paper is to leverage the advancements in
ensemble dynamics and control theory to unlock fresh perspectives for tackling FL problems and to
address some of the associated challenges.

2 RELATED WORKS

(a) (b)

Figure 1: Comparison between the proposed ensemble systems-
theoretic FL and classical function leaning. In particular, for a
FL task over a manifold, the learning sequence generated by the
proposed algorithm is guaranteed to stay on the manifold (left),
while the one generated by classical learning algorithms may leave
the domain manifold (right).

Here we review relevant works in
ensemble systems (ESs) and control
theory, learning and dynamics, and
Riemannian optimization techniques.
ESs and Control. This work is pri-
marily built up on ensemble control
theory, which is related to the study
of populations of dynamical systems
(DSs). Fundamental investigations
into ensemble DS and their properties, e.g., controllability and observability, have been conducted in
series of works over the last two decades (Li, 2006; 2011; Zeng et al., 2016; Chen, 2020; Narayanan
et al., 2020). Specifically, ensemble controllability conditions have been widely studied for both
time-varying and time-invariant linear (Li, 2011; Li et al., 2020; Zeng & Allgöewer, 2016), bilinear
(Li & Khaneja, 2009; Zhang & Li, 2021), and some classes of nonlinear ESs (Kuritz et al., 2018; Li
et al., 2013).

Learning and DS. Understanding learning algorithms from the DSs perspective started from the
use of strong solutions to stochastic ordinary differential equations driven by Brownian motions to
approximate stochastic recursive algorithms (Borkar & Mitter, 1999). More recently, the connection
between control systems and certain classes of computational neural networks have been studied
in (Weinan, 2017; Haber & Ruthotto, 2017; Lu et al., 2018; He et al., 2016). In particular, these
developments view the common learning problems, such as weight identifiability from data (Albertini
& Sontag, 1993), controllability (Sontag & Sussmann, 1997; Sontag & Qiao, 1999), and stability
(Michel et al., 1989; Hirsch, 1989) of neural networks, from a DS viewpoint. In this context, function
approximation problems and the concept of universality of a class of deep residual networks were
analyzed through the lens of homogeneous ensemble DS, which relies on initial conditions of the
ensemble (Tabuada & Gharesifard, 2020; Agrachev & Sarychev, 2020). Different from the works
presented earlier (Tabuada & Gharesifard, 2020; Agrachev & Sarychev, 2020), we introduce a novel
concept that interprets the evolution of an iterative FL algorithm as the temporal propagation of an
inhomogeneous ensemble DS. The attainment of convergence towards a desired function is viewed as
the resolution of a steering problem inherent to this system. To be more precise, we demonstrate that
the dynamic characteristics of the learning algorithm can be scrutinized and understood through a
dynamically equivalent system—an inhomogeneous ensemble control system—that exhibits reduced
sensitivity to initial conditions.

Natural Gradients and Riemannian Optimization. The concept of ’natural gradient’ has facilitated
the exploration of stochastic gradient methods on statistical manifolds using information geometry
techniques (ichi Amari, 1998; Martens, 2020). In addition, for addressing challenges in semi-
supervised learning, robot learning, and optimization on finite-dimensional manifolds, Riemannian
geometry techniques have been proposed. This paper further develops these concepts within the
ensemble DS framework, expanding the notion of natural gradients to encompass infinite-dimensional
Riemannian manifolds (RMs) for FL based on manifolds.

