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ABSTRACT

Log anomaly detection is critical for system reliability, yet most existing meth-
ods focus only on binary detection without providing explanations or identifying
root causes, which limits their usefulness in production environments. To address
these challenges, we propose LLMAD-mini, a lightweight LLM-based model that
combines knowledge distillation with Low-Rank Adaptation (LoRA) fine-tuning
to deliver strong reasoning and comprehensive log understanding. Large language
models (LLMs) with human-interpretable descriptions can be tuned for special-
ized logs via supervised fine-tuning, but the high cost of training and deployment
remains a major barrier. To achieve efficient adaption on small in-domain dataset
on LLMs, we introduce a hierarchical Chain-of-Thought mechanism that signifi-
cantly enhances reasoning capability with limited data. Evaluated on different sys-
tem log datasets, LLMAD-mini surpasses traditional anomaly detection methods
in detection accuracy and provides far better reasoning than much larger LLMs.
Notably, it achieves a 3.2× improvement on reasoning quality compared to a LLM
with 30× more parameters. Furthermore, our experiments on out-of-domain logs
demonstrate LLMAD-mini’s ability to generalize across diverse systems with the
improvement of 40% of accuracy on anomaly detection and improve the Bleu-4
from 0.01 to 0.49 while diagnosing failures, making it a practical and efficient
solution for real-world deployment.

1 INTRODUCTION

Software systems are fundamental for the operation of modern infrastructure. Nowadays, these
systems are characterized by significant complexity, distributed architectures, and massive scales,
which makes them powerful but also fragile. Yadav et al. (2020); Meena Siwach (2022) This com-
plexity inherently poses challenges in ensuring reliability of systems. Consequently, the occurrence
of system anomalies—unexpected behaviors are inevitable. These anomalies can trigger serious
problems in software systems which can lead to reduced system performance and corrupted data
and further causes substantial financial losses. Pang et al. (2021) Therefore, it is naturally raised the
demand about effective anomaly detection methods on complicated systems to maintain the overall
health of software infrastructure.

Engineers commonly rely on system logs to manage the status of running systems. These logs are
enriched with detailed information about log events with timestamps.Chalapathy & Chawla (2019)
In theory, such data of log events inherently contain core patterns to understanding system behavior
and diagnosing problems. The challenge, however, lies in the huge volume of this data for human
to read, which makes the development of automated log-based anomaly detection methods be much
more essential. Wei et al. (2024)

To solve this problem, log anomaly detection methods have been proposed using traditional ma-
chine learning and later, deep learning models like LSTMs Hochreiter & Schmidhuber (1997) and
Transformers Vaswani et al. (2017). Moreover, those models have shown a competitive perfor-
mance on binary classification task on identifying anomaly/non-anomaly logs.Yadav et al. (2020);
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Meena Siwach (2022) Whereas they achieve effecient at detection, what information engineers ob-
tain from those methods is that an anomaly has occurred or not in given logs, without any relevant
reasoning or a human-understandable explanation for the decision. This lack of interpretability is a
severe obstacle for engineers for digging out the root cause or dealing with the issue. In addition,
existing methods suffer from a critical limitation of generalization, as they are only applied to the
identical system logs and environment on which they were trained. This makes them inherently
non-portable across different systems and vulnerable to obsolescence from any log format change
or system update. Consequently, these models are inflexible and costly to maintain in evolving,
real-world infrastructures.

The recent explosion of Large Language Models (LLMs) Zhao et al. (2023) presents a new and
exciting frontier on text generation. LLMs shows a remarkable performance on general language
and semantic understanding Minaee et al. (2024); Naveed et al. (2025). It is likely that LLMs can
provide explanations and root cause analysis on system logs, but may lack of enough knowledge
on domain-specific area, like log anomaly analysis. Furthermore, deploying these massive LLM
models for log monitoring is often impractical, their huge model size, high computational cost and
hardware requirements, significant inference latency, and reliance on API access lead them to be
unrealistic for deployment on real production environments.

In this paper, we introduce a novel method LLMAD-mini, which is designed to resolve the previous
challenges presented in both traditional methods and LLMs. To achieve this, we trained our model
with knowledge distillation mechanism Hinton et al. (2015); Xu et al. (2024) by transferring the
advanced reasoning abilities of a large ”teacher” LLM to our model. The core idea is to adopt our
novel hierarchical Chain-of-Thought (CoT) Wei et al. (2022) to elicit step-by-step reasoning from
a large LLM on why a specific log sequence is anomalous. We then use this generated reasoning
to fine-tune our model. The fine-tuned student model learns not just to classify logs as normal or
anomalous but to perform the reasoning process itself, further provide log analysis and possible error
cause with engineers. Above all, our key contributions are as follows:

• We introduce a hierarchical Chain-of-Thought mechanism including event-wise CoT,
stage-wise CoT, pattern CoT and indicator CoT that achieves 3.2× higher Bleu-4 scores
than models 30× larger, significantly enhancing reasoning capabilities through structured
knowledge distillation.

