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Abstract

Quantifying uncertainty is essential for achieving robust and reliable predictions.
However, existing spatiotemporal models predominantly predict deterministic
values, often overlooking the uncertainty in their forecasts. Particularly, high-
resolution spatiotemporal datasets are rich in zeros, posing further challenges in
quantifying the uncertainty of such sparse and asymmetrically distributed data.
This paper introduces a novel post-hoc Sparsity-aware Uncertainty Calibration
(SAUC) method, calibrating the uncertainty in both zero and non-zero values. We
modify the state-of-the-art deterministic spatiotemporal Graph Neural Networks
(GNNs) to probabilistic ones as the synthetic models in the pre-calibration phase.
Applied to two real-world spatiotemporal datasets of varied granularities, exten-
sive experiments demonstrate SAUC’s capacity to adeptly calibrate uncertainty,
effectively fitting the variance of zero values and exhibiting robust generalizability.
Specifically, our empirical experiments show a 20% of reduction in calibration
errors in zero entries on the sparse traffic accident and urban crime prediction. The
results validate our method’s theoretical and empirical values, demonstrating cali-
brated results that provide reliable safety guidance, thereby bridging a significant
gap in uncertainty quantification (UQ) for sparse spatiotemporal data.

1 Introduction

Spatiotemporal GNNs have been instrumental in leveraging spatiotemporal data for various appli-
cations, from weather forecasting to urban planning [25, 29, 16]. However, most of the models are
narrowly focused on deterministic predictions, which overlooks the inherent uncertainties associ-
ated with the spatiotemporal phenomena. For various safety-related tasks, such as traffic accident
prediction, it is crucial to quantify the prediction uncertainty to prevent such phenomena from hap-
pening. Despite its importance, uncertainty quantification (UQ) remains relatively understudied in
the spatiotemporal context, which can lead to erroneous predictions with severe social consequences
[2, 1, 17].

Several recent studies explored UQ for spatiotemporal models [22, 5]. However, the existing
techniques often overlook two critical elements: the sparsity and the asymmetrically distributed
nature of the high-resolution spatiotemporal data. The sparsity issue, characterized by a preponderance
of zeroes, becomes particularly salient in any spatiotemporal prediction when spatial or temporal
resolutions are high [30]. Prior spatiotemporal GNNs with basic UQ functionality typically assume
data as NB distributions or Gaussian distributions for regression tasks, and learning the distribution
parameters for spatiotemporal predictions [6, 30]. However, even though such models could learn
data distributions, they typically lack the evaluation of the UQ quality with effective calibration
metrics. As Kuleshov et al. [7] mentioned, most deep learning models are not fully calibrated for
high UQ quality, leaving a significant research gap to be filled.
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This paper introduces a sparsity-aware uncertainty calibration (SAUC) method, calibrating model
outputs to align with true data distributions, which can be adapted to any spatiotemporal GNN model.
Inspired by the zero-inflated model, we partition zero and non-zero predictions and apply separate
Quantile Regression (QR) models to ensure the discrepancy of prediction and true values lie within the
PIs. This post-hoc approach, unlike uncertainty-aware spatiotemporal prediction models [15], offers
flexibility in applying it to existing models without necessitating architectural or loss function changes
or full model retraining. Consistent with prior studies on regression task calibration, we formulate
a modified calibration metric tailored for PI-based calibration within asymmetric distributions. To
investigate our model’s generalizability, we adapt two prevalent spatiotemporal GNN models with
negative binomial distributions to suit sparse settings without compromising prediction accuracy.
After being tested on two real-world spatiotemporal datasets, our SAUC demonstrates promising
calibration results, thus assisting in reliable decision-making and risk assessment.

The main contributions of this paper include:

• We design a novel sparsity-aware uncertainty calibration (SAUC) method for predicting
sparse spatiotemporal data, which is adaptive to existing GNN models and applicable to any
probabilistic outputs.

• We address the calibration of asymmetric distributions, such as NB, via quantile regression,
diverging from traditional mean-variance UQ approaches, and we also design novel PI-based
calibration metrics.

