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MixRF: Universal Mixed Radiance Fields With
Points and Rays Aggregation

Haiyang Bai"”, Tao Lu
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Abstract—Recent advancements in neural rendering methods,
such as Neural Radiance Fields (NeRF) and 3D Gaussian Splat-
ting (3D-GS), have significantly revolutionized photo-realistic novel
view synthesis of scenes with multiple photos or videos as in-
put. However, existing approaches within the NeRF and 3D-GS
frameworks often assume the independence of point sampling
and ray casting, which are intrinsic to volume rendering and
alpha-blending techniques. These underlying assumptions limit
the ability to aggregate context within subspaces, such as den-
sities and colors in the radiance fields and pixels on the image
plane, leading to synthesized images that lack fine details and
smoothness. To overcome this, we propose a universal frame-
work, MixRF, comprising a Radiance Field Mixer (RF-mixer)
and a Color Domain Mixer (CD-mixer), to sufficiently aggregate
and fully explore information in neighboring sampled points and
casting rays, separately. The RF-mixer treats sampled points as
an explicit point cloud, enabling the aggregation of density and
color attributes from neighboring points to better capture local
geometry and appearance. Meanwhile, the CD-mixer rearranges
rendered pixels on the sub-image plane, improving smoothness
and recovering fine details and textures. Both mixers employ a
kernel-based mixing strategy to facilitate effective and controllable
attribute aggregation, ensuring a more comprehensive exploration
of radiance values and pixel information. Extensive experiments
demonstrate that our MixRF framework is compatible with ra-
diance field-based methods, including NeRF and 3D-GS designs.
The proposed framework dramatically enhances performance in
both qualitative and quantitative evaluations, with less than a 25%
increase in computational overhead during inference.

Index Terms—Novel view synthesis, neural radiance fields, 3D
Gaussian splatting, radiance field mixer, color domain mixer.

1. INTRODUCTION

Synthesizing photo-realistic images under novel viewpoints is
a fundamental and pivotal task in computer vision and graphics,
with applications ranging from virtual reality (VR) and gaming
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to augmented reality (AR) and autonomous driving [1], [2].
Classical methods typically generate a novel view by querying
explicit 3D representations like meshes or point clouds [3], [4],
[5], [6] to achieve high quality. However, acquiring such 3D
auxiliaries is often challenging, and the visual quality can suffers
significantly due to defects in 3D data. Neural Radiance Fields
(NeRF) [7] and 3D Gaussian Splatting (3D-GS) [8] provide
alternatives that directly optimize the spatial distribution of
radiance fields using only 2D images through gradient descent,
eliminating the requirement on precise 3D geometry. This en-
ables the creation of high-quality renderings of scenes with only
multiple photos or videos as input.

NeRF represents a scene as a continuous function mapping
spatial points to their associated color and density attributes.
These attributes are then accumulated from independent points
along each view ray through a volumetric ray-marching process
to generate pixels. Despite the remarkable success of NeRF
and its variants [6], [7], [9], [10], [11], [12], [13], [14], their
approach of mapping on a per-sample basis and rendering on a
per-pixel basis restricts the effective representation of spatial
relationship within both the 3D scene space and the image
plane. Therefore, effectively incorporating local structural com-
prehension becomes challenging, hindering the full exploitation
of the correlation of spatial points and imaged pixels. MipN-
eRF/MipNeRF360 [11], [12] have made significant progress
by extending a single ray to a conical frustum, introducing
heuristic spatial awareness. Their effectiveness in anti-aliasing
verifies the necessity of spatial modeling. However, the in-
formation contained in a cone is not adequate for capturing
inter-ray relationships, resulting in a lack of smooth rendering.
Other works [9], [10], [13], [14] introduce locality in features
by encoding scenes into voxel spaces and interpolating vertex
features from neighboring voxels. Point-NeRF [6] further adopts
a more flexible point cloud as the geometry prior containing
high-frequency information, and applies a KNN-based local
aggregator to extract local features, improving spatial smooth-
ness and preserving details. While these approaches consider
aggregation of neighborhood features to some extent, they do not
fully exploit the intrinsic relationships among rays, which leaves
a great space for further improving the visual quality. Works such
as[15],[16], [17], [18] utilize convolution operations to share lo-
cal information among neighboring points or rays, aiming to en-
hance image smoothness and improve detail recovery. However,
querying the spatial relationships among adjacent samples often
requires additional geometrical auxiliary, such as the mesh from
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Overview of MixRF pipeline. Our method incorporates two modules that seamlessly integrate into traditional neural rendering pipelines: the RF-mixer and

CD-mixer. The RF-mixer performs a two-stage aggregation of radiance values (i.e., density and color) within a subspace. This involves aggregating sampled points
at the same depth across neighboring rays (inter-ray) and adjacent points along the same ray (intra-ray), effectively fusing geometric and appearance information
from surrounding points. The CD-mixer first refines rendered pixel patches with Pliicker coordinates as a view consistency constraint, then mixes pixels within
sub-image planes, guided by an error map derived from the comparison between the rendered and refined patches, thereby facilitating targeted texture recovery.

Shape-from-Silhouette (SFS) [16]. Furthermore, their reliance
on redundant convolutional networks for decoding concatenated
features leads to computational inefficiencies when processing
high-dimensional tensors.

Recently, 3D-GS [8] has made significant advancements in
rendering speed. It directly utilizes a sparse point cloud derived
from structure-from-motion (SfM) [19] to construct Gaussian
primitives associated with learnable attributes including posi-
tion, opacity, color, and covariance. To generate a pixel, 3D-GS
employs alpha-blending [20] to blend colors of N ordered
Gaussians that overlap that pixel. While the covariance within
each Gaussian primitive enhances correlations on local spatial
attributes like opacity and color, the assumption of independence
among pixels in tile-based rasterization limits the modeling of
pixels in the local color domain, leading to visible non-smooth
artifacts. To date, there has been no work dedicated to addressing
this particular issue.

To simultaneously aggregate and explore information in sam-
pled points and casting rays, we propose MixRF, a universal
framework comprising two key components: the Radiance Field
Mixer (RF-mixer) and Color Domain Mixer (CD-mixer), as
illustrated in Fig. 1. The RF-mixer module interprets sampled
points within the radiance field as an explicit point cloud asso-
ciated with neural attributes including density and color. This
module enables effective aggregation of both geometric and
appearance information from neighboring points, facilitating the
prediction of densities and colors with a localized understanding
of the scene. However, most neural rendering frameworks fail
to fully exploit the complementary relationships among neigh-
boring rendered pixels due to the inherent independence of rays
and pixels in volume rendering and alpha blending. As a result,
pixel correlations on the sub-image plane are underutilized,
leading to degraded quality in novel view synthesis. To address
this limitation, the CD-mixer module processes rendered pixels
by performing regional reconfiguration on the sub-image plane.
This helps enhance the smoothness of novel views while simul-
taneously recovering finer details and textures.

