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Abstract

The long-context bottleneck of transformer-based language models can be ad-
dressed via context compression frameworks such as AutoCompressors, which
distill tokens into soft prompts but silently assume uniform information density.
We revisit this assumption and introduce dynamic segmentation by partitioning
the input whenever the cumulative token-level surprisal exceeds a threshold 7,
yielding segments with balanced information before summary vector generation.
We show that dynamically adjusting segment boundaries based on surprisal enables
better alignment between the original and soft prompts for prediction and infer-
ence. Experimental results show that our surprisal-based segmentation outperforms
a pretrained baseline model and the randomized segmentation AutoCompressor
baseline with regard to cross-entropy loss and in-context learning (ICL) accuracy.

1 Introduction

Context window limitations hinder long-context fine-tuning and inference in transformer-based
language models [Vaswani et al.,|2017] due to memory and compute constraints [Wang et al.| 2024].
To mitigate this, compression methods that reduce input complexity have been introduced, falling
into two broad categories: either hard prompt or soft prompt techniques [Li et al., [2024]].

Hard prompts are discrete natural language sequences consisting of tokens from a language model’s
vocabulary [Sennrich et al., [2016]]. While hard prompts are easily interpretable, they often fail to
concisely express semantic intent. Soft prompts are vectors with the same dimensions as token
embeddings in the language model’s dictionary [Zhao et al.l 2023]]. While soft prompts provide less
interpretability compared to hard prompts, they capture semantic nuance more concisely.

Existing soft prompt methods such as GIST tokens [Mu et al.}2023]], ICAE [Ge et al., [2024]], and
AutoCompressors [Chevalier et al., 2023|] distill long inputs into soft tokens but assume uniform
information density via constant token budgets or randomized segmentation—a flawed assumption
given natural language’s uneven semantic information distribution [Yu et al., [2016f]. Information-
theoretic approaches such as LLMLingua [Jiang et al.,|[2023]] and Selective Context [Li et al., [2023]
have shown that token-level perplexity or self-information can effectively identify semantically
important input regions, but apply only to hard prompts.

DAST [[Chen et al.| 2025] similarly implements dynamic allocation of soft tokens and may be
considered parallel work, however, it is built on the Activation Beacon framework [Zhang et al.,
2024] utilizing a different compression schema. We believe the implementation of DAST leaves
room for improvement in method details and depth of experiments.
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Figure 1: When fine-tuning AutoCompressors, we first quantify information density by obtaining
per-token surprisals via baseline model inferencing on the tokenized input. We dynamically segment
the input based on these surprisals, accumulating until a surprisal threshold 7 is reached, resulting in
variable-length segments and a variable number of segments per input sequence. These segments are
then compressed into summary vectors, which are passed onto subsequent compression steps as soft
prompts for the previous context.

We aim to bridge this gap by proposing a method that extends the AutoCompressor framework to
incorporate surprisal-based dynamic segmentation. Specifically, we show that input segments of
similar cumulative information produce more useful compressed representations when compressed
into summary vectors, allowing for better language modeling performance on a variety of tasks.

2 Related Work

We adopt the AutoCompressor framework from |Chevalier et al.|[2023]], which builds on the recurrent
memory transformer (RMT) architecture [Bulatov et al.l 2022] to compress plain text into short soft
prompts known as summary vectors [Lester et al., 2021]]. The tokenized input text is split into
segments, with lengths randomly determined given a fixed hyperparameter of the number of segments.
Segment lengths are guaranteed to be within the model’s context window length. After generating
summary vectors, the vectors are then prepended to all subsequent segments to recursively generate
summary vectors over the entire segmented input.

Methods for extending a model’s context window have been developed by previous work, such as
RoPE-based scaling (Chen et al.[[2023], [Roziere et al.|[2024]], Ding et al.|[2024]], Zhu et al.| [2025]])
and utilizing different types of embeddings [Sun et al.,2023b]. Non-transformer based architectures
have also been proposed (Peng et al.| [2023]], |Sun et al.| [2023a]), allowing for extended context
windows. However, these modifications do not perform well at longer scales or at a foundational
level.

Other compression methods have been explored to tackle long-context input. Semantic Compression
[Fei et al.| 2024] utilizes graph-based chunking based on topic to dynamically compress context, but
focuses on hard prompt compression through summarization techniques. DoDo [|Qin et al., 2024]]
approaches compression architecturally by dynamically compressing the context via a trainable
selector and compressor module to select and compress the most important hidden states in each
layer to reduce computational intensity while maintaining model performance. Our work addresses
the issue from the perspective of reducing input complexity via soft prompts.

3 Method

We incorporate our custom segmentation methodology into the original AutoCompressors framework.
This creates a distinct fine-tuning process from fine-tuning on randomly split input segments, allowing
for better organization of the segments’ information content.



3.1 Framework

AutoCompressors are fine-tuned on base models and split long documents into a series of segments
S1,-..,Sy, with variable lengths constrained to fit within the model’s context window. For each token
x4 in a segment S; with m; tokens, the model is trained with the unsupervised objective of minimizing
cross-entropy loss when conditioned on the previous tokens x1, . .., x;—1 and the previous summary
vectors o«; :

1 n m;
L= N ; tz_;logp(xt | @1, o1, 0<4)
over all segments and total number of tokens [N. We follow this training objective when incorporating
our method to fine-tune AutoCompressors.