• We conduct experiments on different real-world sparse datasets to demonstrate promising
calibration results of our SAUC, especially for zero values. We observe a roughly 20%
reduction in calibration errors relative to leading baseline models, underscoring its efficacy
for safety-critical decision-making.

2 Related Work

2.1 Spatiotemporal Prediction

Spatiotemporal prediction through deep learning offers a powerful tool for various applications.
Among them, GNNs have become prevalent in recent years [25, 29, 27, 26]. Most existing models
focus on predicting the deterministic values without considering the associated uncertainty, which
leaves a noticeable research gap concerning UQ. This gap limits the predictive reliability because of
overlooked uncertainty.

Both Bayesian and Frequentist methods address spatiotemporal UQ [22]. The Bayesian approach,
utilizing techniques like Laplace approximation [23] and MCMC [14], has computational and
approximation challenges. Conversely, the Frequentist method emphasizes Mean-Variance Estimation
for efficiency and flexibility, accommodating various models [22]. Still, sparse data applications face
issues with data dependencies and distribution constraints [24, 3]. Sparse data often deviates from
model assumptions, preferring NB distributions, and metrics like MSE can be skewed by non-zero
sparse data values.

The use of zero-inflated distributions with spatiotemporal neural networks has been introduced to
handle zero instances and non-normal distribution in sparse data [30]. However, this approach has
limitations in extreme scenarios and non-time-series contexts, impacting predictive accuracy and
system robustness [6]. Therefore, the urgent need to quantify and calibrate uncertainty in the sparse
component of spatiotemporal data is evident, yet remains largely unexplored.

2.2 Uncertainty Calibration

Although relatively understudied in the spatiotemporal context, UQ has been examined by many
machine learning studies. Among all the UQ approaches, calibration is a post-hoc method that aims
to match the predictive probabilities of a model with the true probability of outcomes, developing
robust mechanisms for uncertainty validation [13].

A wealth of techniques has been developed to calibrate pre-trained classifiers, mitigating the absence
of inherent calibration in many uncertainty estimators [9, 4, 18]. Calibration for regression tasks,
however, has received less attention [20, 7]. Post-hoc calibration methods for classifications, such
as temperature scaling, Platt scaling, and isotonic regression, have successfully been adapted for
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regression [8]. Chung et al. [2] further demonstrated quantile regression-based calibration methods
and their extensions. These post-hoc methods offer greater flexibility and wider applicability to
various probabilistic outputs compared to in-training methods, without retraining the models [15, 5].

In contexts like crime prediction with sparse spatiotemporal data [29], the need for uncertainty
calibration is undervalued. While traditional methods favor symmetric distributions like Gaussian,
sparse data often suits asymmetric NB distributions. Recognizing the zero-inflated nature of this data,
it’s crucial to differentiate confidence between zero and non-zero portions. Thus, we introduce the
SAUC method to handle asymmetric distributions and align true targets with estimated PIs [20].

3 Problem Formulation

3.1 Spatiotemporal GNNs for Prediction

Let G = (V, E ,A) where V represents the set of nodes (locations), E the edge set, and A ∈ R|V|×|V|

the adjacency matrix describing the relationship between nodes. We denote the spatiotemporal
dataset X ∈ R|V|×t where t is the number of time steps. The objective is to predict the target value
Y1:|V|,t:t+k of future k time steps given all the past data up to time t, which is X1:|V|,1:t. The full
dataset is partitioned by timesteps into training, calibration (i.e., validation), and testing sets. The
three data partitions are denoted as XT , XS , and XU , respectively. For example, X1:|V|,1:t is denoted
as XT . The associated target values are represented as YT , YS , and YU , with subscripts indicating
the corresponding sets.

The objective of the spatiotemporal GNN models is to design model fθ, parametrized by θ, which
yields:

Ŷd = fθ(Xd;G),∀ d ∈ {T, S, U}, (1)

where Ŷd is the predicted target value, and the subscript represents the corresponding data set. Note
that θ is fixed once fθ is trained on set T .

