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Abstract

Foundation models for biosignals, such as wearable ECG monitors, face chal-1

lenges in resource-constrained settings due to high memory and computational2

demands. In this work, we propose an adaptive layer-wise compression frame-3

work that leverages quantization to reduce model size while preserving predictive4

performance. Layer importance, estimated via parameter contribution and weight5

variance, guides fine-grained assignment of bit-widths, balancing efficiency and ac-6

curacy across high- and low-sensitivity layers. Extensive experiments on Chapman7

and CPSC ECG datasets demonstrate that our method consistently outperforms8

fixed global model compression schemes, achieving up to 10.44× compression9

without any loss. Our architecture-agnostic framework scales to both lightweight10

residual networks and large foundation models, enabling real-time, low-resource11

ECG monitoring and advancing scalable biosignal AI for edge and mobile health12

applications.13

1 Introduction and Related Work14

Electrocardiography (ECG) is a cornerstone of cardiac health assessment, capturing the heart’s15

electrical activity through body-surface electrodes to reveal characteristic waveforms Trobec et al.16

(2018). These signals enable detection of arrhythmias, ranging from asymptomatic to life-threatening17

conditions like sudden cardiac death Srinivasan and Schilling (2018). Traditional rule-based diag-18

nostics struggle with the scale and complexity of physiological data, driving demand for automated,19

cost-effective ECG monitoring Ebrahimi et al. (2020).20

Deep learning (DL) has transformed arrhythmia detection, with convolutional neural networks21

(CNNs) and recurrent architectures achieving high accuracy Kiranyaz et al. (2015); Alzubaidi et al.22

(2021). Recent innovations include transforming ECGs into images de Santana et al. (2021), CNN-23

LSTM hybrids Tan et al. (2018), and attention-based or transformer-based models El-Ghaish and24

Eldele (2024); Jin et al. (2021). However, these approaches often lack generalization across diverse25

populations or robustness to class imbalance Hannun et al. (2019).26

Foundation models, pretrained on large-scale unlabeled data via self-supervision, have revolutionized27

NLP, vision, and audio by enabling robust generalization across tasks and domains Radford et al.28

(2018); He et al. (2022); Hsu et al. (2021). In medicine, models like CheXzero Tiu et al. (2022),29

MedSAM Ma et al. (2024), and ECGFounder Li et al. (2024) leverage large-scale biosignal data30

for improved transferability. However, their computational complexity and reliance on supervised31

pretraining with limited cohorts hinder deployment in resource-constrained settings, such as wearable32

ECG devices.33
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Deploying DL models on wearables is limited by memory, energy, and latency constraints Chen34

and Ran (2019). Compression techniques like pruning Frankle and Carbin (2018), quantization35

Hubara et al. (2018); Krishnamoorthi (2018), and binarization Courbariaux et al. (2015) enable36

lightweight deployment. Quantization reduces parameter precision, acting as a regularizer that37

preserves discriminative capacity in noisy biosignals Liu et al. (2022b). Recent advances, such as38

nonuniform-to-uniform quantization (N2UQ) Liu et al. (2022b), adapt bin widths to data distributions,39

achieving near full-precision accuracy. Knowledge distillation Hinton et al. (2015) and neural40

architecture search Tan (2019) further optimize model efficiency, but their application to biosignal41

foundation models remains underexplored.42

Our contributions. The first adaptive compression framework for ECG foundation models, enabling43

up to 10× size reduction for edge deployment. A ResNet1D achieving state-of-the-art arrhythmia44

classification with high compression. Demonstrating that compressed foundation models preserve45

clinical accuracy while reducing computational costs by an order of magnitude.46

2 Method47

We aim to design scalable, interpretable biosignal foundation models that balance physiological48

fidelity with edge deployment efficiency. Our framework integrates morphology-aware convolu-49

tional models with self-supervised transformers, enhanced by adaptive compression to address50

heterogeneous biosignals.51

2.1 ResNet1D Architecture52

The ResNet1D processes ECG signals X ∈ RC×L, where C is the number of leads and L is the53

sequence length. The initial convolution maps X to a feature space: H0 = BN(Conv1d(X;W0)).54

