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Abstract
We introduce GEDI, a Bayesian framework that
combines existing self-supervised learning ob-
jectives with likelihood-based generative models.
This framework leverages the benefits of both
GEnerative and DIscriminative approaches, re-
sulting in improved symbolic representations over
standalone solutions. Additionally, GEDI can be
easily integrated and trained jointly with exist-
ing neuro-symbolic frameworks without the need
for additional supervision or costly pre-training
steps. We demonstrate through experiments on
real-world data, including SVHN, CIFAR10, and
CIFAR100, that GEDI outperforms existing self-
supervised learning strategies in terms of clustering
performance by a significant margin. The symbolic
component further allows it to leverage knowledge
in the form of logical constraints to improve per-
formance in the small data regime and to overcome
the problem of representational collapse.

1 Introduction
Imagine that we want to create a system capable of discov-
ering symbols and relationships from both data and exist-
ing knowledge, whenever it is available. Neuro-symbolic
learning represents a promising solution for achieving this
goal [Garcez et al., 2022]. However, current neuro-symbolic
solutions rely on either expensive pre-training strategies or
additional supervision to effectively make use of the training
feedback provided by the symbolic component [Manhaeve et
al., 2021]. In this work, we highlight that these limitations
are caused by the existence of trivial minima in the training
objective landscape. One example of such a problem is what
we call ”representational collapse”.

To illustrate this problem, let us consider a simple yet non-
trivial example. Suppose that we have only raw data, in the
form of a tuple of three images, each containing a single
handwritten digit (e.g. < , , >), along with informa-
tion about the logical relationships between these digits (e.g.
the third digit is the sum of the first two). Notably, this ex-
ample is more fundamental and different than the traditional
digit addition task (i.e. + = 8) used to evaluate com-
mon neuro-symbolic systems, because no information about

Figure 1: The problem of representational collapse.

the value of the sum is provided. Importantly, existing neuro-
symbolic solutions that do not leverage pre-training or addi-
tional supervision fail to represent the images correctly. As
we show in the experiments and illustrated in Figure 1, ex-
isting neuro-symbolic frameworks trained from scratch will
learn a ”collapsed” representation that satisfies the constraints
imposed by the symbolic component, but that does not carry
any semantic information about the input images (e.g. all
three images are recognized as the digit 0).

The problem of representational collapse currently im-
pedes the possibility of jointly learning representations and
their relations [Evans et al., 2021a; Evans et al., 2021b], and
therefore solving it represents an important advancement for
research in neuro-symbolic learning.

To address the problem of representational collapse, we
propose a Bayesian framework that unifies bottom-up ap-
proaches based on self-supervised representation learning
with top-down approaches based on neuro-symbolic learning.
Firstly, we demonstrate that several existing self-supervised
learning techniques, such as negative-free [Ozsoy et al.,
2022; Liu et al., 2022; Zbontar et al., 2021; Bardes et al.,
2022a; Bardes et al., 2022b; Ermolov et al., 2021], con-
trastive [O. Henaff, 2020; Chen et al., 2020; Lee, 2022;
Xu et al., 2022] and cluster-based approaches [Caron et al.,
2018; Caron et al., 2020], and likelihood-based generative



models, such as energy-based models [Kim and Ye, 2022],
can be unified within a coherent Bayesian framework called
GEDI. GEDI leverages the complementary properties of dis-
criminative approaches, which are suitable for representation
learning, and of generative approaches, which capture infor-
mation about the underlying density function generating the
data, to improve its representation learning capabilities. Sec-
ondly, we demonstrate that GEDI can be easily extended to
the neuro-symbolic setting thanks to its probabilistic nature.
Importantly, GEDI has two main advantages: it can overcome
the problem of representational collapse common of existing
neuro-symbolic approaches and it can also allow for learning
symbolic representations in the small data regime, currently
out of reach for existing self-supervised learning techniques.

We conduct experiments on toy and real-world data
(viz. SVHN, CIFAR10 and CIFAR100) comparing against
state-of-the-art self-supervised approaches, i.e. Barlow
Twins [Zbontar et al., 2021] and SwAV [Caron et al.,
2020], thus showing the superiority of our unified frame-
work. Additionally, we show that GEDI outperforms Deep-
ProbLog [Manhaeve et al., 2018], a state-of-the-art neuro-
symbolic framework, on the above mentioned problematic
example.

To summarize, the key contributions of the paper are:

• We introduce the problem of representational collapse in
neuro-symbolic learning.

• We provide a Bayesian perspective of self-supervised
learning objectives based on GEDI.

• GEDI can be easily extended to the neuro-symbolic set-
ting, thus showing for the first time the capability to
overcome the problem of representational collapse.

• GEDI effectively exploits the reasoning component en-
abling to learn self-supervised learning models in the
small data regime.
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