• Through comprehensive experiments, we show that LLMAD-mini achieves 0.97 F1-score
on anomaly detection, surpassing traditional log analysis methods while providing inter-
pretable explanations.

• Our approach enables practical deployment with minimal computational overhead, requir-
ing only 2 hours of training on a single GPU through efficient LoRA-based knowledge
distillation.

• We demonstrate strong generalization to unseen domains, achieving 0.72 F1-score and
21.5× higher Rouge-2 scores than baselines on out-of-domain HDFS logs without addi-
tional training.

2 RELATED WORK

Log Anomaly Detection: Many traditional methods, which formulate log anomaly detection prob-
lem as binary classification task, have been proposed since 2017. Some methods including Du et al.
(2017); Meng et al. (2019); Zhang et al. (2021); Catillo et al. (2022); Xie & Yang (2023); Zhang
et al. (2023b); Duan et al. (2021); He et al. (2023) employs LSTM, Transformer, GAN Goodfellow
et al. (2020) or autoencoderLeCun (1987) as main framework to predict the next most possible nor-
mal log event from previous log sequences, treating unexpected event occurred as anomalies. Other
methods such as Lu et al. (2018); Zhang et al. (2019); Yang et al. (2021); Zhao et al. (2022); Xie
et al. (2022); Zhang et al. (2023a); Hashemi & Mäntylä (2024) trained the model based on CNN
LeCun & Bengio (1998), GNN Scarselli et al. (2008), transformer as binary classifiers to determine
if a given log sequence is normal or abnormal. More recently, with the remarkable success has been
achieved by LLMs, works like Qi et al. (2023); Egersdoerfer et al. (2023); Liu et al. (2024e); Pan
et al. (2024) leverage prompt engineering without any tuning on LLMs to detect anomalies directly
in terms of the pre-trained knowledge while Guo et al. (2021); Lee et al. (2023); Lin et al. (2024);
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Almodovar et al. (2024); Chen & Liao (2022); Jilcha et al. (2024); Hadadi et al. (2024); Guan et al.
(2024) fine-tuned LLMs to achieve more accurate detection performance by adapting on specified
datasets.

Large Language Model:The landscape of large language models has evolved through several foun-
dational families. GPT-3 Brown et al. (2020) demonstrated that 175B-parameter models could per-
form diverse NLP tasks, while GPT-4 Achiam et al. (2023) advanced multimodal capabilities and
reasoning benchmarks. Gemini Team et al. (2023) unified text, image, audio, and video processing,
with Gemini 1.5 Pro supporting up to 1 million tokens. The LLaMA family Touvron et al. (2023);
Dubey et al. (2024) proved smaller models trained on more data can outperform larger ones, revo-
lutionizing open-source development. DeepSeek Liu et al. (2024b;c); Guo et al. (2025) advanced
mixture-of-experts architectures for improved parameter efficiency. The Qwen family Bai et al.
(2023); Team (2024) evolved from Llama-based architectures to Qwen2.5 with 3B-72B parameter
variants, while Qwen3 Yang et al. (2025) introduced hybrid thinking modes that dynamically switch
between chain-of-thought and direct responses based on task complexity.

Knowledge Distillation: Hinton et al. (2015) introduced the foundational concept of knowledge
distillation, where a smaller ”student” model learns to mimic the behavior of a larger ”teacher”
model. Sanh et al. (2019) pioneered the application of knowledge distillation to transformer-based
language models, creating a distilled version of BERT Devlin et al. (2019) that retained 97% of
BERT’s performance while being 60% smaller and 60% faster. More recently, methods such as
Jiang et al. (2023); Gu et al. (2023); Liu et al. (2024d); Tian et al. (2025) demonstrate that knowledge
distillation can be effectively applied to compress large language models while maintaining their
instruction-following capabilities and reasoning performance.

Chain-of-Thought:Wei et al. (2022) introduced the concept of chain-of-thought (CoT) prompting,
where large language models are encouraged to generate intermediate reasoning steps before its fi-
nal answer, Kojima et al. (2022) extended chain-of-thought with ”step-by-step”, revealing that the
reasoning capabilities are inherently present in large language models and can be activated through
appropriate prompting strategies. Recent work has successfully combined knowledge distillation
with chain-of-thought reasoning. Hsieh et al. (2023); Deng et al. (2023); Li et al. (2023) trained stu-
dent models to generate both intermediate reasoning steps and final answers, demonstrating effective
transfer of reasoning capabilities to smaller models with superior performance.

3 METHODOLOGY

Our proposed method LLMAD-mini, employs knowledge distillation with our novel hierarchical
chain-of-thought to transfer reasoning from teacher LLMs to compact student models. We prompt
GPT-4 to analyze log sequences and generate hierarchical reasoning traces, then fine-tune our small
model using a multi-task objective combining anomaly classification loss and reasoning alignment
loss. During inference, LLMAD-mini outputs both anomaly predictions and structured reasoning
traces following the learned format, enabling automated detection with human-interpretable diag-
nostics as demonstrated in Section 4.