With emerging interests in quantifying the data and model uncertainty of spatiotemporal GNNs,
researchers shift towards designing probabilistic GNNs to predict not only mean values but also PIs
[30, 6, 22]. Previous probabilistic spatiotemporal GNN studies often assume X and Y encompassing
independent and identically distributed Gaussian random variables Xi and Yi, which are assumed as
NB distributions to accommodate the sparse and discrete data in this study. The NB distribution of
each predicted data point is characterized by shape parameter µ and dispersion parameter α. The
set of predicted µ and α corresponding to all elements of Y are denoted as M̂ and Ĥ . Therefore,
Equation 1 can be rewritten as:

(M̂d, Ĥd) = fθ(Xd;G),∀d ∈ {T, S, U}. (2)

3.2 Prediction Interval Calibration

Uncertainty calibration aims to refine the outputs of prediction models (e.g., GNNs) such that the
predicted distributions align with the true distributions. Traditional calibration models generally
assume Gaussian distributions, which can be succinctly summarized into the mean and variance
parameters. However, when dealing with sparse data, adopting alternative distributions such as the
NB distribution is more suitable due to their asymmetric nature. Thus, our calibration methodology
focuses on the prediction interval, naturally extending the previous variance-oriented studies.

The spatiotemporal prediction models generate outputs M̂d, Ĥd,∀d ∈ {T, S, U}, in which µ̂i ∈ M̂d

is the mean value of the predicted distribution. We then construct the prediction intervals of the
NB distributions as Îi = [l̂i, ûi] with l̂i and ûi denoting the 5th- and 95th-percentiles, respectively.
Notably, our discussion limits the prediction intervals to the 5% and 95% range. Based on Kuleshov
et al. [7], our target is to ensure a prediction model fθ to be calibrated, i.e.,∑|U |

i=1 I{yi ≤ F̂−1
i (p)}

|U |
|U |→∞−−−−−→ p, ∀p ∈ {.05, .95}, (3)

where p stands for the targeting probability values, I denotes the indicator function, and F̂i(·) is the
cumulative density function (CDF) of the NB distributions parameterized by µ̂i and α̂i. The primary
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goal is to ensure that, as the dataset size increases, the predicted CDF converges to the true one.
Such an alignment is congruent with quantile definitions, suggesting, for instance, that 95% of the
genuine data should fall beneath the 95% percentile. Rather than striving for a perfect match across
∀p ∈ [0, 1], we mainly focus on calibrating the lower bound and upper bound.

Empirically, we leverage the calibration set S to calibrate the uncertainty in data. The empirical CDF
for a given value p ∈ F̂i(yi) is computed [7, 10]:

P̂(p) = |{yi|F̂i(yi) ≤ p, i = 1, . . . , |S|}|
|S|

. (4)

The calibration process entails mapping a calibration function C, such as isotonic regression or Platt
scaling, to the point set {(p, P̂(p))}|S|

i=1. Consequently, the composition C ◦ F̂ ensures that P̂(p) = p
within the calibration dataset and thus can be applied to the test set to enhance prediction reliability.

4 Sparsity-Aware Uncertainty Calibration

4.1 QR for Uncertainty Calibration.

Unlike traditional regression techniques that target the conditional mean, QR predicts specific
quantiles, which are essential for calibrating PIs. Given M̂S and YS from the calibration set S, the
linear QR model can be expressed as:

QYS |M̂S
(p) = M̂T

S β(p), (5)

where β(p) signifies the coefficient associated with quantile p. The goal here is to minimize the
Pinball loss [2]. The calibrated PIs correspond to [Q(.05), Q(.95)].

QR is adept at handling sparse datasets, addressing heteroscedasticity and capturing non-linear
relationships. Sparsity introduces heteroscedasticity, where error variance differs across observations.
Without assuming constant variance, QR manages datasets with variance fluctuations, often arising
from zeros. Moreover, when combined with basis expansion techniques, QR extends its capability to
capture intricate patterns across quantiles, making it suited for the zero-inflated parts of the outcomes.

