
Under review as a conference paper at ICLR 2023

ACCELERATING FEDERATED LEARNING CONVER-
GENCE VIA OPPORTUNISTIC MOBILE RELAYING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies asynchronous Federated Learning (FL) subject to clients’ in-
dividual arbitrary communication patterns with the parameter server. We propose
FedMobile, a new asynchronous FL algorithm that exploits the mobility attribute
of the mobile FL system to improve the learning performance. The key idea is
to leverage the random client-client communication in a mobile network to cre-
ate additional indirect communication opportunities with the server via upload
and download relaying. We prove that FedMobile achieves a convergence rate
O(1√

NT
), where N is the number of clients and T is the number of communi-

cation slots, and show that the optimal design involves an interesting trade-off
on the best timing of relaying. Our analysis suggests that with an increased rate
of client-client communication opportunities, asynchronous FL converges faster
using FedMobile. Experiment results on a synthetic dataset and two real-world
datasets verify our theoretical findings.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2017) is a distributed machine learning paradigm where
a number of clients with decentralized data work collaboratively to learn a common model under
the coordination of a centralized server. The majority of FL algorithms McMahan et al. (2017);
Li et al. (2019); Khaled et al. (2020); Yang et al. (2020); Yu et al. (2019) study the synchronous
communication setting where clients can synchronize and communicate with the server periodically
and simultaneously. The communication frequency is thus a key design parameter of the FL algo-
rithm under the implicit assumption that the communication channel between the clients and the
server is always and universally available. This assumption, however, hardly holds in many real-
world systems where clients have only sporadic communication opportunities with the server, and
the communication patterns vary among the clients. For example, mobile clients (e.g., mobile de-
vices, sensors, vehicles) can communicate with the server (e.g., base stations, sensing hubs, road side
units) only when they meet the server (i.e., entering the communication range of the server). In such
mobile systems, FL must be executed asynchronously obeying clients’ individual communication
patterns with the server.

The literature on asynchronous FL is much smaller than that on its synchronous counterpart. Al-
though some insights have been derived (e.g., Avdiukhin & Kasiviswanathan (2021) proves that the
convergence rate of asynchronous FL can match that of synchronous FL under the same communi-
cation interval), the performance of asynchronous FL is significantly limited by the communication
patterns of individual clients as they are arbitrary and not an algorithm parameter. With only occa-
sional client-server meetings, asynchronous FL can converge slowly or even fail to converge.

This paper studies asynchronous FL in a mobile network setting and demonstrates that the commu-
nication patterns of the mobile clients can be “virtually” reshaped to improve the FL convergence
performance by exploiting a key attribute of the mobile FL system, namely mobility. Mobility causes
the sporadic client-server meetings but at the same time also creates (the largely neglected) commu-
nication opportunities among the clients. This latter consequence of mobility enables a client to
indirectly communicate with the server by using another client as the relay, thereby creating addi-
tional communication opportunities (both upload and download) with the server. In particular, the
client’s local model updates can be uploaded to the server sooner if the relay client meets the server
before the sending client does. Likewise, the client can receive a fresher global model from a relay

1

Under review as a conference paper at ICLR 2023

client that more recently met the server. We present a motivating example, namely FL in Vehicular
Ad Hoc Networks (VANET), in the supplementary material where the considered setting and the
assumptions made are justified.

Main Contributions. Our study starts with a simplified yet practical setting where a client is al-
lowed to use at most one upload relay communication and at most one download relay communica-
tion between any of its two consecutive meetings with the server (considering the additional cost due
to client-to-client communication). We design a new asynchronous FL algorithm with opportunistic
relaying, called FedMobile, that addresses the following key questions: (1) when to upload (down-
load) via relaying and who should be the relay? (2) how to relay the local model updates to (the
global model from) the server? We prove the convergence of FedMobile and reveal an interesting
trade-off of the best timing of relaying for both the upload and download cases, and that the mobility
improves the convergence speed of asynchronous FL. Furthermore, we extend FedMobile to allow
multiple relay communications between two consecutive server meetings. Extensive experiments
on a synthetic dataset and two real-world datasets verify our theoretical findings.

We note that this paper is focused on the theoretical understanding of the convergence speed of FL
under opportunistic mobile relays. Relaying incentives and the security issues associated with relay-
ing are orthogonal to the research topic of this paper. Nevertheless, in the supplementary material,
we also present an extension where clients manipulate data before relaying it to the server. Such data
manipulation can be used to reduce the relaying cost as well as enhance privacy during relaying.

2 RELATED WORK

FedAvg McMahan et al. (2017) uses local stochastic gradient descent (SGD) to reduce the number of
communications between the server and clients. Convergence has been analyzed for FedAvg Li et al.
(2019); Khaled et al. (2020); Yang et al. (2020); Yu et al. (2019) and its variants (e.g., momentum
variants Wang et al. (2019); Liu et al. (2020) and variance-reducing variants Konečnỳ et al. (2016);
Karimireddy et al. (2020)) in both iid and non-iid data settings. However, the majority of works on
FL study the synchronous setting and treat the communication frequency as a tunable parameter of
the algorithm.

Asynchronous distributed optimization/learning was studied in the past several years. These works
Mitliagkas et al. (2016); Hadjis et al. (2016); Chen et al. (2016); Zheng et al. (2017); Dai et al. (2018)
consider a single SGD step by the distributed nodes with iid data distributions, which are not typical
settings of FL. The literature on asynchronous FL is much smaller but different works have vastly
different focuses. For example, some existing works Chen et al. (2018); Smith et al. (2017); Nishio
& Yonetani (2019) still assume universal communication at all times and the asynchronicity is the
result of an algorithm decision rather than a constraint. Some other works van Dijk et al. (2020);
Chai et al. (2021); Chen et al. (2020); Li et al. (2021) use asynchronous model aggregation to address
the “straggler” problem encountered in synchronous FL. The asynchronous setting closest to ours
is studied in Avdiukhin & Kasiviswanathan (2021); Basu et al. (2019), which considered arbitrary
communication patterns. However, these works only considered the interaction between the server
and the clients, neglecting the interaction among clients that may be leveraged to improve the FL
performance.

Our work is remotely related to decentralized FL Lalitha et al. (2019); Zhang et al. (2021); Xing
et al. (2020) (and some hybrid FL works Guo et al. (2021)) where clients can also communicate
among themselves during the training process, typically by using a type of gossip algorithm to
exchange local model information. However, these works assume a fixed topology of clients and the
communication among the clients is still synchronous and periodic.

3 MODEL AND PRELIMINARIES

We consider a mobile FL system with one server and N mobile clients. The mobile clients work
together to train a machine learning model by solving a distributed optimization problem as follows:

min
x
f(x) =

1

N

N∑
i=1

fi(x) =
1

N

N∑
i=1

Eζi [Fi(x, ζi)] (1)

2

Under review as a conference paper at ICLR 2023

where fi : Rd → R is a non-convex loss function for client i and Fi is the estimated loss function
based on a mini-batch data sample ζi drawn from client i’s own dataset.

Mobility Model. We consider a discrete time system where time is divided into slots of equal length.
Clients move independently in a network and make contact with the server only at certain time slots.
At each time t and for each client i, let τ last

i (t) be the last time when client i meets the server by t
(including t), and τ next

i (t) be the next time when client i will meet the server (excluding t). At any
t, client i knows τ next

i (t) but may not know the future meeting times. The communication pattern
is arbitrary and different for different clients but we assume that the time interval between any two
consecutive server meetings for any client is bounded by ∆, i.e., τ next

i (t)− τ last
i (t) ≤ ∆,∀t,∀i.

Clients can also meet among themselves due to mobility. When two clients meet, they can communi-
cate with each other via, e.g., device-to-device (D2D) communication protocols Asadi et al. (2014).
For the ease of analysis, we assume that at each time t, a client can meet at most one other client (the
extension to multiple clients is straightforward). Let ρ ∈ [0, 1] be the probability of a client meeting
another client at a time slot. When ρ = 0, clients do not meet with each other, thus degenerating
to the conventional case. We assume that the client-server meetings remain unchanged regardless
of the value of ρ. Please see the use case in the supplementary material for the justification of the
system assumptions.

