
Dynamic Regrasping with Asynchronous Vision Feedback using a
Minimalist Robotic System

Yuxiang Ma, Edward Adelson
Massachusetts Institute of Technology

yxma20@mit.edu, adelson@csail.mit.edu

Abstract— Robotic manipulation has advanced significantly
in quasi-static tasks like pick-and-place, peg-in-hole, and object
reorientation, yet dynamic manipulation, exploiting motion-
driven forces such as inertia and momentum, remains a
critical challenge. While humans effortlessly perform dynamic
regrasping by tossing and catching objects mid-air, robots
typically require complex hardware (e.g., dexterous hands,
bimanual setups) or computationally intensive planning with
extrinsic contacts. Prior dynamic regrasping methods rely on
specialized hardware, such as high-speed vision systems or
multi-fingered hands, limiting their practicality. This work
introduces a minimalist framework for dynamic regrasping
using a single robotic arm, a Our approach decomposes the
task into two phases: (1) a throwing phase, where the object
is propelled into a ballistic trajectory, and (2) a catching
phase, where computed torque control enables the gripper
to dynamically regrasp the object mid-freefall. To accurately
throw the object into the expected trajectory, we refine the
throwing policy iteratively with asynchronous vision feedback.
By integrating motion planning, computed torque control, and
asynchronous visual tracking, we achieve dynamic regrasping
without high-speed vision and expensive robot hardware. We
present some preliminary experiments here to show the efficacy
of the method as well as failure cases.

I. INTRODUCTION

Robotic manipulation has emerged as a prominent research
area in recent decades, with significant focus on non-dynamic
tasks like pick-and-place, peg-in-hole assembly, and object
reorientation. Traditional approaches to these tasks often
rely on trajectory planning. Recent advances in perception
systems, vision language models, and various robot learning
algorithms have expanded the capabilities of robotic arms
and grippers, enabling multi-contact, long-horizon operations
such as kitchen sink cleaning, dishwasher loading, fabric
folding, and so on [1–3].

Despite these advancements, robotic manipulation remains
far inferior to human dexterity. A critical limitation lies in
the inability of robots to perform dynamic tasks - actions
that take advantage of motion-driven forces (e.g., inertia,
momentum). This gap stems from a reliance on quasi-
static assumptions, where interactions are slow and position-
controlled. Dynamic manipulation exploits object dynam-
ics to achieve high-speed motions and extend workspace
boundaries, enabling tasks like throwing with precision,
catching moving objects, or striking balls. Such capabilities
are critical for sports applications, where robots must handle
fast-moving objects and sometimes react to accidental events,
and for industrial-automation scenarios that demand rapid,
contact-rich workflows.

Humans, on the other hand, are able to manipulation
objects and tools in a highly dynamic and reactive man-
ner. And one key ability in human daily activities is re-
grasping an object to get a better grip or orientation of
objects. Humans can easily perform regrasping by tossing
and catching the object in a short interval, as shown in
Fig. 1. However, robotic regrasping remains challenging,
often requiring complex hardware (e.g., dexterous hands,
bimanual setups) or extrinsic contacts, resulting in quasi-
static operations. Prior work in dynamic regrasping, such as
high-speed multifingered hands with kHz-rate vision systems
[4, 5] or computed torque control with high-speed tracking
[6], relies on expensive, specialized hardware. In contrast, we
propose a minimalist approach using a single arm, a parallel-
jaw gripper, and a standard RGB camera. By integrating
motion planning, torque control, and asynchronous vision
feedback, our method achieves dynamic regrasping without
costly hardware, advancing toward human-like adaptability
in unstructured environments.

Our proposed dynamic regrasping process can be decom-
posed into a throwing phase, at the end of which the object
is released into mid-air, and a catching phase, during which
the object follows the free-falling trajectory while the robot
gripper reaches and regrasps the object, as shown in Fig. 1.
The approach is composed of motion planning, computed
torque control, and asynchronous visual feedback, presented
in Section III. In Section IV, we elaborate on the experi-
ment setup and experimental results, including discussions
about failure cases. Lastly, we conclude the approach and
preliminary results.

II. RELATED WORK

Regrasping, the process of repositioning an object within
a robotic gripper, has evolved through diverse hardware and
algorithmic approaches, each addressing specific challenges
in stability, speed, and adaptability. The most trival approach
is the pick-and-place method, which occupies a lot of space
and is not efficient.

