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Abstract

Many problems of interest can be solved using heuristic
search algorithms. When solving a heuristic search problem,
we are often interested in estimating search progress, that is,
how much longer until we have a solution. Previous work on
search progress estimation derived formulas based on some
relevant features that can be observed from the behavior of
the search algorithm. In this paper, rather than manually de-
riving such formulas we leverage machine learning to auto-
matically learn more accurate search progress predictors. We
train a Long Short-Term Memory (LSTM) network, which
takes as input sequences of states expanded by the search al-
gorithm, and predicts how far along the search we are. Impor-
tantly, our approach still treats the search algorithm as a black
box, and does not look into the contents of search states. An
empirical evaluation shows our technique outperforms previ-
ous search progress estimation techniques.

Introduction
Many interesting and challenging real-world problems can
be defined as search problems, where the objective is to find
a path in a state space (which is often implicitly defined
by a black-box successor generator) from some given ini-
tial state to a goal state. Often, we can use a heuristic func-
tion which estimates the distance from any given state to the
goal to better guide this search. Many heuristic search algo-
rithms have been developed to solve such problems, the most
well-known of which are probably A∗ (Hart, Nilsson, and
Raphael 1968) and Greedy best-first search (GBFS) (Doran
and Michie 1966).

Search algorithms can have unpredictable behavior, as we
typically do not know the topology of the search space (if
we did, perhaps we would not need to use a search algo-
rithm). While there are some results when the search prob-
lem is described symbolically (Hoffmann 2011), these re-
sults do not apply for black-box search problem. Other work
has addressed estimating search effort in terms of number
of expanded nodes (Lelis, Stern, and Sturtevant 2014; Belov
et al. 2017) or the cost of an optimal solution (Lelis et al.
2014) – we discuss these and others in more detail later. Im-
portantly, these approaches are all offline – they give their
predictions before the search starts.

We are interested in predicting remaining search effort on-
line, that is, in estimating how much progress the search

algorithm has already made. This problem was first in-
troduced by Thayer, Stern, and Lelis (Thayer, Stern, and
Lelis 2012), who also derived some formulas for estimating
search progress based on relatively simple search features,
which we explain in more detail later.

Search progress estimation is a useful tool not just for
letting a user know whether they have time to make a cup
of coffee before search completes, but also in making de-
cisions about the search. For example, remaining search
time estimates are used in situated temporal planning (Cash-
more et al. 2018) to prioritize search nodes which have a
higher probability to lead to a timely solution. Such esti-
mates can also be used to decide when to perform a restart
in a Branch-and-Bound search (Anderson et al. 2019) for
solving a Mixed Integer Program.

In this paper, we leverage recent developments in machine
learning to automatically learn more complex search pre-
dictors based on a given training set. Specifically, we view
the search algorithm as a black-box that emits a sequence
of states (we also treat the node which the search algorithm
expands as a black box), and train a Long Short-Term Mem-
ory (LSTM) network (Hochreiter 1998) to predict remaining
search effort.

We conducted an empirical evaluation on a large set of
planning domains, comparing our technique to previous
work (Thayer, Stern, and Lelis 2012). The results indicate
that our technique achieves state-of-the-art performance in
search progress estimation.

Background
In this section we review some of the necessary background
on LSTM networks and heuristic search.

LSTM Networks
Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber 1997) are a specific type of Recurrent
Neural Network (Medsker and Jain 2001) – a deep learn-
ing approach which is especially suitable for learning from
sequences. LSTMs were first introduced in order to solve
the vanishing gradient problem in conventional Recurrent
Neural Networks (Hochreiter 1998), and have been exten-
sively used in natural language processing, e.g., (Sutskever,
Vinyals, and Le 2014; Gers, Schmidhuber, and Cummins
2000). We now briefly review how LSTM networks are built,



but refer the interested reader to a detailed survey (Yu et al.
2019) for more details.

An LSTM network consists of several LSTM cells, ar-
ranged in sequence. Each LSTM cell has a hidden state, and
3 gates: input, forget and output, that manage the reading,
writing and memory update, respectively. The cell learns
gate weights and uses them to change the input and the hid-
den state based on the previous input in the sequence.

The cell processes input xt together with the hidden state
ht−1 (which is the result of processing the previous input)
by first passing them to the forget gate, which has a Sigmoid
activation function. The output of the forget gate is a number
between 0 and 1 for each element in the cell state Ct – the
information we are passing to the next LSTM cell.

Next, the processing continues through the input gate,
which has 2 activation functions, Sigmoid and tanh. The in-
put is the same as the forget layer xt and ht−1. The Sigmoid
activation decides which values to update and the tanh acti-
vation creates the values themselves. The outputs from both
of these are multiplied.

Finally, processing continues to the output gate that gets
xt and ht−1 as inputs and goes through a Sigmoid activation
which decides what parts will be output. The output also
goes through a tanh activation, which is multiplied by the
output of the Sigmoid activation.