Asynchronous Federated Learning. Because FL cannot be executed synchronously in our setting,
we consider an asynchronous FL algorithm similar to Avdiukhin & Kasiviswanathan (2021); Basu
et al. (2019) under arbitrary communication patterns. Note, however, that client meetings due to
mobility have not come into the picture yet.

Local Model Update. For any client i, when it meets the server at t, it downloads the current global
model xt. The client then uses xti = xt as the initial model to train a new local model using its own
local dataset until it meets the server again. This is done by using a mini-batch SGD method:

xs+1
i = xsi − ηgsi ,∀s = t, ..., τ next

i (t)− 1 (2)
where gsi = ∇Fi(xsi , ζsi) is the stochastic gradient on a randomly drawn mini-batch ζsi and η is the
learning rate. Here, we assume that a client performs one step SGD at each time slot to keep the
notations simple. Let mt

i ∈ Rd be the cumulative local updates (CLU) of client i at time t since its
last meeting with the server, which is updated recursively as follows:

mt
i = ηgt−1

i , if t = τ last
i (t) + 1; mt

i = mt−1
i + ηgt−1

i , ∀t = τ last
i (t) + 2, ..., τ next

i (t) (3)

Global Model Update. At any t, let St denote the set of clients who meet the server (St may be
empty). These clients upload their CLUs to the server who then updates the global model as

xt = xt−1 − 1

N

∑
i∈St

mt
i (4)

The updated global model xt is then downloaded to each client i in St, and the client starts its local
training with a new initial model xti = xt.

4 FEDMOBILE

In the vanilla asynchronous FL described in the above section, a client can upload its CLU and
download the global model only when it meets the server. When the meeting intervals are long,
however, this information cannot be exchanged in a timely manner, thus hindering the global training
process. To overcome this issue, we take advantage of mobility and propose FedMobile that creates
indirect client-server communication opportunities, thereby improving the FL convergence speed.
In a nutshell, a client i can use another client j as a relay to upload its CLU to the server (or download
the global model from the server) if client j’s next (or last) server meeting is earlier (or later) than
client i’s. Thus, the CLU can be passed to the server sooner (or the client can train based on a fresher
global model). We call such client j an upload (or download) relay for client i.

For now, we assume that a client can only use at most one upload relay and at most one down-
load relay between any two consecutive server meetings, considering the extra cost incurred due
to the client-client communication. However, FedMobile can be easily extended (we discuss it in
The General Case section). Next, we describe separately how FedMobile handles uploading and
downloading, which are essentially the dual cases to each other.

3

Under review as a conference paper at ICLR 2023

Upload
Search Interval

𝜏𝑖
𝑙𝑎𝑠𝑡 𝜏𝑖

𝑛𝑒𝑥𝑡

𝜃

Θ

Download
Search Interval

𝜏𝑖
𝑙𝑎𝑠𝑡 𝜏𝑖

𝑛𝑒𝑥𝑡

𝜔

Ω

Figure 1: The upload/download search intervals.

4.1 UPLOADING CLU VIA RELAYING

When to upload via relaying and who should be the relay? Since a client can use the upload relay
at most once between its two consecutive server meetings, the timing of uploading via relaying is
crucial. If client i uploads too early (i.e., close to τ last

i), then the CLU has little new information
since the client has run just a few mini-batch SGD steps. If client i uploads too late (i.e., close to
τ next
i), then the CLU will be uploaded to the server late even if a relay is used. To make this balance,

FedMobile introduces a notion called upload search interval defined by two parameters θ and Θ,
where 0 ≤ θ ≤ Θ ≤ ∆ (See Fig. 1). Client i will upload its CLU via a relay only during the interval
[τ last
i + θ, τ last

i +Θ]. In addition, not every other client that client i meets during the search interval
is qualified. We say that client j is a semi-qualified upload relay if τ next

j ≤ τ last
i +Θ, i.e., client j is

able to relay client i’s CLU to the server before the end of the search interval. We further say that
client j is a qualified upload relay if in addition τ next

j < τ next
i , i.e., client j can indeed deliver the

CLU earlier than client i’s own server meeting 1. FedMobile picks the first qualified upload relay
during the search interval. Note that it is possible that no qualified upload relay is met, in which case
no uploading via relaying is performed.

How to relay the local updates to the server? FedMobile ensures that the same piece of infor-
mation is delivered to the server exactly once by devising a simple yet storage-efficient mechanism.
Upon a CLU exchange event at time t between a sender client i and a relay client j:

RESET (by sender): After sending its current CLU mt
i, sender client i resets its CLU to mt

i := 0

COMBINE (by relay): After receiving mt
i from client i, client j combines mt

j and mt
i to produce a

new mt
j , i.e., mt

j := mt
j +mt

i.

In this way, FedMobile essentially offloads the uploading task of mt
i from client i to client j, who,

by our design, has a sooner server meeting time than client i.

Remark: (1) The subsequent local training is not affected at all for both the sender and the relay.
That is, for client i (client j), gsi (gsj) will be the same for all s up to τ next

i (t) (τ next
j (t)) regardless of

the CLU exchange. (2) The relay client’s storage requirement remains the same because COMBINE
produces a CLU of the same size as before. In fact, the relay can combine multiple sender clients’
CLUs between two consecutive server meeting times (these exchanges occur at different time slots),
yet the storage requirement is the same. (3) A client can be both a sender and a relay between two
consecutive server meeting times. If a client i has already received the CLU(s) from some other
client(s) before it sends mt

i to client j, then mt
i actually also contains CLU(s) of other clients.

Remark: For higher communication efficiency and/or better privacy protection, the clients may send
an altered CLU to the relay for uploading. We discuss this extension and provide its convergence
analysis in the supplementary material.

4.2 DOWNLOADING GLOBAL MODEL VIA RELAYING

When to download via relaying and who should be the relay? Similar to the uploading CLU
case, when to download a global model via relaying also involves a trade-off. FedMobile introduces
a download search interval to make this balance, which is defined by two parameters ω and Ω,
where 0 ≤ ω ≤ Ω ≤ ∆ (see Fig. 1). Given client i’s next server meeting time τ next

i , client i will
only download a new global model via relaying during the search interval [τ next

i − Ω, τ next
i − ω].

Similarly, we say that client j is a semi-qualified download relay if τ last
j ≥ τ next

i − Ω, i.e., client j’s
global model is less than Ω time slots older than client i’s next global model directly from the server.

1It is possible that τ last
i + Θ ≥ τ next

i due to the fixed value of Θ, so a semi-qualified upload relay is not
necessarily qualified.

4

Under review as a conference paper at ICLR 2023

We further say that client j is a qualified download relay if in addition τ last
j > τ last

i , i.e., client j’s
global model is indeed fresher than client i’s current global model that it received directly from the
server. FedMobile picks the first qualified download relay during the search interval. Again, it is
possible that no qualified download relay is met, in which case no downloading via relaying occurs.

How to relay the global model to the client? To be able to relay a global model to other clients,
every client keeps a copy of the most recent global model that it received (from either the server
or another client). We denote this copy for client j by xψj(t), where ψj(t) is the time version (or
timestamp) of the global model. Upon a global model exchange at time t between a receiver client
i and a relay client j:

REPLACE (by receiver): After receiving xψj(t) from client j, client i replaces its local model with
xψi(t), i.e., xti := xψj(t), and resumes the local training steps.

Remark: (1) Client i also replaces its global model copy with xψj(t) since it is a fresher version by
our design. Thus, ψi(t) is updated to ψj(t). (2) An alternative to the current downloading scheme
is that relay client j simply sends its current local model xtj to client i, who then replaces its current
local model xti with xtj , i.e., xti := xtj . In this way, the clients do not have to keep a copy of the most
recent global model, thereby reducing the stored data. The convergence analysis is not affected by
this change and the same convergence bound can be proved (see the proof of Theorem 1).