3.2 Surprisal-Guided Segmentation

Our main contribution is implementing surprisal-based segmentation. The surprisal of a token x; is
the negative log probability of the token appearing given the preceding context [J1 et al., [2023]:

Surprisal(z;) = —log P(x¢ | x<¢).

Surprisal captures the model’s uncertainty about the token in its generative context, thereby represent-
ing the information contained within the token; higher surprisal corresponds to more information,
and lower surprisal corresponds to less information.

Token-level Segmentation. Given a tokenized input sequence X = [z1, 22, ..., z,], we define a
segment S; = [T5,_,41,...,%s;] by computing per-token surprisal via baseline model inferencing
and accumulating tokens until a fixed threshold 7 is exceeded:

k
sjr=minq ke {s;_1+1,...,n} Z Surprisal(z;) > 7
i=s;_1+1

where s;_1 + 1 and s; are the start and end indices respectively of segment S;. If the length of the
segment exceeds the model’s context window before the threshold is reached, we simply end the
segment and begin a new segment. This procedure creates segments of roughly equal cumulative
surprisal. Unlike the original methodology, which specifies a fixed number of segments for each
training substep, we allow for a variable number based on the information distribution of the input,
creating more flexibility in the fine-tuning process.

4 Experiments

4.1 Experimental Setup

We fine-tune an AutoCompressor model on a pre-trained OPT model [Zhang et al., 2022] with 1.3
billion parameters, fine-tuning on 6K-token sequences from the Wikipedia subdomain of the Pile
dataset [[Gao et al., 2020]] with a surprisal threshold of 7 = 1500. This threshold was heuristically
determined based on the total cumulative surprisal across sample input sequences.

Fine-tuning was done with 2-3 NVIDIA H100 GPUs each with 80 GB of memory over 50 hours,
with one GPU solely dedicated to baseline model inferencing to obtain surprisal calculations. To
ensure that the input would not exceed the base model’s context window length during inferencing,
we apply the extended full attention methodology introduced in the original work via extension of
positional embeddings. Specifically, positional embeddings are reused beyond the model’s context
window length to allow for longer input sequences.

We evaluate our model by evaluating the out of domain cross-entropy loss on 6K-token sequences
from the Gutenberg subdomain (consisting of various works of literature) of the Pile dataset. We
split the input sequences into segments of 2,048 tokens except for the last segment, which has fewer
tokens. Then, we compress all segments except the last, pass their summary vectors forward as soft
prompts, and evaluate cross-entropy loss on the final segment.



Model Cross-Entropy 7 46 209 1071 4489 19972

OPT-1.3b 4.20 62.61 5553 5225 7440 53.50 59.07
Baseline AC  2.66 67.16 6350 6046 7130 5530 62.71
Dynamic AC  2.61 69.12 69.82 6488 76.80 58.50 62.70

Table 1: Evaluation results for a baseline OPT-1.3b model, baseline AutoCompressor (AC), and our
dynamic AutoCompressor (AC). We evaluate cross-entropy loss on the Gutenberg subdomain and
ICL accuracy on the AG News dataset with 6 different seeds.

We also evaluate in-context learning (ICL) accuracy on the AG News benchmark, which involves
4-way topic classification on news articles. Following the original implementation, we construct
10-shot prompts by sampling and concatenating 10 plain text training examples.

4.2 Results

We display our results in Table 1. We compare to a baseline OPT-1.3b model with extended full
attention as well as an AutoCompressor model utilizing randomized segmentation as in the original
methodology.

Our dynamic AutoCompressor achieves lower cross-entropy loss (2.61) compared to the baseline
AutoCompressor (2.66) when evaluated on the out of domain Gutenberg dataset, demonstrating
improved generative model prediction. On the AG News classification task, Dynamic AC outperforms
the random segmentation baseline on most seeds, showing performance gain due to surprisal-aligned
compression. For example, on Seed 7 and Seed 209, dynamic AutoCompressor improves accuracy in
text classification by approximately +2% and +4.4%.

5 Limitations

We were unable to fine-tune larger models as AutoCompressors or fine-tune and evaluate on more
subdomains due to budget and time constraints, potentially limiting generalizability. We were also
unable to adjust the surprisal threshold 7 as a hyperparameter for the same reasons. Future work
should consider scaling to larger models and explore the effect of varying 7 for optimization, as well
as evaluation on a wider range of tasks. Furthermore, research is needed to consider the compression
ratio presented by dynamic segmentation.

6 Discussion

We fine-tune an OPT model as an AutoCompressor using surprisal-based segmentation when parti-
tioning input, determining segment boundaries by a surprisal threshold. We evaluate out of domain
cross-entropy loss and ICL accuracy as compared to the pretrained baseline model and the randomized
segmentation AutoCompressor, showing improved model performance. While gains are not uniform
across all possible seeds or downstream tasks, future experiments may provide deeper insights.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: A lot of the core settings and details are present in the original AutoCompres-
sors paper, and we include additional necessary information for the tests we run.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiment statistical significance is not shown with this paper. This was
mainly due to the cost and time required to run each individual experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the specific GPUs used as well as the amount of time it took to
fine-tune.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: No work in the paper overlaps with the ethical concerns present in the Code of
Ethics. The datasets used are not deprecated.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There are no substantial direct societal impacts of this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

11


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly use and credit the AutoCompressor framework as well as the
models used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper currently does not release any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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