Our Contributions. We focus on the fundamental question on how to appropriately generate FL
algorithms by using DS evolving on RMs. Namely, can we formally represent an iterative algorithm
as the time evolution of a continuous-time DS? If so, what is the relationship between the convergence
of the algorithm and the dynamics of the system, and what are the necessary and sufficient conditions
to guarantee the algorithm convergence in terms of the dynamics-related properties of the system?
We shall answer these highly non-trivial questions by making the following contributions.
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• We introduce the notion of inhomogeneous ensemble DS defined on infinite dimensional RMs, and
then use their flows to generate FL algorithms, giving rise to a dynamic FL framework.
• We characterize the convergence of FL algorithms in terms of stability and controllability of ESs.
In particular, we show that FL algorithms generated by controllable ES have the global convergence
property and are guaranteed to converge, regardless of the initial guesses.
• We integrate geometric information into ESs for FL problems over manifolds by expanding the idea
of natural gradients (ichi Amari, 1998) to develop the notion of natural gradient flow. Specifically,
it guarantees that the generated sequences of functions stay on the manifolds where the functions
learning problems are defined, as shown in Figure 1.

In addition, we provide examples to demonstrate the applicability as well as the advantages of the
proposed ensemble-system theoretic FL framework. In particular, we observe high efficiency (i.e.,
faster convergence) and excellent generalizability via incorporation of early stopping.

3 PRELIMINARIES: CONTROL OF ESS

An ES is a parameterized family of DS defined on a manifold M ✓ Rn of the form

d

dt
x(t,�) = f(x(t,�),�, u(t)), (1)

where the system parameter � takes values on ⌦ ✓ Rd, u(t) 2 Rm is the control input, and
f(·,�, u(t)) is a vector field on M for each fixed � 2 ⌦ and control input u. A canonical ensemble
control task is to design a �-independent control input u(t) that steers the whole family of systems
from an initial profile x0(�) = x(0,�) to a desired final profile xF (�) for all �. Indeed, the ensemble
state x(t,�) is a function of � defined on ⌦ so that the ES in equation 1 is a DS evolving on a space
F(⌦,M) of M -valued functions defined on ⌦.

3.1 ENSEMBLE CONTROLLABILITY

Controllability is one of the most fundamental properties of a DS, which characterizes the ability of the
control input to precisely steer a control system between any two points (states) in the state-space. For
an ES equation 1, the parameter space ⌦ is generally an infinite set so that the state-space F(⌦,M) is
an infinite-dimensional manifold; or, in another words, the system is an infinite-dimensional system.
For such a system, the aforementioned classical notion of controllability is generally too restrictive
(Triggiani, 1977). Hence, we introduce the concept of ensemble controllability to characterize the
ability to control an ES in the approximation sense.

Definition 1 (Ensemble controllability) The system in equation 1 is said to be ensemble con-
trollable on the function space F(⌦,M) if for any " > 0 and starting with any initial function
x0 2 F(⌦,M), there exist a time T > 0 and a control law u : [0, T ] ! Rm that steers the system
into an "-neighborhood of a desired target function xF 2 F(⌦,M), i.e., d(x(T, ·), xF (·)) < ",
where d : F(⌦,M)⇥ F(⌦,M) ! R is a metric on F(⌦,M).

Definition 1 shows that ensemble controllability is a notion of approximate controllability, in which
the final time T may depend on the approximation accuracy ". Moreover, the distance function d is
generally assumed to be induced by a Riemannian structure on F(⌦,M) (See Appendix A.4).

Remark 1 (Ensemble controllability and function convergence) Ensemble controllability further
conveys the idea of convergence of functions: because " > 0 is arbitrary, it is necessary that
x(T, ·) ! xF (·) as T ! 1. This is essentially a continuous-time analogue to the convergence of a
sequence of functions, e.g., generated by a learning algorithm.

4 FL FROM AN ENSEMBLE CONTROL VIEWPOINT

In this section, we develop a universal framework to transform the design of FL algorithms to that of
ensemble control laws, and rigorously establish the equivalence between convergence of learning
algorithms and ensemble controllability.
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4.1 ESS ADAPTED TO FL ALGORITHMS

The widely-used approach to learning a function is to generate a sequence of functions converging to
it. By treating the index of the sequence as time, it is natural to assume that the process of generating
the sequence follows the time-evolution of some DS. In addition, because each term in the sequence
is a function, the associated DS is necessarily an ES.

