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ABSTRACT

Continual Learning (CL) is the process of learning ceaselessly a sequence of tasks.
Most existing CL methods deal with independent data (e.g., images and text)
for which many benchmark frameworks and results under standard experimen-
tal settings are available. Compared to them, however, CL methods for graph data
(graph CL) are relatively underexplored because of (a) the lack of standard exper-
imental settings, especially regarding how to deal with the dependency between
instances, (b) the lack of benchmark datasets and scenarios, and (c) high com-
plexity in implementation and evaluation due to the dependency. In this paper,
regarding (a) we define four standard incremental settings (task-, class-, domain-,
and time-incremental) for node-, link-, and graph-level problems, extending the
previously explored scope. Regarding (b), we provide 31 benchmark scenarios
based on 20 real-world graphs. Regarding (c), we develop BEGIN, an easy and
fool-proof framework for graph CL. BEGIN is easily extended since it is modular-
ized with reusable modules for data processing, algorithm design, and evaluation.
Especially, the evaluation module is completely separated from user code to elim-
inate potential mistakes. Regarding benchmark results, we cover 3×more combi-
nations of incremental settings and levels of problems than the latest benchmark.

1 INTRODUCTION

Continual Learning (CL), which is also known as lifelong learning and incremental learning, is the
process of learning continuously a sequence of tasks. CL aims to retain knowledge from previous
tasks (i.e., knowledge consolidation) to overcome the degradation of performance (i.e., catastrophic
forgetting) on previous tasks. Recently, CL has received considerable attention because of its simi-
larity to the development of human intelligence.
Most of the existing works for CL deal with independent data, such as images and text. For example,
Shin et al. (2017) aim to learn a sequence of image-classification tasks where the domains of images
vary with tasks. Ermis et al. (2022) aim to learn a sequence of text-classification tasks where the
possible classes of text grow over tasks. For CL with independent data, many datasets (Goodfellow
et al., 2013; Hsu et al., 2018; Lomonaco & Maltoni, 2017) and benchmarks (He & Sick, 2021; Lin
et al., 2021; Lomonaco et al., 2021; Pham et al., 2021; Shin et al., 2017) have been provided.
CL naturally provides significant benefits for graph data in real-world applications since the data
grow in size and diversity across various domains accompanied by the emergence of new tasks (refer
to Appendix A for a specific real-world scenario). The majority of existing graph representation
learning methods, however, are designed for fixed tasks, assuming that the input graph remains
unchanged (Kipf & Welling, 2017; Velickovic et al., 2017). Although a number of methods exist to
handle graph evolution over time (Xu et al., 2020; Rossi et al., 2020), the ability to incorporate new
tasks, classes, and/or domains remains uncommon (Wang et al., 2020a; Zhou & Cao, 2021).
Despite its necessity, graph CL (Febrinanto et al., 2022; Zhou & Cao, 2021) has been relatively
underexplored compared to CL with independent data, mainly due to the complexity caused by the
dependency between instances. For example, in node classification, the class of a node is correlated
not only with its features but also with its connections to other nodes, which may belong to other
tasks, and their features. Major reasons for the relative unpopularity of graph CL include the scarcity
of standard experimental settings.1 For example, how to deal with changes in various dimensions
(e.g., domains and classes) and the dependency between instances needs to be standardized. More-
over, the relative scarcity of benchmarking datasets and scenarios also limits its popularity.

1While there exist some settings commonly considered in multiple studies, their scope is restricted in rela-
tion to tasks, incremental settings, and application domains, as discussed in Appendix J.

1



Under review as a conference paper at ICLR 2024

Table 1: Comparison of graph CL benchmarks. Ours includes more incremental settings, levels
of problems, and graph CL methods and metrics. See Appendix J for a more extensive comparison.

BEGIN (Proposed) (Zhang et al., 2022b) (Carta et al., 2021)

Scenarios

Problem Level Node Link Graph Node Link Graph Node Link Graph
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Task
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Time

# of Graph CL Methods 10 6 3

# of Evaluation Metrics 4 2 1

In this paper, we focus on resolving these issues. Our first contribution is to define four incremental
settings for graph data, enriching those established in general CL but partially explored for Graph
CL. To this end, we identify and decouple four possible dimensions of change, which are task,
class, domain, and time. It is worth noting that previous studies often couple these dimensions of
change complicatedly without sufficient justification (Zhang et al., 2022b; Zhou & Cao, 2021) (see
Section 3.2 for details). Thus, there has been a lack of opportunities to consider each dimension on
its own for effective algorithm design, evaluation, and other purposes. Each of the settings is defined
so that the dependency between instances, which is a unique property of graph data, can be utilized.
Simultaneously, each setting may lead to catastrophic forgetting without careful consideration of it.
Then, we show that the settings can be applied to node-, link-, and graph-level problems, including
node classification, link prediction, and graph classification. After that, we provide 31 benchmark
scenarios for graphs from 20 real-world datasets, which cover 12 combinations of the incremental
settings and the levels of problems, as summarized in Table 1 and discussed in detail in Appendix J.
Our second contribution is BEGIN (Benchmarking Graph Continual Learning), which is a frame-
work for implementation and evaluation of graph CL methods. Evaluation is complicated for graph
CL due to additional dependency between instances. Specifically, it is common to utilize instances
of one task for other tasks in order to leverage their dependencies, and thus without careful con-
sideration, information that should not be shared among tasks can be leaked among tasks. In order
to eliminate potential mistakes in evaluation, BEGIN is fool-proof by completely separating the
evaluation module from the learning part, where users implement their own graph CL methods.
The learning part only has to answer queries provided by the evaluation module after each task is
processed. BEGIN is easy-to-use, and especially it is easily extended since it is modularized with
reusable modules for data processing, algorithm design, training, and evaluation.
Our last contribution is to provide extensive benchmark results of 10 graph CL methods, in terms
of 4 evaluation metrics, based on our proposed scenarios and the framework. Especially, to the best
of our knowledge, we are the first to apply and evaluate parameter-isolation-based methods to graph
CL. Refer to Table 1 for comparison with existing ones. For reproducibility, we provide all source
code required for reproducing the benchmark results and documents for users at (Anonymous, 2024).

2 RELATED WORKS
Continual Learning with Independent Data. Continual learning (CL) methods have been de-
veloped mostly for independent data (e.g., images and text), being largely categorized into
regularization-, replay-, and parameter-isolation-based methods. Regularization-based methods
seek to consolidate knowledge from previous tasks by introducing regularization terms in the loss
function. For example, Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) weights to
parameters according to the diagonal of the Fisher information matrix, and Memory Aware Synapses
(MAS) (Aljundi et al., 2018) computes the importance of parameters according to how sensitive the
parameters are. Learning without Forgetting (LwF) (Li & Hoiem, 2017) minimizes the difference
between the outputs of a previous model and a new model. Replay-based methods store a sample
of data for previous tasks (Chaudhry et al., 2019; Rebuffi et al., 2017). Then, they re-use the data
while learning a new task to mitigate forgetting. For example, Gradient Episodic Memory (GEM)
(Lopez-Paz & Ranzato, 2017) stores data from previous tasks and prevents the increase of losses
on them while learning a new task. Parameter-isolation-based methods learn binary or real-valued
masks for weighting parameters or model outputs for each task. For instance, PackNet (Mallya &
Lazebnik, 2018) generates binary masks based on the magnitude of learned parameters and re-trains
only unmasked ones for new tasks. Piggyback (Mallya et al., 2018) learns real-valued masks and
binarizes them to mask parameters for each task. HAT (Serra et al., 2018) learns real-valued masks,
which play a role similar to attention modules, for weighting each layer output for each task. There
exist a number of frameworks (Lomonaco et al., 2021; Lin et al., 2021) implementing and evaluating
CL methods for independent data. However, none of them currently supports CL with graph data.
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Continual Learning with Graph Data (Graph CL). Due to their expressiveness, graphs are
widely used to model various types of data, and thus considerable attention has been paid to ma-
chine learning with graph-structured data. Since many such graphs (e.g., online social networks)
evolve over time, continual learning is desirable for them. Thus, several graph CL methods have
been developed (Febrinanto et al., 2022; Galke et al., 2021; Sun et al., 2023) and are mainly cate-
gorized into regularization- (Liu et al., 2021; Cai et al., 2022), replay- (Zhou & Cao, 2021; Wang
et al., 2022), and hybrid-based methods (Daruna et al., 2021; Wang et al., 2020a). As an example of
replay-based methods, ER-GNN (Zhou & Cao, 2021) samples nodes and uses them for re-training.
FGN (Wang et al., 2022) transforms each original node into a form of a feature graph, which takes
original features as nodes, and then applies a replay-based method to them (Aljundi et al., 2019).
As an example of regularization-based methods, TWP (Liu et al., 2021) stabilizes parameters im-
portant in topological aggregation by graph neural networks through regularization. The replay- and
regularization-based approaches are combined in CGNN (Wang et al., 2020a). Apart from these
primary categories, HPNs (Zhang et al., 2022a) retain and expand abstract knowledge of different
levels in the form of prototypes (i.e., embeddings). Given a node, the prototypes relevant to the node
are retrieved and used as input for prediction. It is important to note that these approaches have been
evaluated under largely inconsistent settings and scenarios, as compared in detail in Appendix J.
Despite these efforts, graph CL is still largely underexplored, especially compared to CL with inde-
pendent data, and the lack of benchmark frameworks and scenarios is one major reason. To the best
of our knowledge, there exist only two benchmarks for graph CL (Carta et al., 2021; Zhang et al.,
2022b). However, Carta et al. (2021) supports only graph-level tasks under one incremental setting,
and Zhang et al. (2022b) supports node- and graph-level tasks under only two settings. Compared
to them, our benchmark and framework are more extensive, as summarized in Table 1.
Comparison with Other Graph Learning Methods. Methods have been developed to handle
shifts in data distribution between training and test datasets (Li et al., 2022; Wu et al., 2021; Ko
et al., 2021; Baek et al., 2020), They, however, differ from CL methods, which typically focus on
managing data distributional shifts across different tasks. Moreover, transfer learning (TL) on graph
data has been studied for various downstream tasks (e.g., link prediction (Tang et al., 2016)). While
CL aims to train a single model for a sequence of tasks, TL aims to adapt a separate model to a new
task. In addition, many works on incremental/dynamic graph learning (Rossi et al., 2020; You et al.,
2022) focus on the latest snapshot of a dynamic graph to maximize performance on it. However,
graph CL aims to preserve performance not only on the current snapshot but also on past ones, which
can resemble future snapshots due to seasonality, etc.

3 BENCHMARK SCENARIOS

We introduce 31 benchmark scenarios with 4 graph problems, 4 incremental settings, and 20 real-
world datasets.

Common Notations. We denote each i-th task in a sequence by Ti and use G = (V, E ,X ) to denote
a graph that consists of a set of nodes V , a set of edges E , and node features X : V → Rd, where d is
the number of node features. In some of the considered datasets, edge features are given in addition
to or instead of node features, and they can be treated similarly to node features. Lastly, we use Q
to indicate the set of queries used for evaluation.

3.1 GRAPH LEARNING PROBLEMS OF THREE LEVELS

Our benchmark scenarios are based on various node-, link-, and graph-level problems. Below, we
describe node classification, link prediction, and graph classification, as examples.

Node Classification (NC). For a node classification (NC) task Ti, the input consists of (a) a graph
Gi = (Vi, Ei,Xi), (b) a labeled set V ′i ∈ Vi of nodes, (c) a set of classes Ci, and (d) the class
f(v) ∈ Ci for each node v ∈ V ′i . A query q on a NC task Ti is a node vq /∈ V ′i where f(vq) ∈ Ci,
and its ground-truth answer is f(vq).

Link Prediction (LP). For a link prediction (LP) task Ti, the input consists of a graph Gi = (Vi, Ei\
E ′i ,Xi), where Ei is the ground-truth set of edges and E ′i ∈ Ei is the set of missing edges among
them. A query on an LP task Ti is a node pair (u, v) /∈ (Ei \ E ′i), and its ground-truth answer is
1((u, v) ∈ E ′i), i.e., whether there exists a missing edge between u and v or not.

Graph Classification (GC). For a graph classification (GC) task Ti, the input consists of (a) a
labeled set of graphs Si, (b) a set of classes Ci, and (c) the class f(G) ∈ Ci for each graph G ∈ Si. A
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query q on a GC task Ti is a graph Gq /∈ Si where f(Gq) ∈ Ci, and its ground-truth answer is f(Gq).

The problem definition of Link Classification (LC) problem, which is also used for our benchmark,
is extended straightforwardly from that of node classification.

3.2 FOUR INCREMENTAL SETTINGS

We introduce four incremental settings for graph CL and describe how they can be applied to the
above three problems. We broaden the scope of considerations beyond what was explored in previ-
ous studies (refer to Table 1 and Appendix J for in-depth comparisons). When designing them, we
aim to decouple changes in different dimensions (tasks, classes, domains, and time) if it does not
reflect actual graph dynamics. Moreover, we aim to make the dependency between instances (e.g.,
connections between nodes) exploitable. Lastly, we make the input for a task (partially) lost in later
tasks so that catastrophic forgetting may happen without careful attention to it.

Task-Incremental (Task-IL). The set of classes varies with tasks (i.e., ∀i 6= j, Ci 6= Cj), and they
are often disjoint (i.e., ∀i 6= j, Ci ∩ Cj = ∅). In addition, for each query in Q, the corresponding
task, which we denote by Ti, is provided, and thus its answer is predicted among Ci.
Class-Incremental (Class-IL). The set of classes grows over tasks (i.e., ∀i < j, Ci ( Cj). In
addition, for each query in Q, the corresponding task is NOT provided, and thus its answer is
predicted among all classes seen so far (i.e.,

⋃
j≤i Cj for a current task Ti).

Domain-Incremental (Domain-IL). We divided entities (i.e., nodes, edges, and graphs) over tasks
according to their domains, which are additionally given (see Section 3.3 for real-world examples
of domains). Note that, as domains, we use information not directly related to labels, which we aim
to infer. The details for each problem are as follows:
• NC & LC: The labeled nodes (or edges) of the input graph are divided into tasks according to their

domains. The input graph is fixed (i.e., ∀i 6= j, Gi = Gj) for all tasks.