This is all captured by the following equations, which de-
scribe the operation of each LSTM cell:
• forget gate: ft = σ(Wf · [ht−1, xt] + bf )

• input gate: it = σ(Wi · [ht−1, xt] + bi)

• new cell state value: C̃T = tanh(Wc · [ht−1, xt] + bC)

• update cell state: CT = ft ∗ Ct−1 + it ∗ C̃T

• output gate: ot = σ(W0[ht−1, xt] + b0)

• hidden state: ht = ot ∗ tanh(Ct)

Heuristic search
As previously mentioned, many problems of interest can be
modeled as state-space search problems (Bonet and Geffner
2001). A state space is formally represented as a tuple T =
〈S, S0, SG, A, f, c〉, where:
• S is a finite and non-empty set of states,
• S0 ∈ S is the initial state,
• SG ⊆ S is a non-empty set of goal states,
• A(s) ⊆ A denotes the actions applicable in each state
s ∈ S,

• f : S × A → S is the state transition function, such that
applying action a in state s leads to state f(s, a), and

• c(s, a) is the cost of performing action a in state s
Uninformed search algorithms such as Breadth-First

Search (BFS) can be used to solve small state-space search
problems. However, to solve larger problems, we typically
also use a heuristic which estimates the distance from any
given node to the goal. Formally, a heuristic is a function
mapping the states S to some real number (or infinity to in-
dicate a dead-end), that is h : S → R+ ∪ {∞}.

Most search algorithms define some priority function
f(s) over the states. Typically, f(s) is obtained from h(s),
the heuristic estimate of the distance to go from s, and g(s),
the cost of the best known path to s so far. For example, A∗

(Hart, Nilsson, and Raphael 1968) expands the node with
the lowest fA∗(s) = g(s) + h(s), while GBFS expands the
node with the lowest fGBFS(s) = h(s). We will use both
f, g and h depend on the search algorithm as features for
each search node.

Search progress estimation
We can now formally describe the problem we address in
this paper – search progress estimation. Our definition here
is adapted from previous work (Thayer, Stern, and Lelis
2012). Let A be a search algorithm, and P = 〈T, h〉 be a
heuristic search problem, which consists of a search space
T and a heuristic function h. Denote by EA(P ) the number
of nodes expanded by search algorithm A while attempting
to solve a search problem P . Let RemA(P,EA(P )) be the
number of remaining nodes that are going to be expanded
by A when solving P after A has already expanded EA(P )
nodes, that is, RemA(P,EA(P )) = EA(P )− EA(P ).

Definition 1 (Search Progress). The search progress of al-
gorithm A solving problem P after expending EA(P ) nodes
is: ProgA(EA(P )) = EA(P )

EA(P )+RemA(EA(P ))

As Definition 1 shows, search progress is a number be-
tween 0 and 1, which indicates what fraction of the to-
tal search effort to solve the problem we have already ex-
pended. For example if we expanded node number 1,000 out
of 10,000 nodes that are going to be expanded in total, the
search progress will be 1, 000/10, 000 = 0.1. This allows
comparing search progress between problems of different
sizes on the same scale. The metric we use to evaluate the
accuracy of search progress estimation (following (Thayer,
Stern, and Lelis 2012)) is Mean Absolute Error (MAE): For
each node we compute the absolute error between the pre-
dicted progress and the real progress. The accuracy of a pre-
dictor on a given problem is the mean of these absolute er-
rors over all the states the search expanded.

Related Work
Having described the necessary background, we can now
con review related work in this field. Some previous work
attempted to predict search effort in specific domains, e.g.,
predicting the number of nodes expanded by A∗ for the 15-
puzzle (Breyer and Korf 2008). Other work used sampling
to estimate search effort (Lelis et al. 2014; Belov et al. 2017;
Hutter et al. 2014) or the cost of a solution (Lelis, Stern,
and Sturtevant 2014) in a more general setting. However, as
previously mentioned, these are all offline methods, which
attempt to make a prediction before the search starts. We
now review in more detail the only prior work we are aware
of that addresses online search progress estimation (Thayer,
Stern, and Lelis 2012). Several search progress estimators
were proposed, which we now describe, and later use as
baselines in our empirical evaluation:



Velocity-Based Search Speed Estimator (VeSP) The
Velocity-Based Search Speed Estimator (VeSP) calcu-
lates the velocity during the search when EA(P ) denoted
as the number of expanded nodes by the average velocity
as:

V =
h0 − hmin

Exp
It then uses the velocity V and the current hmin to es-
timate the remaining search effort (number of expanded
nodes)

SEV =
hmin

V
Finally, it uses this estimate to predict search progress by
using:

V eSP (Exp) =
Exp

Exp + SEV

Vacillation-Based Search Speed Estimator (VaSP) The
Vacillation-Based Search Speed Estimator (VaSP) differs
from VeSP by using node serial numbers to estimate the
expansion delay (Dionne, Thayer, and Ruml 2011), that
is, the average number of expansions between when a
node is generated and when it is expanded, denoted ∆e.
The expansion delay is combined with hmin to predict re-
maining search effort as:

SEe = ∆e · hmin

As in VeSP, the estimate of search progress is:

V aSP (Exp) =
Exp

Exp + SEe

Path-Based Progress Estimator (PBP) We first describe
the Naive PBP (NPBP), which estimates search progress
at a given node n by looking at the ratio between the cost
until the current node (g(n)) and the total estimated cost
(g(n) + h(n)),

NPBP (Exp) =
g(n)

g(n) + h(n)

The main problem with NPBP is that it depends on the
current node, but in many cases there are other open nodes
with higher progress. Thus the PBP estimator returns the
maximum NPBP estimate among the nodes expanded far.