By using the same notation as in the previous section, given a function h 2 F(⌦,M) to be learned
from the initial guess h0 2 F(⌦,M), the canonical way is to generate an iterative algorithm in the
form of hk+1 = hk +�hk, k 2 N such that d(hk, h) ! 0 as k ! 1, where N denote the set of
nonnegative integers and �hk is the update rule at the k

th iteration, generally depending on the
gradient of hk. To bridge the function algorithm and an ES, we think about the case that the update
rule is generated by a flow on F(⌦,M), instead of the function �hk, as

hk+1 = �k(⌧k, hk) (2)
for each k 2 N. Of course, there are generally many choices of such flows leading to the convergence
of the sequence hk to h, and how to select the best ones depends on the functional learning problem
and will be the focus of the next section by using the technique of natural gradient. For now, we just
pick those that are sufficiently smooth, actually continuously differentiable is already enough, so that
each �k is the flow of a vector field fk, possibly only locally defined, on F(⌦,M). We then smoothly
concatenate these vector fields together, e.g., by using a partition of unity (Lang, 1999), yielding a
globally defined vector field f on F(⌦,M), whose flow � necessarily satisfies hk+1 = �(⌧k, hk)

for all k 2 N, equivalently, hk+1 = �(tk, h0) with tk =
P

k

i=0 ⌧k. This further implies that the
solution of the (unforced) ES

d

dt
x(t,�) = f(x(t,�),�) (3)

with the initial condition x(0, ·) = h0(·) satisfies x(tk, ·) = hk+1(·). In this case, we say that the ES
in equation 3 is adapted to the FL algorithm in equation 2.

As shown in the following proposition, convergence of FL algorithms generated by flows as in
equation 2 can be evaluated by stability of the adapted ESs as in equation 3.

Proposition 1 If the sequence of functions {hk}k2N in F(⌦,M) generated by the learning algorithm
in equation 2 converges to a function h 2 F(⌦,M), then there is an ES in the form of equation 3
defined on F(⌦,M) adapted to this learning algorithm such that h is an equilibrium of the system.

Proof. See Appendix A.1 ⇤
Note that Proposition 1 only demonstrates the existence of an ES being able to stabilize at the limit
point of the sequence generated by the learning algorithm, and it by no means indicates that every ES
adapted to the same algorithm has this property.

Remark 2 (FL on manifolds) Taking the ES in equation 3 as an example, as a system defined
on F(⌦,M), f is a vector field on F(⌦,M) so that the flow, equivalently, the entire sequence
of functions generated by the adapted learning algorithm in equation 2, always evolves on the
manifold F(⌦,M). However, the classical learning algorithm hk+1 = hk + �hk may result in
hk+1 62 F(⌦,M), even with hk,�hk 2 F(⌦,M), because the manifold F(⌦,M) is generally not
closed under the vector space operation “+”, which is also illustrated in Fig. 1.

4.2 DYNAMIC FL VIA ENSEMBLE CONTROL

Having established the association of stable ESs to convergent FL algorithms, in this section, we
generate FL algorithms by using ESs. According to Proposition 1, it is necessary that the ES has
an equilibrium point at the function to be learned. However, this is not sufficient to guarantee the
convergence of the learning algorithm generated by the ES to the desired function. Additionally,
the initial guess should be accurate enough in the sense of lying in the region of attraction of the
equilibrium point. These conditions together then give rise to the following converse of Proposition 1.

Proposition 2 Consider an ES defined on the function space F(⌦,M) equation 3. If h 2 F(⌦,M)
is an equilibrium point of the system and h0 2 F(⌦,M) is in the region of attraction of h, then there
is a FL algorithm generated by the ES which converges to h.
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Proof. The proof directly follows from the definition of equilibrium points of DS. ⇤
Propositions 1 and 2 give a necessary and sufficient condition for convergence of FL algorithms in
terms of stability of the adapted ESs. The requirement for the adapted ESs to have stable equilibrium
points at the desired functions imposes strong restrictions on the system dynamics. On the other hand,
the need for the initial guesses to be in the regions of attraction of the equilibrium points may lead to
sensitivity of the learning algorithms generated by these ESs to the initial guesses. To waive these
requirements, it is inevitable to force such ESs by external control inputs.