4.2 SAUC Method.

Our SAUC method is a two-step post-hoc calibration tailored for sparse data. Drawing inspiration
from zero-inflated models, predictions in the calibration set S are bifurcated based on indices:
IZ = {M̂S < 0.5} for values nearing zero, and INZ = {M̂S ≥ 0.5} for non-zero predictions.
Following this partitioning, two QR models, QZ and QNZ , are trained separately, calibrating
quantiles p = {.05, .95} to fine-tune the mean and PI predictions. The calibrated model is then
applied to predict model outputs on the testing set. A detailed procedure is provided in Algorithm 1.

Song et al. [19] noted quantile regressions might misrepresent true moments due to global averaging.
Our SAUC method overcomes this by segmenting data into zero and non-zero values. The prevalent
zero segment demands precise calibration given its real-world implications. For non-zero data, the
goal is to align quantiles with actual event frequencies, focusing on relative risks. Though we detail
SAUC using Equation 2 for GNNs, it’s applicable to any spatiotemporal prediction. The code is
available on an anonymous Github repository1.

4.3 Calibration Metrics for Asymmetric Distributions

While calibration errors are clearly established for classification tasks using Expected Calibration
Error [13, 4, 9], the definition is much less studied in the regression context, where prediction errors
and intervals supersede accuracy and confidence. Based on Equation 3 and 4, we aim to calibrate the
length of the prediction interval with the variance, i.e.,[

E[(µ̂i − Yi)
2|Îi = Ii]

]1/2
= c|Ii|, ∀i ∈ {1, . . . , |U |}. (6)

1https://github.com/AnonymousSAUC/SAUC
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Algorithm 1 SAUC Method

Require: M̂S , YS , N , M̂U , p← {.05, .95}
1: Define the bin thresholds TS using percentiles of YS .
2: Initialize U∗, L∗ in the same size as M̂U .
3: for each bin i in [1, N ] do
4: Extract indices I of instances in bin i based on TS .
5: Split I to INZ for M̂S ≥ 0.5 and IZ for M̂S < 0.5.
6: for each set i in {INZ , IZ} do
7: for each value q in p do
8: Fit Q(q) on M̂S [i] and YS [i] based on Equation 5 and obtain β(q).
9: end for

10: L∗[i]← M̂T
U β(.05), U∗[i]← M̂T

U β(.95)
11: end for
12: end for
13: I∗ ← [L∗, U∗].
14: return I∗.

Note that Ii = [F−1
i (.05), F−1

i (.95)] is the realization of the predicted 5%-95% confidence interval
and |Ii| denotes its width. Calibrating the model’s standard errors with the 90% confidence interval
width reveals a linear relationship with coefficient c, which varies per data point. Using the z-score
of Gaussian distribution to approximately compute the coefficient c, the width of 90% confidence
interval is roughly 2× 1.645 = 3.29 of distribution variance, inversely proportional to c. Empirically,
the ratio of predicted Î to distribution variance is between 3.0 and 3.4 in our experiments, aligning
with theory, yielding c ≈ 0.303. Therefore, we could diagnose the calibration performance by
comparing value differences on both sides of the equation. Specifically, we partition the indices of
test set samples into N evenly sized bins based on sorted predicted PI width, denoted as {Bj}Nj=1.
Each bin corresponds to a PI width axis interval: [mini∈Bj

{|Ii|},maxi∈Bj
{|Ii|}]. Note that the

intervals are non-overlapping and their boundary values are increasing. Based on the discussion of
Levi et al. [10] and Equation 6, for j-th bin, we define the Expected Normalized Calibration Error
(ENCE) based on Root Mean Squared Error (RMSE) and Mean Prediction Interval Width (MPIW):

ENCE =
1

N

N∑
j=1

|c ·MPIW (j)−RMSE(j)|
c ·MPIW (j)

, (7)

where RMSE(j) =
√

1
|Bj |

∑
i∈Bj

(µ̂i − yi)2, and MPIW (j) = 1
|Bj |

∑
i∈Bj

|Îi|. This normalizes
calibration errors across bins, sorted and divided by c ·MPIW , and is particularly beneficial when
comparing different temporal resolutions and output magnitudes across datasets. The c ·MPIW and
observed RMSE per bin should approximate equality in a calibrated forecaster.