Distribution-Based Progress Estimator (DBP) The
Distribution-Based Progress Estimator (DBP) estimates
the search progress using data observed during search.
It relies on counting how many nodes are expanded
by the search for each value of d(n) – an estimate
of remaining plan length. We remark that in unit-cost
domains d(n) = h(n), and where action costs are
non-uniform, d(n) can usually be estimated alongside
h(n). Define c[di] as the count of how many nodes had
value d(n) = di during search. DBP fits a second degree
polynomial ĉ to c, in order to estimate progress. The DBP
estimate is then defined as:

Prog∗(Exp) =
Exp∑m
i=1 ĉ[di]

where m is the highest d-value with a count higher than
0.

Learning to Predict Search Progress
We now describe our technique for search progress estima-
tion, which is based on supervised machine learning. More
precisely, given a training set of search nodes with their cor-
rect search progress, we attempt to predict search progress
for new search nodes.

Input Features: We begin by defining the input features to
our predictor. First, note that any expansion-based forward
search algorithm works by expanding nodes in sequence.
Thus, we can view the search algorithm as a black-box that
outputs a sequence of nodes to expand. This motivates us to
use a Recurrent Neural Network (as we discuss next), look-
ing at the last k nodes that were expanded. However, for each
of these nodes, it is also important to know something about
where it came from – the path from the initial node to that
node. Thus, for each of these k nodes, we also look at their
ancestors m layers up. In this paper, we used k = 30 and
m = 2, resulting in collecting features from k ·(m+1) = 90
nodes, as illustrated in Figure 1.

For each of these k · (m+1) nodes, we collect the follow-
ing features:

• g(n) – the cost of the best known path to node n.

• h(n) – the heuristic estimate of the cost from n to the
goal.

• f(n) – the f -value for n the search algorithm uses.

• b(n) – the branching factor of n, that is, the number of
successor node n has.

• N(n) – the serial number of n, that is, how many nodes
were expanded before n. We remark that this number was
previously used to measure the expansion delay (Dionne,
Thayer, and Ruml 2011).

Additionally, we use some global features, which capture a
snapshot of the current node of the search:

• h0 = h(S0) – the heuristic value of the initial state. This
value stays constant throughout the search, but is impor-
tant for estimating the cost of the solution that will be
returned.

• hmin – the minimal h-value we have seen so far among
the expanded nodes.

• Nhmin – the number of nodes we expanded since the last
time hmin was updated.

• fmax – the maximum f value we have seen so far.

These features are used in the previous work (Thayer,
Stern, and Lelis 2012), with the exception of Nhmin, which
is used to get some information about whether search seems
to be stuck in a heuristic plateau (Asai and Fukunaga 2017).
A heuristic plateau is an area of the search space where the
heuristic assign similar values to all states, and thus heuris-
tic guidance is not very useful. Search algorithms typically
spend most of their time in heuristic plateaus, as otherwise,
the heuristic would lead the search algorithm directly to the
goal.



Figure 1: Illustration of the nodes used as input for prediction.
N is the node that was expanded last, N − 1 the node expanded before it, and so on. Parent() and Grandparent() are obtained
by following the parent pointers for the indicated node.

We record the value of these features at the time each node
was expanded, so we have k values for each of these fea-
tures. These input features can be seen as a matrix of real
numbers, of dimension 5k(m + 1) + 4k, which are used as
the input (features) to our network. Note that for the first k
states, we use feature values of 0 for the undefined nodes
(i.e., nodes with a negative serial number).

Network Structure: Our network1 consists of 15 LSTM
layers, followed by a fully connected layer which reduces
the dimension by half (from 450 to 225), then a dropout
layer with 50% dropout and Rectified Linear Units (ReLU)
activations, and finally another fully connected layer which
outputs our prediction – a single number. The parameters
here (number of LSTM layers, dimensions, dropout rate,
etc.) were determined by manual tuning over preliminary
data. Automatically setting these parameters is future work.

Training: Given a planning problem, we first solve it us-
ing a planner running a given search algorithm and heuris-
tic, and generate the true label (the correct search progress)
for each node. During training, we sample 1,000 nodes uni-
formly at random from each problem in our dataset, in order
to avoid bias to larger problems. We use the node serial num-
ber to obtain the true label of search progress – for node n
the true label is N(n)/N(gn), where gn is the goal node
found by the search algorithm. We used Adam as an opti-
miser with a learning rate of 0.001 and a batch size of 1024,
and Mean Squared Error (MSE) as the loss function. .