3.1 PROBLEM FORMULATION

Given a log sequence which consists of n individual events ordered by timestamp, Ei =
{e1, e2, ..., en}, generated by a system during execution. Each event ei represents a structured
or semi-structured log entry containing message content describing the occurred event. Our ob-
jective is to develop a model fθ : E → (R, Y, S) that performs interpretable anomaly de-
tection with the following outputs (R, Y, S) where R = {r1, r2, ..., rk} denotes a Chain-of-
Thought reasoning trace comprising k intermediate reasoning steps that progressively analyze the
log sequence. The k steps are comprised of 4-level reasonings which are shown in Figure 1.b.
Y ∈ {Not anomaly,Anomaly} represents the binary anomaly classification, which are natural
language instead of numerical values. S provides a context-dependent summary conditioned on Y :
when Y = Anomaly, S contains a root cause analysis identifying the probable failure source and
affected components; when Y = Not anomaly, S is a concise description of the normal system
behavior observed about the log sequence.
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This formulation enables fθ to not only classify anomalies but also provide interpretable explana-
tions through explicit reasoning steps, addressing the critical need for transparency in automated log
analysis systems.

3.2 FRAMEWORK OVERVIEW

Figure 1.a illustrates LLMAD-mini’s teacher-student distillation architecture with three compo-
nents: (1) a frozen teacher LLM that generates Chain-of-Thought reasoning from input log se-
quences Ei = {e1, e2, ..., en} and anomaly types; (2) knowledge distillation integrated into fine-
tuning process for capability transfer; and (3) a student LLM with LoRA blocks for parameter-
efficient learning while preserving pre-trained knowledge.

The teacher model remains frozen during the distillation process, leveraging its pre-trained knowl-
edge to analyze log events and produce structured reasoning outputs. As shown in the figure, the
teacher processes various log event types (e.g., instance lifecycle events, VM operations, resource
allocations) and generates comprehensive CoT reasoning that identifies critical anomalies such as
synchronization failures between control plane and hypervisor components. The student model,
equipped with interleaved LoRA adapter layers and decoder blocks (Figure 1.b), undergoes fine-
tuning exclusively on the adapter parameters while keeping the base model weights frozen. This
architecture enables the student to acquire domain-specific log analysis capabilities without catas-
trophic forgetting of general language understanding, ultimately producing both CoT reasoning
traces and contextual log summaries that indicate whether anomalies are present and their poten-
tial root causes.

3.3 HIERARCHICAL CHAIN-OF-THOUGHT

Traditional Chain-of-Thought assumes a linear reasoning pathway from input to output Wei et al.
(2022), which is insufficient for log anomaly detection by our observation where the relationship
between log sequences and root causes is inherently non-sequential. Log anomalies often manifest
through complex interactions: a critical failure may result from the confluence of seemingly unre-
lated events across different components, while the temporal ordering of symptoms may not reflect
the actual causal structure. For instance, a memory leak in one service might trigger cascading fail-
ures hours later in dependent services, with the true root cause buried among normal operational
logs. Moreover, different types of anomalies require different analytical lenses such as some require
pattern level analysis of event sequences, while others need detailed inspection of individual event
semantics.

To address these challenges, we design a hierarchical Chain-of-Thought structure that decomposes
the reasoning process into four progressive stages, as illustrated in Figure 1.b. The hierarchical rea-
soning begins with two parallel traces event-wise CoT, where the teacher model analyzes individual
log events ei to extract local features such as event severity, component identifiers, and immediate
state changes, and stage-wise CoT, which aggregates related events into logical stages representing
distinct phases of system operation (e.g., initialization, execution, termination). Then the two paths
are subsequently passed into two specialized branches: pattern CoT and indicator CoT. Pattern CoT
identifies recurring sequences and temporal patterns across the log sequence, detecting deviations
from expected behaviors. Simultaneously, indicator CoT extracts critical signals and anomaly indi-
cators, such as error keywords, performance degradations, or resource exhaustion markers. These
parallel reasoning paths capture complementary aspects of the log sequence, pattern CoT focuses on
structural anomalies in event ordering and timing, while Indicator CoT targets semantic anomalies
in message content and system states.

The hierarchical reasoning culminates in a Final Summary that synthesizes insights from all pre-
vious stages. This summary integrates the multiple level observations to produce the final output
tuple (R, Y, S), where the reasoning trace R preserves the hierarchical structure, enabling traceable
explanations from high level conclusions down to specific event level observations. This hierarchi-
cal approach ensures that the student model learns to perform systematic log analysis rather than
making superficial pattern matches, as demonstrated in Section 4, we also show the case study in
Appendix of figure 2.
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a.

b.

Figure 1: The architecture of LLMAD-mini. a. The overview of LLMAD-mini, consisting of two
main components, a frozen teacher model and a distilled student model. b. The framework of teacher
model and student model, with the illustration about hierachical CoT reasoning.