The robotic regrasping literature can be divided into four
categories. First, bimanual systems employ two robotic arms
to transfer objects between grippers, enabling regrasping
through handovers [7–10]. Though this avoids the complex-
ity of in-hand manipulation, it introduces hardware costs
and two-agent collaboration challenges. Second, multi-finger
hands allow a third or fourth finger to switch contact
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Fig. 1. Snapshots of a human hand and a robotic gripper performing dynamic regrasping on a red cube.

points while maintaining force closure on the object [11–
15]. Expensive dexterous hands are needed for the quasi-
static finger gaiting approach, and the corresponding control
policies often require plenty of effort and resources to train
or plan. Third, it has been shown that extrinsic contact
can help to stabilize the object while repositioning the
gripper’s contact points [16, 17]. While effective in structured
environments, this method depends heavily on predefined
contact geometries and may struggle in dynamic or cluttered
settings. Lastly, dynamic regrasping distinguishes itself from
the above methods, by foregoing the quasi-static assumption
of interaction. Instead, it utilizes object and robot dynamics
to switch grasp poses in an agile way.

Unlike humans, who can perform throwing and catch-
ing with little effort, dynamic regrasping is non-trivial for
robots. There only have been a few works using dynamical
movements to switch between grasp poses. Furukawa et al.
developed a dynamic regrasping system with a high-speed
multifingered hand and a high-speed vision system at the
rate of 1 kHz, which focuses mainly on motion planning
of throwing and catching strategy [4]. A similar regrasping
approach on a two-dimensional plane using a high-speed
robot hand and high-speed vision is presented in [5]. The
above two methods replies on a multi-dof hand to catch
the object more easily, while Sintov and Shapiro proposed
a dynamic regrasping algorithm based on both motion-
planning and computed torque control, which works with
a simple two-jaw gripper but still needs high-speed visual
tracking. The existing work all have very high hardware
requirements, which greatly limit the potential applications.
In this work, we present a dynamic regrasping method with
minimal hardware requirements. We show the efficacy of our
algorithm using a single arm with a parallel-jaw gripper and
a standard RGB camera.

III. APPROACH

Our proposed approach is composed of motion planning,
computed torque control, and asynchronous visual feedback.
A workflow of the proposed dynamic regrasping method is
shown in Fig. 2.

A. Motion planning

The dynamic regrasping process, as shown in Fig. 1, can
be decomposed into two phases. During the first throwing
phase, the robot arm lifts the object to a specified speed and
then releases the object. In the second catching phase, the
gripper adjusts the pre-grasping poses and approaches to a
target position to grasp the object. The target position is set
to be the highest point of the object’s free-falling trajectory,
which makes visual feedback and error analysis easier.

During the throwing phase, the robotic arm imparts a
desired velocity to the object, ensuring it follows a pre-
dictable ballistic trajectory after release. The process begins
with trajectory planning, where our motion planner calcu-
lates the required release velocity to position the object’s
apex—the highest point in its parabolic path within the
robot’s workspace. Actuators then execute a rapid, dynamic
motion to accelerate the object to the predetermined velocity
profile. Upon reaching the target speed, the gripper releases
the object at a precisely timed instant, initiating its free fall.
This phase prioritizes repeatability and accuracy in velocity
delivery, as errors in the release object states propagate
during free flight.

The catching phase focuses on regrasping the object at
the apex of its trajectory, where its instantaneous vertical
velocity approaches zero. This strategic choice simplifies
synchronization by eliminating the need to match lateral
or vertical velocities during contact. As the object ascends
post-release, the gripper initiates a closed-loop tracking
routine, combining vision-based pose estimation (e.g., via
high-frame-rate cameras or motion capture systems) with
predictive models of ballistic motion to anticipate the apex
location. Concurrently, the robotic arm reorients the gripper
to align with the object’s orientation at the apex. Once
the object reaches the apex, the gripper executes a regrasp
maneuver, capitalizing on the momentary kinematic stability
of the object to minimize contact forces and slip risks.

Theoretically, the gripper is able to regrasp the object
at any point during the fall. However, grasping the object
at the non-apex point introduces a speed-matching problem



Fig. 2. Workflow of the proposed dynamic regrasping approach. Blue arrows show processes related to the throwing phase, and dashed blue arrows stand
for asynchronous vision feedback. Red arrows show processes related to the catching phase.

between the gripper and the object, like in [6]. The non-zero
object speed introduces more cumulative errors in the object
trajectory and also makes error analysis harder. Meanwhile,
in this agile manipulation scenario, measuring speed is much
more challenging than measuring positions and orientations,
which actually stopped [6] from deploying their policy on
real hardware.

The details of the motion planner are shown in Algorithm
1. The desired ballistic object trajectory xO

d (t) only has two
independent factors, the initial position xO

d (0) and initial
vertical speed vO,d(0), which can be determined manually
according to the robotic arm’s workspace. First, end effector
trajectories are computed for the two phases, based on the
object trajectory xO

d (t) and the desired delta grasp ∆xO
EE .

The generated trajectory includes positions, velocities, and
accelerations. Then, the end effector trajectories are further
converted into joint-level commands at every time step,
which will be fed to the computed torque controller.

Algorithm 1 Motion plan for dynamic regrasping
Input: The desired object trajectory xO

d (t), and the grasp
change ∆xO

EE .
Output: The desired joint trajectory and its derivatives
qd(t), q̇d(t), q̈d(t).