Empirical Evaluation
Having described our technique and the previous work on
search progress estimation, we can now compare them em-
pirically. We now describe this empirical evaluation.

Benchmarks
In order to compare search progress estimates on various
problems with different heuristics and different search al-
gorithms, we chose to use planning benchmarks from past
International Planning Competitions, as this allows us to im-
plement our technique only once. Specifically, we extended
Pyperplan (Alkhazraji et al. 2020) under license GNU Gen-
eral Public License 3 (GPLv3) to output the features of the

1The code will be made publicly available upon publication of
this paper.

nodes it expands during search. This data is then used for
training and testing of search progress estimators, as we de-
scribe next.

Our dataset started with planning problems from 21 IPC
domains – specifically, the benchmarks which are part of
the Pyperplan repository. These domains have a total of 605
planning problem instances. For each instance, we ran 4 con-
figurations of Pyperplan, choosing one of two search algo-
rithms (A* or GBFS) with one of two heuristics (HFF (Hoff-
mann and Nebel 2001) or Lm-Cut (Helmert and Domshlak
2009)) with a time limit of 24 hours and a memory limit
of 1,000,000 expanded nodes. From the solved instances
we omitted the instances which were solved using less than
1,000 expanded nodes (see table 1 solved problems), as
these are solved so quickly that search progress estimation is
useless, and it would have made sampling 1,000 nodes from
each instance difficult.

Experimental setup
We compare our technique to the techniques introduced by
previous work (Thayer, Stern, and Lelis 2012), which we
described in detail above: VaSP, VeSP, PBP, and DBP. For
VaSP, we used a moving average over the last 200 nodes to
estimate expansion delay. For DBP we used NumPy to fit
the polynomial to the data at hand.

All of our experiments were run on a server with 72 Intel
Xeon E5-2695 CPUs (utilizing at most 18 processes in par-
allel (Tange et al. 2011) (available under GNU GENERAL
PUBLIC LICENSE). The deep learning was implemented
in PyTorch, and run on 2 Nvidia Tesla M60 GPUs. On this
hardware the inference takes 0.05ms per node.

As our technique is based on learning from a training set,
we examine three different training/test regimes:

Other Domains (OD): In this regime, when we test on
problems from some domain, we train on all problems
from all other domains. This simulates the setting where
we need to estimate search progress on a problem from a
completely unknown domain.

Same Domain (SD): In this regime, when we test on prob-
lems from some domain, we train only on problems from
the same domain. To have some meaningful learning, we
only used domains with more than 15 instances, leaving
us only 3 domains. For each domain, we split its instances
into the even- and odd-numbered problems, to obtain two
sets of roughly the same size. We then trained a predic-
tor on one set, and evaluated its performance on the other,



A∗/Lm-Cut A∗/HFF GBFS/Lm-Cut GBFS/HFF
S 121 119 89 204
B 11/19 10/18 13/15 12/20
M 23.4%/27.3% 22.6%/24.3% 20.6%/26.8% 21.9%/26.0%

Table 1: Experiment 1 summary on all configurations.
S=Solved problems,B=Best accuracy, M=MAE ours/best
predictor.

giving us 6 data points in total.

Other Domains Tune Same (ODTS): In this regime, we
first train a predictor based on instances from the other
domains. We then take this trained model, and fine tune it
on one half of the instances from the target domain (split,
as before, to even and odd numbered problems). During
this fine tuning we run the same training algorithm, ex-
cept that the learning rate is 0.0001 and the batch size is
2048. As fine-tuning requires less data than SD, we used
domains with more than 6 instances – giving us 6 domains
and 12 data points in total.

We measure the accuracy of each search progress estimate
prediction (for a given state) by the absolute error between
the prediction and the true progress (which we have, since
we use only solved problems). The accuracy of a search
progress estimator over a given problem is the average ac-
curacy of its predictions over all the states expanded by the
algorithm, that is the mean absolute error (MAE). The accu-
racy for a set of problems (all problems in a domain, or all
problems overall) is the average accuracy across these prob-
lems (giving equal weight to each problem, regardless of the
number of states it required expending), that is, the average
mean absolute error. We also report the average of domain
averages (that is, giving the same weight to each domain,
regardless of how many problems it contains).

We remark here that we used MSE rather than MAE as the
loss function during training, as MSE gives us a smoother
function. Nevertheless, as we discuss next, our technique
achieves start-of-the-art performance.

Empirical results
We now describe the results for our empirical evaluation.
First, Tables 2,3,4 and 5 compares our technique using the
OD regime to the estimators proposed in previous work in all
4 configurations of heuristic and search algorithm. There are
some missing values in the table, as some planner configura-
tions do not solve any problem for this domain. We compare
the previous work to OD, as it is the closest to these in terms
of assumptions – it does not assume any knowledge about
the problem it is used on.

To summarize these results more concisely, Table 1 shows
in how many domains OD was the best predictor, and the
overall accuracy of our OD predictor vs. the best predictor
from the previous work. Overall, OD was the most accurate,
with better average mean absolute error compared to the best
predictor from previous work, VeSP/VaSP. The results when
averaging over individual problems rather than domains are
very similar.