To improve the efficiency of local context aggregating, we
introduce a general and controllable kernel-based mixing strat-
egy, integrated into both the RF-mixer and CD-mixer. Unlike
conventional aggregation methods that first encode concatenated

feature volumes into feature maps and then decode them into
the target attributes—resulting in high computational cost—our
strategy reformulates the process as a weighted summation of
local attribute blocks, with dynamically predicted weights. This
approach significantly reduces computational complexity while
maintaining high performance in attribute aggregation.

We evaluate the effectiveness of our approach by conducting
experiments on various radiance field-based methods against
different benchmarks. Comprehensive experiments demonstrate
that our MixRF is compatible with multiple mainstream NeRF-
and 3D-GS-based methods, and can significantly improve the
quality of novel view synthesis with reasonable computational
overhead.

To summarize, our contributions are as follows.

® We introduce a universal mixed framework which is ap-

plicable to various radiance field-based methods such as
NeRF and 3D-GS, significantly improving rendering qual-
ity.

® We design RF-mixer and CD-mixer to facilitate local con-

textual interaction in both the 3D space and image plane,
yielding synthesized images that preserve high-frequency
details and local smoothness.

® QOur kernel-based mixing strategy allows for more effective

and controllable attribute integration within the subspace,
resulting in higher rendering quality with less than a 25%
increase in computational overhead during inference.

II. RELATED WORK

A. Novel View Synthesis

Novel view synthesis (NVS) refers to the generation of real-
istic views from various viewpoints based on a set of captured
images. Traditional methods like Lumigraph [21], [22] and
neural light field [23], [24], [25] directly synthesize views by
interpolating input images, but require dense scene captures.
Other approaches, such as [26], [27] exploring polar geometry
correlations among source views to build a light field from
sparse views, face challenges in optimization efficiency. Recent
progress in Multi-Plane Images (MPIs) [28], [29], [30], [31],
[32] has shown promising results by merging multiple image
layers. Another branch involves generating views by accessing
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explicit 3D representations of the scene, such as meshes [33],
[34], [35], [36], [37], [38], point clouds [5], [6], [39], [40], [41],
or voxel grids [9], [10], [13], [14], [35]. However, acquiring
these 3D representations is challenging. Recently, scene rep-
resentation networks (SRNs) [28] and Neural Radiance Fields
(NeRF) [7] have demonstrated impressive rendering perfor-
mance by mapping 3D world coordinates to shading values and
using a ray-marcher for the final RGB output. Additionally, 3D
Gaussian Splatting (3D-GS) [8] produces photorealistic images
by rasterizing from learnable Gaussians, achieving high-quality
and real-time rendering.

B. Neural Radiance Fields

NeRF [7] has made significant strides in the task of novel view
synthesis, sparking a wave of subsequent research endeavors.
Departing from conventional explicit and discretized volumet-
ric representations, NeRF utilizes a continuous 5D function to
depict static scenes, optimized through a deep fully-connected
neural network. Subsequent studies have focused on addressing
NeRF’s constraints, particularly by enhancing training and ren-
dering speeds [10], [13], [14], [42], [43], [44], reducing aliasing
artifacts to enhance rendering quality [10], [11], [12], modeling
from sparse views [45], and expanding scene coverage [46], [47].
Furthermore, various works have extended NeRF’s continuous
neural volumetric representation for generative modeling [48],
[49], [50], [51], dynamic scenes [52], [53], non-rigidly deform-
ing objects [54], [55], [56], object detection [57], and editable
scenes or geometry [56], [58], [59]. Additionally, impressive
synthesis outcomes have been attained for unconstrained cap-
tures, such as varying illumination and dynamic occlusion [46],
[60]. Remarkably, NeRF-based SLAM systems [1], [61] have
been formulated for multiple large-scale bounded indoor or
outdoor scenes. From our observations, all NeRF-related ap-
plications rely on their high-quality renderings. In this work, we
mainly focus on further enhancing the performance of NeRF-
based methods by a large margin.

C. 3D Gaussian Splatting

3D-GS [8] deviates from the conventional implicit scene rep-
resentation approach used by MLPs. Instead, it adopts an explicit
representation by utilizing Gaussian functions to model a static
scene. This deliberate shift eliminates the necessity for point
sampling during ray marching [7], [11] in rendering integration.
It replaces this process with finite Gaussian splatting onto the im-
age space, enabling real-time rendering capabilities. This change
has garnered significant attention across various fields, including
Simultaneous Localization and Mapping (SLAM) systems [2].
Moreover, 3D-GS has shown promise in scene editing [62] and
segmentation [63]. Noteworthy advancements have been made
in integrating 3D-GS with established diffusion models [64],
[65] in the domain of Augmented Intelligence and Graphics
Computing (AIGC) [66], [67]. In these applications, the diffu-
sion model offers geometric priors, addressing inconsistencies in
multi-view geometry. Another notable strategy involves tracking
dynamic Gaussians to support continuous dynamic view synthe-
sis [68], [69].
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III. METHOD

Our method is a versatile framework that can significantly
enhance the quality of synthesized images under new view-
points. It can be seamlessly integrated with mainstream radiance
field-based methods such as NeRF and 3D-GS, along with their
variations. This generalization ability is achieved by exclusive
operation for the intermediate or output variables, without modi-
fying the original models. We begin with a brief review of NeRF
and 3D-GS, followed by a detailed explanation of our proposed
method.

A. Preliminaries

1) Neural Radiance Fields: NeRF represents the scene using
sampled points with coordinates of 3D position x : (z,y, z) €
R3 and 2D direction d : (0, p) € R? which are then mapped
into volumetric density ¢ € R* and emitted RGB color ¢ € R?
by MLP F'y as

(Ci, Ui) =Fy (fﬂi, di)- (D

The final pixel color C is determined through volumetric
rendering along a ray with intervals J; as

N

where

i—1

=(1—-exp(—0o T, = (1 - ay).
Jj=1
2) 3D Gaussian Splatting: The scene representation in 3D-

GS is achieved by optimizing a collection of 3D Gaussian func-
tions. Each Gaussian function characterizes the local radiance
field by forming an anisotropic distribution centered at pt; with
covariance 3J;, opacity «;, and view-dependent color ¢;. These
properties are optimized using back-propagation. The ensemble
of 3D Gaussians is denoted as

Gi = {(pi; i, i, )] (i =0,1,2...)}. 3)

3D Gaussians G; located within the view frustum are initially
projected into 2D Gaussians G;” with 2D covariance X’ on the
image plane. The final color is then computed in parallel by
blending NV ordered 2D Gaussians that overlap each pixel:

1—1
C Zczaz H 1 - aj/) ) “)
j=1

where
1
o =ayveap (5 @ - ) B @) )

Here, =’ and p) represent the coordinates in the projected space.