• LP: The ground-truth edges are partitioned into (a) the set Ē of base edges and (b) the set Ẽ of
additional edges. The base edges are provided commonly for all tasks, and they are especially
useful when answering queries on past tasks. 2 The additional edges Ẽ are provided further for
each task according to their domains. For each task Ti, Ē ∪ Ẽi, where Ẽi is the additional edges
assigned to Ti, is used as the ground-truth edges (i.e., Ei = Ē ∪ Ẽi), and missing ground-truth
edges are chosen among Ẽi, i.e., E ′i ⊂ Ẽi.

• GC: The labeled graphs are divided into GC tasks according to their domains.

Time-Incremental (Time-IL). We consider a dynamic graph evolving over time. We denote its
i-th snapshot by G(i) = (V(i), E(i),X (i)). The class set may or may not vary with tasks, and the
details of each problem are as follows:
• NC & LC: The input graph for each task Ti is the i-th snapshot G(i) of the dynamic graph, and

labeled nodes (or edges) are given among new nodes (or edges) added to the snapshot (i.e., V ′i ⊂
V(i) \ V(i−1), where V(0) = ∅). The label and features of each node (or edge) are fixed over time.

• LP: As in the Domain-IL setting, base edges are used. For each task Ti, the set Ēi of base edges
so far and the new edges added to the i-th snapshot G(i) of the dynamic graph are used as the
ground-truth edges (i.e., Ei = Ēi ∪ (E(i) \ E(i−1)), where E(0) = ∅). After each task is processed,
a subset of E(i) \ E(i−1) \ E ′i (i.e., new edges that are not used as missing edges) are added as base
edges. The features of each node are fixed over time and thus for all tasks.

• GC: The snapshots of the dynamic graph are grouped and assigned to tasks in chronological order.
Specifically, for any i and j where i < j, every snapshot in the labeled set Si of the task Ti is older
than every snapshot in Sj of Tj . The features of nodes may change over time.

Remarks on Domain-IL and Time-IL. While time can be considered as a domain, we deliberately
distinguish the Time-IL and Domain-IL settings. Many real-world graphs undergo temporal evo-
lution, establishing an intrinsic connection between time and graph dynamics. However, such a
relationship is not apparent for (non-temporal) domains. We assume time-evolving graphs under
time-IL settings but not under Domain-IL settings.
Remarks on Difference from (Zhang et al., 2022b). For NC and LC, we fix the input graph for all
tasks (i.e., ∀i 6= j, Gi = Gj) enabling us to study the changes in each dimension (i.e., task, class, and

2Without base edges, past-task queries need to be answered restrictively using only other-domain edges.
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Table 2: Summary of the considered real-world datasets.
Prob. Level Dataset # Nodes # Edges # Node (Edge) Features # Classes Incremental Settings (# Tasks)

Node

Cora 2,708 10,556 1,433 (0) 7 Task (3), Class (3)
Citeseer 3,327 9,104 3,703 (0) 6 Task (3), Class (3)
CoraFull 19,793 126,842 8,710 (0) 70 Task (35)
ogbn-arxiv 169,343 2,332,486 128 (0) 40 Task (8), Class (8), Time (24)

ogbn-proteins 132,534 79,122,504 8 (0) 2×112 Domain (8)
ogbn-mag 736,389 10,832,542 128 (0) 349 Task (128), Class (128), Time (10)

ogbn-products 2,449,029 123,718,024 100 (0) 47 Class (9)
Twitch 168,114 6,797,557 4 (0) 2 Domain (21)

Link

Wiki-CS 11,701 431,726 300 (0) 2 Domain (54)
Bitcoin-OTC 5,858 35,592 0 (0) 21 Task (3), Class (3), Time (7)
ogbl-collab 235,868 1,285,465 128 (0) 2 Time (50)
Facebook 134,833 1,380,293 1 (0) 2 Domain (8)

Ask-Ubuntu 159,313 507,988 1 (0) 2 Time (69)
Prob. Level Dataset # Graphs (Avg. # Nodes) Avg. # Edges # Node (Edge) Features # Classes Incremental Settings (# Tasks)

Graph

MNIST 55,000 (70.6) 564.5 3 (0) 10 Task (5), Class (5)
CIFAR10 45,000 (117.6) 941.2 5 (0) 10 Task (5), Class (5)

Aromaticity 3,868 (29.7) 65.4 2 (0) 30 Task (10), Class (10)
ogbg-molhiv 41,127 (25.5) 27.5 9 (3) 2 Domain (10)
ogbg-ppa 40,700 (243.1) 4603.4 2 (7) 37 Domain (11)
NYC-Taxi 35,064 (265.0) 2100.5 7 (1) 2 Time (16)

Sentiment140 5,500 (13.43) 23.71 300 (0) 2 Time (11)

domain) on its own, and we separately consider the dynamics of the input graph in Time-IL settings.
It is important to note that the Task-IL and Class-IL settings in (Zhang et al., 2022b) differ from
our approach. In their settings, the timing of when edges are added to the input graph is determined
solely by the tasks (or classes) that the endpoints belong to. That is, changes in tasks (or classes) and
the dynamics of the input graph are perfectly coupled without sufficient justification. This coupling
does not reflect actual graph dynamics, which are not solely or predominantly determined by tasks.

3.3 REAL-WORLD DATASETS AND BENCHMARK SCENARIOS

We describe 20 real-world datasets and 31 benchmark scenarios based on them under various incre-
mental settings. We summarize the datasets and the scenarios in Table 2.

3.3.1 DATASETS FOR NODE-LEVEL PROBLEMS.

• Cora, Citeseer (Sen et al., 2008), and CoraFull (Bojchevski & Günnemann, 2018) are citation
networks. Each node is a scientific publication, and its class is the field of the publication. For
Cora and Citeseer, we formulate three binary classification tasks for Task-IL and three tasks with
2, 4, and 6 classes for Class-IL. Similarly, for CoraFull, we formulate 35 binary classification
tasks. Note that, one class is left unused in Cora.

• Nodes in ogbn-proteins (Hu et al., 2020; Szklarczyk et al., 2019) are proteins, and edges indicate
meaningful associations between proteins. For each protein, 112 binary classes, which indicate the
presence of 112 functions, are available. Each protein belongs to one among 8 species, which are
used as domains in Domain-IL. Each of the 8 tasks consists of 112 binary classification problems.

• ogbn-arxiv and ogbn-mag (Hu et al., 2020; Wang et al., 2020b) are citation networks, where each
node is a research paper. For ogbn-arxiv, its class belongs to 40 subject areas, which are divided
into 8 groups for Task-IL, and the number of classes increases by 5 for each task in Class-IL. For
ogbn-mag, For Task-IL and Class-IL, among 349 classes indicating fields of studies, we use the
257 classes with at least 10 nodes, and they are divided into 128 groups for Task-IL. For Class-
IL, the number of classes grows by 2 in each task. For Time-IL, we formulate 24 and 10 tasks
chronologically using publication years for ogbn-arxiv and ogbn-mag, respectively.

• ogbn-products (Hu et al., 2020; Chiang et al., 2019) is a co-purchase network, where each node
is a product, and its class belongs to 47 categories, which are divided into 9 groups for Class-IL.
The number of classes increases by 5 in each task, and two categories are not used.

• Nodes in Twitch (Rozemberczki & Sarkar, 2021) are users of a video-streaming platform, and
edges indicate mutual follower relationships between users. For each user, its class indicates
whether the user is joining the affiliate program or not. Each user belongs to one among 21
broadcasting language groups, and they are used as domains for Domain-IL.

3.3.2 DATASET FOR LINK-LEVEL PROBLEMS.

• Bitcoin-OTC (Kumar et al., 2016; 2018) is a who-trust-whom network, where nodes are users
of a bitcoin-trading platform. Each directed edge has an integer rating between −10 to 10 and
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Graph 𝐺 = (𝑋, 𝐴)

Dataset Problem

Settings

Trainer (User)

Settings:

{‘setting’: ‘Class-IL’,

‘dataset’: ‘ogbn-arxiv’} 

[Step 1]

Data & Question:

{‘graph’: 𝐺,

‘train_idx’: A,

‘valid_idx’: B,

‘test_idx’: C, E} 

Prediction: 

{‘C’: 4, ‘E’: 5}
[Step 2]

ScenarioLoader Before training Task 1

(2)(1)

[Step 3]

Data & Question:

{‘graph’: 𝐺,

‘train_idx’: F,

‘valid_idx’: D,

‘test_idx’: C, E} 

(3) (4) (5)

Task 2

Prediction: 

{‘C’: 14, ‘E’: 26}

…

Task 3 ~ 8

(6)
‘Results’: 

{‘AP’: 0.8, 

‘AF’: -0.1,

‘INT’:0.1,

…}

Node A B C D E F

Split Train Valid Test Valid Test Train

Label 4 11 26 39 5 17

4 11 ? ? ? ? ? ? ? 39 ? 17

Figure 1: Example communications between the trainer (user code) and the loader of BEGIN.

a timestamp. The ratings are divided into 6 groups. Two of them are used separately for Task-
IL and accumulated for Class-IL. For Time-IL, we formulate 7 tasks chronologically using the
timestamps, where the signs of the ratings are used as binary classes.

• ogbl-collab (Hu et al., 2020; Wang et al., 2020b) is a co-authorship network between authors with
publication years for Time-IL.

• Wiki-CS (Mernyei & Cangea, 2020) is a hyperlink network between computer science articles.
Each article has a label indicating one of the 10 subfields it belongs to. The node labels are used
as domains, and the edges are divided into 54 groups, according to the labels of their endpoints.

• Nodes in Ask-Ubuntu (Paranjape et al., 2017) are users of an online Q/A platform, and edges
indicate interactions between them. The edges are divided into 69 groups chronologically using
timestamps for Time-IL.

• In Facebook (Rozemberczki et al., 2019), nodes are pages on Facebook, and edges indicate mutual
“likes” between the pages that fall within the same category. Each node is assigned to one of eight
categories, and we leverage these categories as domains for Domain-IL.

3.3.3 DATASETS FOR GRAPH-LEVEL PROBLEMS.

• Images in MNIST and CIFAR10 (Dwivedi et al., 2020; Achanta et al., 2012) are converted to
graphs of super-pixels. There are 10 classes of graphs, and they are partitioned into 5 groups,
which are used separately for Task-IL and accumulated for Class-IL.

• Graphs in ogbg-molhiv (Hu et al., 2020; Wu et al., 2018; Landrum et al., 2006) and
Aromaticity (Xiong et al., 2019; Wu et al., 2018) are molecules consisting of atoms and their
chemical bonds. For ogbg-molhiv, the binary class of each graph indicates whether molecules
inhibit HIV replication or not, and we divide the molecules into 20 groups based on structural
similarity by the scaffold splitting procedure (Landrum et al., 2006). Aromaticity contains labels
representing the number of atoms in each molecule, and in this paper, we divide the molecules
into 30 groups based on the labels and formulate Task- and Class-IL settings with 10 tasks.

• Each graph in NYC-Taxi (NYC Taxi & Limousine Commission) shows the amount of taxi traffic
between locations in New York City over each hourly period from 2018 to 2021. Specifically,
nodes are locations, and there exists a directed edge between two nodes if there existed any taxi
customer between them during an hour. The number of such customers is used as the edge weight.
The date and time of the corresponding taxi traffic are used to partition the graphs chronologically
into 16 groups for Time-IL. The binary class of each graph indicates whether it indicates taxi
traffic on weekdays (Mon.-Fri.) or weekends (Sat.-Sun.).

• Graphs in ogbg-ppa (Hu et al., 2020; Szklarczyk et al., 2019; Hug et al., 2016; Zitnik et al.,
2019) are protein-protein interactions. We formulate a multi-class (spec., 37-class) classification
problem of predicting which taxonomic groups of species each graph comes from. The dataset
is preprocessed so that it contains 11 species for each taxonomic group and 100 graphs for each
species. We categorize the species so that each category contains exactly one species from each
taxonomic group, and the categories are used as domains for Domain-IL.

• Graphs in Sentiment140 (Go et al., 2009) are dependency trees parsed from posts on Twitter.
The class of each graph indicates whether the sentiment of the corresponding post is positive or
negative. For Time-IL, we formulate 11 tasks chronologically using the timestamps of posts.

4 BEGIN: PROPOSED BENCHMARK FRAMEWORK

In this section, we present BEGIN (Benchmarking Graph Continual Learning), our proposed bench-
mark framework for making graph continual learning (graph CL) (a) Easy: assisting users so that
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User’s implementation for EWCCommon Procedure

def common_procedure(){

# initialize states

# get entire dataset

for task_id in range(num_tasks):

# prepare dataloader for task_id

# process something before training

for i in range(num_epochs):

for minibatch in train_loader:

# train the model

for minibatch in valid_loader:

# evaluate the model

# process something after epoch

# process something after training   

# evaluate the model

}

def initTrainingStates(){

# initialize states

}

def processTrainIteration(){

# train the model 

# with EWC penalty term

}

def processAfterTraining(){

# store current parameters 

# and update weights computed 

# from fisher matrix

}BaseIncremental
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Figure 2: (Left) Modularized structure of BEGIN, our proposed benchmark framework for im-
plementation and evaluation of continual learning methods for graph data. (Right) An example
implementation of EWC with BEGIN. To implement and benchmark new graph CL methods,
users only need to fill out the modularized event functions in the trainer, which then proceeds the
training procedure with the event functions.

they can implement new graph CL methods with little effort, (b) Fool-proof: preventing potential
mistakes of users in evaluation, which is complicated for graph CL, and (c) Extensive: supporting
various benchmark scenarios, including those described in Section 3. The modularized structure of
BEGIN is illustrated on the left side of Figure 2, and below, we focus on its three components.