Domain VaSP VeSP PBP DBP OD
Airport(5) 29.4(13.6) 19.4(3.0) 19.3(3.0) 17.2(4.0) 25.0(1.1)
Blocks(13) 26.5(4.5) 26.0(6.8) 31.6(6.5) 45.3(1.9) 23.5(1.8)
Depot(3) 26.2(2.0) 27.8(5.3) 30.9(2.8) 38.1(2.8) 23.5(0.8)
Elevators(11) 23.9(2.2) 24.6(4.4) 29.5(4.2) 34.0(5.1) 22.0(3.1)
Freecell(1) 22.1(0) 20.6(0) 32.3(0) 33.4(0) 24.2(0)
Gripper(4) 38.9(2.7) 18.5(1.5) 21.6(0.6) 20.7(2.9) 23.0(5.0)
Logistics(5) 39.1(3.0) 24.7(2.0) 25.3(2.1) 29.5(7.5) 20.9(3.0)
Openstacks(5) 21.5(1.2) 33.9(3.2) 37.3(3.1) 37.3(3.7) 25.1(0.4)
Parcprinter(6) 34.3(6.4) 34.9(2.5) 35.1(2.7) 40.6(2.0) 23.4(3.2)
Pegsol(15) 23.4(2.7) 28.0(3.7) 38.9(2.9) 40.7(1.5) 23.8(3.2)
Psr-small(15) 28.2(4.4) 26.5(2.4) 41.9(1.9) 40.6(1.8) 22.8(2.6)
Rovers(3) 24.8(3.5) 32.1(1.9) 34.0(1.3) 39.3(0.8) 23.5(1.4)
Satellite(2) 30.5(4.1) 22.9(3.6) 22.9(6.7) 32.9(11.6) 24.8(1.0)
Scanalyzer(3) 23.3(2.6) 25.1(2.8) 29.4(1.3) 27.0(6.2) 22.3(0.4)
Sokoban(16) 24.4(8.2) 26.5(6.4) 38.9(5.6) 38.1(6.5) 24.5(1.8)
TPP(1) 30.5(0) 39.9(0) 40.8(0) 41.9(0) 24.4(0)
Transport(5) 21.8(2.8) 23.4(2.1) 30.2(5.4) 33.9(4.9) 22.6(3.6)
WW(5) 46.6(2.7) 38.7(3.5) 38.6(3.5) 43.2(7.6) 22.9(3.6)
Zenotravel(3) 26.9(3.2) 26.0(6.8) 30.0(6.9) 29.2(9.1) 22.1(1.4)
Avg-dom(19) 28.5(6.8) 27.3(6.0) 31.9(6.6) 34.9(7.5) 23.4(1.1)
Avg-prob(121) 27.6(7.7) 27.0(6.0) 33.9(7.4) 36.9(8.0) 23.3(2.6)

Table 2: Average mean absolute error (in percent) and stan-
dard deviation in parentheses for A∗ with Lm-Cut

Domain VaSP VeSP PBP DBP OD
Airport(2) 21.8(8.4) 27.8(0.2) 26.7(0.9) 33.4(5.6) 25.0(0.2)
Blocks(10) 25.1(6.8) 21.9(3.4) 33.4(3.7) 22.0(4.5) 20.9(4.2)
Depot(3) 30.2(2.4) 21.2(5.6) 36.2(3.2) 20.0(5.2) 19.0(3.2)
Elevators(2) 22.0(6.5) 15.9(3.4) 33.6(2.0) 14.5(1.9) 14.2(0)
Freecell(3) 19.9(6.4) 21.8(7.0) 20.9(6.3) 23.5(2.6) 17.7(3.6)
Openstacks(16) 26.4(3.6) 42.6(3.5) 45.2(2.6) 27.4(2.4) 18.7(4.4)
Pegsol(4) 37.4(1.9) 28.2(1.9) 41.5(1.1) 36.6(2.3) 20.3(5.2)
Psr-small(9) 29.4(6.9) 22.2(4.7) 40.7(3.4) 31.6(6.2) 20.7(3.3)
Rovers(4) 25.2(4.1) 22.4(4.2) 32.9(4.9) 21.5(4.6) 22.6(8.8)
Satellite(2) 21.5(3.2) 28.4(4.0) 33.7(2.6) 21.1(6.3) 17.5(3.8)
Scanalyzer(1) 24.5(0) 26.0(0) 36.4(0) 25.8(0) 24.0(0)
Sokoban(19) 40.5(5.7) 26.0(6.2) 41.7(6.2) 32.4(8.4) 24.9(0.7)
TPP(7) 22.0(7.6) 35.4(7.6) 42.1(3.6) 25.9(7.3) 18.2(3.4)
Transport(6) 33.9(4.9) 24.3(3.4) 42.2(3.9) 25.8(6.3) 19.1(2.7)
WW(1) 22.4(0) 43.7(0) 44.3(0) 38.0(0) 16.7(0)
Avg-dom(15) 26.8(6.2) 28.5(7.8) 39.3(6.8) 27.6(6.6) 20.6(3.1)
Avg-prob(89) 29.7(8.6) 27.2(9.1) 36.8(6.9) 26.6(7.4) 20.0(4.4)