3.4 KNOWLEDGE DISTILLATION

Our knowledge distillation framework transfers the hierarchical reasoning capabilities from the
teacher LLM to a compact student model through a carefully designed training process. As shown
in Figure 1.a, the teacher model first processes log sequences with prompts containing few shot
examples to generate high quality hierarchical CoT reasoning traces in terms of anomaly classifica-
tions. For each training sequence, the teacher produces structured outputs following the hierarchical
reasoning pattern described in the previous section. The student model architecture, illustrated in
Figure 1.b(right panel), integrates LoRA (Low Rank Adaptation)Hu et al. (2022) blocks with the
frozen decoder blocks of a base language model. The LoRA blocks, inserted at regular intervals
throughout the network, introduce trainable low rank matrice. During distillation, only the LoRA
parameters ∆W = BA where( B ∈ Rd×r and A ∈ Rr×k are updated.

we train the student model fθ in a way where the distillation objective combines multiple loss com-
ponents to ensure comprehensive knowledge transfer:

Ltotal = λ1LCE(Yp, Yt) + λ2Lreason(Rp, Rt) + λ3Lsummary(Sp, St) (1)
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where LCE(Yp, Yt) ensures accurate student’s anomaly classification with ground-truth labels.
Lreason(Rp, Rt) minimizes cross entropy loss about student’s generated reasoning and teacher’s
reasoning, while Lsummary(Sp, St) is mimiking the teacher’s summary/root cause identification.
λ1, λ2 and λ3 are three parameters that adjusting the weights of the individual losses.Specifically,
each λi is normalized by the token count of its associated output component (classification logits,
reasoning traces, and summaries respectively) to ensure balanced gradient contributions regardless
of sequence length disparities.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We conduct comprehensive experiments to evaluate LLMAD-mini’s performance on both in-domain
and out-of-domain log anomaly detection tasks. For the student model architecture, we adopt
Qwen3-8B Yang et al. (2025) as the base model, which provides an optimal balance between model
capacity and computational efficiency. The student model contains approximately 8 billion parame-
ters.

The training process employs supervised fine tuning (SFT) with LoRA adapters configured with
rank=16 and α=32. We optimize the model using AdamW optimizer with a learning rate of 2e−5,
employing cosine annealing schedule with 10% warmup steps and a weight decay coefficient of
0.02. The total training epochs are 15. Under this configuration, the complete training process
requires approximately 2 hours on a single NVIDIA A100 GPU (80GB), while inference can be
efficiently performed on a more accessible NVIDIA A10 GPU (24GB).

Our primary dataset is derived from OpenStack cloud infrastructure logs Kalaki et al. (2023), com-
prising 450 annotated log sequences with balanced representations of normal and anomalous be-
haviors after filtering. Each sequence contains 10-50 individual log events capturing various system
states including VM lifecycle operations, resource allocation activities, and service coordination
messages. The dataset exhibits diverse anomaly patterns such as synchronization failures, resource
exhaustion, and cascading service failures. We partition the data following an 80/10/10 split for
training, validation, and testing, ensuring stratified sampling to maintain anomaly distribution across
splits.

To assess generalization capabilities, we evaluate LLMAD-mini on an out-of-domain test set con-
sisting of HDFS (Hadoop Distributed File System) logs Zhu et al. (2023); Jiang et al. (2024).
This dataset presents distinct challenges with different log formats, vocabulary, and anomaly pat-
terns compared to OpenStack, providing a rigorous test of the model’s transfer learning abilities.
The HDFS test set contains 200 sequences with anomalies including block corruption, namenode
failures, and datanode disconnections, enabling us to evaluate whether the hierarchical reasoning
learned from OpenStack logs generalizes to fundamentally different distributed systems.

4.2 BASELINES

We compare LLMAD-mini against two categories of baseline methods to comprehensively evaluate
both its anomaly detection performance and reasoning capabilities.

Traditional Log Anomaly Detection Methods: We evaluate against state-of-the-art specialized log
anomaly detection approaches that represent different methodological paradigms: (1) DeepLog Du
et al. (2017), which employs LSTM networks to model log sequences as time series data and detects
anomalies through prediction errors; (2) LogAnomaly Meng et al. (2019), which enhances sequence
modeling by incorporating semantic information through template embeddings extracted via log
parsing; (3) LogBERT Guo et al. (2021), which adapts the BERT architecture specifically for log
data by introducing masked log message prediction and hypersphere embedding for anomaly detec-
tion; and (4) FastLogAD Lin et al. (2024), which leverages generative adversarial networks (GANs)
to learn normal log distributions and identify anomalies through reconstruction errors. These meth-
ods represent the evolution of log anomaly detection from sequential modeling to transformer based
and generative approaches.
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Large Language Models: To assess the effectiveness of our knowledge distillation approach, we
compare against general purpose LLMs across different scales: (1) Qwen3-8B (base) Yang et al.
(2025), our student model architecture without fine tuning, serving as the ablation baseline; (2)
Qwen3-32BYang et al. (2025), a larger variant from the same model family to evaluate scaling
effects; (3) Llama-3.3-70B-Instruct Dubey et al. (2024), representing the current generation of
instruction-tuned models; (4) DeepSeek-V2 Liu et al. (2024a), a mixture-of-experts model opti-
mized for reasoning tasks; and (5) Qwen3-235B-A22BYang et al. (2025), among the largest publicly
available models. For fair comparison, all LLMs are evaluated using the same prompt template, but
without access to the hierarchical CoT training data.