4.1 SCENARIOLOADER (LOADER)

The ScenarioLoader (loader in short) of BEGIN is responsible for communicating with user code
(i.e., the training part) to perform a benchmark under a desired incremental setting.
First, the loader receives the entire dataset and the desired incremental setting as inputs. Then,
according to the inputs, it processes the dataset into a sequence of tasks, as described in Section 3.
Before each task starts, the loader provides (a) the input for the task and (b) the set Q of queries for
evaluation to the user code. Once the user code is done with the current task, the loader receives the
predicted answers for the queries in Q. Lastly, if there is no more task to be performed, the loader
returns the evaluation results, which are computed by the evaluator module, to the user code. In
Figure 1, we provide an example of such communications.
Remarks on the fool-proofness of BEGIN. The evaluation part is intentionally concealed from user
code, even after all tasks are processed. By hiding the ground-truth answers to the queries, we aim
to prevent potential mistakes and misuse by users. It should be noticed that, compared to continual
learning with independent data, unintentional information leak is easier to happen for node- and link-
level problems due to the dependency between tasks. For example, for an NC task, not only nodes
assigned to the current task but also those assigned to previous or future tasks can be used (e.g.,
for graph convolution) because they are connected by edges. Moreover, our framework additionally
restricts information given for each task to prevent potential information leaks. For example, all
queries in Q are asked by the loader and answered by the user code at each evaluation step, even
when some of the queries are on unseen tasks. Otherwise, information about the tasks that queries
are on can be revealed to the user code and exploited for answering the questions, which is prohibited
in the Class-IL setting. Note that the objective of our design is to reduce potential mistakes (i.e.,
unintentional information leaks), but not to prevent adversarial users from attempting to cheat.

4.2 EVALUATOR

BEGIN provides the evaluator to compute basic metrics (spec., accuracy, AUCROC, and Hits@K)
based on the ground truth and predicted answers for the queries in Q provided by the loader. The
basic evaluator can easily be extended by users for additional basic metrics. The basic metrics are
sent to the loader, and for each basic metric, the basic performance matrix M ∈ RN×N , where N
is the number of tasks, is computed. The (i, j)-th entry Mi,j indicates the performance on j-th task
Tj after the i-th task Ti is processed. Based on M, the following evaluation metrics are computed.

• Average Performance (AP): Average performance on k tasks after learning the k-th task Tk.

• Average Forgetting (AF): Average forgetting on (k − 1) tasks after learning the k-th task Tk
(2 ≤ k ≤ N ). We measure the forgetting on Ti by the difference between the performance on Ti
after learning Tk and the performance on Ti right after learning Ti.

• Intransigence (INT) (Chaudhry et al., 2018) averaged over k tasks: We measure the intransigence
on Ti by the difference between the performances of the Joint model (see Section 5.1) and the
target model on Ti after learning Ti.
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• Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017) averaged over (k − 1) tasks (2 ≤ k ≤
N ): We measure the forward transfer on Ti by the difference between the performance on Ti after
learning Ti−1 and the performance on Ti without any learning.

Note that AF quantifies forgetting of previous tasks, and INT measures performance on the current
task. FWT measures performance on future tasks, to quantify generalizable knowledge retained
from previous tasks. Formally, the evaluation metrics are defined as follows:

AP =

k∑
i=1

Mk,i

k
, AF =

k−1∑
i=1

Mi,i −Mk,i

k − 1
, INT =

k∑
i=1

MJoint
i,i −Mi,i

k
,FWT =

k∑
i=2

Mi−1,i − ri
k − 1

,

where MJoint is a basic performance matrix of the Joint model, and ri denotes the performance of a
randomly initialized model on Ti.

4.3 TRAINER

For usability, BEGIN provides the trainer, which users can extend when implementing new methods.
It manages the overall training procedure, including data loading, training, and validation, so that
users only have to implement novel parts of their methods. As in (Lomonaco et al., 2021), the
trainer divides a training procedure of continual learning as a series of events. For example, the
subprocesses in a training procedure contain events called when the trainer (a) receives an input for
the current task, (b) trains a model for one iteration for the current task, and (c) handles any necessary
pre- and post-processing for the training procedure. Each event is modularized as a function, which
users can fill out, and the trainer proceeds with the training procedure with the event functions.

One thing we need to consider is that there can be cases where intermediate results generated in
each event must be stored to be used in other events. For example, in the EWC method, a penalty
term for preventing catastrophic forgetting should be additionally considered to compute the train-
ing loss. To compute the term, the learned parameters and the weights computed from the fisher
information matrix on the previous tasks are needed, but they cannot be obtained on the current
task. In order to resolve this issue, the trainer provides a dictionary where intermediate results
can be stored and shared by events. For the aforementioned EWC method, the learned parameters
and computed weights on a task are stored in the dictionary and used for computing the training
loss on the following tasks. The right side of Figure 2 shows how the EWC method for node
classification can be implemented with BEGIN. In this example, users only need to fill out three
event functions: (a) init training states for initializing the dictionary of training states,
(2) process train iteration for considering the penalty term in the loss function, and (3)
process after training for storing learned weights and compute weights of the parameters
for the penalty term. Refer to Appendix G for a further discussion regarding the usability of BEGIN,
including provided functionalities and a detailed example implementation.

5 BENCHMARK RESULTS

In this section, we provide benchmark results of 10 graph CL methods implemented by BEGIN.

5.1 EXPERIMENTAL SETTINGS

For general CL methods, we used LwF (Li & Hoiem, 2017), EWC (Kirkpatrick et al., 2017),
MAS (Aljundi et al., 2018), GEM (Lopez-Paz & Ranzato, 2017), PackNet (Mallya & Lazebnik,
2018), Piggyback (Mallya et al., 2018), and HAT (Serra et al., 2018). The parameter-isolation-
based methods (i.e., PackNet, Piggyback, and HAT) are applied only to Task-IL since they require
knowing which task each query is on. To the best of our knowledge, we are the first to apply
parameter-isolation-based methods to graph CL, and we provide their details in Appendix F. For CL
methods designed for graph-structured data, we used TWP (Liu et al., 2021), ERGNN (Zhou & Cao,
2021), and CGNN (Wang et al., 2020a). ERGNN and CGNN, which were designed for node-level
problems, were not applied to link- and graph-level problems. See Section 2 for brief descriptions
of the above methods. For the baseline methods without CL techniques, we used the Bare and Joint
models used in (Zhang et al., 2022b). The Bare model follows the incremental learning schemes, but
no CL technique is applied to the model. Lastly, the Joint model trains the backbone model directly
on the entire dataset, ignoring the CL procure with a sequence of tasks.

We performed all experiments on a Linux server with Quadro RTX 8000 GPUs. Due to the space
limitation, we provide the details of the models and training protocol we used in Appendix C.
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Table 3: Results of Average Performance (AP, the higher, the better) and Average Forgetting
(AF, the lower, the better). In each setting, the best score is in bold, and the second-best score is
underlined. O.O.M: out of memory. N/A: methods are not applicable to the problems or scenarios.
We report full results in Appendix B.

Methods
Node Classification (NC) Link Classification (LC) Link Prediction (LP) Graph Classification (GC)

Cora
(Task-IL)

Citeseer
(Class-IL)

ogbn-proteins
(Domain-IL)

ogbn-arxiv
(Time-IL)

Bitcoin-OTC
(Task-IL)

Bitcoin-OTC
(Class-IL)

Wiki-CS
(Domain-IL)

ogbl-collab
(Time-IL)

CIFAR10
(Task-IL)

MNIST
(Class-IL)

ogbg-molhiv
(Domain-IL)

NYC-Taxi
(Time-IL)

Bare 0.903±0.018 0.447±0.040 0.690±0.022 0.628±0.004 0.648±0.071 0.243±0.030 0.068±0.035 0.347±0.025 0.646±0.074 0.194±0.005 0.686±0.039 0.709±0.006
LwF 0.915±0.012 0.464±0.039 0.714±0.020 0.639±0.004 0.704±0.032 0.242±0.029 0.065±0.028 0.343±0.028 0.840±0.030 0.194±0.005 0.702±0.048 0.711±0.002
EWC 0.912±0.013 0.452±0.037 0.761±0.011 0.613±0.004 0.682±0.046 0.242±0.030 0.113±0.026 0.232±0.014 0.784±0.042 0.193±0.006 0.741±0.032 0.720±0.014
MAS 0.918±0.017 0.560±0.024 0.694±0.016 0.588±0.007 0.706±0.033 0.244±0.023 0.100±0.035 0.227±0.075 0.762±0.046 0.192±0.006 0.680±0.030 0.714±0.005
GEM 0.882±0.031 0.482±0.033 0.810±0.003 0.654±0.003 0.700±0.035 0.287±0.042 0.180±0.029 0.388±0.063 0.769±0.030 0.199±0.020 0.707±0.033 0.706±0.066
TWP 0.910±0.015 0.450±0.037 O.O.M 0.593±0.010 0.673±0.046 0.243±0.028 0.131±0.037 0.258±0.022 0.788±0.044 0.190±0.007 0.739±0.034 0.712±0.003

ERGNN 0.890±0.031 0.457±0.043 N/A 0.696±0.004 N/A N/A N/A N/A N/A N/A N/A N/A
CGNN 0.911±0.015 0.531±0.035 N/A 0.676±0.005 N/A N/A N/A N/A N/A N/A N/A N/A

PackNet 0.933±0.018 N/A N/A N/A 0.718±0.030 N/A N/A N/A 0.855±0.023 N/A N/A N/A
Piggyback 0.938±0.016 N/A N/A N/A 0.681±0.023 N/A N/A N/A 0.852±0.021 N/A N/A N/A

HAT 0.920±0.020 N/A N/A N/A 0.627±0.061 N/A N/A N/A 0.643±0.078 N/A N/A N/A

Joint 0.924±0.015 0.556±0.040 0.732±0.002 0.734±0.002 0.735±0.035 0.377±0.031 0.229±0.018 0.588±0.025 0.868±0.021 0.900±0.004 0.779±0.012 0.863±0.004

(a) Average Performance (AP)

Methods
Node Classification (NC) Link Classification (LC) Link Prediction (LP) Graph Classification (GC)

Cora
(Task-IL)

Citeseer
(Class-IL)

ogbn-proteins
(Domain-IL)

ogbn-arxiv
(Time-IL)

Bitcoin-OTC
(Task-IL)

Bitcoin-OTC
(Class-IL)

Wiki-CS
(Domain-IL)

ogbl-collab
(Time-IL)

CIFAR10
(Task-IL)

MNIST
(Class-IL)

ogbg-molhiv
(Domain-IL)

NYC-Taxi
(Time-IL)

Bare 0.026±0.023 0.550±0.066 0.131±0.034 -0.049±0.006 0.114±0.087 0.722±0.047 0.299±0.043 0.245±0.022 0.270±0.082 0.978±0.008 0.107±0.053 0.028±0.013
LwF 0.012±0.019 0.539±0.060 0.054±0.026 -0.044±0.006 0.035±0.021 0.726±0.047 0.311±0.031 0.351±0.033 0.030±0.015 0.976±0.009 0.091±0.057 0.014±0.007
EWC 0.020±0.014 0.542±0.065 0.074±0.025 -0.084±0.012 0.063±0.046 0.724±0.060 0.146±0.046 0.055±0.037 0.055±0.027 0.977±0.008 0.038±0.028 0.071±0.024
MAS 0.005±0.007 0.283±0.050 0.012±0.027 -0.116±0.016 0.029±0.025 0.726±0.049 0.134±0.047 0.073±0.066 0.077±0.039 0.973±0.008 0.007±0.031 0.056±0.006
GEM 0.060±0.057 0.507±0.053 0.003±0.028 -0.136±0.006 0.026±0.021 0.579±0.100 0.044±0.057 0.299±0.065 0.106±0.023 0.866±0.080 0.065±0.040 0.065±0.065
TWP 0.025±0.018 0.545±0.063 O.O.M -0.039±0.011 0.070±0.059 0.721±0.055 0.200±0.041 0.078±0.017 0.056±0.030 0.972±0.009 0.050±0.034 0.055±0.009

ERGNN 0.052±0.059 0.518±0.058 N/A -0.095±0.005 N/A N/A N/A N/A N/A N/A N/A N/A
CGNN 0.023±0.016 0.384±0.055 N/A -0.076±0.007 N/A N/A N/A N/A N/A N/A N/A N/A

PackNet 0.000±0.000 N/A N/A N/A 0.000±0.000 N/A N/A N/A 0.000±0.000 N/A N/A N/A
Piggyback 0.000±0.000 N/A N/A N/A 0.000±0.000 N/A N/A N/A 0.000±0.000 N/A N/A N/A

HAT -0.021±0.019 N/A N/A N/A 0.134±0.082 N/A N/A N/A 0.272±0.089 N/A N/A N/A

(b) Average Forgetting (AF)

5.2 AVERAGE PERFORMANCE & AVERAGE FORGETTING

Our benchmark results in terms of final3 AP and AF are shown in Tables 3a and 3b, respectively.

In Task-IL, PackNet and Piggyback, which are parameter-isolation-based methods, perform best
overall in terms of both AP and AF. When we average ranks over all the Task-IL results in the
tables, the average ranks of PackNet and Piggyback in terms of AP are 1.3 and 3.0, respectively.4
Among other methods, the regularization-based methods (i.e., LwF, EWC, MAS, and TWP) tend to
perform better than the replay-based ones (i.e., GEM and ERGNN) on NC.

For the node-level problem in Class-IL, most CL methods perform significantly better than the Bare
model, and CGNN performs best in terms of both AP and AF. However, for the graph-level problem
in Class-IL, most CL methods perform only comparably with the Bare model. In Domain-IL, GEM,
which is a replay-based method, performs best overall in terms of AP and second-best in terms of
AF among all methods applicable to the setting. In Time-IL, no model outperforms the Bare model
consistently on all datasets in terms of AP. That is, it is challenging for current CL methods to deal
with temporal dynamics in real-world graphs.

Due to the space limitation, we provide the full results on all scenarios and the detailed analysis in
Appendix B with a discussion on the INT and FWT of the CL methods. We also conduct hyperpa-
rameter sensitivity analyses and present the results in Appendix D-F.

6 CONCLUSION

In this work, based on prior studies, we define four incremental settings for evaluating continual
learning methods for graph data (graph CL) based on four dimensions of changes, which are tasks,
classes, domains, and time. Then, we apply the settings to node-, link-, and graph-level learning
problems. As a result, we provide 31 benchmark scenarios from 20 real-world datasets, which
cover all 12 combinations of the 4 incremental settings and the 3 levels of problems. In addition,
we propose BEGIN, a fool-proof and easy-to-use benchmark framework for the implementation
and evaluation of graph CL methods. Our benchmark results cover more extensive scenarios, CL
methods, and evaluation metrics than the existing ones for graph CL, as summarized in Table 1. A
limitation of our work is the relatively small number of tasks compared to CL benchmarks in other
domains, primarily due to the lack of rich labels in graph data, as further discussed in Appendix H.