5 CONVERGENCE ANALYSIS

Our convergence analysis will utilize the following standard assumptions.
Assumption 1 (Lipschitz Smoothness). There exists a constant L > 0 such that ∥∇fi(x) −
∇fi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd and ∀i = 1, ..., N .
Assumption 2 (Unbiased Local Gradient Estimate). The local gradient estimate is unbiased, i.e.,
EζFi(x, ζ) = ∇fi(x), ∀x and ∀i = 1, · · · , N .
Assumption 3 (Bounded Variance). There exists a constant σ > 0 such that E[∥∇Fi(x, ζi) −
∇fi(x)∥2] ≤ σ2, ∀x ∈ Rd and ∀i = 1, ..., N .
Assumption 4 (Bounded Second Moment). There exists a constant G > 0 such that
E[∥∇Fi(x, ζi)∥2] ≤ G2, ∀x ∈ Rd and ∀i = 1, ..., N .

The real sequence of the global model is calculated as

xt = x0 − 1

N

N∑
i=1

ϕi(t)∑
s=0

ηgsi , ∀t (5)

where we define ϕi(t) to be the time slot up to when all corresponding gradients of client i have been
received at time t. In the vanilla asynchronous FL case, ϕi(t) is simply τ last

i (t) − 1. In FedMobile,
typically ϕi(t) > τ last

i (t)−1 because more information can be uploaded earlier than t due to relaying.

We also define the virtual sequence of the global model, which is achieved in the imaginary ideal
case where all local gradients are uploaded to the server instantly at every slot,

vt = x0 − 1

N

N∑
i=1

t−1∑
s=0

ηgsi , ∀t (6)

First, we bound the difference (t− 1)− ϕi(t), which characterizes how much CLU information of
client i is missing compared to the virtual sequence.
Lemma 1. Assuming at least one semi-qualified upload relay client exists in every upload search
interval, then we have (t− 1)− ϕi(t) ≤ max{∆− θ,Θ} ≜ C(θ,Θ;∆),∀i = 1, ..., N,∀t.

Next, we bound the difference t − ψi(t), which characterizes the version difference between the
current global model and client i’s copy of the global model.
Lemma 2. Assuming at least one semi-qualified download relay exists in every download search
interval, we have t− ψi(t) ≤ max{∆− ω,Ω} ≜ D(ω,Ω;∆),∀i = 1, ..., N,∀t.

5

Under review as a conference paper at ICLR 2023

The following lemma then bounds the model differences in the real sequence and the virtual se-
quence.
Lemma 3. The difference of the real global model and the virtual global model is bounded as
follows

E
[
∥vt − xt∥2

]
≤ C2(δ,Θ;∆)η2G2 (7)

For each client i, the difference of its local model and the virtual global model is bounded as follows

E
[
∥vt − xti∥2

]
≤ 3(2D2(ω,Ω;∆) + C2(θ,Θ;∆))η2G2 (8)

Now, we are ready to bound the convergence of the real model sequence achieved in FedMobile.
Theorem 1. Assuming at least one semi-qualified upload (download) relay client exists in every
upload (download) search interval, by setting η ≤ 1/L, after T time slots, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 4

ηT

(
f(x0)− f∗

)
+ 4(3D2(ω,Ω;∆) + 2C2(δ,Θ;∆))L2η2G2 +

2Lησ2

N
(9)

Remark: The convergence bound established in Theorem 1 contains three parts. The first part di-
minishes as T approaches infinity. Both the second and third terms are constants for a constant η,
with the second term depending on our algorithm parameters δ, Θ, ω and Ω. For a given final step
T , one can set η =

√
N

L
√
T

so that the bound becomes

4L√
NT

(
f(x0)− f∗

)
+

4N

T
(3D2(ω,Ω;∆) + 2C2(δ,Θ;∆))G2 +

2σ2

√
NT

(10)

Furthermore, if T ≥ N3, the above bound recovers the same O(1√
NT

) convergence rate of the
classic synchronous FL Yu et al. (2019) 2. Next, we discuss the above convergence result in more
detail and investigate how the mobility affects the convergence. To this end, we consider for now
a fixed client-client meeting rate ρ, and investigate how the convergence result depends on our
algorithm parameters.

Bound Optimization. Since the convergence bound can be improved by lowering C(θ,Θ;∆) and
D(ω,Ω;∆), we first investigate them as functions of the algorithm parameters.
Proposition 1. (1) C(θ,Θ;∆) is non-decreasing in Θ and non-increasing in θ. Moreover, ∀θ,Θ,
C(θ,Θ;∆) ≥ ∆

2 , and the lower bound is attained by choosing θ = Θ = ∆
2 . (2) D(ω,Ω;∆) is

non-decreasing in Ω and non-increasing in ω. Moreover, ∀ω,Ω, D(ω,Ω;∆) ≥ ∆
2 , and the lower

bound is attained by choosing ω = Ω = ∆
2 .

Proposition 1 implies that one should use shorter search intervals, namely Θ−θ and Ω−ω, to lower
C(θ,Θ;∆) and D(ω,Ω;∆). However, the best C and D are no smaller than ∆

2 , which are achieved
by choosing θ = Θ = ∆

2 and ω = Ω = ∆
2 . In other words, a short upload search interval around

the time τ last
i + ∆

2 and a short download search interval around the time τ next
i − ∆

2 improve the FL
convergence. This suggests that the best timing for uploading is at exactly τ last

i + ∆
2 and the best

timing for downloading is at exactly τ next
i − ∆

2 , which are neither too early or too late in both cases.

Probability of Meeting a Semi-Qualified Relay. The convergence bound in Theorem 1, however, is
obtained under the assumption that a client can meet at least one semi-qualified upload (download)
relay client in each upload (download) search interval, which may not always hold. How easily a
client can find a semi-qualified relay client depends on the client-client meeting rate. In the VANET
example, this rate depends on the D2D communication range.

Let Qu(θ,Θ) (and Qd(ω,Ω)) be the probability that at least one semi-qualified uploading (down-
load) relay is met in an uploading (download) search interval with length Θ− θ (and Ω− ω). They
are characterized as follows

2There is a subtle difference because T in the asynchronous setting is the number of time slots while in the
synchronous setting T is the number of rounds. However, they differ by at most a factor of ∆.

6

Under review as a conference paper at ICLR 2023

Proposition 2. Assuming sufficiently many clients in the system and that clients meet each other
uniformly randomly. Let Pint(·) be the distribution of server meeting intervals. Then Qu(θ,Θ) =

1 −
∏Θ−θ
t=0 (1 − ρqu(Θ − θ − t)) and Qd(ω,Ω) = 1 −

∏Ω−ω
t=0 (1 − ρqd(t)), where qu(·) and qd(·)

are distributions computed based on Pint(·).

Proposition 2 states an intuitive result that one should use a larger search interval to increase the
probability of meeting a semi-qualified relay. This, however, is not desirable for lowering the con-
vergence bound according to Proposition 1. This is exactly where mobility can help improving the
FL convergence: by increasing the client-client meeting rate ρ, a shorter search interval Θ − θ (or
Ω − ω) can be used to achieve the same Qu (or Qd), but a smaller C (or D) is obtained. In fact,
by relaxing the constraint that a client can only meet one other client at a time slot, with sufficiently
many clients in the system, both Qu and Qd can approach 1 even if the search interval is just one
slot.

6 THE GENERAL CASE

FedMobile can be easily extended to allow multiple upload (download) relay communications be-
tween any two consecutive server meetings. We will still have the upload (download) search interval,
and FedMobile will simply pick the first K qualified upload (download) relays to perform the up-
load (download) relay communications. The exact mechanisms of how uploading (downloading) is
performed will be slightly changed to handle out-of-order information and avoid redundant infor-
mation. Our convergence analysis still holds correctly for this generalized case, although the bound
may become looser compared to the actual performance.

𝜏𝑖
𝑙𝑎𝑠𝑡
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

𝜏𝑖
𝑛𝑒𝑥𝑡

C
L

U
 r

ec
ei

v
ed

 (
b
y
 t

h
e

se
rv

er
) Virtual Sequence (Ideal)

Vanilla Asynchronous FL

FedMobile (Upload once)

FedMobile (Upload multiple times)

(a) Uploading
𝜏𝑖
𝑙𝑎𝑠𝑡
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

𝜏𝑖
𝑛𝑒𝑥𝑡

V
er

si
o

n
 o

f
th

e
G

M
 r

ec
ei

v
ed

 (
b

y
 t

h
e

cl
ie

n
t) Virtual Sequence (Ideal)

Vanilla Asynchronous FL

FedMobile (Download once)

FedMobile (Download multiple times)

(b) Downloading
Figure 2: Hypothetical sequences of (a) CLUs re-
ceived by the server and (b) global model received
by the client.