Analysis: Eqn. (1) demonstrates that the mapping process
in NeRF occurs at the level of individual points, limiting the
incorporation of spatial context. Similarly, (2) and (4) represent
volume rendering and tile-based alpha-blending, perform on
either a per-pixel or per-ray manner, which restricts the opti-
mization of rendered pixels within the image plane’s subspace.
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Overview of RF-mixer. We perform a two-stage integration process that involves mixing sample attributes (¢.e., density and color) within neighboring

rays (inter-ray) at the same sampling depth and among adjacent samples along the ray (intra-ray). Initially, we extract NeRF variables, including densities, colors,
and their associated features {o, ¢, f, f.}. Subsequently, we feed {o, f,} and {c, f.} into the weight predictor G and block extractor &, separately deriving
corresponding sets of mixing weights and local blocks {W ., B} and {W ., B.}. This is followed by a weighted summation of elements within each set,
yielding the inter-ray mixed density and color {o’, ¢'}. Analogously, the intra-ray mixed density and color {o”, ¢’} are obtained from variables {¢’, ¢/, f, f.}
in the second stage. Our RF-mixer is trained end-to-end, supervised by the sum of the Lo distances between the ground truth and pixels by volume rendered (VR).

These limitations, as illustrated in Figs. 8(a) and 9(a), lead to
incomplete geometric reconstruction and low-quality render-
ing. To address this, we introduce the Radiance Field Mixer
(RF-mixer) and the Color Domain Mixer (CD-mixer), which
utilize an efficient kernel-based mixing strategy to incorporate
spatial priors, enabling the prediction of radiance values and
the construction of high-quality, structurally coherent radiance
fields.

B. Overview

Our method aims to improve the quality of novel view synthe-
sis in neural rendering by introducing two key components: the
Radiance Fields Mixer (RF-mixer) and the Color Domain Mixer
(CD-mixer), as illustrated in Fig. 1. Using the NeRF framework
as an example, we adopt a patch sampling technique [70], [71]
that naturally facilitates convenient querying of both neighbor-
ing points along the same ray (intra-ray) and those on adjacent
rays (inter-ray). Following such sampling, the RF-mixer treats
the sampled points, mapped through (1), as explicit point clouds
with neural attributes (z.e. color and density). It employs a
two-stage mixing strategy to aggregate radiance values from
points in subspace before volume rendering, resulting in a more
precise radiance field reconstruction and enhanced rendering
quality. The CD-mixer first processes pixel patches generated
by volume rendering or alpha-blending, smoothing pixel values
via a refinement module with Pliicker coordinates as a view
consistency constraint. The subsequent mixing operation further
rearranges the refined pixel patches by blending pixel values
within sub-image planes, recovering finer details, particularly
along scene edges, to enhance texture fidelity. The details are
elaborated as follows.

/ 1 ‘Ar[ Z;, -depth ! ‘ N ! ‘ ‘ I ‘ ‘ Z;, ;-depth
LAl | Z-depth
'[‘ Z-depth |j> 7\ 14 cpcgj ‘ l 7 Z-depth
l /| Z.,-depth 7 I Z;.;-depth
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LT e : " image VAV AY AW/
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(a) Mixing in 3D (b) Inter-ray Mixing (c) Intra-ray Mixing

Fig. 3. Two-stage mixing strategy. We approximate the aggregation of spa-
tial features in 3D by decomposing it into 2D (inter-ray) and 1D (intra-ray)
operations, effectively reducing computational complexity. Inter-ray mixing
aggregates features of points at the same sampling depth across adjacent rays,
while intra-ray mixing focuses on features along each ray.

C. Radiance Fields Mixer (RF-Mixer)

The purpose of the RF-mixer is to aggregate densities and
colors among neighboring points before volume rendering, as
shown in Fig. 2. To achieve this, we consider combining adjacent
k x krays and neighboring k samples along each ray, forming a k
x k xk 3D local space. However, the computational complexity
of direct 3D operations is prohibitively high. Therefore, we pro-
pose a two-stage mixing strategy: inter-ray mixing and intra-ray
mixing, as illustrated in Fig. 3. This strategy decomposes the
3D operations into a combination of convolutional operations in
2D and 1D. Specifically, the 2D and 1D convolutional kernels
can slide across the width/height dimensions and the depth di-
mension, which signifies inter-ray mixing and intra-ray mixing,
respectively, of the density and color tensors.

Before delving into the details of the RF-mixer, we first
outline the computational flow and the definition of the variables
involved in it. Initially, a patch of pixels is randomly selected
from a training image, represented as C,; € R3*P*F. Ten-
sors of positions X € RN*P=xPxP and view directions V' €
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RN*DvxPxP are obtained straightforwardly through sampling

along the respective rays as [7], [11], [12]. Here, P denotes the
patch size, and N indicates the number of samples along the ray.
Subsequently, the sampled volume densities ¢ € RV*1xPxP
and colors ¢ € RYN*3*P*F are computed by feeding X and
V into the radiance field pipeline [7], [11], [12]. Notably, the
features used for decoding densities and colors are identified as
Fo ERN*DoxPxP and f c RN*DexPxP regpectively. Unless
specified otherwise, D, represents the feature dimension of a
particular tensor throughout the paper.

1) Inter-Ray Mixing of Densities and Colors: Inter-ray mix-
ing aggregates the volume densities and colors of points sampled
at the same depth across adjacent k x k rays. Specifically,
with density features f, and color features f., our 2D CNN-
based weight predictors G,p generate mixing weights W, €
RN*(kxk)xPxP for densities o and W, € RNV*(kxk)xPxP
for colors ¢, respectively. The receptive field of G,p is strictly
confinedto k x k, ensuring that during convolutions over f_ and
f ., each kernel aligns the densities and colors of neighboring
k x k samples at the same depth within adjacent rays. To
enable local mixing, densities o and colors c are transformed
into separate local blocks using 2D block extractors &p: B,
c RNx(kxk)xlexP for densities and B,. € RNX(kxk)xSxPxP
for colors. The final inter-ray mixed densities o’ € RN *1*PxP
and colors ¢/ € RN*3*PxP are then computed as

(o', &) =

where ® represents the element-wise multiplication, and
sum(T, n) donates summation over the n'"* dimension of tensor
T'. The details of weight predictors and block extractors are
explained in Section III-E.