Each residual block applies:55

Zk = σ(BN(Conv1d(Hk−1;Wk,1))) , Z′
k = σ(BN(Conv1d(Zk;Wk,2))) , (1)

with output Hk = Z′
k+S(Hk−1). The final output is ŷ = Softmax(Wf vec(HK)+bf ). ResNet1D56

captures local ECG morphology (e.g., QRS complexes), complementing the global temporal modeling57

of foundation models.58

2.2 ECG-HuBERT Architecture59

The HuBERT-ECG model Coppola et al. (2024), pretrained on large-scale unlabeled ECG data,60

extracts Mel-spectrogram features: X = [x1, . . . ,xT ], xt ∈ RF . Clustering assigns pseudo-labels61

ct = argmink ∥xt−µk∥22. Masked frames are embedded by a convolutional encoder fconv, producing62

zt, contextualized by a Transformer: ht = T (zt + pt). The loss is:63

LHuBERT = − 1∑
t mt

T∑
t=1

mt log pθ(ct|ht). (2)

This self-supervised pretraining enables robust, generalizable representations for ECG tasks, embody-64

ing biosignal foundation model principles.65

2.3 Adaptive Model Compression66

The layer-wise adaptive compression capitalizes on the heterogeneous sensitivity of network layers:67

more critical layers are pruned and quantized conservatively, whereas less important layers undergo68

more aggressive compression Shinde (2024).69

Let a neural network M have L layers, each with a weight tensor Wl. The goal is to deter-70

mine the bit-width bl for each layer, minimizing model size while ensuring minimal accuracy71

loss: min{bl,pl}L
l=1

Size(M) s.t. Accuracy(Mcomp) ≥ A0 −∆, where Mcomp is the compressed72

model, A0 is the baseline accuracy, and ∆ is the allowable accuracy degradation.73
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Layer Importance Estimation. To guide the compression process, we assign an importance score74

to each layer based on two factors: Parameter Density Index (PDI) reflects the proportion of75

parameters in layer l relative to the total parameters: ρl = dim(Wl)/
∑L

k=1 dim(Wk). Parameter76

Variability Index (PVI) captures the variability of weights within a layer, which influences its77

sensitivity to quantization. Specifically, the PDI is computed based on the variance of the weights in78

each layer, normalized relative to the maximum variance across all layers. This helps in assessing how79

much a layer’s weight distribution varies, affecting its ability to maintain accuracy after quantization.80

Combined Importance. The final importance score for layer l is a weighted sum of the PDI and the81

Parameter Deviation Index: Il = α · ρl + β · δl, where α and β are hyperparameters controlling the82

emphasis on parameter density and sensitivity to quantization.83

Quantization. Quantization reduces the model’s memory and computational requirements by84

converting continuous weights to discrete levels. In Fixed Quantization, all weights are uniformly85

quantized to a global bit-width bfixed: ŵ = Quantize(w, bfixed).86

Layer-wise Adaptive Quantization (LAQ). Bit-widths are assigned to layers based on importance87

scores. For layer l, the optimal bit-width b∗l is selected by:88

b∗l = min{bl : Accuracy(Mquant) ≥ A0 − γ · Il}, (3)

where γ is a global accuracy tolerance, and bl is selected greedily to minimize accuracy degrada-89

tion. This adaptive, importance-guided compression achieves a trade-off between model size and90

performance, enabling efficient deployment on resource-constrained devices.91

3 Experimental Setup92

All experiments were conducted on the Kaggle platform equipped with an NVIDIA Tesla P100 GPU,93

leveraging PyTorch for deep learning operations.94

Datasets: CPSC 2018 Challenge Dataset. Contains 6,877 twelve-lead ECG recordings (6–60 seconds,95