Figure 2 illustrates the key ideas behind Fed-
Mobile. Figure 2(a) plots hypothetical se-
quences of CLUs received by the server from
a representative client between two consecu-
tive server meetings. The virtual sequence is
the ideal case where each local stochastic gra-
dient gti is uploaded to the server instantly after
it is computed. Therefore, the received CLU
curve is a steady staircase. In the vanilla asyn-
chronous FL, the client uploads the CLU only
when it meets the server. Therefore there is a
big jump at the next server meeting time but it
is all 0 before. FedMobile with at most one up-
load relaying allows some local stochastic gra-
dient information to be received by the server earlier. The generalized FedMobile allows more CLUs
to be relayed and received by the server at earlier time slots. One can imagine that when ρ is large
enough, it becomes much easier for the client to find qualified relays that can quickly upload CLUs
to the server at every time slot. Therefore, the received CLU curve approaches that in the ideal case.
Similarly, Figure 2(b) plots the hypothetical sequence of the global models received by the client.

7 EXPERIMENTS

Datasets and Models. We conduct experiments on a synthetic dataset and two real-world datasets,
i.e., FMNIST Xiao et al. (2017) and CIFAR10 Krizhevsky et al. (2009). Synthetic dataset: The
synthetic dataset is generated on a least-squares linear regression problem. Each data sample has
a 200 dimensional feature vector and its real-valued label is calculated as the vector product of the
feature and an underlying linear weight plus a 0-mean Gaussian noise. The FL system has 50 clients
with each client having 40 data samples. FMNIST: The FL system has 50 clients with each client
having 400 data samples. The data samples are randomly allocated to the clients according to a
widely used method to generate non-i.i.d. datasets for FL Chen & Chao (2020). We use LeNet
LeCun et al. (1998) as the backbone model. CIFAR10: The FL system has 50 clients with each
client having 600 data samples. The data allocation method is the same as that used for FMNIST.
We use ResNet-9 He et al. (2016) as the backbone model.

7

Under review as a conference paper at ICLR 2023

Benchmarks. The following benchmarks are considered in our experiments. (1) ASYNC: This is
the state-of-the-art asynchronous FL method proposed in Avdiukhin & Kasiviswanathan (2021) to
handle arbitrary communication patterns. (2) Virtual-U: This method assumes that each client can
upload its local updates immediately to the server at every slot via an imaginary channel but can
only download the global model at their actual communication slots. (3) Virtual-D: This method
assumes that each client can download the global model from the server at every slot via an imagi-
nary channel but can only upload their CLUs at their actual communication slots. We also consider
several variations of FedMobile. (1) FedMobile: This is the proposed algorithm combining both
upload and download relay communications. (2) FedMobile-U: This is the proposed algorithm
with only upload relaying. (3) FedMobile-D: This is the proposed algorithm with only download
relaying.

Communication Patterns. We simulate two asynchronous communication patterns with the server.
Fixed-Interval. Client i ∈ {1, ..., 50} communicates with the server at slots i + 50n,∀n =
0, 1, 2, Random-Interval. Client i ∈ {1, ..., 50} has the first communication with the server
at slot i, and then communicates with the server with a random interval between 30 and 50 slots. For
communications among the clients, clients randomly meet with each other. Details can be found in
the supplementary material.

(a) Performance (b) Upload Search Inter. (c) Download Search In-
ter.

(d) Client Meeting rate

(e) Multiple Uploads (f) Multiple Downloads (g) Virtual Upload (h) Virtual Downloads
Figure 3: Results on the synthetic data.

Results on Synthetic Data: Fig. 3 reports the results (averaged over three repeats) on the synthetic
data with a fixed-interval communication pattern. The detailed configurations can be found in the
supplementary material. Fig. 3(a) compares FedMobile and its variations with ASYNC in terms of
the test loss. As can been seen, incorporating either upload or download relaying into asynchronous
FL improves the FL performance, and a further improvement can be achieved when uploading and
downloading are combined. Fig. 3(b)/(c) illustrates the impact of upload/download search interval
on the FL convergence. In both cases, the best search timing is around the middle point of the two
consecutive server meeting times, confirming our theoretical analysis in Theorem 1 and Proposition
1. Fig. 3(d) shows the impact of ρ on the FL convergence. As predicted by our analysis, a higher
ρ in the system improves FL convergence since more timely relay communication opportunities are
created. In Figs. 3(e)(f), we allow clients to use multiple relays to create more communication
opportunities with the server whenever possible. The results show that further improvement can
indeed be achieved. We also conduct experiments on the ideal relaying scenarios, namely Virtual-U
and Virtual-D, to illustrate what can be achieved in the ideal case. The results verify our hypothesis
that more communication opportunities with the server benefits convergence. It is also interesting
to note that virtual uploading/downloading has a more significant impact on the early/late FL slots,
suggesting that an adaptive design may better balance the FL performance and the resource cost.

Results on Real-World Datasets: We now report the results (averaged over three repeats) on real-
world datasets. Fig. 4 shows that FedMobile achieves a better convergence speed than ASYNC on
FMNIST and CIFAR10 under both the Fixed-Interval and Random-Interval settings. For a specific

8

Under review as a conference paper at ICLR 2023

example, to achieve 70% accuracy on FMNIST under the fixed-interval setting, ASYNC needs
about 178 slots while FedMobile only needs 115 slots. The required time slot decreases by 35.4%,
which demonstrates the significant improvement of FedMobile. Fig. 5 and Fig. 6 further show
the experiment results on FMNIST under the fixed-interval setting and the random-interval setting,
respectively. The results largely resemble those in the synthetic data case. In particular, Fig. 5(a)
and Fig. 6(a) demonstrate that while upload and download relay communications individually can
improve the FL convergence performance, combining them results in an additional benefit. Fig. 5
(b)(c) show that the best timing of upload and download relaying should be neither too early nor
too late. However, the difference between the three download search intervals in Fig. 5(c) is less
distinguishable. Fig. 5(d) and Fig. 6(b) show that using multiple upload relay communications
further improves the FL convergence performance. However, we observed in our experiments that
this is not the case with using multiple download relay communications. This is likely due to the
complexity of real-world datasets, which causes the assumptions for our theoretical analysis to be
violated. This represents a limitation of our current analysis and requires further investigation. We
defer related experiment results to the supplemental material. Finally, Fig. 6(c) confirms that a
higher client-client meeting rate (e.g., larger D2D communication range of mobile devices) of the
system improves the convergence of asynchronous FL with the help of FedMobile.

(a) FMNIST (Fixed) (b) FMNIST (Random) (c) CIFAR10 (Fixed) (d) CIFAR10 (Random)
Figure 4: Performance Comparison on FMNIST and CIFAR10.

(a) Upload/Download (b) Upload Search Inter. (c) Download Search In-
ter.

(d) Multiple Upload

Figure 5: Experiments on FMNIST under the Fixed-Interval setting.

(a) Upload/Download (b) Multiple Upload (c) Client Meeting Rate
Figure 6: Experiments on FMNIST under the Random-Interval setting.

8 CONCLUSION

This paper offers a new perspective on how to design asynchronous FL algorithms in practical sys-
tems where client-server communication is not always available. We advocate the role of client
mobility, and hence the resulting random client-client communication opportunities, in the timely
information exchange for the model training in asynchronous FL. The experiment results are mostly
consistent with our theoretical results and demonstrate that mobility indeed improves the conver-
gence of asynchronous FL. We believe that FedMobile can promote distributed machine learning,
especially FL, in many real-world systems such as mobile gaming, mobile sensing and smart vehic-
ular networks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017.

Arash Asadi, Qing Wang, and Vincenzo Mancuso. A survey on device-to-device communication in
cellular networks. IEEE Communications Surveys & Tutorials, 16(4):1801–1819, 2014.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary communication
patterns. In International Conference on Machine Learning, pp. 425–435. PMLR, 2021.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed
sgd with quantization, sparsification and local computations. Advances in Neural Information
Processing Systems, 32, 2019.

Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fedat: a high-
performance and communication-efficient federated learning system with asynchronous tiers. In
Proceedings of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–16, 2021.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to feder-
ated learning. In International Conference on Learning Representations, 2020.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. Lag: Lazily aggregated gradient for
communication-efficient distributed learning. Advances in Neural Information Processing Sys-
tems, 31, 2018.

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In 2020 IEEE International Conference on Big Data
(Big Data), pp. 15–24. IEEE, 2020.

Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric Xing. Toward understanding the impact of
staleness in distributed machine learning. In International Conference on Learning Representa-
tions, 2018.

Abderrahim Guerna, Salim Bitam, and Carlos T Calafate. Roadside unit deployment in internet of
vehicles systems: a survey. Sensors, 22(9):3190, 2022.

Yuanxiong Guo, Ying Sun, Rui Hu, and Yanmin Gong. Hybrid local sgd for federated learning with
heterogeneous communications. In International Conference on Learning Representations, 2021.

Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, and Christopher Ré. Omnivore: An optimizer
for multi-device deep learning on cpus and gpus. arXiv preprint arXiv:1606.04487, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

Under review as a conference paper at ICLR 2023

Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer federated
learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2019.

Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are not disaster: A hybrid federated learning
algorithm with delayed gradients. arXiv preprint arXiv:2102.06329, 2021.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momentum
gradient descent. IEEE Transactions on Parallel and Distributed Systems, 31(8):1754–1766,
2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momentum,
with an application to deep learning. In 2016 54th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pp. 997–1004. IEEE, 2016.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE international conference on communications
(ICC), pp. 1–7. IEEE, 2019.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Marten van Dijk, Nhuong V Nguyen, Toan N Nguyen, Lam M Nguyen, Quoc Tran-Dinh, and
Phuong Ha Nguyen. Asynchronous federated learning with reduced number of rounds and with
differential privacy from less aggregated gaussian noise. arXiv preprint arXiv:2007.09208, 2020.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. In International Conference on
Learning Representations, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Hong Xing, Osvaldo Simeone, and Suzhi Bi. Decentralized federated learning via sgd over wireless
d2d networks. In 2020 IEEE 21st International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), pp. 1–5. IEEE, 2020.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker partici-
pation in non-iid federated learning. In International Conference on Learning Representations,
2020.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Xueqing Zhang, Yanwei Liu, Jinxia Liu, Antonios Argyriou, and Yanni Han. D2d-assisted feder-
ated learning in mobile edge computing networks. In 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–7. IEEE, 2021.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning, pp. 4120–4129. PMLR, 2017.

11

Under review as a conference paper at ICLR 2023

A USE CASE OF FEDMOBILE

Server

Road-Side Unit
(RSU)

Backhaul
network

V2V Range

Larger V2V range
means higher client-
client meeting rate

Figure 7: Illustration of FedMobile in VANET.

In this section, we provide a motivating use case of FedMobile, which is the Vehicular Ad Hoc
Network (VANET) (See Fig. 7 for an illustration). Consider a road network where many vehicles (as
mobile clients) are moving and performing FL (e.g., for traffic prediction) using on-board computing
power. A number of road-side units (RSUs) are deployed in the road network which the vehicles
can connect to via wireless. All relevant RSUs are connected to a wired backhaul network where the
parameter server resides. In a typical deployment, the RSUs are only deployed in certain parts of the
road network (e.g., some road intersections) and do not cover the entire road network Guerna et al.
(2022). Therefore, the vehicles (clients) can communicate with the server only when they enter the
communication range of a RSU. Because vehicles (clients) have different speeds and routes, their
meeting times with servers (via the RSUs) are naturally asynchronous.

In the VANET use case, vehicles (clients) often have a pre-determined route and move at a roughly
constant speed. Thus, it is easy to calculate the next server meeting given the next RSU location
and the vehicle trajectory. If a vehicle’s moving speed is fixed, then the client-server meetings do
not change (because distances between RSUs cannot be changed). A client-client meeting occurs
if two clients enter the device-to-device communication (e.g., Wi-Fi Direct or LTE Direct) range
of each other. Thus, by increasing the communication range (e.g., by using a larger transmission
power), then more client-client meetings can occur while the client-server meetings stay the same.
Thus, ρ is a parameter that models the client-client meeting rates in this case. A smaller client-client
communication range results in a smaller ρ while a larger client-client communication range results
in a larger ρ.

Another example use case is FL for post-disaster assessment and response. Consider a post-disaster
network where the communication infrastructure is largely disrupted. To assist quick disaster as-
sessment and response, FL can be used to collect data over the disaster area and perform spatial
and temporal analysis. However, because of the disrupted communication infrastructure, mobile
clients can sedomly communicate with the server via the limited number of functioning base sta-
tions/access points. FedMobile can be used in this scenario to improve the FL convergence speed
leveraging client mobility and client-client communications.

B EXPERIMENT DETAILS

We implement FL simulation on the Pytorch framework and perform the model training on one
Geforce RTX 3080 GPU. The code files of data generation and the proposed method are attached in
the supplemental material. All experiment results are averaged over 3 repeats.

The real datasets (FMNIST and CIFAR10) which we utilized in experiment section are both public.
Both of them are licensed under MIT License.

12

Under review as a conference paper at ICLR 2023

To simulate communications among the clients, at each time slot, we uniformly sample ρN clients
over total N clients and randomly construct ρN2 client pairs. Any two clients in the same pair are
simulated to communicate.

Synthetic dataset: The synthetic dataset is generated on a least-squares linear regression problem.
Each data sample has a 200 dimensional feature vector and its real-valued target is calculated as the
vector product of the feature and an underlying linear weight plus a 0-mean Gaussian noise. The FL
system has 50 clients with each client having 40 data samples. The experiment configuration details
are shown in Table 1.

Table 1: Synthetic Dataset Setup

Hyper-parameters Values
Learning rate 0.01 (initially)
Decay rate 0.99 (until lr = 0.0001)
Train batch size 128
Test batch size 128
Number of clients 50
Each client train data 40
Communication Patterns Fixed-Interval
Number of training time slots 150
Default Upload Parameters θ = 10 , Θ = 40
Default Download Parameters ω = 5. Ω = 25

FMNIST(Fashion-MNIST): The FL system has 50 clients with each client having 400 data sam-
ples. We utilize the Dirichlet function (α = 0.3) which is typically utilized to simulate the level
of non-IID in FL. We use LeNet as the backbone model. The training configuration details are
summarized in Table 2.

Table 2: Fashion-MNIST Setup

Hyper-parameters Values
Learning rate 0.1 (initially)
Decay rate 0.99 (until lr = 0.001)
Train batch size 128
Test batch size 128
Number of clients 50
Each client train data 400
Communication Patterns Fixed/Random-Interval
Number of training time slots 250
Default Upload Parameters θ = 10 , Θ = 40
Default Download Parameters ω = 5. Ω = 25

CIFAR10: The FL system has 50 clients with each client having 600 data samples. The data
allocation method is the same as that used for FMNIST. We use ResNet-9 as the backbone model.
The architecture of ResNet-9 is given in Table 4.The training configuration details are summarized
in Table 3.