2) Intra-Ray Mixing for Densities and Colors: This stage
focuses on integrating mixed densities ¢’ and colors ¢’ of
k neighboring points along each ray. Differing slightly from
Section III-C1, we redesign the weight predictors Gip using
1D CNNs, where the kernels slide along the depth dimension.

To adapt the data for 1D CNNs, we first reshape the features
RNXD xPxP = R(PXP)XD x N andf RNXD x Px P =

(sum (W, @ B,,1), sum (W,.® B, 1)), (5)

R(PxP)xDxN T reshaping ensures that the 1D convolu-
tional kernels process features corresponding to neighboring
points along the ray. Given f . and f ., the weight predictors G;p
produces the weights W/, € R(P*P)xkxDexN for ' and W,
€ R(P*P)xkxDexN for ¢! Similarly, local blocks are extracted
using 1D block extractors &p: B!, € R*P)xkx1xN for 5/ and
B/, € RIPXP)xkx3xN for ¢/ The mixing process is as

(sum (W ® B! ,1), sum (W' @ B.,1)).
(6)

Here, 0" and ¢” are volume densities and colors through two-
stage mixing.

3) Supervision: After two-stage mixing, three sets of volume
density and colors {c, ¢}, {0’, ¢} and {0”, ¢} are obtained. Af-
terwards, we perform volume render on each set to predict pixel
sets {C,C',C"}. We train RF-mixer with the loss measuring
the mean square error between the prediction and ground truth
pixels over the sequence {C, C’, C"}. Given ground truth pixel

(O'N, c//) —
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Cy;, the loss is defined as

1
L= 5z (IC = Cylls +[|C" = Cyrllz + [|C” = Cull2) -

(N

For frameworks that use hierarchical volume sampling, such

as NeRF [7] and MipNeRF [11], we apply the RF-mixer exclu-

sively at the fine stage, as the sampling density in the coarse stage

is relatively sparse. This further demonstrates that our RF-mixer

is not limited to uniform sampling and performs equally well
with non-uniform sampling.

D. Color Domain Mixer (CD-Mixer)

The CD-mixer is designed to rearrange rendered pixels
within the sub-image plane to recover fine textures and enhance
smoothness in the synthesized image. The process involves two
key steps: 1) refining the rendered pixels, and 2) mixing the
refined pixels.

1) Refining Pixels With View Consistency: As shown in
Fig. 4, two separate branches utilized to extract pixel features
from the rendered pixels patch C,, and view features from
the camera rays, separately. The pixel feature extractor is a
4-layer 2D CNN with 3 x 3 kernels that predicts features of the
same size as the input. The view feature branch ensures view
consistency by establishing correspondences between rays and
pixels. Specifically, we use Pliicker coordinates r = (d, p x d)
to represent a ray, where p is the camera position and d is the ray
direction. A 4-layer 2D CNN with 1 x 1 kernels encodes view
features from the rays. Subsequently, the extracted features are
then concatenated and decoded into refined pixels C. using a
2D tiny CNN with 1 x 1 kernels. Throughout the process, all 1
x 1 kernels maintain view consistency by separating the rays.

2) Mixing Pixels Based on Kernel Weights: To predict mix-
ing weights for locally rearranged pixels, we construct an error
distribution map between the pixel patches of the rendered C',,,
€ RV3*PxP and the refined C,; € RV3*P*P This map
guides the 2D weight predictor Gop to adaptively learn the weight
contributions, particularly in high-frequency regions prone to
reconstruction loss (see Section IV-E4 for details). The weight
predictor decodes the mixing weights from the error map, which
are then applied in a weighted sum with locally refined pixel
blocks B, € R3*(kxk)xPxP ‘extracted via a 2D block extractor
&p. The final mixed pixels C,,, € RP3*P*F are

C,, =sum(W,®B,, 1). )

3) Supervision: We train CD-mixer using the following loss
measuring the mean squared error (MSE) between the generated
pixel patches {C, ¢, C,, } and the ground truth

1

£= 55 (AICrs = Collz + (L= 1)|[Cr — Corll2) . )

We set A to 0.1in all our tests.

E. General Kernel-Based Mixing Strategy

As described in Section III-C and III-D, we reformulate
local attribute aggregation for the RF-mixer and CD-mixer as
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Fig. 4.

Overview of CD-mixer. Initially, we refine the rendered pixel patch C,,- by decoding concatenated features from the rendered pixel and the camera view.

To ensure view consistency, we use Plucker coordinates to represent a ray » = (d, p x d), establishing a correspondence with the pixel, where p and d are the
camera position and ray direction, respectively. Subsequently, the weight predictor Gop utilizes the error map between the pixel patched of the rendered C,,,- and
refined C',. f to predict mixing weights W,,. Meanwhile, the block extractor &p converts the refined pixels into corresponding local blocks By,. The final mixed

pixels are obtained through a weighted summation between W, and B,.
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(a) Mixing in 2D

Fig.5.  Computational flow of 2D/1D mixing. (a) Mixing in 2D: Feature maps
and attribute maps are processed in a spatially aware manner. A 2D block
extractor segments attributes into local spatial blocks, and a 2D CNN predicts
mixing weights across k x k neighborhoods for each spatial location. (b) Mixing
in 1D: Features and attributes are flattened along the spatial dimension. A 1D
block extractor segments the sequence, and a 1D CNN predicts mixing weights
for each channel along the sequence. This design supports flexible integration
of neighborhood information in either spatial or sequential domains.

a weighted sum of local attribute blocks and dynamically pre-
dicted weights. This approach involves two key parts: the weight
predictor, which determines the contribution of neighboring
samples to the source, and the block extractor, which gathers
local samples as blocks for mixing.

1) Weight Predictor: As illustrated in Fig. 5, the weight
predictors are compact two-layer CNNs with ReLLU activation
functions. In our setup, the 2D predictor G,p utilizes kernels
of size k x k, generating dynamically mixing weights also
of dimension k x k. This design allows G,p to effectively
aggregate information from the £ x k neighboring samples
and compute each sample’s contribution to the central sample
during the mixing process, as detailed in Section III-C1 and
III-D2. In a similar vein, the 1D predictors Gp use k-sized
kernels, producing k£ weights that represent the contributions of
neighboring samples for subsequent intra-mixing, as described
in (used in Section III-C2). To ensure numerical stability and
proper normalization, the Softmax activation is applied to all
predictor, ensuring that the weights of local samples sum to 1.

2) Block Extractor: To facilitate direct matrix operations
between tensors representing attributes (such as density, color,
and pixel) and their corresponding mixing weights, we utilize

the PyTorch un fold function to create block extractors. This
method allows for efficient retrieval of local samples from the
tensor without necessitating additional arithmetic calculations,
as illustrated in Fig. 5. Specifically, the 2D extractors, denoted
as, slide a k x k kernel across the entire attribute tensor. For
each position of the kernel, the samples encompassed within
its coverage are converted into a flattened column. All flattened
columns are referred to as local blocks, encapsulating the local
spatial context around each sample. Similarly, in the 1D case,
the extractors Gip operate with kernels of size k, fetching local
blocks consisting of k neighboring samples in each block.