4.3 EVALUATION ON LOG ANOMALY DETECTION

Table 1 presents the comparative results on the OpenStack test set, where we evaluate models using
four standard metrics: Precision, Recall, F1-score, and Accuracy. LLMAD-mini achieves superior
performance across all metrics, with an F1-score of 0.97, surpassing both traditional methods and
general-purpose LLMs. Notably, our 8b-parameter model outperforms models up to 30× larger,
demonstrating the effectiveness of domain specific knowledge distillation. Several traditional meth-
ods (DeepLog, LogAnomaly) exhibit recall values of 1.0, which our analysis reveals stems from
their tendency to classify all sequences as anomalous—a critical failure mode in practical deploy-
ments where false positives incur significant operational costs. In contrast, LLMAD-mini maintains
balanced precision 1.0 and recall 0.95, indicating robust discrimination between normal and anoma-
lous patterns. The performance gap between the base Qwen3-8B (F1: 0.68) and LLMAD-mini (F1:
0.97) quantifies the contribution of our hierarchical CoT distillation, showing a 42.6% improvement
solely from the knowledge transfer process. Furthermore, even the largest baseline LLM (Qwen3-
235B-A22B with F1: 0.80) underperforms our compact model, validating that targeted fine-tuning
with structured reasoning surpasses raw model scale for specialized tasks like log analysis.

Table 1: Performance on traditional log anomaly detection task

Methods Anomaly detection
Accuracy Precision Recall F1-Score

DeepLog Du et al. (2017) 0.40 0.40 1.0 0.57
LogAnomaly Meng et al. (2019) 0.77 0.67 0.84 0.74
LogBert Guo et al. (2021) 0.80 0.83 0.78 0.81
FastLogAD Lin et al. (2024) 0.94 0.9 0.94 0.92
Qwen3-8B Yang et al. (2025) 0.61 0.51 1.0 0.68
Qwen3-32B Yang et al. (2025) 0.66 0.55 0.94 0.69
Llama3.3-70B-Instruct Dubey et al. (2024) 0.62 0.52 0.89 0.65
DeepSeek-V2 Liu et al. (2024b) 0.77 0.83 0.53 0.65
Qwen3-235B-A22B Yang et al. (2025) 0.81 0.69 0.95 0.80
LLMAD-mini 0.98 1.0 0.95 0.97

4.4 PERFORMANCE ON REASONING AND SUMMARIZATION

Beyond binary anomaly classification, we evaluate LLMAD-mini’s capability to generate inter-
pretable explanations—a critical requirement for production deployments where operators need ac-
tionable insights rather than binary predictions. Tables 2 and 3 present comprehensive evaluations of
reasoning quality using standard text generation metrics: Bleu-4, Rouge-1, Rouge-2, and Rouge-L,
which measure n-gram overlap between generated and reference explanations at different level.

Table 2 evaluates the quality of hierarchical Chain-of-Thought reasoning traces, where models are
supposed to indicate the step-by-step analysis process from individual events to final conclusions.
LLMAD-mini achieves a Bleu-4 score of 0.51, representing a 3.2× improvement over the best per-
forming baseline (Qwen3-235B-A22B at 0.16), despite being 30× smaller in parameters. The sub-
stantial gains in Rouge-2 (0.46 vs. 0.11, a 4.2× improvement) indicate that our model accurately
captures bigram patterns characteristic of technical log analysis, suggesting successful transfer of
the teacher’s reasoning structure. Notably, general purpose LLMs struggle significantly with this
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task, with most achieving Bleu-4 scores below 0.15, demonstrating that the raw model even with
larger parameter scale, still cannot compensate for the lack of domain specific reasoning patterns.