In the presence of a control input u(t), e.g., as the ensemble control system in equation 1, the FL
algorithm in equation 2 generated by the ES, more specifically the updating rule �k(⌧k, hk), also
depends on u(t). As a result, it is possible to design an appropriate u(t) to enforce the convergence
of learning algorithm to the desired function h, even though h may not be an equilibrium point of the
uncontrolled system.

Theorem 1 Given an ensemble control system defined on the function space F(⌦,M) equation 1,
for any h 2 F(⌦,M), there is a FL algorithm generated by the ES converging to h regardless of the
initial guess if and only if the system is ensemble controllable on F(⌦,M).

Proof. The idea is to interpret the concept of ensemble controllability in terms of convergence of
functions as motivated in Remark 1. See Appendix A.2 for details. ⇤
Conceptually, Theorem 1 demonstrates the potential for a novel FL algorithm design method using
ensemble control theory.

Corollary 1 For any function h 2 F(⌦,M), if the initial guess h0 2 F(⌦,M) of h is in the
controllable submanifold of the ES in equation 1 containing h, then there is a FL algorithm as in
equation 2, generated by the ES, converging to h.

Proof. Because any ES is ensemble controllable on its controllable submanifold, the proof directly
follows from Theorem 1 by restricting the ES in equation 1 to the controllable submanifold containing
h and h0. ⇤

Remark 3 (Robustness to initial guesses) Theorem 1 and Corollary 1 presented a distinctive fea-
ture of the FL algorithms generated by ensemble control systems, that is, the robustness to initial
guesses. With the ability to manipulate the “algorithm dynamics" using a control input, initial
guesses are no longer required to be close to the desired function. In particular, under the condition
of ensemble controllability, the learning algorithm converges globally; otherwise, it is sufficient to set
the initial guess on the same controllable submanifold as the target function.

On the other hand, Theorem 1 and Corollary 1 also indicate that the FL algorithm design problem
can be formulated as an ensemble control problem, which can be tackled by various well-developed
methods, such as pseudospectral (Li et al., 2011) and iterative linearization methods (Wang & Li,
2018; Zeng, 2019).

5 NATURAL GRADIENT FLOW FOR GEOMETRIC FL

The concept of natural gradient was introduced for the study of stochastic gradient methods on
statistical manifolds by leveraging information geometry techniques (ichi Amari, 1998). In this
section, we integrate this idea with ESs to study FL problems over nonlinear manifolds.

5.1 NATURAL GRADIENT FLOW SYSTEM

Conceptually, the natural gradient of a real-valued function defined on a RM is a vector field
characterizing the steepest ascent direction of the function, which generalizes the notion of gradient
in classical multivariant calculus. Adopting the same notation as in the previous sections, for a
FL problem over the, possibly infinite-dimensional, RM F(⌦,M), it usually associates with a
nonnegative loss function L : F(⌦,M) ! R, and our task is to search the space F(⌦,M) for a
function minimizing L. To find the steepest decent direction, we recall that the differential dL of L is
a 1-form on F(⌦,M) such that dL(p) · v gives the directional (Gateaux) derivative of L along the
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direction of v for any p 2 F(⌦,M) and v 2 TpF(⌦,M), the tangent space of F(⌦,M) at p (Lang,
1999). As a RM, TpF(⌦,M) is Hilbert space equipped with an inner product h·, ·i, the restriction of
the Riemannian metric on TpF(⌦,M). Then, the Resize representation theorem can be applied to
identify dL(p) with an element in TpF(⌦,M) (Folland, 2013), denoted by gradL(p). By varying
p, we then obtain a vector field gradL on F(⌦,M), which is called the natural gradient of L. By
construction, the natural gradient satisfies hgradL, V i = dL · V for any vector field V on F(⌦,M),
which then guarantees that �gradL gives the steep decent direction of L at every point in F(⌦,M)
(ichi Amari, 1998). Then, recall the FL algorithm equation 2, the best choice of the flow � will be the
flow of the vector field �gradL, and the corresponding ES d

dt
x(t,�) = �gradL(x(t,�)) is named

as the natural gradient flow system.