Table 3: Average mean absolute error (in percent) and stan-
dard deviation in parentheses for GBFS with Lm-Cut

Domain VaSP VeSP PBP DBP OD
Airport(8) 15.6(4.2) 13.0(5.9) 31.3(4.2) 30.7(15.5) 22.4(4.9)
Blocks(7) 29.7(0.6) 27.5(2.1) 38.6(1.0) 36.0(0.5) 22.4(1.5)
Depot(1) 23.8(0) 17.7(0) 34.4(0) 24.5(0) 18.0(0)
Elevators(5) 26.5(1.5) 21.3(3.1) 38.1(1.9) 37.6(6.9) 24.2(0.8)
Freecell(2) 29.0(3.2) 25.6(10.1) 37.3(7.5) 39.0(3.2) 23.2(3.8)
Gripper(4) 26.9(1.4) 48.0(2.2) 35.8(4.0) 44.4(5.6) 21.2(2.5)
Logistics(9) 25.9(2.8) 23.0(2.1) 38.5(2.8) 33.7(8.9) 21.7(4.5)
Openstacks(5) 26.0(2.7) 16.4(1.0) 38.7(2.7) 21.1(1.3) 21.7(3.8)
Parcprinter(5) 17.4(1.7) 20.1(1.6) 32.7(1.8) 31.6(2.8) 23.3(1.3)
Pegsol(15) 34.5(0.4) 28.0(9.1) 42.9(1.6) 42.1(1.1) 23.6(0.7)
Psr-small(16) 30.5(4.6) 40.8(12.3) 42.0(2.3) 37.7(6.0) 22.9(2.1)
Satellite(2) 25.0(2.9) 25.8(2.8) 33.4(5.4) 25.9(2.6) 23.1(0.5)
Scanalyzer(4) 29.8(1.2) 24.8(3.9) 37.2(2.9) 47.8(3.1) 23.6(3.9)
Sokoban(16) 33.2(4.9) 25.0(4.7) 41.4(4.8) 36.7(3.4) 23.5(3.2)
TPP(1) 27.5(0) 20.3(0) 38.3(0) 26.4(0) 22.3(0)
Transport(6) 25.2(1.4) 20.9(5.9) 37.9(2.4) 35.2(3.0) 22.7(3.2)
WW(5) 29.9(0.5) 26.1(1.3) 38.3(1.9) 45.5(4.2) 23.5(2.5)
Zenotravel(4) 28.0(2.5) 21.4(4.0) 38.3(2.5) 37.7(3.3) 23.8(3.7)
Avg-dom(19) 27.0(4.7) 24.3(8.3) 37.6(3.1) 36.1(7.5) 22.6(1.4)
Avg-prob(119) 28.3(5.9) 26.2(10.4) 38.9(4.4) 37.0(8.1) 22.8(2.3)

Table 4: Average mean absolute error (in percent) and stan-
dard deviation in parentheses for A∗ with HFF



Domain VaSP VeSP PBP DBP OD
Airport(6) 21.0(4.6) 38.8(8.9) 26.9(3.9) 37.3(7.8) 21.3(2.1)
Blocks(20) 27.3(2.9) 30.9(5.3) 41.5(2.3) 35.5(7.0) 20.6(2.5)
Depot(19) 26.1(5.0) 21.6(3.3) 39.1(3.6) 22.0(6.0) 23.0(3.5)
Elevators(27) 26.7(3.0) 23.3(5.9) 38.3(3.5) 26.2(4.4) 24.1(2.9)
Freecell(14) 15.0(5.5) 13.8(5.9) 28.2(4.7) 18.8(9.2) 17.4(3.5)
Gripper(4) 28.7(1.0) 50.0(0) 36.9(3.3) 47.5(3.3) 21.7(3.6)
Logistics(11) 24.4(4.4) 15.0(2.9) 38.0(2.3) 18.3(6.5) 22.2(3.4)
Miconic(5) 20.8(0.9) 37.9(4.7) 32.1(3.8) 25.8(6.6) 21.2(5.1)
Openstacks(6) 21.4(1.8) 25.2(1.9) 34.5(2.7) 19.6(2.5) 22.7(2.9)
Parcprinter(8) 22.2(6.8) 21.4(2.7) 29.6(4.3) 21.6(4.1) 21.3(4.4)
Pegsol(18) 40.0(3.2) 29.2(9.7) 45.4(1.2) 40.4(6.4) 22.9(3.6)
Psr-small(12) 29.5(5.3) 40.0(12.4) 42.0(3.5) 36.1(9.0) 21.2(1.9)
Rovers(4) 27.6(3.9) 19.0(3.5) 39.8(1.7) 30.5(9.1) 21.1(3.2)
Satellite(1) 26.1(1.4) 27.8(0) 35.7(3.6) 25.0(0) 20.6(6.5)
Scanalyzer(5) 29.4(5.2) 29.4(12.6) 36.4(8.5) 35.6(7.2) 24.9(6.0)
Sokoban(20) 38.9(5.8) 26.1(4.6) 42.2(6.8) 33.4(7.0) 23.9(3.4)
TPP(4) 20.2(4.4) 22.0(3.8) 32.1(3.0) 20.3(5.6) 19.9(3.6)
Transport(8) 25.9(2.1) 23.2(5.0) 37.9(1.9) 23.9(6.3) 22.9(3.1)
WW(8) 26.1(6.0) 23.3(6.5) 36.2(5.3) 36.7(12.8) 20.7(4.1)
Zenotravel(3) 22.4(3.1) 30.2(7.4) 28.1(9.4) 22.6(2.1) 24.6(4.0)
Avg-dom(20) 26.0(5.9) 27.4(8.9) 36.0(5.2) 28.9(8.4) 21.9(1.8)
Avg-prob(204) 27.6(8.0) 26.8(10.0) 37.7(6.5) 29.6(10.2) 22.0(3.7)