Table 2: Performance on CoT reasoning quality

Methods CoT Reasoning
Bleu-4 Rouge-1 Rouge-2 Rouge-L

Qwen3-8B Yang et al. (2025) 0.11 0.25 0.08 0.11
Qwen3-32B Yang et al. (2025) 0.14 0.32 0.09 0.13
Llama3.3-70B-Instruct Dubey et al. (2024) 0.10 0.38 0.08 0.15
DeepSeek-V2 Liu et al. (2024b) 0.07 0.25 0.05 0.10
Qwen3-235B-A22B Yang et al. (2025) 0.16 0.40 0.11 0.17
LLMAD-mini 0.51(3.2×) 0.68(1.7×) 0.46(4.2×) 0.52(3.0×)

Table 3 presents results for root cause analysis and log summarization—the final outputs that di-
rectly impact operational decision making. Here, the performance gap becomes even more severe:
LLMAD-mini achieves a Bleu-4 score of 0.82 compared to 0.05 for Llama-3.3-70B-Instruct, rep-
resenting a 16.4× improvement. The exceptional Rouge-2 performance (0.82 vs. 0.02, a 41.0×
improvement) demonstrates that our model generates root cause explanations with remarkably high
fidelity to expert annotations, correctly identifying failures. This dramatic improvement validates
that the hierarchical reasoning structure enables the model to synthesize complex observations into
accurate, concise diagnoses.

Table 3: Performance on root cause diagnosis/log summary quality

Methods Root cause analysis/Log summary
Bleu-4 Rouge-1 Rouge-2 Rouge-L

Qwen3-8B Yang et al. (2025) 0.02 0.08 0.01 0.05
Qwen3-32B Yang et al. (2025) 0.03 0.09 0.01 0.05
Llama3.3-70B-Instruct Dubey et al. (2024) 0.05 0.09 0.01 0.08
DeepSeek-V2 Liu et al. (2024b) 0.02 0.08 0.01 0.05
Qwen3-235B-A22B Yang et al. (2025) 0.03 0.09 0.02 0.05
LLMAD-mini 0.82(16.4×) 0.85(9.4×) 0.82(41.0×) 0.85(10.6×)

The performance differential between LLMAD-mini and larger LLM models provides us with a fun-
damental insight: for specialized technical domains, targeted knowledge distillation with structured
reasoning supervision far outweighs raw parameter count. While general purpose LLMs possess
broad knowledge, they lack the specific reasoning patterns required to trace causality through com-
plex system logs. Our distillation process effectively compresses not just the teacher’s knowledge
but its analytical methodology, enabling a compact 8B parameter model to generate explanations
that surpass those from models with up to 235B parameters. This efficiency performance trade-off
is particularly valuable for production environments where computational resources are constrained
but interpretability requirements are essential.

4.5 GENERALIZABILITY ON OUT-OF-DOMAIN LOGS

A critical challenge for log anomaly detection systems is their ability to generalize beyond their
training domain, as production environments often encompass heterogeneous systems with diverse
logging formats and failure patterns. Despite being fine tuned exclusively on OpenStack logs, we
hypothesize that LLMAD-mini’s hierarchical reasoning structure enables it to capture fundamental
anomaly patterns that transcend specific system implementations. To rigorously evaluate this cross
domain transfer capability, we assess performance on HDFS (Hadoop Distributed File System) logs
Zhu et al. (2023); Jiang et al. (2024), which exhibit substantially different vocabulary, event types,
and architectural patterns compared to OpenStack’s cloud infrastructure logs.

Table 4 presents anomaly detection results on the HDFS test set, where LLMAD-mini achieves the
highest F1-score of 0.72 and accuracy of 0.70, demonstrating robust generalization despite never en-
countering HDFS-specific patterns during training. While DeepSeek-V2 achieves higher precision
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(0.87), it suffers from poor recall (0.40), indicating overly conservative predictions that miss numer-
ous anomalies. In contrast, LLMAD-mini maintains balanced performance with precision of 0.69
and recall of 0.74, crucial for practical deployment where both false positives and false negatives
carry operational costs. Traditional methods (DeepLog, LogAnomaly, LogBERT) fail entirely on
this task due to out-of-vocabulary errors, highlighting their inability to handle unseen log templates
and system specific terminology without complete retraining.

Table 4: Performance on out-of-domain data about anomaly detection task

Methods Anomaly detection
Accuracy Precision Recall F1-Score

Qwen3-8B Yang et al. (2025) 0.5 0.5 1.0 0.67
Qwen3-32B Yang et al. (2025) 0.56 0.54 0.88 0.67
Llama3.3-70B-Instruct Dubey et al. (2024) 0.51 0.5 0.71 0.59
DeepSeek-V2 Liu et al. (2024b) 0.67 0.87 0.4 0.55
Qwen3-235B-A22B Yang et al. (2025) 0.58 0.55 0.82 0.67
LLMAD-mini 0.7 0.69 0.74 0.72

The reasoning capabilities on out-of-domain data, shown in Table 4, reveal even more striking ad-
vantages. For root cause analysis and log summarization, LLMAD-mini achieves Bleu-4 of 0.49
and Rouge-L of 0.50, representing 16.3× and 10× improvements respectively over the best baseline.
General purpose LLMs struggle severely with HDFS reasoning, achieving near zero scores (Bleu-4
ranging from 0.01-0.03), as they lack both domain specific knowledge and the structured reasoning
patterns necessary for technical log analysis. The 21.5× improvement in Rouge-2 (0.43 vs. 0.02)
particularly highlights LLMAD-mini’s ability to correctly identify technical terminology and causal
relationships even in unfamiliar system contexts.