Importantly, the value of %k can be flexibly adjusted to control
the size of the local region for integration.

IV. EXPERIMENTS AND RESULTS
A. Experimental Settings

1) Dataset: We evaluate the performance of MixRF on
NeRF-based methods through quantitative and qualitative eval-
uations using three widely recognized benchmarks for novel
view synthesis: Realistic Synthetic 360°, Synthetic-NSVF, and
DONEeRF, a prevalent benchmark for multi-view reconstruction.
The first two datasets contain path-traced images of objects
with intricate geometry and realistic non-Lambertian materials.
DONEeRF has six complex scenes, featuring detailed textures
with high-frequency components. Furthermore, we additionally
utilize three more intricate datasets to evaluate MixRF on 3D-
GS-based methods, namely MipNeRF360, Tanks & Temples
(T&T) and Deep Blending (DB). MipNeRF360 includes nine
scenes, each featuring complex central objects or areas and
detailed backgrounds, representing the current state-of-the-art
NeRF rendering quality. The T&T dataset comprises two hand-
held 360° captures of large-scale scenes, namely Truck and
Train. The DB dataset comprises two scenes with distinct capture
styles, including large bounded indoor scenes.

2) Baselines: To illustrate the versatility of our method as
a broad framework applicable to nearly all radiance field-based
approaches, we apply it to six representative methods: NeRF [7],
MipNeRF [11], DVGO [9], instant-NGP (iNGP) [13], 3D-
GS [8], and Scaffold-GS [72]. Notably, the initial four methods
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TABLE I

QUANTITATIVE COMPARISON OF NERF-BASED METHODS

Realistic Synthetic 360° Dataset DONEeRF Dataset Synthetic-NSVF Dataset
Methods PSNR 1 SSIM LPIPS | PSNR 1 SSIM LPIPS | PSNR 1 SSIM LPIPS |
NeRF 31.01 0.943 0.079 29.94 0.861 0.271 31.04 0.951 0.067
Mix-NeRF | (+1.14) 32.15 (+0.010) 0.953 (-0.018) 0.061 | (+2.06) 32.00 (+0.040) 0.901 (-0.060) 0.211 | (+2.16) 33.20 (+0.013) 0.964 (-0.019) 0.048
MipNeRF 32.63 0.945 0.073 29.56 0.853 0.283 32.50 0.958 0.056

Mix-MipNeRF

(+0.40) 33.03 (+0.015) 0.960 (-0.019) 0.054

(+1.84) 31.40 (+0.037) 0.890 (-0.055) 0.228

(+1.43) 33.93 (+0.011) 0.969 (-0.014) 0.042

0.883 0.233

(+1.44) 31.74 (+0.018) 0.901 (-0.033) 0.200

35.14 0.976 0.032

(+0.82) 35.96 (+0.004) 0.980 (-0.005) 0.027

DVGO 32.80 0.955 0.054 30.30
Mix-DVGO | (+0.76) 33.56 (+0.006) 0.961 (-0.008) 0.046

iNGP 33.21 0.965 0.046 30.24
Mix-iNGP | (+1.38) 34.59 (+0.005) 0.970 (-0.008) 0.038

0.892 0.216

(+1.85) 32.09 (+0.019) 0.911 (-0.037) 0.179

35.87 0.982 0.027

(+1.12) 36.99 (+0.003) 0.985 (-0.005) 0.022

Our evaluation metrics are PSNR/SSIM (higher is better) and LPIPS [73] (lower is better). The mixed models exhibit substantial increments in overall metrics compared to their respective
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original frameworks. The increments are shown in bold inside the brackets.

are NeRF-based, whereas the latter two are 3D-GS-based. In par-
ticular, NeRF, as the pioneering neural radiance fields method, is
enhanced by MipNeRF through the introduction of a multiscale
representation for anti-aliasing radiance fields. DVGO and iNGP
significantly boost both training and rendering speeds by lever-
aging voxel grids for scene reconstruction. Meanwhile, 3D-GS
represents the most recent achievement with top-notch visual
quality and training speed, while Scaffold-GS addresses the
excessive memory consumption of 3D-GS without compromis-
ing performance. In our setup, we integrate both RF-mixer and
CD-mixer modules into NeRF and MipNeRF, given that their
sampled points and casting rays/cones are strictly independent.
Conversely, only the CD-mixer is applied to DVGO, iNGP,
3D-GS, and Scaffold-GS due to their intrinsic capability to fuse
spatial information. For a more straightforward comparison,
we prefix the model names with Mix- to indicate methods
that incorporate our mixing framework. In our comprehensive
evaluation of our methods and various baselines, the rendering
quality is evaluated by PSNR, SSIM [74], and LPIPS [73], which
have been widely adopted by the novel view synthesis task.

3) Training Details: In all experiments involving RF-mixer,
we set P = 40 and k£ = 3. The remaining training specifications
such as learning rate, total training iterations, and so forth,
strictly follow the original model setup. To train CD-mixer, we
use the Adam optimizer [75] with a learning rate that begins at
5e — 4 and decays to 5e — 6 following a cosine schedule over
the course of optimization. We set £ = 5 and P = 32, with the
batch size of 64 and the total iterations of 200 k. All training and
evaluation procedures are performed on an NVIDIA GeForce
RTX 3090 Graphics card.

B. Results on NeRF-Based Methods

1) Quantitative Comparisons: Table 1 illustrates that all
baseline models show improved performance when augmented
with MixRF. The improvement is noticeable across all metrics
assessed, with a particularly notable enhancement seen in PSNR.
The datasets reveal an average rise of 1.37, 1.80, and 1.38
in PSNR, highlighting the significant influence of MixRF and

signaling a substantial advancement towards achieving more
realistic synthesis. Upon examining the results, a remarkable
performance on the DONeRF dataset becomes apparent, which
is known for its intricate and complex textures. The results
showcase an exceptional capability to extract high-frequency
information and improve the smoothness of volume rendering
by skillfully aggregating spatial context. We also noted that
the Realistic Synthetic 360 and Synthetic-NSVF datasets, being
object-centered, contain substantial areas of white background
lacking rich texture details. These regions contribute minimally
to the overall image quality assessment, leading to limited
improvements in SSIM and LPIPS.