In practice, it is common to minimize L under some penalties Ri : F(⌦,M) ! R with i = 1, . . . ,m,
e.g., for improving the generalizability of the learning algorithm (Goodfellow et al., 2016a). In this
case, we also involve these penalty functions into the natural gradient flow system and make it a
control-affine ES defined on F(⌦,M) as

d

dt
x(t,�) = �gradL(x(t,�)) +

mX

i=1

ui(t) gradRi(x(t,�)), (4)

where the control inputs ui play the role of time-varying penalty coefficients. Note that because
the natural gradient vector fields gradL(x(t,�)) and gradRi(x(t,�)) are defined through the
Riemannian metric of F(⌦,M), the natural gradient flow system in equation 4 also documents rich
geometric information of F(⌦,M), which then generates geometry-preserving FL algorithms.

Remark 4 The most interesting and counter-intuitive part in the natural gradient flow system in
equation 4 is the role of the control vector fields played by the regulators or exploratory signals.
Contrary to regular learning algorithms in which these terms combat with loss functions, resulting
in some sacrifice for algorithm performance, our results reveal that they, serving as control vector
fields, tend to make the natural gradient flow system ensemble controllable, which in turn leads
to global convergence of the generated algorithm. Geometrically, with these penalties, the system
can be steered to, equivalently, the generated algorithm can learn, more functions (any functions if
controllable), in addition to those along the natural gradient direction of the cost function.

5.2 DYNAMIC FL FOR PARAMETERIZED MODELS

In practice, to learn a function h : ⌦ ! M , it is highly inefficient, or even impractical, to search for
the entire space of M -valued functions defined on ⌦. Fortunately, with some prior knowledge about
h, it is possible to focus the learning on a subspace F of this function space. Of particular interest, it
is common to consider the case in which functions in F can be indexed by parameters taking values
in a set ⇥. Formally, this means there is a bijective map ◆ : ⇥ ! F , which without loss of generality
can be assumed to be a diffeomorphism by giving ⇥ a smooth structure compatible with the one on
F . Consequently, the FL problem can be formulated as the search of an element ✓ 2 ⇥ such that
the function indexed by ✓ best approximates h in the sense of the loss function L̄ : ⇥ ! R, given
by L̄ = L � ◆, being minimized at ✓. Moreover, ⇥ can be made a RM as well by pulling back the
Riemannian metric on F through ◆. To be more specific, given any vector fields V and W on ⇥, we
define the pull back metric h·, ·i⇥ on ⇥ by hV,W i⇥ = hd◆ · V, d◆ ·W iF , where h·, ·iF denotes the
Riemannian metric on F . This then enables the calculation of the natural gradient vector field of L̄,
and the natural gradient flow system in equation 5 becomes a control-affine system on ⇥ as

d

dt
✓(t) = �grad L̄(✓(t)) +

mX

i=1

ui(t) grad R̄i(✓(t)), (5)

where R̄i = R � ◆ for the penalties Ri : F ! R, and the natural gradient grad is with respect to the
Riemannian structure on ⇥. Actually, by using the pull back metric, ⇥ is essentially another copy
of F as a RM so that the system in 5 is just the original system in equation 4 in the ✓-coordinates.
Therefore, all the discussion about ESs and the generated learning algorithms remains valid for the
system in equation 5.
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6 EXAMPLES AND DISCUSSIONS

Dynamic Curve Fitting. The first example is a curve fitting, and the purpose is to find a function
having the best fit to an input-output dataset. Let X = {x1, . . . , xN} ⇢ Rn and Y = {y1, . . . , yN} ⇢

R be the input and output data, respectively, and F denote some space containing functions from
Rn to R, then the curve fitting problem can be formulated as minh2F L(h) for some loss function
L : F ! R. In general, F is chosen to be a finite-dimensional vector space with a given a basis
{'i}

r�1
i=0 and the quadrantic loss L(✓) = 1

2

P
N

i=1 |yi �
P

r�1
j=0 ✓j'j(xi)|2 over ✓ = (✓0, . . . , ✓r�1)0.