Table 5: Performance on out-of-domain data about root cause diagnosis/log summary

Methods Root cause analysis/Log summary
Bleu-4 Rouge-1 Rouge-2 Rouge-L

Qwen3-8B Liu et al. (2024b) 0.01 0.01 0.01 0.03
Qwen3-32B Liu et al. (2024b) 0.01 0.07 0.01 0.04
Llama3.3-70B-Instruct Dubey et al. (2024) 0.03 0.02 0.01 0.02
DeepSeek-V2 Liu et al. (2024b) 0.01 0.06 0.01 0.02
Qwen3-235B-A22B Liu et al. (2024b) 0.01 0.06 0.02 0.05
LLMAD-mini 0.49(16.3×) 0.52(7.4×) 0.43(21.5×) 0.5(10×)

5 CONCLUSION

We presented LLMAD-mini, a lightweight framework achieving accurate and interpretable log
anomaly detection through knowledge distillation from LLMs. Combining hierarchical Chain-of-
Thought reasoning with parameter-efficient LoRA fine tuning, our 8B-parameter model outperforms
models up to 30× larger on specialized log analysis tasks.

Our hierarchical CoT structure—decomposing into Event-wise, Stage-wise, Pattern, and Indicator
levels—captures non-sequential system anomalies more effectively than linear reasoning. Through
distillation, LLMAD-mini achieves state-of-the-art detection performance while generating high-
quality explanations with up to 41× improvement over general purpose LLMs. The model maintains
over 70% accuracy on out-of-domain HDFS logs despite training only on OpenStack, demonstrating
it learns fundamental system principles rather than dataset specific patterns.

Practically, LLMAD-mini requires just 2 hours training on a single A100 GPU and runs on consumer
hardware, making advanced log analysis accessible for resource-constrained deployments. Our re-
sults show targeted distillation with structured reasoning outperforms raw model scaling for spe-
cialized domains. Future directions include extending to multi-modal observability data, exploring
continual learning for evolving systems, and automated prompt optimization. As distributed systems
grow complex, LLMAD-mini advances practical, trustworthy AI powered monitoring—providing
necessary interpretability without massive computational overhead.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics. Our research on log anomaly detection
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A APPENDIX

A.1 DATASET CURATION

We carefully curate the OpenStack dataset to create high quality training data suitable for hierarchi-
cal reasoning. Our preprocessing pipeline consists of several critical steps to ensure data quality and
consistency. First, we extract only the essential fields from raw log files, retaining the log content and
timestamp columns while removing extraneous metadata such as log levels, source files, and thread
identifiers that could introduce noise. For OpenStack logs, we use instance IDs as the primary
grouping identifier, aggregating all related log events for each instance into coherent sequences.
These sequences are chronologically ordered by timestamp to preserve the temporal dependencies
crucial for anomaly detection.

To ensure data quality, we deleted duplicats and filter out incomplete sequences by removing all in-
stance groups that lack complete lifecycle coverage. Specifically, we retain only instances with
full event traces from initialization through termination, as partial sequences could mislead the

14

http://arxiv.org/abs/2403.13372


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

model during training. This filtering step eliminates approximately 80% of raw data where most
of them are excluded due to duplicates but significantly improves training stability and model per-
formance. We then apply log parsing to standardize the format and reduce vocabulary complexity.
Variable components such as file paths (e.g., /var/log/nova/compute.log), instance UUIDs (e.g., i-
8c7d6e5f4a3b2c1d9e0f), IP addresses, and other long identifiers are replaced with wildcards (*).
This abstraction allows the model to focus on log patterns and semantics rather than memorizing
specific values. The final curated dataset contains 450 high-quality log sequences for OpenStack,
with each sequence comprising 10-50 chronologically ordered events representing complete instance
lifecycles. Similar preprocessing is applied to HDFS logs for out-of-domain evaluation, adapting the
grouping strategy to use block IDs and datanode identifiers as appropriate for the distributed file sys-
tem context.

A.2 TRAINING DETAILS

We implemented LLMAD-mini using the LlamaFactory framework Zheng et al. (2024) for efficient
fine-tuning. The training employs supervised fine tuning (SFT) with LoRA adaptation on all model
layers, configured with rank 16, alpha 32, and dropout rate of 0.1 for regularization. We use the
Qwen model template with a maximum context length of 8,192 tokens to accommodate long log
sequences with hierarchical reasoning traces. The optimization process uses AdamW with other
settings claimed at section 4.1. We utilize bf16 mixed precision training to reduce memory con-
sumption while maintaining numerical stability.

A.3 CASE STUDY

We present a detailed case study in Figure 2 demonstrating LLMAD-mini’s reasoning process on
a real OpenStack VM lifecycle anomaly. Table 6 shows the root cause diagnosis comparison of
different baselines on this example.