2) Qualitative Comparisons: In the realm of qualitative as-
sessment, we conduct a rigorous comparison between the mixed
and original models, as illustrated in Fig. 6. Notably, the mic ex-
hibits apparent disparities among the original models, especially
for NeRF, MipNeRF, and DVGO. These models exhibit a distinct
blurriness in both structural and textural aspects. By contrast,
mixed models excel in accurately rendering intricate details.
The mic’s overall structure is notably enhanced. Extending our
analysis to a larger and more complex scene like the expansive
sanmiguel provides additional insights. NeRF and MipNeRF,
in their original forms, fail to capture the depiction of water
flowing from the fountain, thereby compromising their accuracy.
DVGO and iNGP, on the other hand, struggle with artifacts that
affect representation completeness.

C. Results on 3D-GS-Based Methods

1) Quantitative Comparisons: We evaluate our method us-
ing three datasets comparing against 3D-GS and Scaffold-GS.
Table II demonstrates that integrating our MixRF into various
3D-GS-based methods enhances their performance on multiple
benchmark datasets. For the 3D-GS method, there are average
improvements in PSNR (40.52), SSIM (+4-0.006), and LPIPS
(—0.005). The improvements over Scaffold-GS are +0.28,
+0.011, and —0.004, respectively. Particularly noteworthy is
the substantial performance improvement observed on the Mip-
NeRF360 and T&T datasets, mainly attributed to the complex
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Fig. 6.

Qualitative comparison of the mixed and original NeRF-based methods. We incorporate our method into the NeRF [7], MipNeRF [11], DVGO [9], and

iNGP [13] frameworks, denoting them as Mix-NeRF, Mix-MipNeRF, Mix-DVGO, and Mix-iNGP, separately. Mixed models can more accurately capture fine
details in both geometry and appearance, generating images that perceptually resemble the ground truth more closely than their respective original frameworks.
The original models, especially NeRF and MipNeREF, struggle to capture clear and accurate textures and have trouble in representing delicate structures, resulting
in ghosting artifacts from specular reflections on spherical materials and blurring of net structures. By contrast, our method reconstructs more details of the thin
structure in the mic and presents a more realistic reflective effect for mirror materials. For more complex scenes sanmiguel, DVGO and iNGP miss details,
including the incomplete fountain and floor patterns, while the mixed models successfully depict water columns on fountains. The increase in PSNR is emphasized

in parentheses.

TABLE I

QUANTITATIVE ANALYSIS OF 3D-GS-BASED METHODS

MipNeRF360 Dataset Tanks&Temples Dataset Deep Blending Dataset
Methods PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
3D-GS 28.69 0.870 0.182 23.14 0.841 0.183 29.41 0.903 0.243
Mix-3D-GS | (+0.62) 29.31 (+0.008) 0.878 (-0.010) 0.172 | (+0.67) 23.81 (+0.007) 0.848 (-0.004) 0.179 | (+0.25) 29.66 (+0.003) 0.906 (-0.000) 0.243

Scaffold-GS 29.03 0.863 0.200

Mix-Scaffold-GS

(+0.50) 29.53 (+0.010) 0.873 (-0.013) 0.187

23.96 0.828 0.177

(+0.21) 24.17 (+0.021) 0.849 (-0.001) 0.176

30.12 0.906 0.254

(+0.13) 30.25 (+0.001) 0.907 (-0.000) 0.254

‘We use PSNR/SSIM (higher values are preferable) and LPIPS [73] (lower values are preferable) as the assessment criteria. The mixed models show significant improvements across all metrics

compared to their original frameworks. Improvements in metrics compared to the original models are indicated in bold inside the brackets..

textures in the scene that align well with our mixing strategy.
The degree of improvement on the DB dataset is relatively
modest compared to the first two datasets. This is primarily
due to the reason that most scenes in the DB dataset contain
large texture-less regions of which our method cannot fully take
advantage. However, we also observed that our method results
in weaker performance improvements for 3D-GS-based frame-
works compared to NeRF-based frameworks. We attribute this to
the lack of error consistency in the synthesized images produced
by 3D-GS methods, where errors are often concentrated in
specific local regions (stemming from specific large Gaussian
primitive). In contrast, NeRF errors are generally distributed

more uniformly across the entire synthesized image. This makes
CD-mixer challenging to learn a consistent aggregation pattern.

2) Qualitative Comparisons: We select representative
scenes for qualitative comparison, as shown in Fig. 7. It can be
seen that our MixRF significantly enhances the quality of view
synthesis compared to 3D-GS-based approaches. Specifically,
the mixed models accurately reproduce reflective regions in the
scene, such as highlights on cutlery and metallic surfaces, in a
more realistic manner. Furthermore, our method reconstructs
more geometric structures, which can accurately preserve details
such as stair railings and chair cushions, as highlighted by the
green arrows. In comparison, both the 3D-GS and Scaffold-GS
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Mix-3D-GS

Fig. 7.
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Scaffold-GS

Mix-Scaffold-GS

Qualitative comparison of mixed and original 3D-GS-based methods. We integrate our MixRF into the 3D-GS [8] and Scaffold-GS [72] frameworks,

dubbed as Mix-3D-GS and Mix-Scaffold-GS, respectively. Mixed models can capture more realistic scene appearance, such as the highlights on the surface of
objects (first two rows). Additionally, mixed models can help compensate for the distortion in geometric reconstruction by the original models (indicated by the
green arrows in the third and fifth rows). For more detailed context, the rendering results of the original model all exhibit a certain degree of blurriness, while mixed
models faithfully reproduce synthetic results that are close to the ground truth (the fourth and last rows).

methods fail to recover these details, incurring severe blurring
and distortion. Additionally, our method excels in reproducing
regions with rich and fine details, such as the arrayed ventilation
grilles and perforated metal sheets, with relatively accurate and
realistic results. Conversely, 3D-GS-based methods struggle to
effectively model such cases and tend to treat these regions as
flat surfaces.

D. Additional Analysis

1) Contribution of RF-Mixer: The RF-mixer aims to ag-
gregate local features, which can help radiance fields more
accurately search for the scene’s surfaces. To assess this,
we compare meshes extracted from the original NeRF and
Mix-NeRF models. As shown in Fig. 9, the meshes generated
by Mix-NeRF demonstrate superior visual quality compared to

NeRF. Mix-NeRF stands out in capturing complicated details
and preserving more surface structures. In particular, the splash
guard of the Bike scene shows improved geometric details,
and most fragments in the Lego scene disappear. This suggests
that Mix-NeRF has superior surface reconstruction capabilities,
indicating that the mixed volume density distribution in the
radiance field better aligns with the scene’s surface. Our method
emphasizes the beneficial incorporation of additional neighbor-
hood information into NeRF, enhancing the scene’s detailed
representation and ultimately improving the visual quality of
novel views.