3When k is equal to N in the equations in Section 4.2.
4They always perfectly retain knowledge from previous tasks (i.e., AF is 0) since they use parameters

disjointly for different tasks.
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Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019.

Anonymous. implementation code & dataset. https://anonymous.4open.science/r/
BeGin-C4B0, 2024.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transduc-
tive few-shot out-of-graph link prediction. In NeurIPS, 2020.
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A ILLUSTRATION AND REAL-WORLD EXAMPLE OF A TIME-EVOLVING
GRAPH

𝑡 − 1 𝑡 𝑡 + 1

𝐺𝑡−1 𝐺𝑡 𝐺𝑡+1

Time

Adding
(Removing)

Adding
(Removing)

Adding
(Removing)

…

added
deleted

Figure 3: Illustration of a time-evolving graph. The colors of nodes represent their classes (or
domains). New nodes and edges are depicted using solid red circles and lines, while removed nodes
and edges are depicted using dotted red circles and lines. It is important to note that over time,
there are changes in (a) the number of nodes, (b) the number of edges, (c) the number of classes (or
domains), and (d) the distribution over classes.
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(f) Shift in Average Features
Figure 4: Changes in six aspects of a real-world time-evolving graph. In ogbn-arxiv, we observe
a gradual increase over time in (a) the number of nodes, (b) the number of edges, (c) the average node
degree, and (d) the number of classes. Additionally, the distribution of classes undergoes variations
as time progresses, as depicted in (e). Moreover, the average node features exhibit shifts over time,
as visualized in (f) using t-SNE (Van der Maaten & Hinton, 2008) to plot the average node features.

Figure 3 provides an example illustration of a time-evolving graph. It demonstrates that both nodes
and edges can appear and disappear over time. Additionally, novel classes (or domains) may emerge
and subsequently vanish, causing the distribution over classes to shift throughout the timeline.

• At time t − 1, the graph consists of 9 nodes and 11 edges. There are three classes (or domains)
present in the graph: blue, orange, and purple. When observing the graph Gt−1, we notice that
the most prominent class is orange, followed by blue and purple.

• At time t, 10 new nodes emerge, accompanied by 15 incident edges. Notably, the node belonging
to the purple class disappears, and two existing edges vanish. Additionally, a new class, rep-
resented by the color green, emerges in the graph. As a result of these changes, the blue class
becomes the most dominant class.
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• At time t + 1, 10 new nodes belonging to the green class and 2 new nodes belonging to a novel
class, represented by the color black, emerge, accompanied by 22 incident edges. Moreover,
an existing node and its incident edges are removed. Additionally, a new edge is added among
existing nodes, while three existing edges are removed. As a result, the graph now consists of 29
nodes, 40 edges, and 4 classes. Furthermore, the dominance of the blue class diminishes, while
the green class emerges as the new dominant class.

Figure 4 illustrates the dynamic changes in six aspects of a real-world graph, ogbn-arxiv, which
represents a citation network. The plot shows the changes in the following topological properties:
(a) the number of nodes, (b) the number of edges, and (c) the average node degree. Additionally, it
presents the variations in (d) the diversity of node classes, (e) the distribution over node classes, and
(f) the average node features, visualized using t-SNE (Van der Maaten & Hinton, 2008). In (a)-(c),
we observe a progressive increase in the number of available nodes (including train, validation, and
test nodes) and edges over time. In (d) and (e), we observe variations in the distribution of node
classes over time, accompanied by the emergence of new classes. In (f), we observe that the average
node features exhibit shifts over time, as indicated by the directional arrows.

B FULL EXPERIMENT RESULTS

B.1 AVERAGE PERFORMANCE & AVERAGE FORGETTING

In Table 4 and Table 5, we report the results of average performance (AP) and average forgetting
(AF) for all 31 benchmark scenarios.

The considered Graph CL methods can be categorized into (a) parameter-isolation-based methods
(PackNet, Piggyback, and HAT), (b) replay-based methods (GEM and ERGNN), and regularization-
based methods (LwF, EWC, MAS, and TWP). We conducted an analysis to assess the category-
based performance differences across various metrics and incremental settings, specifically focusing
on Node Classification (NC) problems. To compare these differences, we calculated the rank of each
method across all benchmark scenarios, with the exception of the ogbn-mag dataset5 Subsequently,
we visualized the distributions of the ranks for each category using box plots.

As shown in Figure 5, parameter-isolation-based methods outperformed the replay- and
regularization-based methods in Task-IL. Furthermore, we observed that replay-based methods gen-
erally achieved better overall performance compared to regularization-based methods in all incre-
mental settings, except for Task-IL, in terms of AP and AF. Additionally, by conducting Welch’s
t-test, we discovered that the category-based performance differences we reported were statistically
significant within the 95% confidence interval.

B.2 INTRANSIGENCE

We report the intransigence (INT) of the considered methods in Table 6. In Task-IL, LwF shows
overall the best performance among 10 graph CL methods. Specifically, when we average ranks over
all the Task-IL results, LwF takes the first place with an average rank of 2.4, and MAS takes the last
place with an average rank of 6.7. Interestingly, the parameter-isolation-based methods, which are
best in terms of AP and AF, are not best in terms of INT. The average ranks of PackNet, Piggyback,
and HAT are 4.8, 5.9, and 5.1, respectively.

When we average ranks over all the results including all graph problems and all incremental settings
without parameter-isolation-based methods, LwF still performs best with an average rank 1.9, and
MAS performs worst with an average rank 4.2. However, the difference between regularization-
based and replay-based methods was not statistically significant within the 95% confidence interval,
as shown in Figure 5.

Interestingly, in terms of INT, many CL methods are outperformed by the Bare model, which focuses
only on learning the current task. In other words, the Bare model performs better on the current task
than the outperformed CL methods, while it may suffer from catastrophic forgetting for past tasks.
This result implies that retaining knowledge from past tasks by the outperformed CL methods is less
helpful (to the current task) than using all parameters to learn the current task.

5Note that GEM ran out of time in ogbn-mag on both Task-IL and Class-IL settings.
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Table 4: Performance in terms of Average Performance (AP, the higher, the better). In each
setting, the best score is in bold, and the second-best score is underlined. O.O.M: out of memory.
O.O.T: out of time (> 24 hours). N/A: methods are not applicable to the problems or scenarios.

Problem Node Classification (NC)

Methods Cora
(Task-IL)

Citeseer
(Task-IL)

ogbn-arxiv
(Task-IL)

CoraFull
(Task-IL)

ogbn-mag
(Task-IL)

Cora
(Class-IL)

Citeseer
(Class-IL)

ogbn-arxiv
(Class-IL)

ogbn-products
(Class-IL)

ogbn-mag
(Class-IL)

Bare 0.903±0.018 0.836±0.029 0.650±0.076 0.759±0.019 0.651±0.016 0.541±0.036 0.447±0.040 0.120±0.004 0.105±0.009 0.008±0.001
LwF 0.915±0.012 0.859±0.018 0.926±0.008 0.819±0.017 O.O.T 0.550±0.021 0.464±0.039 0.131±0.009 0.106±0.010 0.008±0.001
EWC 0.912±0.013 0.837±0.029 0.858±0.022 0.869±0.022 0.887±0.014 0.567±0.052 0.452±0.037 0.123±0.004 0.116±0.021 0.027±0.004
MAS 0.918±0.017 0.843±0.023 0.918±0.008 0.972±0.006 0.943±0.009 0.741±0.014 0.560±0.024 0.125±0.017 0.097±0.018 0.008±0.004
GEM 0.882±0.031 0.834±0.029 0.906±0.007 0.836±0.020 O.O.T 0.618±0.029 0.482±0.033 0.607±0.015 0.290±0.042 O.O.T
TWP 0.910±0.015 0.836±0.026 0.848±0.015 0.900±0.018 0.867±0.021 0.564±0.031 0.450±0.037 0.123±0.005 0.108±0.014 0.027±0.008

ERGNN 0.890±0.031 0.829±0.021 0.876±0.015 0.900±0.024 0.948±0.005 0.609±0.026 0.457±0.043 0.541±0.014 0.425±0.078 0.170±0.021
CGNN 0.911±0.015 0.829±0.032 0.920±0.007 0.910±0.016 0.953±0.006 0.723±0.017 0.531±0.035 0.477±0.050 O.O.M 0.160±0.012

PackNet 0.933±0.018 0.845±0.017 0.935±0.007 0.973±0.005 0.930±0.012 N/A N/A N/A N/A N/A
Piggyback 0.938±0.016 0.846±0.024 0.928±0.007 0.977±0.004 0.957±0.008 N/A N/A N/A N/A N/A

HAT 0.924±0.015 0.833±0.043 0.905±0.013 0.915±0.019 0.771±0.022 N/A N/A N/A N/A N/A

Joint 0.924±0.015 0.851±0.027 0.938±0.006 0.977±0.005 0.969±0.003 0.800±0.020 0.556±0.040 0.654±0.016 0.674±0.048 0.190±0.006

Problem Node Classification (NC) Link Classification (LC) Link Prediction (LP)

Methods ogbn-proteins
(Domain-IL)

Twitch
(Domain-IL)

ogbn-arxiv
(Time-IL)

ogbn-mag
(Time-IL)

Bitcoin-OTC
(Task-IL)

Bitcoin-OTC
(Class-IL)

Bitcoin-OTC
(Time-IL)

Wiki-CS
(Domain-IL)

Facebook
(Domain-IL)

ogbl-collab
(Time-IL)

Ask-Ubuntu
(Time-IL)

Bare 0.690±0.022 0.569±0.030 0.628±0.004 0.296±0.001 0.648±0.071 0.243±0.030 0.696±0.019 0.068±0.035 0.040±0.009 0.347±0.025 0.358±0.009
LwF 0.714±0.020 0.587±0.035 0.639±0.004 0.303±0.001 0.704±0.032 0.242±0.029 0.680±0.021 0.065±0.028 0.045±0.019 0.343±0.028 0.358±0.019
EWC 0.761±0.011 0.597±0.016 0.613±0.004 0.297±0.001 0.682±0.046 0.242±0.030 0.702±0.021 0.113±0.026 0.042±0.012 0.232±0.014 0.346±0.015
MAS 0.694±0.016 0.595±0.030 0.588±0.007 0.286±0.006 0.706±0.033 0.244±0.023 0.687±0.017 0.100±0.035 0.040±0.014 0.227±0.075 0.365±0.005
GEM 0.810±0.003 0.602±0.018 0.654±0.003 0.313±0.002 0.700±0.035 0.287±0.042 0.681±0.019 0.180±0.029 0.062±0.016 0.388±0.063 0.360±0.007
TWP O.O.M 0.598±0.017 0.593±0.010 0.295±0.001 0.673±0.046 0.243±0.028 0.664±0.014 0.131±0.037 0.036±0.013 0.258±0.022 0.357±0.013

ERGNN N/A N/A 0.696±0.004 0.379±0.001 N/A N/A N/A N/A N/A N/A N/A
CGNN N/A N/A 0.676±0.005 0.335±0.001 N/A N/A N/A N/A N/A N/A N/A

PackNet N/A N/A N/A N/A 0.718±0.030 N/A N/A N/A N/A N/A N/A
Piggyback N/A N/A N/A N/A 0.681±0.023 N/A N/A N/A N/A N/A N/A

HAT N/A N/A N/A N/A 0.627±0.061 N/A N/A N/A N/A N/A N/A

Joint 0.732±0.002 0.624±0.008 0.704±0.005 0.382±0.002 0.735±0.035 0.377±0.031 0.800±0.012 0.229±0.018 0.077±0.011 0.588±0.025 0.361±0.013

Problem Graph Classification (GC)

Methods MNIST
(Task-IL)

CIFAR10
(Task-IL)

Aromaticity
(Task-IL)

MNIST
(Class-IL)

CIFAR10
(Class-IL)

Aromaticity
(Class-IL)

ogbg-molhiv
(Domain-IL)

ogbg-ppa
(Domain-IL)

NYC-Taxi
(Time-IL)

Sentiment140
(Time-IL)

Bare 0.691±0.081 0.646±0.074 0.458±0.044 0.194±0.005 0.175±0.008 0.062±0.014 0.686±0.039 0.299±0.018 0.709±0.006 0.703±0.010
LwF 0.965±0.008 0.840±0.030 0.549±0.044 0.194±0.005 0.176±0.009 0.064±0.013 0.702±0.048 0.396±0.012 0.711±0.002 0.702±0.013
EWC 0.888±0.047 0.784±0.042 0.588±0.030 0.193±0.006 0.174±0.009 0.064±0.012 0.741±0.032 0.189±0.026 0.720±0.014 0.709±0.010
MAS 0.843±0.044 0.762±0.046 0.577±0.048 0.192±0.006 0.175±0.009 0.058±0.011 0.680±0.030 0.145±0.021 0.714±0.005 0.712±0.008
GEM 0.894±0.028 0.769±0.030 0.500±0.045 0.199±0.020 0.174±0.010 0.065±0.013 0.707±0.033 0.294±0.016 0.706±0.066 0.674±0.019
TWP 0.883±0.060 0.788±0.044 0.564±0.063 0.190±0.007 0.167±0.012 0.062±0.009 0.739±0.034 0.202±0.021 0.712±0.003 0.699±0.008

PackNet 0.972±0.007 0.855±0.023 0.491±0.089 N/A N/A N/A N/A N/A N/A N/A
Piggyback 0.962±0.011 0.852±0.021 0.579±0.042 N/A N/A N/A N/A N/A N/A N/A

HAT 0.698±0.081 0.643±0.078 0.455±0.036 N/A N/A N/A N/A N/A N/A N/A

Joint 0.977±0.007 0.868±0.021 0.765±0.029 0.900±0.004 0.521±0.003 0.286±0.018 0.779±0.012 0.801±0.013 0.863±0.004 0.747±0.010

B.3 FORWARD TRANSFER

We report the forward transfer (FWT) of the considered methods in Table 7. Note that we are able
to compute FWT only in Domain-IL. Specifically, in the other settings, the set of classes may vary
with tasks (i.e., Ci 6= Ci−1), and thus it may not be possible to infer classes on the next task (i.e.,
Ci) right after being trained for the current task (i.e., Ti−1) without being trained for the next task
(i.e., Ti). Except for the ogbn-proteins, where TWP runs out of memory, and the ogbg-ppa datasets,
TWP performs best or second-best. On the NC problem, EWC performs best.
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Table 5: Performance in terms of Average Forgetting (AF, the lower, the better). In each setting,
the best score is in bold, and the second best score is underlined. O.O.M: out of memory. O.O.T:
out of time (> 24 hours). N/A: methods are not applicable to the problems or scenarios.