5 Experiments

5.1 Data Description

Two spatiotemporal datasets are used: (1) Chicago Traffic Crash Data (CTC) sourced from 277 police
beats between January 1, 2016 and January 1, 2023; (2) Chicago Crime Records (CCR) derived from
77 census tracts spanning January 1, 2003 to January 1, 2023. Despite both CTC and CCR data
originating from the Chicago area, their disparate reporting sources lead to different spatial units:
census tracts for CCR and police beats for CTC. Both datasets use the first 60% timesteps for training,
20% for calibration and validation, and 20% for testing.

The temporal resolutions of the datasets are varied to demonstrate the ubiquitous sparsity issue and
its practical significance in spatiotemporal analysis. We design the cases with 1-hour, 8-houir, 1-day,
and 1-week for each dataset, and designate the 1-hour and 8-hour cases of Crash and Crime datasets
as sparse instances, due to a higher prevalence of zeros.
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For adjacency matrices, we calculate geographical distances dij between centroids of regions i and
j, be they census tracts or police beats. This distance is then transformed into a similarity measure,
Aij = e−dij/0.1, where 0.1 is a scaling parameter, thus forming an adjacency matrix.

5.2 Modified Spatiotemporal Models

In order to demonstrate our model’s ability to generalize on spatiotemporal prediction models, we
modify two existing popular spatiotemporal forecasting models: Spatio-temporal Graph Convolution
Network (STGCN) [27] and Graph WaveNet (GWN) [26]. They are designed for numerical value
outputs. We modify their last layer from single numerical output to the location parameter µ and
the dispersion parameter α of negative binomial distributions. We renamed the modified model as
STGCN-NB and GWN-NB respectively. Besides, we modify the loss function from mean square
error loss to the loss defined in Equation 8:

L(µ, α, y) = −
[
y · log

(
µ+ ϵ

µ+ α+ 2ϵ

)]
− Γ(y + α+ ϵ) + Γ(y + 1)

+ Γ(α+ ϵ)− α · log
(

α+ ϵ

µ+ α+ 2ϵ

)
+ λ · ||α||2

, (8)

where y is the target variable, µ and α are model outputs, Γ is the gamma function, λ is the
regularization parameter, and ϵ is a small constant added to improve numerical stability. This loss
function is derived from the likelihood of NB distribution controlled by µ and α.

The loss function aligns the predicted Negative Binomial distribution with true targets, penalizing
deviations in mean (µ) and incorporating variability via the dispersion parameter (α). A regularization
term curbs overfitting by limiting large α values. Modified models maintain accuracy and often
perform better with sparse datasets due to the NB distribution’s fit for discrete data. Detailed
comparisons can be found in the supplemental materials.

5.3 Baseline Calibration Methods

The SAUC will be compared to the baseline post-hoc calibration methods proven to be effective in
the regression tasks using cross-sectional data. The baseline methods include:

• Isotonic regression [12], a non-parametric technique, which ensures non-decreasing predic-
tive probabilities, assuming higher model accuracy with increased predicted probabilities;

• Temperature scaling [8], which scales the model’s output using a learned parameter, whose
efficacy for regression models depends on the output’s monotonicity in relation to confidence;

• Histogram binning [28], a method partitioning predicted values into bins, calibrating each
independently according to observed frequencies;

• Platt Scaling [7], which applies a scaling transformation to the predicted values with the
function derived from minimizing observed and predicted value discrepancies, providing
linear adaptability but potentially inadequate for complex uncertainty patterns;

• Quantile regression [2], aforementioned.

5.4 Calibration Results Comparison

The calibration performance of the initial models and our proposed calibration methods is presented
in Table 1, assessed via ENCE on two adapted spatiotemporal prediction models. The “zero-only
targets” refers to computing the ENCE exclusively on the true target values that are zeroes.