13

Under review as a conference paper at ICLR 2023

Table 3: CIFAR10 Setup

Hyper-parameters Values
Learning rate 0.01
Decay rate N/A
Train batch size 128
Test batch size 128
Number of clients 50
Each client train data 600
Communication Patterns Fixed/Random-Interval
Number of training time slots 500
Default Upload Parameters θ = 10 , Θ = 40
Default Download Parameters ω = 5. Ω = 25

Table 4: Network Architecture of ResNet-9

Layer Filter Shape Stride Output
Input N/A N/A 32× 32× 3
Conv 1 3× 3× 3× 64 1 32× 32× 64
Conv 2 3× 3× 64× 128 1 32× 32× 128
Pool 1 2× 2 2 16× 16× 128
Conv 3 3× 3× 128× 128 1 16× 16× 128
Conv 4 3× 3× 128× 128 1 16× 16× 128
Conv 5 3× 3× 128× 256 1 16× 16× 256
Pool 2 2× 2 2 8× 8× 256
Conv 6 3× 3× 256× 512 1 8× 8× 512
Pool 3 2× 2 2 4× 4× 512
Conv 7 3× 3× 512× 512 1 4× 4× 512
Conv 8 3× 3× 512× 512 1 4× 4× 512
Pool 4 4× 4 4 1× 1× 512
Softmax 512× 10 N/A 1× 1× 10

C ADDITIONAL EXPERIMENTS

C.1 VIRTUAL-U AND VIRTUAL-D

Virtual-U and Virtual-D work as the ideal cases for upload relaying and download relaying and
hence we conduct experiments to investigate their performance on the real-world dataset. Fig. 8
reports the performance of Virtual-U and Virtual-D on FMNIST with both fixed and random in-
terval communication patterns. Similar to Fig. 3(g) for the synthetic data, Figs. 8 (a)(b) show that
Virtual-U can greatly improve the convergence performance. However, different from Fig. 3(h)
for the synthetic data, Figs. 8 (c)(d) show that Virtual-D fail to converge on the real-world dataset.
We conjecture that this is likely due to the complexity of the real-world dataset where some of the
assumptions needed for our theoretical analysis do not strictly hold. However, as Figs. 5 and 6
show, using one-time download relaying still has benefits on the convergence even in the real-world
dataset.

C.2 ALTERNATIVE DOWNLOAD RELAYING SCHEME

In Section 4.2, we discussed how to relay the global model to the client. In particular, each client
has to keep a copy of the most recent global model that it received (from either the server or another
client). Therefore, when needed, the client can relay this global model to another client. We men-
tioned an alternative download relaying scheme where clients do not have to keep this copy. Instead,
the client simply performs the local training on the received global model (from either the server or
another client). When needed, the client relays this local model to another client. This way saves the
clients storage space. We also proved in Theorem 1 that this alternative download relaying scheme
achieves the same convergence bound as the original one. Here, we illustrate its performance via

14

Under review as a conference paper at ICLR 2023

(a) Virtual-U (Fixed) (b) Virtual-U (Random) (c) Virtual-D (Fixed) (d) Virtual-D (Random)

Figure 8: Virtual-U and Virtual-D on FMNIST.

(a) Alternative download (Fixed) (b) Alternative download (Random)

Figure 9: Alternative download relay scheme.

experiments in Fig. 9. As we can see, the alternative download relaying scheme still outperforms
ASYNC.

C.3 DOWNLOAD TIME EFFECT

In FMNIST experiments, the difference between three download search interval is not obvious. To
better show the impact of download relaying timing, we consider an ideal scenario where each client
can virtually download the global model 1/30/49 time slot(s) after its last communication with server.
The result in Fig. 10 clearly shows that the best timing of download relaying should be neither too
early nor too late.

C.4 CLIENT-CLIENT MEETING RATE

Fig. 6(d) shows the effect of client-client meeting rate under the random-interval communication
pattern. Here, we provide the experiment results under the fixed-interval pattern. Fig. 11 shows that
the higher client-client meeting rate improves the convergence performance.

C.5 DIFFERENT INTERVAL LENGTH AND NUMBER OF CLIENTS

To further validate the proposed method FedMobile, we run additional experiments with different
interval length/number of clients. In Fig. 12, holding other training settings unchanged, we extend
the fixed-interval to 70 time slots and update FedMobile’s parameters (θ = 20,Θ = 60, ω =
10,Ω = 30). In Fig. 13, we increase the number of clients to 100. Both results validate that our
proposed method can outperform the baseline method.

C.6 EXPONENTIALLY DISTRIBUTED SERVER MEETING INTERVALS

We consider the client communication pattern where the server meeting intervals are exponentially
distributed with mean being 30 time slots. In addition, we assume that the distribution is truncated

15

Under review as a conference paper at ICLR 2023

Figure 10: Download Time Effect Figure 11: Client-client Meeting Rates (Fixed)

Figure 12: Fixed-interval = 70 Figure 13: With 100 clients Figure 14: Exponentially dis-
tributed interval (Mean = 30,
Truncated at 80)

(maximum is 80 time slots) so that the intervals between consecutive server meetings are bounded.
We consider both the case where the next server meeting time is known to the clients and the case
where the next server meeting time is unknown. In the latter case, the expected value of the expo-
nential distribution is used to estimate their next server meeting time. Fig. 14 shows that FedMobile
can still outperform the baseline under exponentially distributed server meeting intervals.

D PROOFS

D.1 PROOF OF LEMMA 1

It is obvious that if the server meeting time interval τ next
i (t) − τ last

i (t) ≤ Θ, then (t − 1) − ϕi(t) =
t − τ last

i (t) ≤ Θ already holds. Otherwise, for all t ≤ τ last
i (t) + Θ, then (t − 1) − ϕi(t) =

t− τ last
i (t) ≤ Θ also holds. Thus, we only need to consider the case τ next

i (t)− τ last
i (t) > Θ and for

time slot t > τ last
i (t) + Θ. In this case, a semi-qualified relay client is also a qualified relay client

because

τ last
i (t) + Θ < τ next

i (t) (11)

By the assumption that at least one semi-qualified relay exists in the search interval, at least one
qualified relay must exist. This further implies that the qualified relay client is able to upload a CLU
before t. Because this CLU contains gradients of client i for at least θ steps since τ last

i (t), we have
ϕi(t) ≥ τ last

i (t) + θ − 1. Therefore,

(t− 1)− ϕi(t) =
(
t− τ last

i (t)
)
+
(
τ last
i (t)− ϕi(t)− 1

)
≤ ∆− θ (12)

To summarize the above cases, (t− 1)− ϕi(t) ≤ max{∆− θ,Θ} is established.

D.2 PROOF OF LEMMA 2

Let t′ be the meeting time between receiver client i and relay client j. Clearly, τ next
i −Ω ≤ τ last

j (t) ≤
t′ ≤ τ next

i − ω by the definition of the search interval.

16

Under review as a conference paper at ICLR 2023

For t ≤ t′, client i has not met client j yet, so ψi(t) = τ last
i (t). Therefore,

t− ψi(t) = t− τ last
i (t) ≤ t′ − τ last

i (t) ≤ τ next
i (t)− ω − τ last

i (t) ≤ ∆− ω (13)

For t > t′, client i has met client j, so ψi(t) ≥ τ last
j (t). Therefore,

t− ψi(t) ≤ t− τ last
j (t) ≤ t− (τ next

i (t)− Ω) ≤ Ω (14)

To sum up, t− ψi(t) ≤ max{∆− ω,Ω}

D.3 PROOF OF LEMMA 3

Consider any time t, by the definition of virtual and real sequences, we have

E
[
∥vt − xt∥2

]
= E

∥∥∥∥∥∥ 1

N

N∑
i=1

t−1∑
s=ϕi(t)

ηgsi

∥∥∥∥∥∥
2
 (15)

≤η
2

N

N∑
i=1

E

∥∥∥∥∥∥

t−1∑
s=ϕi(t)

gsi

∥∥∥∥∥∥
2
 ≤ η2

N

N∑
i=1

((t− 1)− ϕi(t))
2G2 (16)

≤C2(θ,Θ;∆)η2G2 (17)

where the first ≤ is due to the Cauchy-Schwarz inequality, the second ≤ is due to both the Cauchy-
Schwarz inequality and Assumption 4, and the last ≤ is due to Lemma 1.

Consider client i at any time t with the global model version ψi(t). Therefore client i is doing the
local training steps using the global model xψi(t) as the initial model. Thus, we use xψi(t) as the
anchor model to investigate the difference between vt and xti.