Problem Node Classification (NC)

Methods Cora
(Task-IL)

Citeseer
(Task-IL)

ogbn-arxiv
(Task-IL)

CoraFull
(Task-IL)

ogbn-mag
(Task-IL)

Cora
(Class-IL)

Citeseer
(Class-IL)

ogbn-arxiv
(Class-IL)

ogbn-products
(Class-IL)

ogbn-mag
(Class-IL)

Bare 0.026±0.023 0.042±0.030 0.325±0.085 0.226±0.020 0.323±0.017 0.565±0.039 0.550±0.066 0.934±0.008 0.850±0.049 0.969±0.004
LwF 0.012±0.019 0.011±0.017 0.010±0.004 0.165±0.015 O.O.T 0.534±0.025 0.539±0.060 0.917±0.010 0.845±0.053 0.968±0.004
EWC 0.020±0.014 0.041±0.033 0.083±0.024 0.114±0.024 0.078±0.018 0.508±0.087 0.542±0.065 0.924±0.006 0.829±0.074 0.503±0.068
MAS 0.005±0.007 0.021±0.013 0.006±0.004 0.001±0.003 0.006±0.005 0.227±0.039 0.283±0.050 0.894±0.044 0.736±0.071 0.574±0.044
GEM 0.060±0.057 0.041±0.026 0.036±0.005 0.147±0.021 O.O.T 0.444±0.046 0.507±0.053 0.228±0.030 0.503±0.084 O.O.T
TWP 0.025±0.018 0.038±0.024 0.094±0.013 0.082±0.019 0.100±0.023 0.524±0.041 0.545±0.063 0.924±0.009 0.829±0.061 0.655±0.082

ERGNN 0.052±0.059 0.050±0.024 0.063±0.012 0.078±0.022 0.024±0.004 0.447±0.045 0.518±0.058 -0.023±0.071 0.375±0.121 0.717±0.024
CGNN 0.023±0.016 0.050±0.034 0.016±0.003 0.065±0.014 0.019±0.005 0.251±0.034 0.384±0.055 0.437±0.064 O.O.M 0.594±0.011

PackNet 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A N/A N/A
Piggyback 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A N/A N/A

HAT -0.021±0.019 -0.013±0.018 0.032±0.012 0.066±0.020 0.202±0.022 N/A N/A N/A N/A N/A

Problem Node Classification (NC) Link Classification (LC) Link Prediction (LP)

Methods ogbn-proteins
(Domain-IL)

Twitch
(Domain-IL)

ogbn-arxiv
(Time-IL)

ogbn-mag
(Time-IL)

Bitcoin-OTC
(Task-IL)

Bitcoin-OTC
(Class-IL)

Bitcoin-OTC
(Time-IL)

Wiki-CS
(Domain-IL)

Facebook
(Domain-IL)

ogbl-collab
(Time-IL)

Ask-Ubuntu
(Time-IL)

Bare 0.131±0.034 0.055±0.034 -0.049±0.006 0.051±0.001 0.114±0.087 0.722±0.047 0.118±0.027 0.299±0.043 0.059±0.016 0.245±0.022 0.045±0.008
LwF 0.054±0.026 0.043±0.036 -0.044±0.006 0.048±0.002 0.035±0.021 0.726±0.047 0.092±0.042 0.343±0.028 0.059±0.022 0.351±0.033 0.053±0.015
EWC 0.074±0.025 0.036±0.017 -0.084±0.012 0.044±0.001 0.063±0.046 0.724±0.060 0.099±0.021 0.232±0.014 0.064±0.014 0.055±0.037 0.075±0.011
MAS 0.012±0.027 0.039±0.030 -0.116±0.016 0.018±0.008 0.029±0.025 0.726±0.049 0.115±0.025 0.227±0.075 0.059±0.016 0.073±0.066 0.063±0.005
GEM 0.003±0.028 0.019±0.018 -0.136±0.006 -0.011±0.003 0.026±0.021 0.579±0.100 0.042±0.033 0.388±0.063 0.032±0.023 0.299±0.065 0.063±0.010
TWP O.O.M 0.035±0.018 -0.039±0.011 0.044±0.001 0.070±0.059 0.721±0.055 0.193±0.018 0.258±0.022 0.043±0.015 0.078±0.017 0.067±0.011

ERGNN N/A N/A -0.095±0.005 -0.057±0.001 N/A N/A N/A N/A N/A N/A N/A
CGNN N/A N/A -0.076±0.007 0.013±0.001 N/A N/A N/A N/A N/A N/A N/A

PackNet N/A N/A N/A N/A 0.000±0.000 N/A N/A N/A N/A N/A N/A
Piggyback N/A N/A N/A N/A 0.000±0.000 N/A N/A N/A N/A N/A N/A

HAT N/A N/A N/A N/A 0.134±0.082 N/A N/A N/A N/A N/A N/A

Problem Graph Classification (GC)

Methods MNIST
(Task-IL)

CIFAR10
(Task-IL)

Aromaticity
(Task-IL)

MNIST
(Class-IL)

CIFAR10
(Class-IL)

Aromaticity
(Class-IL)

ogbg-molhiv
(Domain-IL)

ogbg-ppa
(Domain-IL)

NYC-Taxi
(Time-IL)

Sentiment140
(Time-IL)

Bare 0.356±0.099 0.270±0.082 0.182±0.051 0.978±0.008 0.856±0.021 0.694±0.026 0.107±0.053 0.601±0.019 0.028±0.013 -0.026±0.016
LwF 0.012±0.004 0.030±0.015 0.164±0.046 0.976±0.009 0.857±0.023 0.695±0.026 0.091±0.057 0.493±0.015 0.014±0.007 -0.015±0.011
EWC 0.084±0.047 0.055±0.027 0.087±0.030 0.977±0.008 0.855±0.022 0.674±0.034 0.038±0.028 0.062±0.010 0.071±0.024 -0.011±0.011
MAS 0.103±0.048 0.077±0.039 0.082±0.031 0.973±0.008 0.849±0.026 0.647±0.040 0.007±0.031 0.074±0.011 0.056±0.006 -0.030±0.007
GEM 0.090±0.029 0.106±0.023 0.169±0.032 0.866±0.080 0.843±0.022 0.337±0.096 0.065±0.040 0.515±0.031 0.065±0.065 -0.000±0.028
TWP 0.096±0.062 0.056±0.030 0.107±0.077 0.972±0.009 0.842±0.026 0.678±0.034 0.050±0.034 0.074±0.012 0.055±0.009 -0.016±0.010

PackNet 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A N/A N/A N/A N/A
Piggyback 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A N/A N/A N/A N/A

HAT 0.347±0.099 0.272±0.089 0.190±0.055 N/A N/A N/A N/A N/A N/A N/A
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(a) Box plot
Final Metric Incremental Setting First Distribution Second Distribution t-statistic p-value

AP

Task-IL
Regularization-based Replay-based -2.3658 0.0287
Regularization-based Parameter-isolation-based 2.9354 0.0072

Replay-based Parameter-isolation-based 5.1859 6.5059e-05
Class-IL Regularization-based Replay-based 3.7792 0.0011
Time-IL Regularization-based Replay-based 5.8621 0.0002

AF

Task-IL
Regularization-based Replay-based -2.2484 0.0368
Regularization-based Parameter-isolation-based 6.3327 1.0887e-06

Replay-based Parameter-isolation-based 8.7283 4.0028e-07
Class-IL Regularization-based Replay-based 4.5265 0.0002
Time-IL Regularization-based Replay-based 3.8010 0.0045

INT

Task-IL
Regularization-based Replay-based 0.3392 0.7389
Regularization-based Parameter-isolation-based -1.1074 0.2821

Replay-based Parameter-isolation-based -1.2962 0.2113

Class-IL Regularization-based Replay-based -1.0515 0.3127

Time-IL Regularization-based Replay-based -0.3261 0.7555

(b) Welch’s t-test result
Figure 5: Detailed analysis of node classification (NC) performance in terms of AP, AF, and
INT. In the figure, Reg. represents the regularization-based methods (LwF, EWC, MAS, and TWP),
Rep. represents the replay-based methods (GEM and ERGNN), and PI represents the parameter-
isolation-based methods (PackNet, Piggyback, and HAT). By performing Welch’s t-test, we demon-
strate that the category-based differences in terms of AP and AF are statistically significant within
the 95% confidence interval. We highlighted the p-values and outperforming distributions in bold if
the difference between the two distributions of ranks is statistically significant.
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Table 6: Performance in terms of Intransigence (INT, the lower, the better). In each setting, the
best score is in bold, and the second best score is underlined. O.O.M: out of memory. O.O.T: out of
time (> 24 hours). N/A: methods are not applicable to the problems or scenarios.

Problem Node Classification (NC)

Methods Cora
(Task-IL)

Citeseer
(Task-IL)

ogbn-arxiv
(Task-IL)

CoraFull
(Task-IL)

ogbn-mag
(Task-IL)

Cora
(Class-IL)

Citeseer
(Class-IL)

ogbn-arxiv
(Class-IL)

ogbn-products
(Class-IL)

ogbn-mag
(Class-IL)

Bare 0.001±0.013 -0.023±0.052 0.004±0.001 -0.002±0.003 -0.006±0.001 -0.064±0.018 -0.129±0.053 -0.168±0.031 -0.132±0.037 -0.625±0.016
LwF -0.001±0.005 -0.026±0.052 0.004±0.002 -0.002±0.003 O.O.T -0.052±0.020 -0.139±0.052 -0.164±0.030 -0.129±0.040 -0.624±0.016
EWC -0.005±0.011 -0.024±0.054 0.008±0.002 -0.002±0.002 0.000±0.003 -0.052±0.023 -0.129±0.052 -0.163±0.031 -0.124±0.040 -0.182±0.066
MAS -0.001±0.010 -0.016±0.050 0.014±0.002 0.004±0.004 0.016±0.005 -0.038±0.028 -0.064±0.050 -0.142±0.031 -0.023±0.054 -0.234±0.049
GEM -0.001±0.007 -0.021±0.051 0.001±0.001 -0.002±0.003 O.O.T -0.060±0.018 -0.135±0.053 -0.037±0.020 -0.009±0.044 O.O.T
TWP -0.006±0.009 -0.022±0.053 0.008±0.001 0.001±0.002 0.000±0.001 -0.059±0.021 -0.128±0.053 -0.162±0.030 -0.116±0.041 -0.210±0.058

ERGNN -0.003±0.011 -0.022±0.053 0.007±0.002 0.002±0.003 -0.007±0.002 -0.053±0.018 -0.118±0.056 0.249±0.059 -0.039±0.045 -0.538±0.018
CGNN -0.005±0.009 -0.022±0.052 0.004±0.001 0.003±0.003 -0.007±0.003 -0.037±0.011 -0.102±0.051 -0.090±0.024 O.O.M -0.405±0.011

PackNet -0.012±0.009 0.022±0.023 0.003±0.001 0.003±0.004 0.035±0.010 N/A N/A N/A N/A N/A
Piggyback -0.017±0.012 0.020±0.020 0.010±0.001 0.000±0.003 0.018±0.008 N/A N/A N/A N/A N/A

HAT 0.015±0.016 0.042±0.039 0.032±0.012 -0.003±0.003 -0.007±0.002 N/A N/A N/A N/A N/A

Problem Node Classification (NC) Link Classification (LC) Link Prediction (LP)

Methods ogbn-proteins
(Domain-IL)

Twitch
(Domain-IL)

ogbn-arxiv
(Time-IL)

ogbn-mag
(Time-IL)

Bitcoin-OTC
(Task-IL)

Bitcoin-OTC
(Class-IL)

Bitcoin-OTC
(Time-IL)

Wiki-CS
(Domain-IL)

Facebook
(Domain-IL)

ogbl-collab
(Time-IL)

Ask-Ubuntu
(Time-IL)

Bare -0.067±0.006 -0.003±0.010 -0.053±0.013 -0.003±0.001 0.005±0.014 -0.212±0.067 0.003±0.017 -0.147±0.022 -0.009±0.015 0.031±0.037 0.017±0.008
LwF -0.023±0.021 -0.009±0.008 -0.069±0.017 -0.008±0.001 0.001±0.016 -0.213±0.064 0.041±0.029 -0.155±0.034 -0.015±0.018 -0.068±0.046 0.008±0.005
EWC -0.089±0.009 -0.013±0.007 -0.005±0.021 0.002±0.001 0.004±0.010 -0.212±0.066 0.014±0.021 -0.042±0.061 -0.015±0.027 0.333±0.051 -0.001±0.008
MAS 0.034±0.026 -0.014±0.010 0.051±0.020 0.036±0.002 0.003±0.018 -0.215±0.070 0.014±0.016 -0.017±0.031 -0.010±0.021 0.320±0.051 -0.008±0.005
GEM -0.083±0.025 -0.001±0.009 0.004±0.018 0.035±0.004 0.011±0.013 -0.160±0.080 0.083±0.024 -0.009±0.041 -0.008±0.023 -0.062±0.038 -0.003±0.004
TWP O.O.M -0.012±0.009 -0.028±0.015 0.004±0.001 0.009±0.019 -0.210±0.060 -0.030±0.011 -0.112±0.041 0.009±0.018 0.284±0.044 -0.003±0.004

ERGNN N/A N/A -0.077±0.016 0.011±0.001 N/A N/A N/A N/A N/A N/A N/A
CGNN N/A N/A -0.076±0.014 -0.008±0.001 N/A N/A N/A N/A N/A N/A N/A

PackNet N/A N/A N/A N/A 0.001±0.019 N/A N/A N/A N/A N/A N/A
Piggyback N/A N/A N/A N/A 0.031±0.033 N/A N/A N/A N/A N/A N/A