2) Mixing Weights and Local Blocks: The core of our CD-
mixer lies in obtaining the local blocks and their corresponding
mixing weights. To verify the complementary effects among
adjacent samples in the mixing process, we visualized these two
components of the pre-trained CD-mixer on Lego scene with
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(a) w/o CD-mixer

Fig. 8.

(b) CD-mixer
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(¢) with CD-mixer

Visualization of local blocks and weights of the rendered image in CD-mixer with the kernel size of 3 x 3. It is obvious that (a) the image produced

through volume rendering appears grievously noisy and lacks smoothness. On the contrary, (b) the CD-mixer allows rendered pixels to rearrange from each other
in sub-image space by weight learning, improving the overall quality and resulting in a smoother image (c). Additionally, the primary contribution comes from the
source pixel itself, with its surrounding pixels also playing a complementary role, particularly in high-frequency regions.

Bike

(a) w/o RF-mixer

(b) with RF-mixer

Fig. 9.  Contribution of RF-mixer to geometric optimization. Visual compari-
son between the meshes extracted by the pre-trained NeRF and Mix-NeRF shows
that RF-mixer helps radiance field-based models reconstruct a more detailed and
precise surface.

the kernel size of £ = 3. As shown in Fig. 8(b), the primary con-
tribution of the mixed pixel comes from the source pixel itself,
with some additional support from its surrounding pixels. This
observation highlights the effectiveness of our mixing strategy in
leveraging local information to improve reconstruction quality.
Furthermore, we notice that the influence of neighboring pixels
on the source is mainly concentrated in the contour and edge
regions of the scene. These areas typically contain complicated
details and are susceptible to noise, leading to synthesized im-
ages that lack smoothness. From Fig. 8(a), we observe a degree
of randomness in pixel transitions near the edges. Nevertheless,
after being processed by the CD-mixer module, as shown in
Fig. 8(c) noise at the edges disappears, resulting in the synthe-
sized image of more realistic visual quality.

3) Decomposition of 3D Operations Into 2D/ID: As de-
picted in Fig. 3, within a 3D subspace, our two-stage mixing
strategy selectively aggregates spatial information for each sam-
pling point by only considering neighboring points that are either
at the same depth or along the same ray. Spatial information
from regions outside these immediate neighborhoods is delib-
erately discarded. This focused approach not only simplifies
the aggregation process but also ensures that the most relevant

local context is preserved for each sampling point. As illustrated
in Fig. 8(b), the contribution of neighboring samples to the
source sample decreases as their relative offset increases during
the mixing process. Therefore, we consider this approximation
reasonable, as the discarded points are located farther from the
source sample within the 3D subspace. By concentrating on
closer, more relevant points, the method effectively captures
essential local information while minimizing the influence of
distant points, which are less likely to significantly impact the
final result.

E. Ablation Study

1) Impact of Kernel Size on RF-Mixer: As described in
Section III-E, our mixing strategy is controllable, allowing
simultaneous adjustment of the kernel size k for the weights
predictor and the block extractor to determine the number of
local samples. We conduct experiments on the Realistic Syn-
thetic 360° dataset to assess the impact of k& on performance.
Visualizations reveal that the synthesized image of the original
NeRF presents minor noise (see Fig. 10 with k£ = 1). We attribute
the noise to positional encoding (PE). PE aims to increase
the model’s sensitivity in high-frequency details by enabling
significant prediction variations in the near region. However,
the lack of local spatial aggregation also leads to noise in
high-frequency areas. This is the issue that our MixRF aims
to tackle. It shows that adding our RF-mixer with the kernel size
of k = 3 leads to the best rendering quality. It is because the local
spatial integration makes the prediction of colors and densities
with local comprehension. Besides, setting & to 5 results in an
unreasonable definition of the local space, posing challenges
in predicting weights in the mixing process. This introduces
ambiguity and ultimately leads to a decline in performance.

2) Impact of Kernel Size on CD-Mixer: In the process of
pixel mixing on the image plane, the kernel size k determines
the number of neighboring pixels that are used for mixing. We
evaluate the performance of different values of k based on the
3D-GS model on MipNeRF360 and DB datasets. As shown in
Fig. 11, it is evident that different values of k can improve
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PSNR:33.24 / SSIM:0.978

Fig. 10.

PSNR:35.33 / SSIM:0.984 PSNR:34.66 / SSIM:0.981

Effect of kernel size on the performance of RF-mixer. The synthesized image of the original NeRF (k = 1) suffers from significant noise and blurriness.

Setting k to 3 significantly improves the performance of the mixed model in terms of both visual aspects and metrics, allowing it to better learn the optimal
scene representation and rectify geometric inaccuracies. When k is too large, the support region becomes too wide, resulting in uncertainty in weight learning and

consequently, sub-optimal performance.

Fig. 11.

PSNR:31.04 / SSIM:0.916

Effect of kernel size on the performance of CD-mixer. Integrating CD-mixer with varying k values into the 3D-GS model enhances the quality of

synthesized views to a certain degree. Through our experiments, setting k to 5 yields optimal performance. Excessive or insufficient kernel sizes can degrade the

performance due to improperly sized local regions.

the performance of the original model to a certain extent in
terms of visual quality and metrics. Particularly, k = 5 yields
the optimal performance. The synthesized views exhibit clearer
details and high-frequency textures as pixels borrow from and
semantically complement each other on the local image plane,
leading to higher-quality predictions. Nevertheless, the result
of k = 3 is suboptimal, which we attribute to the inadequate
aggregation of neighborhood information due to the improper
size of local region. Additionally, we notice that setting a large
local region can lead to a decrease in the synthesis quality, this is

because pixels from distant areas not only have minimal impact
on the source pixel, but also makes it harder to determine the
appropriate weights during training.

3) Inter-Ray and Intra-Ray Mixing in RF-Mixer: The RF-
mixer adopts a two-stage mixing strategy to aggregate both local
geometric and appearance information from neighboring points
along the same ray (intra-ray) as well as from sampling points
at the same depth across different rays (inter-ray). As illustrated
in Fig. 12, the original MipNeRF (Fig. 12(a)) struggles to accu-
rately capture regions with complex spatial geometry, resulting
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PSNR:30.65 / SSIM:0.908

PSNR:31.39 / SSIM:0.926

(b) MipNeRF

(a) MipNeRF
with inter-ray mixing

Fig. 12.

PSNR:31.45 / SSIM:0.927

(c) MipNeRF
with intra-ray mixing
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PSNR:32.15 / SSIM:0.935

(d) MipNeRF

(e) Ground Truth
Full

Ablation of inter-ray and intra-ray mixing. (a) The rendering results produced by MipNeRF show significant blurring in the geometrically complex

window region (highlighted by the blue dashed box). After aggregating information from nearby sampling points, both (b) and (c) partially recover the correct
appearance and geometric details. In (d), the MipNeRF model combines the strengths of both (b) and (c), leading to renderings that more closely match the ground

truth in (e).