500 Hz) with nine rhythm categories Liu et al. (2018). Chapman Clinical Dataset. Includes ∼10,00096

subjects with 10-second, twelve-lead ECGs (500 Hz), aggregated into four rhythm groups Zheng97

et al. (2020); Murat et al. (2021). CPSC and Chapman enable rigorous evaluation of benchmark98

performance and cross-domain generalization under class imbalance and noise.99

Model Architectures and Training. We evaluate: (1) ResNet1D, capturing local ECG morphology,100

and (2) HuBERT-ECG, a self-supervised transformer for global temporal dependencies. This101

pairing probes the trade-off between interpretable CNNs and scalable foundation models. Inputs102

are zero-padded to 5,120 samples. Training uses Adam (lr=10−3 for ResNet1D, 10−4 for HuBERT,103

following Kiranyaz et al. (2015)), weight decay 10−3, dropout (0.2–0.3), and ReduceLROnPlateau.104

Categorical cross-entropy loss ensures robust rhythm classification.105

Model Compression Setup. Fixed quantization (1–8 bits) are compared with adaptive strategies106

(LAQ). Layer importance Il balances parameter proportion and variance. The log-scaled variance107

normalizes outliers, preserving clinical reliability with Tmargin = 0.01%.108

4 Results and Discussion109

We conduct an ablation study to evaluate the effects of quantization on the proposed ResNet1D and110

HuBERT-ECG models. Table 1 reports classification metrics (Accuracy, Precision, Recall, F1) and111

compression ratio (CR) across various settings.112

Fixed Quantization. Uniform quantization (8-bit to 1-bit) reveals distinct sensitivities. For ResNet1D,113

4-bit quantization achieves the highest accuracy (0.9688) and F1 (0.9657) with 7.95× compression,114

likely due to quantization noise acting as implicit regularization. Analysis of weight distributions115

shows reduced variance in feature activations, mitigating overfitting on ECG waveforms. Performance116

collapses at ≤3 bits due to excessive information loss. In contrast, HuBERT-ECG is more sensitive117
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Table 1: Comparison of performance and compression ratio (CR) of the Proposed ResNet1D Model
and HuBERT ECG Model under different quantization settings.

Method Proposed ResNet1D Model HuBERT ECG Model

Acc Prec Rec F1 CR Acc Prec Rec F1 CR

Full-Precision 0.9660 0.9632 0.9618 0.9624 1.00x 0.9712 0.9685 0.9686 0.9685 1.00x
Quantized (8-bit) 0.9660 0.9630 0.9618 0.9623 3.99x 0.9707 0.9678 0.9680 0.9678 3.98x
Quantized (7-bit) 0.9665 0.9635 0.9623 0.9629 4.56x 0.9703 0.9670 0.9677 0.9673 4.55x
Quantized (6-bit) 0.9655 0.9624 0.9612 0.9617 5.31x 0.9698 0.9668 0.9669 0.9668 5.30x
Quantized (5-bit) 0.9669 0.9641 0.9629 0.9634 6.37x 0.9693 0.9662 0.9662 0.9662 6.35x
Quantized (4-bit) 0.9688 0.9665 0.9651 0.9657 7.95x 0.9566 0.9523 0.9535 0.9524 7.91x
Quantized (3-bit) 0.9410 0.9358 0.9344 0.9341 10.58x 0.5038 0.6033 0.5508 0.4917 10.50x
Quantized (2-bit) 0.3555 0.2672 0.4175 0.2967 15.79x 0.2101 0.0525 0.2500 0.0868 15.63x
Quantized (1-bit) 0.3551 0.0888 0.2500 0.1310 31.16x 0.2101 0.0525 0.2500 0.0868 30.49x
Proposed LAQ 0.9660 0.9626 0.9624 0.9625 10.44x 0.9703 0.9675 0.9667 0.9670 9.43x

to low-precision quantization, as its self-attention layers require fine-grained weight resolution to118

capture global temporal dependencies Vaswani et al. (2017). While 8–7 bits maintain accuracy ≈0.97,119

performance drops sharply at 4-bit (0.9566), unlike the robust ResNet1D.120

Layer-wise Adaptive Quantization (LAQ). Our LAQ strategy achieves near-baseline accuracy with121

high compression. By allocating precision based on layer importance, LAQ preserves critical layers122

(e.g., convolutional filters capturing QRS complexes) while aggressively compressing redundant123

ones, optimizing for noisy biosignals. ResNet1D reaches 0.9660 accuracy at 10.44× CR, while124