Table 5: Average mean absolute error (in percent) and stan-
dard deviation in parentheses for GBFS with HFF

Domain OD SD ODTS
Blocks 23.5(1.8) - 23.6(2.0)
Elevators 22.0(3.1) - 21.3(3.3)
Parcprinter 23.5(3.3) - 23.4(3.3)
Pegsol 23.8(3.2) 25.2(0.1) 22.6(3.1)
Psr-small 22.8(2.6) 20.8(3.8) 20.3(4.5)
Sokoban 24.5(1.8) 24.3(2.1) 23.5(3.1)
Avg-dom(3) 23.7(0.9) 23.4(2.3) 22.1(1.4)
Avg-prob(46) 24.3(2.7) 23.7(3.1) 22.2(3.5)

Table 6: Average mean absolute error (in percent) and stan-
dard deviation in parentheses with A∗ and Lm-Cut using all
3 regimes

To get a better sense of the behavior of these estimators
during search, Figure 2(a,b,c) shows plots of the absolute
error during search, for 3 problems of different sizes from
different domains. For each point on the x-axis, which indi-
cates the true search progress, we plot the absolute error of
each predictor at that state. As we can see, VaSP has a lot of
noise. This is explained by the fact that every change in the
value of hmin causes a major change in the estimation. With
respect to the other estimators, our method had better accu-
racy until about the 60–70 percent point, and from there the
prediction was least accurate and missed the end of the prob-
lem. The difference between our model and the baselines at
the end of the search is not surprising, as the baselines de-
pend more closely on h, and thus when h is close to zero,
the estimates predict we are close to end of search.

Having seen that our technique, in the OD regime, outper-
forms previous work, we now turn to evaluating the impact
of more specific training data by comparing the OD regime
to the SD and ODTS regimes. Recall that in the SD regime
our network is trained only on instances from the same do-
main, while in ODTS it is trained on instances from all other
domains, and then fine-tuned on the domain being evaluated.
Also recall that these regimes can only be used on domains
which have enough data (15 solved instances for SD, 6 for
ODTS), and thus the comparison is on fewer domains.

Tables 6,7,8 and 9, shows the results for this evaluation.

Figure 2: Absolute Error During Search in 3 Different Prob-
lems: (a) Elevators 11 (top, 4,500 nodes), (b) Parcprinter
25 (middle, 124,826 nodes), and (c) Openstacks 6 (bottom,
866,801 nodes)



Figure 3: Absolute Error During Search in PSR-small 31
(3,950 nodes for all three training regimes)

Domain OD SD ODTS
Airport 22.4(4.9) - 22.5(5.3)
Blocks 22.4(1.5) - 22.4(1.4)
Logistics 21.7(4.5) - 22.7(5.7)
Parcprinter 23.6(0.7) 22.7(1.1) 23.0(0.8)
Pegsol 22.9(2.1) 20.8(3.1) 19.9(3.6)
Psr-small 23.5(3.2) 24.9(2.0) 21.9(2.9)
Sokoban 22.7(3.2) - 22.9(3.0)
Avg-dom(3) 22.7(0.7) 22.8(2.0) 22.2(1.1)
Avg-prob(47) 22.8(2.9) 23.3(2.8) 21.7(3.5)

Table 7: Average mean absolute error (in percent) and stan-
dard deviation in parentheses with GBFS and Lm-Cut using
all 3 regimes

Domain OD SD ODTS
Blocks 20.9(4.2) - 19.5(4.5)
Openstacks 18.7(4.4) 15.3(3.7) 13.8(2.7)
Psr-small 20.7(3.3) - 19.5(4.3)
Sokoban 24.9(0.7) 25.1(0.3) 24.4(2.2)
tpp 18.2(3.4) - 17.4(2.9)
transport 19.1(2.7) - 20.3(3.0)
Avg-dom(2) 20.4(2.4) 20.2(7.0) 19.2(3.5)
Avg-prob(35) 20.6(4.1) 21.0(5.5) 19.4(5.0)