1: xEE
d (t),vEE

d (t),aEE
d (t) = ee traj(xO

d (t),∆xO
EE)

2: for all time steps do
3: qd = inverse kinematics(xEE

d )
4: q̇d = J†vEE

d

5: q̈d = J†(aEE
d − J̇ q̇d)

6: end for

B. Computed torque control

The dynamic regrasping framework employs computed
torque control to achieve precise trajectory tracking during
both throwing and catching phases. This method leverages
the robot’s dynamic model to compute feedforward torque
commands that compensate for inertial, Coriolis, and grav-
itational forces, enabling accurate tracking of time-varying
trajectories under dynamic conditions.

The robot arm’s rigid-body dynamics are modeled :

H(q)q̈ + C(q, q)q̇ + g(q) = u (1)

where H,C, g represent the inertia matrix, centripetal and
Coriolis term, and gravity term. In a real system, these
values are hard to estimate in advance because some terms,
like inertia and friction, might vary in different scenarios.
Therefore, we apply model identification to estimate the
parameters in the dynamic terms beforehand, and we assume
the parameters remain the same during the whole task. We
use the same symbol H̃, C̃, g̃ to stand for the estimated
terms.

The computed torque control scheme applied to the system
is as follows [6]:

u = H̃ (q̈d +Kd(q̇d − q̇) +Kp(qd − q)) + C̃q̇ + g̃ (2)

where Kp,Kd are diagonal gain matrices for proportional
and derivative terms, and the desired configuration, veloc-
ity, and acceleration qd(t), q̇d(t), q̈d(t) are generated in
the former motion planning step. The closed-loop system
guarantees trajectory convergence, assuming the estimated
dynamic model is accurate [6].

Fig. 3. Experimental setup of the dynamic regrasping algorithm



Fig. 4. Failure cases analysis. Failing reasons: (a) the cup drifted along the x axis; (b) the box did not reach the target height along the z axis; (c) the
object drifted along the x axis and rotated along the y axis.

C. Asynchronous vision feedback

Our dynamic regrasping strategy throws the object towards
a target apex point, where the object is regained by the
gripper. Computed torque control can make sure that the
planned trajectory is executed. However, the throwing policy
is very sensitive to both hardware errors and the object
properties, such as inertia, geometry, and friction, which vary
with objects and initial grasping positions. And some of the
properties are hard to characterize. Therefore, we develop an
asynchronous feedback algorithm to improve the throwing
policy.

We use FoundationPose [18] to track the initial and apex
poses of the object (XO(0),XO(tapex)). The two poses are
chosen because the object has a non-zero velocity elsewhere,
leading to blurry images and adding noise to the tracking.
The error in the throwing process is

ethrow = XO(tapex)
−1XO(0)XO

d (0)
−1XO

d (tapex).

In our experimental setup, the main error sources are the
translation along the x and z axes and the y-axis rotation.
The setup and coordinate frame definition is shown in 3.
According to the amount error, we iteratively generate new
throwing trajectories by combining a residual policy. For
most common objects, i.e. with regular shape and inertia
distribution, we are able to achieve successful grasps within
5-10 iterations.

IV. RESULTS

Our experiment platform is shown in Fig. 3.The hardware
includes a RealSense D435 RGBD camera (only RGB im-
ages are used), a ViperX 6-DoF robot arm, and a parallel-
jaw gripper originally designed for ALOHA 2 [19]. The

video is processed with FoundationPose [18]. We show both
successful and failure cases for several objects here.

Some failure cases are shown in Fig. 4 with reasons
described in the caption. Although successful regrasps can
usually be achieved in several iterations, the converged
policies still fail sometimes due to errors in the initial setup.
Among different trials, the initial grasp spots change, which
affects the policy performance. Another reason is that the
ALOHA 2 gripper is too compliant and struggles to make
stable grasps, which also adds sensitivity to the policy.

V. CONCLUSION

This work demonstrates a minimalist algorithm for dy-
namic regrasping using a single robotic arm and parallel-jaw
gripper, eliminating the need for high-speed vision systems,
dexterous hands, or bimanual setups. By decomposing the
task into a throwing step and a catching step, we leverage
computed torque control for precise trajectory execution and
asynchronous vision feedback to iteratively tune the throw-
ing policy. Preliminary experiments validate the approach’s
ability to handle variations in object properties, though chal-
lenges remain in the sensitivity to initial grasping conditions.
This work advances robotic dexterity toward human-like
agility, offering a cost-effective solution for applications
requiring rapid, contact-rich manipulation, such as industrial
automation, sports robotics, and disaster response.

Future Work includes: (1) evaluating and compensating
for different initial grasping conditions ; (2) redesigning the
gripper transmission mechanism and finger configurations to
offer sturdier grasps; (3) evaluating the policy error in desired
delta grasp on more objects; (4) introducing learning-based
approaches, such as diffusion policy, and/or simulation to
better tune the throwing policy.
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