HuBERT-ECG attains 0.9703 at 9.43×, consistently outperforming fixed quantization schemes.125

Comparison with Existing Work. On the Chapman dataset, ResNet1D+LAQ achieves 0.9660126

accuracy with 10.44× compression, and HuBERT-ECG+LAQ reaches 0.9703 with 9.43× (see127

Table 2 ). Unlike prior methods optimizing solely for accuracy Murat et al. (2021), our approach sets128

a new state-of-the-art by balancing clinical fidelity and edge deployability. On CPSC 2018, ResNet1D129

achieves 95.78% accuracy with 10× compression, outperforming baselines Dhyani et al. (2023).130

These results provide the first evidence of compact ECG models achieving superior performance131

while enabling real-time deployment on resource-constrained devices. To assess generalization, a132

key property of biosignal foundation models, we compare performance across CPSC and Chapman133

datasets. HuBERT-ECG’s self-supervised pretraining enhances robustness to Chapman’s class134

imbalance, achieving 0.9703 accuracy despite fewer training samples. ResNet1D excels on CPSC135

(95.78%) due to its focus on local morphology, but shows slightly lower generalization on Chapman’s136

heterogeneous clinical data. These findings underscore the complementary strengths of convolutional137

and transformer-based foundation models for biosignals.138

Discussion. Adaptive, layer-aware compression (LAQ/LAP) achieves Pareto-optimal trade-offs139

between accuracy and efficiency, enabling real-time ECG monitoring on edge devices. ResNet1D’s140

robustness to quantization makes it ideal for lightweight applications, while HuBERT-ECG benefits141

from adaptive strategies to preserve self-supervised features. The framework’s ability to generalize142

across datasets and handle noisy biosignals aligns with the scalability and robustness goals of143

foundation models, advancing clinical deployment of AI-driven health monitoring.144

5 Conclusion145

We present an adaptive compression framework for biosignal foundation models, enabling efficient146

ECG monitoring on edge devices with up to 10.44× compression without any loss. Layer importance147

guides conservative compression of critical layers and aggressive optimization of redundant ones. The148

framework’s architecture-agnostic design generalizes across datasets and modalities, supporting real-149

time health monitoring. Future work will explore multimodal biosignal integration (e.g., EEG, EMG),150

dynamic inference, and ethical considerations for clinical adoption, enhancing the framework’s151

impact on scalable, reliable biosignal AI.152
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Table 2: Classification performance comparisons on Chapman and CPSC 2018 datasets.
Dataset Author Classes #Lead Method Acc. Prec. Rec. F1 CR

Chapman

Yildirim et al. (2020) 4 12 Deep neural network 96.13 95.78 95.43 95.57 –
Baygin et al. (2021) 4 1 HIT pattern SVM 97.18 97.07 96.77 96.91 –
Murat et al. (2021) 4 1 DNN + feature fusion 98.00 97.76 97.70 97.72 –
Domazetoski et al. (2022) 3 12 XGBoost 89.37 – – – –
Venkatesh et al. (2024) 5 1 1D-CNN-BiLSTM 93.97 93.96 98.49 93.95 –

ResNet1D + LAQ 4 1 Residual Network 96.60 96.26 96.24 96.25 10.44x
HuBERT ECG + LAQ 4 1 Foundational Network 97.03 96.75 96.67 96.70 9.43x

CPSC 2018

Zhang et al. (2020) 9 12 CNN+Attention+BiGRU 86.83 84.18 82.93 83.51 –
Ge et al. (2021) 9 1 SEBlock(CNN) – 83.00 82.70 82.80 –
Liu et al. (2022a) 9 12 CRT-Net 87.20 87.30 87.20 86.90 –
Li and Zhang (2023) 9 12 KNN+CNN 88.50 87.77 87.08 87.37 –
Dhyani et al. (2023) 9 12 ResNet+RNN 93.29 93.38 93.10 93.09 –
Ji et al. (2024) 9 12 Multi-scale grid transformer 87.34 85.67 86.21 85.90 –

Proposed ResNet1D 9 1 Residual Network 95.78 95.61 95.81 95.68 10.44x
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