E
[∥∥vt − xti

∥∥2] = E
[∥∥∥vt − vψi(t) + vψi(t) − xψi(t) + xψi(t) − xti

∥∥∥2] (18)

≤3E
[∥∥∥vt − vψi(t)

∥∥∥2 + ∥∥∥vψi(t) − xψi(t)
∥∥∥2 + ∥∥∥xψi(t) − xti

∥∥∥2] (19)

≤3

E

∥∥∥∥∥∥ 1

N

N∑
i=1

t−1∑
s=ψi(t)

ηgsi

∥∥∥∥∥∥
2
+ E

[∥∥∥vψi(t) − xψi(t)
∥∥∥2]+ E

[∥∥∥xt′i − xti

∥∥∥2]
 (20)

≤3

E

∥∥∥∥∥∥ 1

N

N∑
i=1

t−1∑
s=ψi(t)

ηgsi

∥∥∥∥∥∥
2
+ E

[∥∥∥vψi(t) − xψi(t)
∥∥∥2]+ E

[∥∥∥xψi(t)
i − xti

∥∥∥2]
 (21)

≤3
(
D2(ω,Ω;∆)η2G2 + C2(θ,Θ;∆)η2G2 +D2(ω,Ω;∆)η2G2

)
(22)

=3(2D2(ω,Ω;∆) + C2(θ,Θ;∆))η2G2 (23)

Note that t− t′ ≤ t− ψi(t) always holds. If the client i has not met its download relay, t′ = ψi(t).
Otherwise (the client i has met its download relay), t′ is the meeting time and therefore, t′ > ψi(t).
Note that this bound holds even if a relay client j simply sends its local model xsj to the client i at
some time t ≤ ψ(t) ≤ s ≤ t.

D.4 PROOF OF THEOREM 1

We first analyze the convergence of the virtual global model sequence. By the smoothness of f(x)
(Assumption 1), we have

E[∥f(vt+1)∥] ≤ E[∥f(vt)∥] + E[⟨∇f(vt), vt+1 − vt⟩] + L

2
E[∥vt+1 − vt∥2] (24)

17

Under review as a conference paper at ICLR 2023

The second term on the right-hand side of equation 24 can be expressed as follows,
E[⟨∇f(vt), vt+1 − vt⟩] (25)

=− ηE[⟨∇f(vt), 1
N

N∑
i=1

gti⟩] = −ηE[⟨∇f(vt), 1
N

N∑
i=1

∇fi(xti)⟩] (26)

=− η

2
E

∥∇f(vt)∥2 + ∥ 1

N

N∑
i=1

∇fi(xti)∥2 − ∥∇f(vt)− 1

N

N∑
i=1

∇fi(xti)∥2
 (27)

=− η

2
E
[
∥∇f(vt)∥2

]
− η

2
E

∥ 1

N

N∑
i=1

∇fi(xti)∥2
+

η

2
E

∥∇f(vt)− 1

N

N∑
i=1

∇fi(xti)∥2

(28)

The third term on the right-hand side of equation 24 can be bounded as follows,

L

2
E[∥vt+1 − vt∥2] = Lη2

2
E

∥ 1

N

N∑
i=1

gti∥2
 (29)

=
Lη2

2
E

∥ 1

N

N∑
i=1

(gti −∇fi(xti))∥2
+

Lη2

2
E

∥ 1

N

N∑
i=1

∇fi(xti)∥2
 (30)

=
Lη2

2N2

N∑
i=1

E
[
∥gti −∇fi(xti)∥2

]
+
Lη2

2
E

∥ 1

N

N∑
i=1

∇fi(xti)∥2
 (31)

≤Lη
2σ2

2N
+
Lη2

2
E

∥ 1

N

N∑
i=1

∇fi(xti)∥2
 (32)

Substituting these into equation 24 yields
E[∥f(vt+1∥] (33)

≤E[∥f(vt)∥]− η

2
E
[
∥∇f(vt)∥2

]
− η − Lη2

2
E

∥ 1

N

N∑
i=1

∇fi(xti)∥2

+
η

2
E

∥∇f(vt)− 1

N

N∑
i=1

∇fi(xti)∥2
+

Lη2σ2

2N
(34)

≤E[∥f(vt)∥]− η

2
E
[
∥∇f(vt)∥2

]
+
η

2
E

∥∇f(vt)− 1

N

N∑
i=1

∇fi(xti)∥2
+

Lη2σ2

2N
(35)

≤E[∥f(vt)∥]− η

2
E
[
∥∇f(vt)∥2

]
+

η

2N

N∑
i=1

E
[
∥∇f(vt)−∇fi(xti)∥2

]
+
Lη2σ2

2N
(36)

≤E[∥f(vt)∥]− η

2
E
[
∥∇f(vt)∥2

]
+
ηL2

2N

N∑
i=1

E
[
∥vt − xti∥2

]
+
Lη2σ2

2N
(37)

≤E[∥f(vt)∥]− η

2
E
[
∥∇f(vt)∥2

]
+ (3D2(ω,Ω;∆) + 1.5C2(θ,Θ;∆))L2η3G2 +

Lη2σ2

2N
(38)

Dividing both sides by η
2 and rearranging the terms, we have

E
[
∥∇f(vt)∥2

]
≤ 2

η

(
E[∥f(vt)∥]− E[∥f(vt+1∥]

)
+ 3(2D2(ω,Ω;∆) + C2(δ,Θ;∆))L2η2G2 +

Lησ2

N
(39)

18

Under review as a conference paper at ICLR 2023

Taking the sum over t = 0, 1, ..., T − 1 and dividing both sides by T , we have

1

T

T−1∑
t=0

E
[
∥∇f(vt)∥2

]
(40)

≤ 2

ηT

(
E[∥f(v0)∥]− E[∥f(vT ∥]

)
+ 3(2D2(ω,Ω;∆) + C2(δ,Θ;∆))L2η2G2 +

Lησ2

N
(41)

≤ 2

ηT

(
f(x0)− f∗

)
+ 3(2D2(ω,Ω;∆) + C2(δ,Θ;∆))L2η2G2 +

Lησ2

N
(42)

where f∗ = minx f(x). Now, for the real sequence, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
(43)

≤ 1

T

T−1∑
t=0

(2E
[
∥∇f(vt)∥2

]
+ 2E

[
∥∇f(vt)−∇f(xt)∥2

]
) (44)

≤ 1

T

T−1∑
t=0

(2E
[
∥∇f(vt)∥2

]
+ 2L2E

[
∥vt − xt∥2

]
) (45)

≤ 2

T

T−1∑
t=0

E
[
∥∇f(vt)∥2

]
+ 2C2(δ,Θ;∆)L2η2G2 (46)

Substituting the bound on the virtual sequence into the above equation, we have,

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 4

ηT

(
f(x0)− f∗

)
+ 4(3D2(ω,Ω;∆) + 2C2(δ,Θ;∆))L2η2G2 +

2Lησ2

N
(47)

This completes the proof.

D.5 PROOF OF PROPOSITION 2

Let πu(s) be the fraction of clients whose next server meeting time is in s time slots. For sufficiently
many clients, the distribution πu = [πu(0) πu(1) ... πu(∆)] is time-invariant and can be calculated
by solving the stationary distribution of a Markov chain that describes the client state in terms of the
remaining server meeting time. Specifically, πu is the solution to

πu

0 Pint(1) Pint(2) ... Pint(∆)
1 0 0 · · · 0
0 1 0 · · · 0
...

.
...

0 · · · 0 1 0

 = πu (48)

Furthermore, we let qu(t) =
∑t
s=0 πu(s) be the cumulative distribution function. Suppose in the

(t+1)-th slot in the upload search interval, a client is met. The probability that this client is a semi-
qualified upload relay is qu(Θ − θ − t). Therefore, the probability that no semi-qualified upload
client is met in the (t + 1)-th slot is 1 − ρqu(Θ − θ − t). The probability that no semi-qualified
upload relay client is met during the entire upload search interval is thus

∏Θ−θ
t=0 (1− ρq(Θ− θ− t)).

Similarly, let πd(s) be the fraction of clients whose last server meeting time was s time slots ago.
The invariant distribution can be solved according to another Markov chain as

πd

0 1 0 ... 0

P ′
int(1) 0 1− P ′

int(1) · · · 0
P ′

int(2) 0 0 · · · 0
...

.
...

P ′
int(∆) · · · 0 0 1− P ′

int(∆)

 = πd (49)

19

Under review as a conference paper at ICLR 2023

where P ′
int(t) = Pint(t)∑∆

s=t Pint(s)
. Let qd(t) =

∑t
s=0 πd(s) be the cumulative distribution function.

Suppose in the t-th slot in the download search interval, a client is met. The probability that this
client is a semi-qualified download relay is qd(t). Therefore, the probability that no semi-qualified
download client is met in the t-th slot is 1−ρqd(t). The probability that no semi-qualified download
relay client is met during the entire download search interval is thus

∏Ω−ω
t=0 (1− ρqd(t)).