HAT N/A N/A N/A N/A 0.003±0.013 N/A N/A N/A N/A N/A N/A

Problem Graph Classification (GC)

Methods MNIST
(Task-IL)

CIFAR10
(Task-IL)

Aromaticity
(Task-IL)

MNIST
(Class-IL)

CIFAR10
(Class-IL)

Aromaticity
(Class-IL)

ogbg-molhiv
(Domain-IL)

ogbg-ppa
(Domain-IL)

NYC-Taxi
(Time-IL)

Sentiment140
(Time-IL)

Bare 0.000±0.003 0.004±0.003 0.106±0.034 -0.045±0.005 -0.203±0.016 -0.290±0.040 -0.004±0.025 -0.054±0.013 0.098±0.010 0.027±0.012
LwF 0.001±0.001 0.002±0.004 0.031±0.026 -0.043±0.006 -0.204±0.017 -0.293±0.049 -0.005±0.019 -0.053±0.012 0.109±0.008 0.018±0.012
EWC 0.021±0.006 0.038±0.012 0.056±0.036 -0.042±0.006 -0.201±0.017 -0.274±0.050 0.007±0.014 0.546±0.024 0.047±0.018 0.008±0.009
MAS 0.051±0.011 0.043±0.013 0.063±0.029 -0.039±0.006 -0.197±0.018 -0.243±0.052 0.098±0.027 0.579±0.016 0.067±0.008 0.022±0.008
GEM 0.011±0.005 0.013±0.005 0.075±0.028 0.040±0.052 -0.191±0.020 0.028±0.090 0.015±0.019 0.029±0.020 0.066±0.023 0.032±0.016
TWP 0.016±0.004 0.033±0.009 0.067±0.024 -0.036±0.007 -0.184±0.022 -0.275±0.052 -0.003±0.009 0.521±0.021 0.070±0.010 0.022±0.010

PackNet 0.004±0.003 0.012±0.005 0.237±0.089 N/A N/A N/A N/A N/A N/A N/A
Piggyback 0.014±0.007 0.019±0.007 0.202±0.037 N/A N/A N/A N/A N/A N/A N/A

HAT 0.000±0.003 0.006±0.004 0.094±0.028 N/A N/A N/A N/A N/A N/A N/A

Table 7: Performance in terms of Forward Transfer (FWT, the higher, the better). In each
setting, the best score is in bold, and the second best score is underlined. O.O.M: out of memory.

Methods Domain-IL
ogbn-proteins (NC) Twitch (NC) Wiki-CS (LP) Facebook (LP) ogbg-molhiv (GC) ogbg-ppa (GC)

Bare 0.159±0.024 0.061±0.042 0.033±0.018 0.012±0.029 0.179±0.055 0.157±0.013
LwF 0.164±0.026 0.066±0.042 0.032±0.016 0.019±0.020 0.195±0.053 0.197±0.015
EWC 0.171±0.029 0.083±0.044 0.068±0.022 0.009±0.024 0.204±0.043 0.115±0.017
MAS 0.165±0.033 0.072±0.043 0.056±0.027 0.006±0.021 0.155±0.057 0.085±0.014
GEM 0.166±0.033 0.074±0.043 0.069±0.028 0.008±0.020 0.171±0.045 0.181±0.020
TWP O.O.M 0.075±0.041 0.075±0.021 0.013±0.023 0.214±0.047 0.120±0.013
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C DETAILED EXPERIMENTAL SETTINGS

Models. For all experiments, we used GCN (Kipf & Welling, 2017) as the backbone model to
compute node embeddings, and the Adam (Kingma & Ba, 2015) optimizer to train the model. For
NC, we used a fully-connected layer right after the backbone model to compute the final output.
For LC and LP, we additionally used a 3-layer MLP that receives a pair of node embeddings and
outputs the final embeddings of the pair. For GC, we used mean pooling to obtain graph embeddings
from the output of the backbone model and fed the computed embedding to a 3-layer MLP. For NC
and LC, we set the hidden dimension to 256 and used 3 GCN layers. For GC, we set the hidden
dimension to 146 and used 4 GCN layers, as in (Dwivedi et al., 2020).

Training Protocol. We set the number of training epochs to 1, 000 for Cora, Citeseer, ogbn-arxiv,
and Bitcoin-OTC; 200 for ogbn-proteins and Twitch, Wiki-CS, ogbl-collab, Facebook, and Ask-
Ubuntu; and 100 for ogbn-mag, ogbn-products, and all GC datasets. For all datasets except for
ogbn-products, we performed full-batch training. For ogbn-products, we trained GNNs with the
neighborhood sampler provided by DGL for mini-batch training. For all experiments, we used
early stopping. Specifically, for NC and LC, we reduced the learning rate by a factor of 10, if
the performance did not improve after 20 epochs, and stopped the experiment if the learning rate
became over 1, 000 times smaller than the initial learning rate. For Citeseer, we set the patience to
50 epochs and used the stopping criteria. For LP and GC, we reduced the learning rate by a factor of
10, if performance did not improve after 10 epochs, and stopped the experiment if the learning rate
became 100 times (1, 000 times in Wiki-CS) smaller the initial learning rate.

Hyperparameter Settings. We performed a grid search to find the best hyperparameter settings
for the backbone model (e.g., the learning rate and the dropout ratio) for each method. Specifically,
we chose the setting where AP on the validation dataset was maximized and reported the results on
the test dataset in the selected setting. For evaluation, we conducted ten experiments with different
random seeds and averaged the performance over the ten trials. For the CL methods except for
TWP, we set the initial learning rate among {1e-3, 5e-3, 1e-2}, the dropout ratio among {0, 0.25,
0.5}, and the weight decay coefficient between {0, 5e-4}. For TWP, we set the initial learning rate
between {1e-3, 5e-3}, the dropout ratio among {0, 0.25, 0.5}, and the weight decay coefficient to
0. For the experiments on ogbn-proteins, ogbn-mag (for both task-IL and class-IL settings), ogbn-
products, and ogbg-ppa, we fixed the learning rate to 1e-3. For Citeseer, we additionally considered
the learning rate 5e-4. For ogbn-mag (for both task-IL and class-IL settings), ogbn-products, and
ogbg-ppa, we set the dropout ratio between {0, 0.25}. In addition, for ogbn-products, we restricted
the number of maximum neighbors to receive messages to 5, 10, and 10 on the first layer, the second
layer, and the third layer, respectively, by using the sampler.

For replay-based methods (e.g., GEM, ERGNN, and CGNN), we set the maximum size of memory
the same for a fair comparison. Specifically, we set it to 12 for (a) all experiments on Cora and
Citeseer, (b) 210 for CoraFull, (c) 2, 000 for ogbn-arxiv, ogbn-proteins, Twitch, and Ask-Ubuntu,
(d) 8, 000 for ogbn-mag, (e) 25, 000 for ogbn-products, (f) 500 for MNIST, CIFAR10, ogbg-molhiv,
and ogbg-ppa, (g) 50 for Aromaticity, (h) 800 for NYC-Taxi, (i) 4, 000 for Wiki-CS, (j) 20, 000 for
ogbl-collab and Facebook, and (k) 60 for Sentiment140. Following the original papers, we set the
margin for quadratic programming to 0.5 for GEM, and we used the Coverage Maximization (CM)
sampler and set the distance threshold to 0.5 for ERGNN.

For regularization methods (e.g., LwF, EWC, MAS, TWP, and CGNN), we set the regularization
coefficient λ to 1.0, 10000.0, 1.0, and 80.0 for LwF, EWC, MAS, and CGNN, respectively. On
Cora, Citeseer, ogbn-arxiv, ogbn-proteins, MNIST, CIFAR10, NYC-Taxi, Twitch, Facebook, and
Sentiment140, we additionally considered 0.1 for LwF, 100.0 for EWC, and 0.1 for MAS as a
potential value of λ. For TWP, we set beta to 0.01 and λl to 10, 000, and we chose λt between
{100, 1000}. Note that CGNN combines regularization- and replay-based approaches, and thus we
need to consider both the maximum size of memory and the regularization coefficients.

For parameter-isolation-based methods (e.g. PackNet, Piggyback, and HAT), we set their hyper-
parameters as follows. For all parameter-isolation-based methods, we set the weight decay ratio
to 0 to maintain the parameters for previous tasks. For PackNet, we set the pruning ratio p to
exp( 1

N−1 log 1
N ), where N is the number of tasks, so that the model can learn the parameters of the

ratio of 1/N at the last task. In addition, we set the number of pre-training epochs to 10% of the
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Table 8: Effects of the number of total tasks on Average Performance, Average Forgetting, and
Intransigence. In each setting, the best score is in bold, and the second best score is underlined.
O.O.M: out of memory.

Methods ogbn-arxiv (Task-IL) ogbn-arxiv (Class-IL)
N = 5 N = 8 N = 20 N = 5 N = 8 N = 20

Bare 0.649±0.065 0.650±0.076 0.813±0.035 0.185±0.010 0.120±0.004 0.053±0.007
LwF 0.895±0.016 0.926±0.008 0.963±0.010 0.199±0.013 0.131±0.009 0.057±0.009
EWC 0.794±0.036 0.858±0.022 0.934±0.009 0.188±0.008 0.123±0.004 0.059±0.012
MAS 0.882±0.017 0.918±0.008 0.964±0.009 0.187±0.014 0.125±0.017 0.048±0.007
GEM 0.873±0.018 0.906±0.007 0.959±0.009 0.626±0.021 0.607±0.015 0.551±0.011
TWP 0.792±0.040 0.848±0.015 0.932±0.017 0.189±0.010 0.123±0.005 0.059±0.010

ERGNN 0.813±0.022 0.876±0.015 0.949±0.010 0.538±0.023 0.541±0.014 0.441±0.088
CGNN 0.894±0.015 0.920±0.007 0.964±0.009 0.533±0.040 0.477±0.050 0.395±0.046

PackNet 0.904±0.016 0.935±0.007 0.971±0.007 N/A N/A N/A
Piggyback 0.893±0.017 0.928±0.007 0.971±0.007 N/A N/A N/A

HAT 0.874±0.018 0.905±0.013 0.951±0.014 N/A N/A N/A

Joint 0.906±0.015 0.938±0.006 0.974±0.007 0.681±0.023 0.654±0.016 0.578±0.016

(a) Average Performance (AP, the higher, the better)

Methods ogbn-arxiv (Task-IL) ogbn-arxiv (Class-IL)
N = 5 N = 8 N = 20 N = 5 N = 8 N = 20

Bare 0.317±0.074 0.325±0.085 0.169±0.034 0.898±0.017 0.934±0.008 0.969±0.013
LwF 0.010±0.004 0.010±0.004 0.010±0.004 0.879±0.016 0.917±0.010 0.963±0.012
EWC 0.133±0.037 0.083±0.024 0.041±0.011 0.892±0.018 0.924±0.006 0.961±0.014
MAS 0.000±0.001 0.006±0.004 0.000±0.001 0.866±0.016 0.894±0.044 0.584±0.091
GEM 0.041±0.008 0.036±0.005 0.016±0.005 0.220±0.033 0.228±0.030 0.258±0.018
TWP 0.131±0.040 0.094±0.013 0.040±0.016 0.890±0.021 0.924±0.009 0.959±0.013

ERGNN 0.088±0.024 0.063±0.012 0.021±0.005 -0.138±0.086 -0.023±0.071 0.349±0.095
CGNN 0.016±0.003 0.016±0.003 0.011±0.004 0.367±0.061 0.437±0.064 0.511±0.052

PackNet 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A
Piggyback 0.000±0.000 0.000±0.000 0.000±0.000 N/A N/A N/A

HAT 0.032±0.013 0.032±0.012 0.023±0.011 N/A N/A N/A

(b) Average Forgetting (AF, the lower, the better)

Methods ogbn-arxiv (Task-IL) ogbn-arxiv (Class-IL)
N = 5 N = 8 N = 20 N = 5 N = 8 N = 20

Bare 0.005±0.001 0.004±0.001 0.000±0.001 -0.127±0.034 -0.168±0.031 -0.251±0.034
LwF 0.005±0.001 0.004±0.002 0.001±0.001 -0.127±0.034 -0.164±0.030 -0.249±0.034
EWC 0.005±0.001 0.008±0.002 0.000±0.002 -0.126±0.034 -0.163±0.031 -0.249±0.034
MAS 0.025±0.003 0.014±0.002 0.009±0.002 -0.105±0.033 -0.142±0.031 0.120±0.072
GEM 0.001±0.001 0.001±0.001 0.000±0.002 -0.026±0.018 -0.037±0.020 -0.073±0.027
TWP 0.009±0.003 0.008±0.001 0.003±0.002 -0.125±0.034 -0.162±0.030 -0.248±0.035

ERGNN 0.016±0.004 0.007±0.002 0.004±0.002 0.347±0.073 0.249±0.059 -0.050±0.057
CGNN 0.000±0.001 0.004±0.001 -0.001±0.002 -0.051±0.015 -0.090±0.024 -0.158±0.026

PackNet 0.003±0.001 0.003±0.001 0.003±0.002 N/A N/A N/A
Piggyback 0.014±0.003 0.010±0.001 0.003±0.002 N/A N/A N/A

HAT 0.008±0.001 0.005±0.002 0.001±0.002 N/A N/A N/A

(c) Intransigence (INT, the lower, the better)

number of training epochs. For Piggyback, we set a threshold τ , which is for determining the binary
mask for the parameters of each task, between {1e-1, 1e-2}. For HAT, we set the compressibility c
to 0.75 and set the stability smax to 400.

The hyperparameter settings selected for each considered scenario is available at
https://anonymous.4open.science/r/BeGin-C4B0.

D EFFECTS OF THE NUMBER OF TOTAL TASKS

We conducted additional experiments to investigate the effect of the number of total tasks N on
the performance of graph CL methods. Accordingly, we changed the number of classes considered
(additionally) in each task proportionally to the reciprocal of the number of tasks. Under Task-
and Class-IL settings on ogbn-arxiv, we measured how the performance changes depending on the
number of total tasks from 5 to 20. In Table 8, we report the benchmark final (i.e., when k is equal
to N ) performance in terms of AP, AF, and INT, respectively.