Table 1 denotes superior performance within each dataset with bold type and underlines the second-
best results. Our findings reveal that the SAUC method typically outperforms other models, though it
might fall short in aggregated cases, such as those with a 1-week resolution. Interestingly, the SAUC
method achieved approximately a 23% reduction in ENCE compared to the second-best model when
using full observations and also about a 20% reduction in sparsity entries. The separation of zero and
non-zero data during calibration proved particularly beneficial, effectively addressing the issues of
heteroscedasticity and zero inflation, commonly found in real-world datasets. However, we observed
that calibration methods sometimes do not improve, or even worsen the calibration errors. It is mainly
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STGCN-NB Outputs
Full observations Zero-only targets

Method / Before Histogram Isotonic Temp. Platt QR SAUC Before Histogram Isotonic Temp. Platt QR SAUC
Interval calibration binning regression scaling scaling calibration binning regression scaling scaling

CCR_1h 1.160 0.410 0.517 0.887 0.443 0.235 0.198 1.167 0.361 0.386 0.473 0.477 0.273 0.267
CCR_8h 1.389 0.344 0.417 0.385 0.373 0.392 0.336 1.065 0.568 0.578 0.427 0.162 0.175 0.127
CCR_1d 0.413 0.593 0.546 0.364 0.294 0.297 0.192 1.266 1.047 0.979 1.167 0.840 0.843 0.738
CCR_1w 0.855 0.784 0.773 0.765 0.579 0.272 0.242 0.354 0.362 0.332 0.287 0.345 0.155 0.113

CTC_1h 0.578 0.227 0.200 1.390 0.452 0.388 0.165 3.211 0.415 0.363 2.042 0.646 0.416 0.078
CTC_8h 0.323 0.320 0.255 0.570 0.297 0.241 0.233 0.330 0.247 0.276 0.551 0.230 0.196 0.184
CTC_1d 0.722 0.050 0.011 0.862 0.060 0.048 0.047 0.434 0.128 0.027 5.451 0.152 0.379 0.150
CTC_1w 2.279 1.227 1.527 0.914 2.265 0.378 0.365 1.823 2.384 2.009 1.160 1.343 0.767 0.755

GWN-NB Outputs
Full observations Zero-only targets

Method / Before Histogram Isotonic Temp. Platt QR SAUC Before Histogram Isotonic Temp. Platt QR SAUC
Interval calibration binning regression scaling scaling calibration binning regression scaling scaling

CCR_1h 1.200 1.022 0.889 1.149 0.834 0.604 0.493 2.042 1.796 1.274 1.710 1.356 0.476 0.375
CCR_8h 0.670 0.636 0.612 0.696 0.655 0.597 0.566 1.398 0.389 0.492 1.179 0.478 0.308 0.186
CCR_1d 0.997 0.662 0.633 0.581 0.562 0.587 0.504 1.158 0.583 0.580 0.725 0.747 0.644 0.563
CCR_1w 0.858 0.938 0.935 0.611 0.931 0.857 0.829 0.335 0.218 0.219 0.161 0.219 0.250 0.172

CTC_1h 0.868 0.816 0.891 0.859 0.634 0.832 0.290 1.300 0.712 0.561 1.001 0.143 0.998 0.139
CTC_8h 0.931 0.416 0.388 1.381 0.169 0.226 0.148 2.213 0.720 0.659 1.995 0.421 0.776 0.221
CTC_1d 0.523 0.420 0.448 0.571 0.523 0.432 0.139 0.250 0.464 0.405 0.248 0.484 0.439 0.210
CTC_1w 0.408 0.115 0.114 0.259 0.236 0.241 0.239 0.466 0.479 0.436 0.457 0.451 0.476 0.450

Table 1: ENCE of the calibration models. Bold fonts mark the best and underlines denote the
second-best calibration results.

due to overfitting on the calibration set, a problem particularly evident in temperature scaling and
isotonic regression methods.

On a general note, histogram binning and isotonic regression showed similar calibration results
among baseline models as Equation 4 is non-decreasing, which makes the two methods easier to fit.
Temperature scaling provides better calibration results in coarse temporal resolution scenarios and
Platt scaling excels in sparse cases. QR consistently ranks as the second-best model in many cases,
and our SAUC method has a close performance as QR in aggregated non-sparse cases but excels
notably in sparse cases.

5.5 Reliability Diagram Evaluation

Utilizing Equations 6 and 7, we refine the conventional reliability diagram to evaluate the calibration
efficacy of a model [8]. This involves partitioning predictions into bins based on I, after which we
compute the RMSE and MPIW employing the calibrated µ∗ and |I∗| for each respective bin.