Table 8: Average mean absolute error (in percent) and stan-
dard deviation in parentheses with A∗ and HFF using all 3
regimes

Domain OD SD ODTS
Airport 21.3(2.1) - 21.2(2.1)
Blocks 20.6(2.5) 14.1(5.1) 15.7(3.7)
Depot 23.0(3.5) - 22.3(3.6)
Elevators 24.1(2.9) 21.7(4.1) 22.4(3.4)
Freecell 17.4(3.5) - 16.4(4.5)
Logistics 22.2(3.4) - 21.1(3.8)
Openstacks 22.7(2.9) - 21.2(2.1)
Parcprinter 21.0(4.4) - 20.9(4.2)
Pegsol 22.9(3.6) 23.2(3.2) 22.6(2.8)
Psr-small 21.2(1.9) - 21.9(2.7)
Sokoban 23.9(3.4) 25.0(2.8) 23.5(2.9)
transport 22.9(3.1) - 22.2(2.6)
Woodworking 20.7(4.1) - 20.0(5.0)
Avg-dom(4) 21.8(1.8) 21.2(4.5) 20.9(2.3)
Avg-prob(85) 21.2(3.6) 22.0(5.4) 20.8(4.2)

Table 9: Average mean absolute error (in percent) and stan-
dard deviation in parentheses with GBFS and HFF using all
3 regimes

test/train GBFS/Lm-Cut A∗/Lm-Cut GBFS/hff A∗/hff
GBFS/Lm-Cut 19.8(3.1) 22.4(2.5) 21.4(3.70) 22.1(3.9)
A∗/Lm-Cut 23.6(1.8) 23.7(1.0) 24.6(2.6) 24.6(3.6)
GBFS/hff 23.6(1.3) 23.3(1.2) 21.9(2.0) 22.4(2.2)
A∗/hff 23.2(2.4) 23.1(2.7) 23.0(1.7) 22.6(1.5)

Table 10: Average mean absolute error (in percent) and stan-
dard deviation in parentheses on generalization evaluation

In the table there are missing values as well, since in some
configuration the number of problems the planner solved
was below the required number we define for this experi-
ment. Interestingly, ODTS outperforms SD in most cases,
showing that the training data from other domains is impor-
tant. ODTS also outperforms OD in most domains as well
as overall in each table, showing that domain-specific tuning
does help. Figure 3 plots the absolute error of the 3 different
regimes on a specific instance, PSR-small 31. As we can see,
all 3 predictors started with unstable estimates, and got more
and more accurate in the middle. Near the end all predictors
become less and less accurate and missed the fact they are
near the goal. Other than this, we can see that ODTS was
generally more accurate, while OD and SD were each better
than the other in different parts of the search.

Generalization
We conclude our empirical evaluation by evaluating how our
predictor handles changing the search algorithm, the heuris-
tic, or both. In this experiment, we trained our predictor (us-
ing the OD regime) on one choice of search algorithm and
heuristic, and then tested its accuracy on another choice.
With 2 search algorithms and 2 heuristics, we have 4 com-
binations, and thus 16 settings to evaluate.

Table 10 shows the results of cross domain evaluation.
As expected, using the same configuration for training and
in test leads to the best performance in 3 out of 4 cases. The
more interesting phenomenon is that when we change the al-
gorithm and keep the heuristic the average MAE decreases
by 0.86. When we change the heuristic and keep the algo-
rithm, MAE decreases by 1.18, and changing both decreases



MAE by 1.31. Note that, for any configuration, training on
the polar opposite (different search algorithm and heuristic)
still yields better accuracy than the best predictor from pre-
vious work. This shows that our predictor can generalize to
a different search algorithm and heuristic without suffering
too severe a decrease in performance.

Discussion and Future Work
In this paper we have showed a novel approach to search
progress estimation using deep learning. We have shown
that our approach outperforms previous state-of-the-art ap-
proaches, and that it benefits from having access to better
training data. It is also interesting (and perhaps sad) to note
that the previous search progress estimators (Thayer, Stern,
and Lelis 2012), which were developed manually using ex-
tensive expertise in heuristic search and human creativity,
are outperformed by a machine learning algorithm with very
limited prior knowledge.

Besides being an interesting problem, search progress es-
timation can be used to make decisions about search. For
example, as previously mentioned, estimates of remaining
search time have been used in situated temporal planning
(Cashmore et al. 2018) and in Branch-and-Bound search
(Anderson et al. 2019). Other applications are in anytime
search (Dionne, Thayer, and Ruml 2011) or metareason-
ing (Shperberg et al. 2019, 2020). However, using search
progress estimates to make decisions about search has a
problem with self-reference – the predictions affect search
decisions, which affect search time, which then affect the
true search progress. We intend to address this challenge
in future work by attempting to learn a series of predictors
which converge to a fixed point which exhibits good perfor-
mance.

Finally, we remark that we employed fairly simple ma-
chine learning tools here. In future work we will examine
whether we can improve performance even more by using
different architectures of neural networks, or more informa-
tive features.
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