Under Task-IL, most graph CL methods perform better as the number of tasks increases in terms of
all 3 metrics, due to the decrease in the number of tasks considered in each task. On the contrary,
under Class-IL, the performance tends to degrade in terms of AP and AF as the number of tasks
increases since the distribution shift, which each model needs to adapt to, occurs more frequently.
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Figure 6: Change of Average Performance (AP) during continual learning. Note that the Joint
model, which is repeatedly re-trained from scratch, sometimes suffers from instability, especially
when training samples for some classes are very limited in Time-IL. The full results are available at
https://anonymous.4open.science/r/BeGin-C4B0.

Interestingly, we find that INT tends to change positively as the number of tasks increases because
INT does not consider the forgetting of previous tasks.

E PERFORMANCE CURVE (EFFECTS OF THE NUMBER OF LEARNED TASKS)

In Figure 6, we report the performance curves, which show how the average performance (AP)
(when k is equal to n) changes depending on the number of learned tasks n. Note that most
considered methods, including the Joint model, tend to perform worse, as the number of learned
tasks increases, since they need to retain more previous knowledge. However, opposite trends
are observed on ogbn-arxiv, ogbg-molhiv, and Sentiment140, which we guess have slighter or
easier-to-adapt distribution shifts. Also, on Bitcoin-OTC under Task-IL, the performance of the
Joint model and that of graph CL methods show different tendencies. We provide the per-
formance curves under all considered scenarios in the online appendix, which is available at
https://anonymous.4open.science/r/BeGin-C4B0.
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Figure 7: Effect of hyperparameters of PackNet and Piggyback on Average Performance (AP).
We represent the changes in average performances with dotted lines, and the colored areas represent
their standard deviations.

F PARAMETER-ISOLATION-BASED METHODS

To the best of our knowledge, we are the first to apply parameter-isolation-based methods (spec.,
PackNet, Piggyback, and HAT), which have been used for independent data (e.g., images and text),
to graph-related problems (spec., NC, LC, and GC). The methods learn binary or real-valued masks
for weighting parameters or model outputs for each task. Note that, since they require knowing
which task each query is on, they are applicable only to Task-IL. Below, we describe how we apply
the methods to graph CL.

PackNet (Mallya & Lazebnik, 2018). learns binary masks for network parameters as follows:

1. For the current task, pre-train all parameters that have been unmasked so far.

2. Mask the set of pre-trained parameters whose magnitude is in top (1 − p) × 100%, where
p is the pruning ratio.

3. Re-initialize the unmasked ones to 0 and re-train only the newly masked parameters for the
current task.

4. After the re-training, fix the masked parameters to their current values to prevent forgetting

5. Repeat the above processes for the next task.

In our setting, we applied binary masks to both GCN (the backbone model) and fully-connected
layer(s).

Piggyback (Mallya et al., 2018). requires a pre-trained network, which is fixed over tasks, and
learns real-valued masks for each task. For all node-level problems, we used Deep Graph Info-
max (Velickovic et al., 2019) to pre-train the GCN layers. For all link-level problems, we applied
Deep Graph Infomax to pre-train the GCN layers and the 3-layer MLP. For the graph-level prob-
lems, we used InfoGraph (Sun et al., 2019) to pre-train the GCN layers and the 3-layer MLP. Note
that any unsupervised training method for graphs can be used instead for pre-training.

In the training phase, Piggyback learns real-valued masks, which are multiplied with the pre-trained
parameters, end-to-end for each task. In the test phase, it uses a binarizer to transform the mask
entries above the threshold hyperparameter τ into 1 and the others into 0. Lastly, for each task, it
applies the binarized masks for the task to the pre-trained network to obtain the network to be used
for task. As in PackNet, we applied the above steps to both GCN and fully-connected layer(s).

HAT (Serra et al., 2018). learns real-valued masks, which play a role similar to attention mod-
ules, for the outputs of each layer, while the above two methods apply binary masks to network
parameters. Specifically, we learn real-valued masks for each layer, and perform element-wise mul-
tiplication of them and the outputs of each layer. When we implemented HAT for graph CL, we
applied all the techniques introduced in Section 2 of the original paper. For each task, we applied
the above steps to GCN and fully-connected layer(s).
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Figure 8: Effect of hyperparameters of HAT on Average Performance (AP). The dotted lines
represent the means, and the colored regions represent the standard deviations.

Effects of Hyperparameters. We performed extra experiments to investigate the effects of their
hyperparameters on the performance of the parameter-isolation-based methods. For PackNet, we
examined the effect of the pruning ratio p while varying it among {0.1, 0.25, 0.5}. For piggyback,
we examined the effect of the threshold τ while varying it among {5e-2, 5e-3, 5e-4}. For HAT, we
checked the effect of the stability parameter smax and the compressibility parameter c while varying
them among {50, 200, 800} and {0.1, 0.5, 2.5}, respectively.

In Figures 7-8, we report the AP scores for NC on Cora, Citeseer, and ogbn-arxiv; LC on Bitcoin-
OTC, and GC on Aromaticity. In Figure 7, we show the effect of the hyperparameters of PackNet
and Piggyback. In general, PackNet was not sensitive to the choice of pruning ratio p. Specifically,
the effect of the changes in the pruning ratio was significant only on Aromaticity, where increasing
the pruning ratio from 0.1 to 0.25 greatly increased the accuracy. Regarding Piggyback, its accuracy
changed gradually with respect to the threshold τ , and the tendencies vary with datasets. In Figure 8,
we report the results regarding HAT. Its accuracy depended heavily on the stability smax, especially
on Citeseer, ogbn-arxiv, and Aromaticity, while HAT was relatively insensitive to the choice of the
compressibility parameter c. The compressibility parameter c significantly affected the accuracy of
HAT only on Bitcoin-OTC.

G USABILITY OF BEGIN

As shown in Figure 2, BEGIN is easy-to-use, thanks to its built-in training and evaluation proce-
dures and modularized structure. In this section, we will provide a more detailed explanation of the
usability of BEGIN.

G.1 SUPPORTED EVENT FUNCTIONS

If a user-defined event function is not provided, the trainer performs training and evaluation with the
corresponding basic pre-implemented operations. Thus, users do not need to implement the whole
training and evaluation procedure, but only the necessary parts. Currently, users can override the
following built-in event functions:

• initTrainingStates(): This function is called only once, when the training procedure
begins.

• prepareLoader(): This function is called once for each task when generating dataloaders
for training, validation, and test. Given the dataset for each task, it should return dataloaders for
training, validation, and test.
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• processBeforeTraining(): This function is called once for each task, right after the
prepareLoader() event function terminates.

• processTrainIteration(): This function is called for every training iteration. When the
current batched inputs, model, and optimizer are given, it should perform a single training iteration
and return the information or outcome during the iteration.

• processEvalIteration(): This function is called for every evaluation iteration. When the
current batched inputs and trained model are given, it should perform a single evaluation iteration
and return the information or outcome during the iteration.

• inference(): This function is called for every inference step in the training procedure.

• beforeInference(): This function is called right before inference() begins.

• afterInference(): This function is called right after inference() terminates.

• reduceTrainingStats(): This function is called at the end of every training step. Given
the returned values of the processTrainIteration() event function, it should return over-
all and reduced statistics of the current training step.

• reduceEvalStats(): This function is called at the end of every evaluation step. Given the
returned values of the processEvalIteration() event function, it should return overall and
reduced statistics of the current evaluation step.

• processTrainingLogs(): This function is called right after the
reduceTrainingStats() event function terminates.

• processAfterEachIteration(): This function is called at the end of the training itera-
tion. When the outcome from reduceTrainingStats() and reduceEvalStats() are
given, it should determine whether the trainer should stop training for the current task or not.

• processAfterTraining(): This function is called once for each task when the trainer com-
pletes training for the current task.

The arguments and detailed roles of these event functions are provided in the official document of
BEGIN, which is available at https://anonymous.4open.science/r/BeGin-C4B0.

G.2 DETAILED EXAMPLE: ELASTIC WEIGHT CONSOLIDATION (EWC)

In this section, we provide a step-by-step example of implementing EWC (Kirkpatrick et al., 2017)
for node classification using BEGIN. This example is the extended version of the one in Figure
2. EWC uses the weighted L2 penalty term based on the learned weights and fisher information
matrices from the previous tasks. The overall loss function L(·) for EWC can be formulated as
follows:

L(Θ) = Li(Θ) +

i−1∑
j=1

λ

2
Fj(Θ−Θ∗j )2, (1)

where L is the loss function, Θ is the parameter of the model, Li is the loss for the current task i,
λ is the hyperparameter for the L2 penalty term, Θ∗j is the learned weights at task j, and Fj is the
fisher information matrix calculated from Θ∗j .

Step 1. Extending the base trainer For each problem considered in this paper, BEGIN provides
a base trainer class that makes the training behavior exactly the same as the Bare model, described
in Section 5.1. Based on the base class, users can implement their CL algorithm by extending the
class and substituting some default event functions with user-defined ones.

for begin.trainers.nodes import NCTrainer
class NCClassILEWCTrainer(NCTrainer):

pass
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Step 2. Setting initial states for the algorithm As stated in Eq. equation 1, EWC requires storing
the learned weights and Fisher information matrices from the previous tasks to compute the regu-
larization term. However, they cannot be obtained on the current task. In order to resolve this issue,
the trainer provides a dictionary called training states. The dictionary can be used to store
intermediate results and can be shared by events in the form of an argument (i.e., input parameter) of
the event functions. To set the initial states, the user can extend the base trainer with their modified
initTrainingStates() event function, which initializes the states for running EWC.

for begin.trainers.nodes import NCTrainer
class NCClassILEWCTrainer(NCTrainer):

def initTrainingStates(self, model, optimizer):
return {‘fishers’: [], ‘params’: []}

Step 3. Computing and Storing Fisher information matrix In order to compute the penalty
term at task i, we need the learned weights Θ∗j and Fisher information matrix Fj for every
task j < i. Hence, we need to store them at the end of each task, and this can naturally
be implemented in the event function processAfterTraining(), which is called at the
end of each task. In the example below, curr training states[‘params’][j-1] and
curr training states[‘fishers’][j-1] store the learned weights and the Fisher infor-
mation matrix of task j, respectively.

class NCClassILEWCTrainer(NCTrainer):
def initTrainingStates(self, model, optimizer):

return {‘fishers’: [], ‘params’: []}

def processAfterTraining(self, task_id, curr_dataset, curr_model,
curr_optimizer, curr_training_states):
super().processAfterTraining(task_id, curr_dataset, curr_model,

curr_optimizer, curr_training_states)
params = {name: torch.zeros_like(p) for name, p in

curr_model.named_parameters()}
fishers = {name: torch.zeros_like(p) for name, p in

curr_model.named_parameters()}
train_loader = self.prepareLoader(curr_dataset,

curr_training_states)[0]

total_num_items = 0
for i, _curr_batch in enumerate(iter(train_loader)):

curr_model.zero_grad()
curr_results = self.inference(curr_model, _curr_batch,

curr_training_states)
curr_results[‘loss’].backward()
curr_num_items =_curr_batch[1].shape[0]
total_num_items += curr_num_items
for name, p in curr_model.named_parameters():

params[name] = p.data.clone().detach()
fishers[name] += (p.grad.data.clone().detach() ** 2) *

curr_num_items

for name, p in curr_model.named_parameters():
fishers[name] /= total_num_items

curr_training_states[‘fishers’].append(fishers)
curr_training_states[‘params’].append(params)

Step 4. Computing L(Θ) for regularization The penalty term in Eq. equation 1 is used for
regularization during a backpropagation process. The computation of the term should be performed
at the end of training for every task, and thus it is implemented in afterInference(). In
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the event function, the argument (i.e., input parameter) curr training states contains the
Fisher information matrices and the previously learned weights based on which the penalty term
loss reg is computed. The event function also has the argument results, which contains the
prediction result and loss of the current model computed in the inference() function. Thus, the
overall loss including the penalty term can be obtained by summing up results[‘loss’] and
loss reg.

class NCClassILEWCTrainer(NCTrainer):
def initTrainingStates(self, model, optimizer):

return {‘fishers’: [], ‘params’: []}

def processAfterTraining(self, task_id, curr_dataset, curr_model,
curr_optimizer, curr_training_states):
super().processAfterTraining(task_id, curr_dataset, curr_model,

curr_optimizer, curr_training_states)
params = {name: torch.zeros_like(p) for name, p in

curr_model.named_parameters()}
fishers = {name: torch.zeros_like(p) for name, p in

curr_model.named_parameters()}
train_loader = self.prepareLoader(curr_dataset,

curr_training_states)[0]

total_num_items = 0
for i, _curr_batch in enumerate(iter(train_loader)):

curr_model.zero_grad()
curr_results = self.inference(curr_model, _curr_batch,

curr_training_states)
curr_results[‘loss’].backward()
curr_num_items =_curr_batch[1].shape[0]
total_num_items += curr_num_items
for name, p in curr_model.named_parameters():

params[name] = p.data.clone().detach()
fishers[name] += (p.grad.data.clone().detach() ** 2) *

curr_num_items

for name, p in curr_model.named_parameters():
fishers[name] /= total_num_items

curr_training_states[‘fishers’].append(fishers)
curr_training_states[‘params’].append(params)

def afterInference(self, results, model, optimizer, _curr_batch,
training_states):
loss_reg = 0
for _param, _fisher in zip(training_states[‘params’],

training_states[‘fishers’]):
for name, p in model.named_parameters():

l = self.lamb * _fisher[name]
l = l * ((p - _param[name]) ** 2)
loss_reg = loss_reg + l.sum()

total_loss = results[‘loss’] + loss_reg
total_loss.backward()
optimizer.step()
return {‘loss’: total_loss.item(),

‘acc’: self.eval_fn(results[‘preds’].argmax(-1),
_curr_batch[0].ndata[‘label’][_curr_batch[1]].to(self.device))}

The above code presents the complete implementation of EWC for node classification under Class-
IL. Similarly, various CL algorithms can be developed by modifying specific event functions, with-
out the need to manage the overall training and evaluation procedures.
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Table 9: Lines of Python code to implement each algorithm (the lower, the better). On average,
with BEGIN, we can implement the same graph CL method with about 28.6% fewer lines of code.
For ERGNN, we only considered the code for node classification with the CM sampler.