In this case, the natural gradient reduces to the usual gradient, given by, gradL(✓) = H
0
H✓ �H

0
Y ,

where H 2 RN⇥r is the regressor matrix with the (i, j)-entry defined by Hij = �j(xi) and
Y = (y1, . . . , yN )0 2 RN is the data vector. This leads to the natural gradient flow system as

d

dt
✓(t) = �H

0
H✓(t) +H

0
Y, (6)

Note that the system in equation 6 is a linear system whose solution is given by the variation of
constant formula ✓(t) = e

�tH
0
H
✓(0)+

R
t

0 e
(s�t)H0

H
H

0
Y dt, where ✓(0) is the initial guess (Brockett,

2015). In general, the regressor matrix H is full rank (unless there are redundant data) so that �H
0
H

is negative-definite, and hence e
�tH

0
H

! 0 as t ! 0. This implies that the solution of the natural
gradient flow system in equation 6 converges to the solution of the regression problem regardless
of the initial guess. Moreover, the invertibility of H 0

H gives a more concrete representation of the
solution ✓(t) = e

�tH
0
H
✓(0) + (I � e

�tH
0
H)(H 0

H)�1
H

0
Y , where I 2 Rr⇥r denotes the identity

matrix. When t ! 1, ✓(t) ! (H 0
H)�1

H
0
Y , which exactly coincides the solution ✓

⇤ of the linear
regression problem, theoretically verifying the proposed ES-theoretic approach to FL.

To demonstrate the applicability of this novel approach, we would like to learn the nonlinear function
h : [�1, 1] ! R, x 7! cos(1.15⇡x) + sin(1.15⇡x) by using polynomial functions up to order 4, i.e.,
the function space F is the 5-dimensional vector space spanned by 'i(x) = x

i for i = 0, 1, . . . , 4.
To this end, we draw 20 samples x1, . . . , x20 from the uniform distribution on [-1,1] as the input data,
then perturb the values of h evaluated at these points by a 0 mean and 0.05 variance Gaussian noise �
as the output data yi = h(xi) + �, i = 1, . . . , 20. We then solve the natural gradient flow system in
equation 6 numerically for t 2 [0, 100]. The `

2-error between ✓(t) and ✓
⇤ and the cost with respect

to time are shown in Figure 2a, which rapidly converge to 0 and the minimum cost, respectively.
Moreover, in Figure 2b, we show the polynomials with coefficients ✓(t) for t = 10, 20, . . . , 100,
which clearly converge to the least square solution h

⇤ of the regression problem.

(a) (b)
Figure 2: Dynamic curve fitting by using the natural gradient flow system in equation 6 associated with
min✓2R4

P20
i=1 |yi �

P4
j=0 ✓ix

j
i |

2, and the initial condition of the system is chosen randomly from (0, 1). In
particular, (a) shows the time evolutions of the `2-error between ✓(t) and ✓⇤ (top) as well as the cost L(✓(t))
(bottom), where ✓(t) is the solution of the system and ✓⇤ is the least squares solution, and (b) illustrates the
convergence of the polynomial functions (the solid curves) with coefficients ✓(t), t = 10, 20, . . . , 100 to the
least squares solution (the dashed curve).