Table 6: Comparison of predicted anomaly type and root causes for the case study
Model Detected root cause
LLMAD-mini Correct: ”Anomaly, After the creation of the VM, its virtual disk is

removed from the host server.”
DeepLog Incorrect: ”Normal”(no root cause)
LogBERT Partial: ”Abnormal” (no root cause)
Llama-3.3-70B-Instruct Vague: ”Instance launch failed due to libvirt error and successful

cleanup of resources.”
Deepseek-V2 Incorrect: ”The events indicate normal operations such as claiming

instances, creating images, plugging and unplugging virtual interfaces,
starting, pausing, and stopping instances, deleting instance files, de-
stroying instances on the hypervisor, deallocating networks, and delet-
ing allocations. However, there are also errors such as unexpected
events, timeouts, and failed spawning of instances.”

Qwen3-235B-A22B Generic: ”Instance creation failed during libvirt guest startup phase,
triggering resource cleanup and termination. Root cause: LibvirtError
preventing VM initialization”

A.4 THE USE OF LARGE LANGUAGE MODEL

In accordance with ICLR policy, we disclose that Large Language Models were used as a general
purpose writing assistant for this manuscript. The LLM’s role was strictly limited to language
polishing: improving paragraph structure, grammar, and clarity while condensing verbose sections
to meet page limits. All technical content, research ideas, methodology, experimental design, and
scientific conclusions are entirely original work by the authors. The LLM did not contribute to
research ideation or any scientific aspects of the work, serving only as a writing aid similar to
grammar checking tools.
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Input Log Sequence:
Event 1: [instance: <*>] Claim successful on node parisaserver
Event 2: [instance: Creating image] <*> <*>
Event 3: Successfully plugged vif <*>
Event 4: [instance: <*>] Failed to start libvirt guest:
libvirt.libvirtError: internal error: process exited
while connecting to monitor
Event 5: Successfully unplugged vif <*>
Event 6: [instance: <*>] Deleting instance files <*>
Event 7: [instance: <*>] Deletion of <*> complete
Event 8: [instance: Terminating instance] <*> <*>
Event 9: [instance: destroyed] Instance <*> successfully.
Event 10: Successfully unplugged vif <*>
Event 11: [instance: <*>] Deletion of <*> complete
Event 12: [instance: destroy] Took <*> seconds to <*>
the instance on the hypervisor.
Event 13: Successfully unplugged vif <*>
Event 14: [instance: <*>] Took <*> seconds to
deallocate network for instance.
Event 15: Deleted allocation for instance <*>
Event 16: [instance: (spawning).] During sync_power_state
the instance has a pending task <*> Skip.

LLMAD-mini Hierarchical Reasoning:
Event-wise CoT:

• Events 1-3: The VM is successfully claimed on the target node, image creation begins, and the virtual
interface (VIF) is plugged in, indicating standard provisioning steps

• Event 4: The attempt to start the VM fails with a ‘libvirt.libvirtError: internal error: process exited while
connecting to monitor‘, which is a critical failure during the initialization of the guest VM.

• Events 5-7: Following the start failure, the system begins cleanup: unplugging the VIF, deleting instance
files, and confirming deletion, as the VM could not be started.

• Events 8-12: The instance enters termination, is marked as destroyed, and VIFs are unplugged again.
The system logs take time to destroy the instance on the hypervisor and deallocate network resources.

• Events 13-15: Additional VIF unplug events and network deallocation confirm the complete cleanup of
resources associated with the failed instance.

• Event 16: Power state sync notes pending task.
Stage-wise CoT:

• Normal VM creation (Claim → Image creation → VIF plugged): Events 1-3
• VM start fails (libvirt error): Event 4
• Cleanup initiated (VIF unplugged → Instance files deleted → Deletion complete): Events 5-7
• Instance termination and resource deallocation: Events 8-12
• Final cleanup and allocation deletion: Events 13-16
Pattern CoT: The log sequence follows a typical VM lifecycle up to the point of failed VM start. After

the failure, the system transitions directly to cleanup and resource deallocation, with no attempt to recover
or retry the failed operation. The presence of multiple VIF unplug and deletion events confirms forced
cleanup.
Indicator CoT: **Event 4:** ”Failed to start libvirt guest: libvirt.libvirtError: internal error: process

exited while connecting to monitor” — critical failure at VM start.
**Events 5-7, 8-12, 13-15:** Multiple VIF unplug, file deletion, and network deallocation events —
forced cleanup after failure.
**Event 16:** ”During sync power state the instance has a pending task” — system acknowledges the
anomaly but does not retry.

Final Diagnosis: Root Cause: The VM creation process fails at the start phase due to a libvirt internal
error, resulting in immediate cleanup and destruction of the instance. The anomaly is detected and handled
as a normal destruction event, with no evidence of retries or recovery attempts. Anomaly, After the creation
of the VM, its virtual disk is removed from the host server.

Figure 2: Case study showing LLMAD-mini’s hierarchical reasoning on a VM lifecycle anomaly
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