Method LwF EWC MAS GEM TWP ERGNN Average

BEGIN (ours) 123 170 156 254 284 124 181.8
CGLB (Zhang et al., 2022b) 171 236 282 277 293 144 233.8

G.3 LINES OF CODE (LOC) COMPARISION

In Table 9, we report the lines of Python code for the CL methods commonly implemented in BEGIN
and CGLB (Zhang et al., 2022b).6 For each CL method, we calculated the sum of the lines of the
Python code for node classification and graph classification (if available) in Task-IL and Class-IL
settings. When counting the number of lines, we ignored comments, empty lines, and unnecessary
imports in the codes. It should be noticed that, with BEGIN, we can implement the same graph CL
method with about 28.6% fewer lines of code, on average.

H LIMITATIONS OF OUR WORK

In our benchmark scenarios, the number of tasks is relatively small compared to CL benchmarks
for independent data (e.g., images). This is because real-world graph datasets have a limited num-
ber of classes, with a maximum of 257 in the datasets we considered. In contrast, image datasets
like ILSVRC2012 often have 1000 or more classes (Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017). Moreover, it is important to highlight that increasing the number of tasks for real-world
graph datasets is not trivial without artificial manipulation of the datasets. Due to this difficulty, the
number of tasks considered in previous studies of graph continual learning (ERGNN, CGNN, and
CGLB) are only 41, 9, and 70, respectively. In the future, we plan to update our framework and
benchmarks as datasets with richer labels become available, enabling a broader exploration of graph
continual learning.

I DETAILED INFORMATION ABOUT BENCHMARK SCENARIOS AND ASSETS

I.1 DETAILED DESCRIPTION OF BENCHMARK SCENARIOS

In this section, we provide detailed information of the considered benchmark scenarios. We provide
a summary of all the benchmark scenarios in Table 10.

Common Details. In all settings except for Time-IL, we randomized the sequence of CL tasks
for each run. For task-IL and class-IL settings, we randomly grouped the classes to configure the
designated number of tasks, ignoring the remaining classes.7 We chose the design since there is no
available information on the order of labels or domains and also to reduce the effect of the order of
CL tasks on performance and benchmark results. To ensure a fair comparison, we conducted ten
runs using fixed random seeds (spec., 0, 1000, 2000, · · · , 9000) for all experiments.

Dataset-specific Details. In ogbn-products, we ignored the 47-th class since there is only one
node with the class. For Task-IL and Class-IL settings in Bitcoin-OTC, we formed 6 groups of
links based on their weights: [−10,−9), [−9, 0), [3, 4), [4, 5), [5, 6), and [6, 10]. This grouping was
implemented to mitigate class imbalance. In Aromaticity, we only considered the 30 classes with
at least 20 graphs, as in (Zhang et al., 2022b), for the same reason. In Wiki-CS, there are

(
10
2

)
+(

10
1

)
= 55 different combinations of the classes (or domains) of links’ endpoints, and we ignored

one combination since there is no link with that specific combination.

For NYC-Taxi, we first split 265 locations into seven groups based on borough information provided
by (NYC Taxi & Limousine Commission) and employed a one-hot indicator vector as node features.
To generate graphs, for every hourly period and for every ordered pair (A,B) of the locations, we
counted the number of taxi customers departed from location A and bounded to location B. Then, if
and only if the count is nonzero, we made a direct edge from A to B, using the count as the feature

6We used the final version of CGLB on Jul 30, 2023 (commit f514016).
7For example, one class is left unused in Cora, since we used 6 out of 7 classes in the dataset.
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Table 10: Summary of the considered benchmark scenarios

Problem Dataset Incremental
Setting # Tasks Task Split Type Train/Val/Test

Split Type
Performance

Metric

Cora Task-IL, Class-IL 3 Class label Original Split(2 classes per task)

Citeseer Task-IL, Class-IL 3 Class label Original Split(2 classes per task)

ogbn-arxiv Task-IL, Class-IL 8 Class label Original Split(5 classes per task)

Time-IL 24 Time (Publication year) Random (4:1:5) Accuracy

Node Classification
(NC) ogbn-mag

Task-IL, Class-IL 128 Class label Original Split(2 classes per task)

Time-IL 10 Time (Publication year) Random (4:1:5)

CoraFull Task-IL 35 Class label Original Split(2 classes per task)

ogbn-products Class-IL 9 Class label Original Split(5 classes per task)

ogbn-proteins Domain-IL 8 Domain (Species) Random (4:1:5) ROC-AUC

Twitch Domain-IL 21 Domain (Language) Random (4:1:5) Accuracy

Link Classification
(LC)

Bitcoin-OTC Task-IL, Class-IL 3 Class label Accuracy(2 classes per task)

Time-IL 7 Time ROC-AUC

ogbl-collab Time-IL 50 Time (Publication year) Random (8:1:1)

Hits@50
Link Prediction

(LP)
Wiki-CS Domain-IL 54 Domain (labels of endpoints)

Ask-Ubuntu Time-IL 69 Time (Interaction timestamp)

Facebook Domain-IL 8 Domain (Categories of pages)

MNIST Task-IL, Class-IL 5 Class label Original Split(2 classes per task)

CIFAR10 Task-IL, Class-IL 5 Class label Original Split(2 classes per task) Accuracy

Graph Classification
(GC)

Aromaticity Task-IL, Class-IL 10 Class label Original Split(3 classes per task)

NYC-Taxi Time-IL 16 Time (Month) Random (6:2:2)
Sentiment140 Time-IL 11 Time (Day)

ogbg-ppa Domain-IL 11 Domain (Species) Random (8:1:1)

ogbg-molhiv Domain-IL 20 Domain (Scaffold) Random (8:1:1) ROC-AUC

of the edge. As labels, we used binary ones indicating whether each graph indicates taxi traffic on
weekdays (Mon.-Fri.) or weekends (Sat.-Sun.). To construct the tasks, the generated graphs from
2018 to 2021 were divided chronologically into intervals of three months, resulting in 16 tasks.

For Sentiment140, we used the SpaCy (Honnibal et al., 2020) library to generate the graphs from on-
line posts on Twitter, a social media platform. Specifically, we used the en core web lg pipeline,
which contains 514k unique word vectors of 300 dimensions. To sample posts, we first removed the
posts containing at least one out-of-vocabulary token. Then, for each day from May 26 to July 7,
2009, we randomly sampled 250 posts with positive sentiment and 250 posts with negative senti-
ment. For every sampled post, using the pipeline, we obtained a graph (spec., tree) representing the
dependency between the tokens (i.e., nodes) in the post and token embeddings (i.e., node features)
To construct the tasks, we divide the graphs based on the dates of the corresponding posts.

For the remaining time-IL scenarios, we divided each dataset chronologically, leveraging time infor-
mation in the raw data. For ogbn-arxiv, we constructed the first task with the paper published before
the year 1998. For each subsequent i-th task, we used the papers published in the year (1996 + i).
Similarly, for ogbl-collab, we constructed the first task using the paper published before the year
1971. For each subsequent i-th task, we used the papers published in the year (1969 + i). For
ogbn-mag, we constructed each i-th task with the papers published in the year (2009 + i). For
Ask-Ubuntu, we used the interactions occurring within the same month to form each task.

Statistics of the tasks. Some task statistics for each benchmark scenario are available at
https://anonymous.4open.science/r/BeGin-C4B0. For Task-IL and Class-IL, the class grouping pro-
cedure and thus task statistics depend on random seeds. Thus, we report the statistics when the
random seed is fixed to 0.
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I.2 LICENSE OF ASSETS

Implementation. All assets of BEGIN are available under the Apache license 2.0. All assets we
utilized from DGL (Wang, 2019) and DGL-LifeSci (Li et al., 2021) are also available under the
Apache license 2.0. For the implementation of GEM, TWP, and ERGNN, we utilized the imple-
mentation from CGLB (Zhang et al., 2022b), which is available under CC BY-NC 4.0. For the
implementation of ContinualGNN, we utilized the implementation written by the author, whose
license is not specified.

Benchmark Datasets. The detailed license information for the considered datasets are as follows:

• The Cora, Citeseer, CoraFull, Bitcoin-OTC, and Wiki-CS datasets are publicly available. Wiki-CS
is under the MIT license, but the licenses for these datasets are not specified. For accessing the
datasets, we used DGL (Wang, 2019).

• The ogbn-arxiv, ogbn-mag, and ogbl-collab datasets are publicly available under the ODC-BY
license. We used OGB (Hu et al., 2020) to access the datasets.

• The ogbn-products dataset is publicly available under the Amazon license. We used OGB (Hu
et al., 2020) to access the datasets.

• The ogbn-proteins, ogbg-molhiv, and ogbg-ppa datasets are publicly available under the CC-0
license and the MIT license, respectively. We used OGB (Hu et al., 2020) to access the datasets.

• The Twitch and Facebook datasets are publicly available under the MIT license. The Ask-Ubuntu
dataset is also publicly available, but the license is not specified. These three datasets are available
at http://snap.stanford.edu/data/index.html.

• The MNIST and CIFAR10 datasets are publicly available under the MIT license. We used PyG
(Fey & Lenssen, 2019) to access the datasets.

• The Aromaticity dataset, which is a subset of the PubChem BioAssay dataset (Xiong et al., 2019),
is publicly available under the CC BY-NC 3.0 license. We used DGL-LifeSci (Li et al., 2021) to
access the dataset.

• The raw data of NYC-Taxi is publicly available, and the license is not specified. We transformed
the Yellow Taxi Trip data collected from 2018 to 2021 into graphs, as described in Section 3.3.
The graphs are available in our framework, and some basic statistics are provided in Table 2.

• The raw data of Sentiment140 is publicly available, and the license is not specified. We trans-
formed the online posts with sentiment into graphs, as described in Section 3.3. The graphs are
available in our framework, and some basic statistics are provided in Table 2.

J DETAILED COMPARISON WITH EXISTING STUDIES ON GRAPH CL

In this section, we describe how our benchmark scenarios and dataset usage differentiate from ex-
isting studies, focusing on three key aspects.

Distinction in Definitions of Incremental Settings Previous research on graph CL has often em-
ployed disparate settings under the same name, coupling various dimensions of change without
sufficient justification. We systematically define four dimensions of changes (task, class, domain,
and time) in graph CL and establish an incremental setting for each, without unnecessary coupling
between them. For example, in several existing studies, changes in the input graph and tasks were
coupled without sufficient justification or a clear relation to real-world graph evolution (Zhang et al.,
2022b; Zhou & Cao, 2021).

Even among the seven studies conducted in the setting where the input graph changes as the task
changes, there is a variation in how the input graph changes. For each task, three studies (Cai et al.,
2022; Wang et al., 2022; Tan et al., 2022) utilized subgraphs only containing nodes available in the
current task, while the other three studies (Sun et al., 2023; Zhang et al., 2022a; Zhou & Cao, 2021)
used an evolving graph containing nodes observed in previous tasks. In the case of (Zhang et al.,
2022b), experiments were conducted in both of these settings.
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Table 11: Coverage of scenarios. ‘N’, ‘L’, and ‘G’ denote node classification, link prediction
(classification), and graph classification, respectively. ‘T’, ‘C’, ‘D’, and ‘Ti’ denote task-, class-,
domain-, and time-incremental settings, respectively. We compared ours with 14 studies on (knowl-
edge) graph CL methods, including 2 existing benchmarks (Carta et al., 2021; Zhang et al., 2022b).
We categorize the incremental settings based on our criteria. An asterisk (*) indicates that changes
in the input graph and tasks were coupled without sufficient justification or a clear relation to real-
world graph evolution, and a double asterisk (**) indicates that the design of the incremental setting
is slightly different from ours.

(Graph Problem, Incremental Setting)
(N,T) (N,C) (N,D) (N,Ti) (L,T) (L,C) (L,D) (L,Ti) (G,T) (G,C) (G,D) (G,Ti)

Liu et al. (2021) O O
Carta et al. (2021) O
Galke et al. (2021) O**

Cai et al. (2022) O*
Sun et al. (2023) O*

Zhang et al. (2022a) O*
Zhou & Cao (2021) O*
Wang et al. (2022) O

Daruna et al. (2021) O*
Zhang et al. (2022b) O* O* O O

Kim et al. (2022) O**
Tan et al. (2022) O*

Rakaraddi et al. (2022) O O
Han et al. (2020) O

Ours O O O O O O O O O O O O

In addition, as shown in Table 11, our search yielded only one study that considers domain-IL
settings within the domain of graph CL, and only two studies (Galke et al., 2021; Kim et al., 2022)
consider the time-IL settings. Note that the settings of (Galke et al., 2021) and (Kim et al., 2022)
differ from ours. In their settings, nodes from previous tasks were used for training, and the nodes
in the current task were used for evaluation. However, these methods are less suitable for computing
forgetting, compared to ours, since the labels of all nodes are eventually revealed during the training
procedure.

Distinction in Learning Problems For each of our refined four incremental settings, we formulate
commonly-considered graph learning problems (node-, link-, and graph-level), which result in 12
combinations. To ensure their utility in benchmarking graph continual learning, these problems are
carefully and often non-trivially designed to highlight various aspects such as catastrophic forgetting,
forward/backward transfer, and other key factors in continual learning methods. As shown in Table
11, our framework covers 5 more scenarios than the union of the coverage of existing studies. Except
for Daruna et al. (2021), which is specialized to knowledge graphs, our search yielded no studies
tackling link-level problems in graph CL. Moreover, our search yielded no study that considers
domain-IL settings.

Distinction in Datasets As seen in Table 12, we newly used 11 datasets that have not been used
in the previous Graph CL literature. Even for previously considered datasets, in most cases, we
made better use of them under more incremental settings. For example, we used the ogbn-mag
dataset for node classification under Time-IL settings and used the ogbg-ppa dataset for graph
classification under Domain-IL settings. Furthermore, commonly utilized datasets, such as Cora,
Citeseer, ogbn-arxiv, CoraFull, and Reddit, mainly focused on the limited combinations (spec. NC
for Task-/Class-/Time-IL) of the problem levels and the incremental settings, and most of them are
obtained from bibliographic data. BeGin provides 31 benchmark scenarios with the real-world graph
datasets obtained from 9 application domains (citation, molecule, co-purchase, hyperlink, trading,
co-authorship, image, traffic, and language) and covers all combinations of the problem levels and
the incremental settings.
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