Figure 1 presents a comparative reliability diagram of STGCN-NB outputs prior to calibration,
alongside Isotonic regression, Platt scaling, and our SAUC technique, each applied to different
segments of the CCR_8h dataset. We selectively feature representative non-parametric and parametric
baseline calibration approaches based on their performance. The diagonal dashed line symbolizes the
calibration ideal: a closer alignment to this line indicates superior calibration.
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Figure 1: Reliability diagrams of different calibration methods applied to STGCN-NB outputs on
different components of CCR_8h and CCR_1h data. (a) & (b) show the calibration performance on
CCR_8h dataset and (c) & (d) reflect the results on CCR_1h dataset. Results closer to the diagonal
dashed line are considered better.
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Examining Figure 1(a), both baseline models and SAUC calibrate well across all observations.
However, focusing on the reliability diagram for ground-truth zeros in Figure 1(b), there’s a deviation
from the ideal line. In contrast, SAUC aligns well with the ideal for actual zero data, consistent
with the CCR_1h dataset in Figures 1(c) and 1(d). Comparing Figures 1(a) and 1(c), calibration is
less optimal in finer resolutions. Still, SAUC performs well, especially for zero predictions, due
to our unique calibration and QR’s ability to handle heteroscedasticity. While current probabilistic
spatiotemporal models mainly focus on refining MPIWs for accuracy, they often overlook safety
[22, 30, 6]. Our method ensures both accuracy and reliability.

5.6 Spatial Evaluation

To evaluate the use of SAUC outputs, we introduce Risk Score (RS), an enhancement of the traditional
metric defined as the product of event probability and potential loss magnitude [11, 21]:

RS = µ̂× |Î|. (9)

This metric integrates anticipated risk (µ̂) and prediction uncertainty (|Î|), attributing higher RS to
regions with both high incident frequency and uncertainty. This RS metric assigns higher risk to
predictions that are characterized by both large predicted mean values and high uncertainty.

0.0

0.5

1.0

1.5

2.0

N
um

be
r 

of
 c

ra
sh

es

(a) Avg. number of
crashes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
is

k 
S

co
re

(b) RS distribution using
prediction before calibra-
tion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
is

k 
S

co
re

(c) RS distribution using
calibrated prediction via
Platt scaling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
is

k 
S

co
re

(d) RS distribution using
using calibrated predic-
tion via SAUC

Figure 2: Traffic crash accident distributions and calibration using CTC_8h data. All the data are
averaged over the temporal dimension.

Using the CTC_8h dataset, we showcase SAUC’s significance in assessing traffic accident risks.
Figure 2 contrasts average crash numbers and RS values over time by region, both pre and post-
calibration. Before calibration, Figure 2(b) shows RS in areas like northern and southern Chicago
lacked clarity due to frequent incidents in Figure 2(a), influenced by tight PIs reducing RS. Platt
scaling in Figure 2(c) identifies some risky zones but overlooks key crash areas in southern Chicago.
However, SAUC predictions in Figure 2(d) reveal spatial patterns aligning closely with Figure 2(a),
proving its value in urban safety monitoring.

Models should integrate uncertainty to convey consistent severity levels, enhancing reliability in crime
and accident forecasts. The variance between zero and one incident is crucial for risk management.
Current probabilistic studies often emphasize exact values and tight confidence bounds, occasionally
overlooking variability around zero incidents.

6 Conclusion

Current spatiotemporal GNN models mainly yield deterministic predictions, overlooking data un-
certainties. Given the sparsity and asymmetry in high-resolution spatiotemporal data, quantifying
uncertainty is challenging. We introduce the SAUC method, which calibrates uncertainties for
both zero and non-zero values, converting GNN deterministic models to probabilistic ones. SAUC
addresses the zero-inflated nature of these datasets and introduces new calibration metrics for sparse,
asymmetric distributions. Tests on real-world datasets show SAUC reduces calibration errors by 20%
for zero-only targets. SAUC enhances GNN models and aids risk assessment in sparse datasets where
accurate predictions are critical due to safety concerns.
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