Now, if there is a penalty function, say R(✓) =
P

n

i=1 ✓i, then the loss function becomes L(✓) =
1
2 (Y �H✓)0(Y �H✓)+�b

0
✓, where b is the column vector whose entries are all 1. Of course, in this

case, the minimum of L(✓) is not the least squares solution anymore. However, if � can be adjusted,
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then the natural gradient flow system becomes a control system as
d

dt
✓(t) = �H

0
H✓(t) +H

0
Y � bu(t). (7)

By using the same dataset as above, we can check that the control system in equation 7 is controllable
because the controllability matrix W = [�b | H

0
Hb | �(H 0

H)2b | (H 0
H)3b | �(H 0

H)4b] is full
rank (Brockett, 2015). This says that for any desired final state, particularly the least squares solution
✓
⇤, there is a control input (time-varying penalty parameter) steering the system in equation 7 to
✓
⇤ regardless of the initial condition. Actually, in this case, the steering can be exact in finite time,

not only in the asymptotic sense, since the system is finite-dimensional. In particular, given a final
time T , we can systematically construct such a control input, e.g., u(t) = �b

0
e
H

0
Ht

W
�1(0, T )⇠,

where W (0, T ) =
R
T

0 e
H

0
Hs

bb
0
e
H

0
Hs

ds and ⇠ = e
H

0
HT

✓
⇤
�

R
T

0 e
H

0
Hs

H
0
Y ds � ✓(0). Note that

this choice of u(t) is actually the minimum energy control satisfying u(t) = argmin
v(t)

R
T

0 v
2(t)dt

over the space of all control inputs steering the system in equation 7 from ✓(0) to ✓
⇤ (Brockett, 2015).

The simulation results are shown in Figure 3, in which the `
2-error between ✓(t) and and ✓

⇤ and the
cost L(✓(t)) are shown in Figure 3a, and the minimum energy control input is shown in 3b.

Remark 5 (High efficiency of control-based FL) A comparison between Figures 2 and 3 reveals
that the controlled natural gradient flow system in equation 7 is steered to ✓

⇤ in 20 units of time,
while it costs the unforced system in equation 6 5 times of this duration, 100 units of time. This sheds
light on the high efficiency of tackling learning tasks by using control techniques. Of course, the
learning time can be further shortened, but larger amplitude of the control input should be expected.

(a) (b)
Figure 3: Dynamic curve fitting with a penalty function by using the controlled natural gradient flow system in
equation 7 associated with min✓2R4

P20
i=1 |yi �

P4
j=0 ✓ix

j
i |

2. In particular, (a) shows the time evolutions of
the `2-error between ✓(t) and ✓⇤ (top) as well as the cost L(✓(t)) (bottom), where ✓(t) is the trajectory of the
system steered by the minimum energy control shown in (b) and ✓⇤ is the least squares solution.

FL over Spaces of Discrete Probability Distributions. Leaning functions taking values on a
space of discrete probability distributions has various applications, e.g., it is essential to classification
problems. Geometrically, it can be shown that the space of discrete probability distributions, say
on a set of n elements, can be embedded into the (n � 1)-dimensional unit sphere Sn�1 = {x 2

Rn : x0
x = 1} with the Riemannian metric given by the pullback of the Euclidean inner product

on Rn. More concretely, at any point x 2 Sn�1, every tangent vector of Sn�1 is of the form
a⌦x for some n-by-n skew-symmetric matrix ⌦ and real number a so that the pull-back metric
satisfies ha1⌦1x, a2⌦2xi = a1a2x

0⌦0
1⌦2x for any ai⌦ix 2 TxSn�1. Suppose that we would like

to learn a Sn�1-valued function h defined on a compact interval K that minimizes the L
2-lossR

K
d(h(�), xF (�))d� for some xF : K ! Sn�1 under some penalties Ri =

R
K
k�⌦ih(�)kd�,

i = 1, . . . ,m, where d(·, ·) and k · k are the distance function and norm induced by the Riemannian
metric on Sn�1. Then, the natural gradient flow system is constructed as

d

dt
x(t,�) = �

h mX

i=1

ui(t)⌦i

i
x(t,�), (8)

and the learning problem can be formulated as a control problem of steering x(t, ·) to xF . To
illuminate how this gradient flow system in equation 8 works, we consider the case n = 3, m = 2
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with ⌦1 =
h
0 0 �1
0 0 0
1 0 0

i
and ⌦2 =

h
0 0 0
0 0 1
0 �1 0

i
, � 2 [0.6, 1.4], and xF = (1, 0, 0)0 the constant function.