Finally, the probabilities of meeting at least one semi-qualified relay are obtained.

E RELAYING MANIPULATED CLU

In this section, we present an extension of FedMobile where clients upload manipulated CLUs via
relaying. The manipulation operations can be either quantization/compression (in order to reduce
the relayed data size) or perturbation (in order to add privacy protection). To avoid confusions, we
let nti denote the cumulative gradient update of client i’s own, which is not combined with any CLUs
received from other clients. We call nti the private-CLU of client i.

In general, there is a difference between the CLUs before and after manipulation. We denote this
difference by ϵti. In the case of quantization, a quantized private-CLU is used for relaying. Therefore,
the difference is ϵti = Q(nti)−nti where Q(·) is the quantizer operator. In the case of perturbation, a
noise ϵti is directly added to nti to create a noisy CLU nti + ϵti for relaying. To facilitate presentation,
we call ϵti noise in both cases.

When to upload via relaying and who should be the relay? This is the same as the original
FedMobile strategy.

How to relay the local updates to the server? Upon a CLU exchange event at time t between a
sender client i and a relay client j:

RESET (by sender): Before sending the CLU to the relay client j, the sender client first records the
noise ϵti. Then the manipulated CLU, i.e., m̃t

i = mt
i + ϵti, is sent to the relay. The sender then resets

its CLU to mt
i := −ϵti and its private-CLU to nti := 0.

COMBINE (by relay): After receiving m̃t
i from client i, client j combines mt

j and m̃t
i to produce a

new mt
j , i.e., mt

j := mt
j + m̃t

i.

In this way, the server could get the client i’s manipulated CLU sooner. Then the manipulated CLU
will later be corrected when the client i meets the server.

E.1 CONVERGENCE ANALYSIS

In this subsection, we prove the convergence of FedMobile with manipulated CLU uploading. We
first state an additional assumption on the noise term ϵti.
Assumption 5 (Bounded Error). The noise term ϵi is bounded, i.e., E[∥ϵti∥2] ≤ qE[∥nti∥2], ∀i =
1, ..., N , ∀t for some positive real constant q.

The corrupted real sequence of the global model can be written as

x̃t = xt +
1

N

∑
i∈Ut

ϵi, ∀t (50)

where we define Ut as the set of clients for whom only corrupted CLUs have been received by the
server via the relay, and |Ut| is the size of Ut. The real sequence xt is the imaginary real sequence
where the noise is not added.
Lemma 4. The difference of the corrupted real global model and the virtual global model is bounded
as follows

E
[
∥vt − x̃t∥2

]
≤ 2C2(δ,Θ;∆)η2G2 + 2qΘ2η2G2 (51)

For each client i, the difference of its local model and the virtual global model is bounded as follows

E
[
∥vt − xti∥2

]
≤ 6(D2(ω,Ω;∆) + C2(θ,Θ;∆) + qΘ2)η2G2 (52)

20

Under review as a conference paper at ICLR 2023

Proof: Consider any time t, let t′i be the meeting time of client i and its relay, by the definition of
corrupted real sequence, we have

E
[
∥vt − x̃t∥2

]
= E

[
∥vt − xt + xt − x̃t∥2

]
(53)

≤2E
[
∥vt − xt∥2

]
+ 2E

[
∥xt − x̃t∥2

]
(54)

≤2C2(δ,Θ;∆)η2G2 + 2E

∥ 1

N

∑
i∈Ut

ϵi∥2
 (55)

≤2C2(δ,Θ;∆)η2G2 +
2

N2
|Ut|

∑
i∈Ut

E
[
∥ϵi∥2

]
(56)

≤2C2(δ,Θ;∆)η2G2 +
2q

N2
|Ut|

∑
i∈Ut

E[∥nti∥2] (57)

≤2C2(δ,Θ;∆)η2G2 +
2q

N2
|Ut|

∑
i∈Ut

E[∥
t′i−1∑

s=τ last
i (t)

ηgsi ∥2] (58)

≤2C2(δ,Θ;∆)η2G2 +
2qΘη2

N2
|Ut|

∑
i∈Ut

t′i−1∑
s=τ last

i (t)

E[∥gsi ∥2] (59)

≤2C2(δ,Θ;∆)η2G2 +
2qΘη2

N2
|Ut|

∑
i∈Ut

t′i−1∑
s=τ last

i (t)

G2 (60)

≤2C2(δ,Θ;∆)η2G2 +
2qΘ2η2

N2
|Ut|2G2 (61)

≤2C2(δ,Θ;∆)η2G2 + 2qΘ2η2G2 (62)

Similar to the proof of Lemma 3, consider client i at any time t with the global model version ψi(t).
Therefore client i is doing the local training steps using the global model xψi(t) as the initial model.
Thus, we use xψi(t) as the anchor model to investigate the difference between vt and xti.

E
[∥∥vt − xti

∥∥2] (63)

=E
[∥∥∥vt − vψi(t) + vψi(t) − x̃ψi(t) + x̃ψi(t) − xti

∥∥∥2] (64)

≤3E
[∥∥∥vt − vψi(t)

∥∥∥2 + ∥∥∥vψi(t) − x̃ψi(t)
∥∥∥2 + ∥∥∥x̃ψi(t) − xti

∥∥∥2] (65)

≤3E

∥∥∥∥∥∥ 1

N

N∑
i=1

t−1∑
s=ψi(t)

ηgsi

∥∥∥∥∥∥
2
+ 3E

[∥∥∥vψi(t) − x̃ψi(t)
∥∥∥2]+ 3E

[∥∥∥xt′i − xti

∥∥∥2] (66)

≤3E

∥∥∥∥∥∥ 1

N

N∑
i=1

t−1∑
s=ψi(t)

ηgsi

∥∥∥∥∥∥
2
+ 3E

[∥∥∥vψi(t) − x̃ψi(t)
∥∥∥2]+ 3E

[∥∥∥xψi(t)
i − xti

∥∥∥2] (67)

≤3D2(ω,Ω;∆)η2G2 + 6C2(δ,Θ;∆)η2G2 + 6qΘ2η2G2

+ 3D2(ω,Ω;∆)η2G2 (68)

=6(D2(ω,Ω;∆) + C2(θ,Θ;∆) + qΘ2)η2G2 (69)

Theorem 2. With manipulated CLU uploading, assuming at least one semi-qualified upload (down-
load) relay client exists in every upload (download) search interval, by setting η ≤ 1/L, after T

21

Under review as a conference paper at ICLR 2023

time slots, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 4

ηT

(
f(x0)− f∗

)
+ 4(3D2(ω,Ω;∆) + 4C2(δ,Θ;∆) + 4qΘ2)L2η2G2 +

2Lησ2

N
(70)

Proof: The proof of Theorem 2 follows the proof of Theorem 1 by replacing Lemma 3 with Lemma
4.

Figure 15: Privacy Experiment Figure 16: Quantization Experiment

E.2 EXPERIMENT RESULTS

We test two types of manipulation. In the first type, we directly add Gaussian noises to the relayed
CLU. Fig. 15 shows the convergence curves under different amount of noises. (e.g. Gaussian Noise
N1(0, 0.01) and Gaussian Noise N2(0, 0.001)). In the second type, we utilize the low precision
quantizer in Alistarh et al. (2017) to quantize the CLU before relaying. Here the quantization level
is defined as s. Fig. 16 shows the convergence curves under different quantization levels. In both
cases, FedMobile still outperforms the baseline method provided that the added noise is small or the
adopted quantization level is low.

22

	Introduction
	Related Work
	Model and Preliminaries
	FedMobile
	Uploading CLU via Relaying
	Downloading Global Model via Relaying

	Convergence Analysis
	The General Case
	Experiments
	Conclusion
	Use Case of FedMobile
	Experiment Details
	Additional Experiments
	Virtual-U and Virtual-D
	Alternative Download Relaying Scheme
	Download Time Effect
	Client-Client Meeting Rate
	Different Interval Length and Number of Clients
	Exponentially Distributed Server Meeting Intervals

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Proposition 2

	Relaying Manipulated CLU
	Convergence Analysis
	Experiment Results