We pick the initial condition to be the constant function x0 = (0, 0, 1)0, and apply the Fourier
series-based method to design the control inputs (See Appendix A.3 for the detail), which are shown
in Figure 4b. Steered by these control inputs, the final states, as functions of �, of the gradient flow
system in equation 8 are shown in Figure 4a, with L

2-error
� R 1.4

0.6 d(x(T,�), xF (�))d�
�1/2

= 0.78.
Moreover, Figure 4c shows that the system trajectory will never leave the unit sphere S2, equivalently,
the space of discrete probability distributions on a 3-element set, as desired. It is also worth mentioning
that the gradient flow ES in equation 8 is called the Bloch system, named after the Swiss-American
physicist Felix Bloch, which describes the dynamics of a sample of nuclear spins immersed in a static
magnetic field. Control of the Bloch system plays the fundamental role in nuclear magnetic resonance
experiments, with wide-range applications including compound structure analysis, medical imaging,
and quantum computing (Li & Khaneja, 2009; Li et al., 2011; Zhang & Li, 2015; Zhang et al., 2019).

(a) (b) (c)
Figure 4: FL over the space of discrete probability distributions with the natural gradient flow system in
equation 8, where the task is to learn the xF = (1, 0, 0)0 from the initial guess x0 = (0, 0, 1)0. In particular, (a)
shows the learned function by steering the system using the control inputs in (b), and (c) shows the trajectory of
the natural gradient system always on the sphere S2 with the red dots denoting the boundary conditions.

Remark 6 (Dynamic FL and early stopping) It is well-known in the machine learning society that
early stopping is one of the most effective ways to improve the generalizability of learning algorithms.
In the proposed ES-theoretic FL approach, early stopping can be realized by choosing a relatively
small final time for the ES-adapted to a learning algorithm. In addition, compared with the classical

“discrete-time" learning algorithms, the stopping criterion for this “continuous-time" algorithm does
not restrict to integer time, which demonstrates a great potential to reach better generalizability.

Remark 7 (Natural gradient flow and stochastic gradient decent) Recall that the main idea of
ensemble control, in addition to control of functions, is to coordinate a large population of DS by
using a common control input. Hence, this control input is guaranteed to work for any sub-population
of the ensemble. To further elaborate this from a learning perspective, e.g., by using the natural
gradient flow system in equation 4, the algorithm generated by this system is consistent with the
stochastic gradient decent.

7 CONCLUSIONS

In this paper, we propose a novel FL framework through the lens of ensemble control theory, with
the focus on FL problems over infinite-dimensional manifolds. The core idea is to generate a
learning algorithm by using the flow of an continuous-time ES. We further rigorously investigate the
relationship between the algorithm convergence and dynamics of the ES. In particular, we show that
the algorithm always converges to the equilibrium points of the system, and moreover, providing
the system is ensemble controllable, the generated algorithm can be guaranteed to converge to any
function regardless of the initial guess. One major advantage gained from the continuous-time nature
of the generated algorithm is the extraordinary ability to learn functions taking values on RMs, in
which case the geometric properties of the manifolds are integrated into the ES in terms of the natural
gradient flow. Moreover, examples are provide to demonstrate the high efficiency and excellent
generalizability of the alogorithm. Limitations. Due to the nature of FL problems, the developed
framework requires data consisting both of the values of a function and the corresponding preimages
in the domain. This implies learning algorithms generated by ESs only works for supervised learning
tasks, which indicates a limitation of this work.
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