(2) DVGO +CD-mixer(Only refine)

Fig. 13.

() DVGO
+CD-mixer(Only mixing)

-
(d) DVGO
+CD-mixer(Full)

(e) Ground Truth

Ablation of the CD-mixer. (a) The original DVGO-generated image exhibits significant noise and lacks smoothness due to insufficient pixel interaction.

(b) The refining process effectively eliminates noise, resulting in a smoother output. (c¢) Directly mixing the rendered image enhances details, but cannot suppress
noise well. (d) The DVGO model combines both (b) and (c), achieving noise reduction and smoothness enhancement in the synthetic image. It also focuses on
enhancing high-frequency details, as indicated in the area marked by the black arrow, to make the rendering more closely resemble the ground truth (e).

in notable ambiguities. This issue is particularly evident in areas
with rapid depth variations, such as the semi-transparent window
(highlighted by the blue dashed box), where the synthesized im-
ages exhibit substantial blurring. The inter-ray (Fig. 12(b)) and
intra-ray (Fig. 12(c)) mixing strategies alleviate these ambigui-
ties by aggregating radiance values from neighboring sampling
points, effectively enriching the source sample with additional
geometric and appearance information. This approach enables
a more accurate reconstruction of both the geometric structure
and texture details in the rendered image. By integrating both
mixing stages (Fig. 12(d)), the RF-mixer produces images with
significantly improved fidelity to the ground truth (Fig. 12(e)).
Consequently, the two-stage mixing not only reduces geometric
inconsistencies in complex regions but also enhances overall
visual quality, highlighting the method’s effectiveness in chal-
lenging scenarios.

4) Refining and Mixing Pixels in CD-Mixer: The CD-mixer
module starts by refining pixel patches and then mixes these
refined patches among neighboring pixels to recover more
detailed texture and smoothness in the new views. We decon-
struct these procedures and assess their visual impact on the
created views using the DVGO model. As shown in Fig. 13(a),
pixels produced by volume rendering display independence,
leading to sudden transitions among neighboring pixels with
noticeable spots in the synthesized image. Furthermore, there is

a distinct absence of fine texture details, resulting in a blurred
appearance in the synthesized view and considerable image
distortion. On the contrary, high-frequency details become more
prominent in the image, and object edges appear smoother after
pixel refining (Fig. 13(b)). When focusing solely on the mixing
process, the details in the synthetic view show only marginal
enhancement and noise is not well suppressed, as shown in
Fig. 13(c). This failure stems from the use of rendered pixel
patches instead of the error map (as elaborated in III-D2) to
predict mixing weights. This simplification lacks guidance in
the high-frequency region for the weights predictor, making it
difficult to learn the mixing weights. Nonetheless, when com-
bined with a comprehensive CD-mixer, the Mix-DVGO model
reduces the noise and improves smoothness in the synthetic
image. Simultaneously, it enhances image fidelity, particularly
emphasizing high-frequency texture in regions indicated by
arrows in Fig. 13(d).

5) Ablation of RF-Mixer and CD-Mixer: Our MixRF com-
prises two modules, RF-mixer and CD-mixer, designed to im-
prove performance over the baseline. We isolate the two modules
and conduct a series of ablation experiments to evaluate their in-
dividual contributions. By integrating these modules separately
into the NeRF model under identical conditions, we observe
notable differences. In Fig. 14(a), the original NeRF model
exhibits considerable noise and loses smoothness, especially in
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PSNR:28.41 / SSIM:0.901

PSNR:29.36 / SSIM:0.926 PSNR:29.74 / SSIM:0.931 PSNR:30.31 / SSIM:0.938

(a) NeRF (b) NeRF + RF-mixer (¢) NeRF + CD-mixer (d) Full model (ours) (e) Ground truth

Fig. 14.  Ablation analysis of two mixers. (a) The original NeRF introduces blurriness when reconstructing thin structures in the scene due to its independence
of sampled points and casting rays, leading to noticeable noise. (b) The RF-mixer improves NeRF’s capability to capture intricate details. However, noise-induced
non-smoothness remains. (¢) The CD-mixer enhances interactions of rendered pixels in the subspace, resulting in smoother synthetic outputs. (d) MixRF tackles
the assumption of independence, leading to improved synthetic outcomes. This enhanced model is proficient in accurately reinstating intricate high-frequency

elements within the scene.

TABLE III
COMPARISON OF PERFORMANCE IMPROVEMENT AND COMPUTATIONAL COST OF NERF-BASED MODELS WITH MIXRF INTEGRATION

Time | Additional cost |
Methods PSNR 1 SSIM 1 LPIPS | . .
Train (h) Inference (s) Train Inference
NeRF 33.27 0.920 0.222 23.45 28.235
. 24.09% 24.27%
Mix-NeRF (+2.09) 35.36 (+0.022) 0.942 (-0.051) 0.171 (+5.65) 29.10 (+6.853) 35.088
MipNeRF 33.42 0.913 0.222 20.20 27.123
. ) 24.82% 16.71%
Mix-MipNeRF (+2.15) 35.57 (+0.032) 0.945 (-0.054) 0.168 (+5.15) 25.35 (+4.533) 31.656
DVGO 33.89 0.935 0.167 0.75 0.643 60.00% 1L40%
Mix-DVGO (+1.55) 35.44 (+0.009) 0.944 (-0.021) 0.146 (+0.45) 1.20 (+0.009) 0.652 'O o
iNGP 33.91 0.949 0.136 0.42 0.136
. 90.47% 9.76%
Mix-iNGP (+2.57) 36.48 (+0.012) 0.961 (-0.025) 0.111 (+0.38) 0.80 (+0.008) 0.144

Our MixRF can significantly improve all metrics of NeRF-based methods with a computational overhead of no more than 25% increasement. All metrics are tested on the classroom scene in
DONEeRF dataset. The magnitude of metric change is shown in parentheses, with improvements highlighted in bold.

COMPARISON OF PERFORMANCE IMPROVEMENT AND COMPUT{QFOI;\J]::\P/COST OF 3D-GS-BASED MODELS WITH MIXRF INTEGRATION
Methods PSNR 1 SSIM 1 LPIPS | Train Time | FPS 1 Additional cost (Inference)
3D-GS 30.63 0.914 0.220 36min 109 9 02%
Mix-3D-GS (+1.09) 31.72 (+0.013) 0.927 (-0.023) 0.197 (+45min) 81min (-24) 95
Scaffold-GS 31.39 0.925 0.202 45min 128 20.31%
Mix-Scaffold-GS (+0.86) 32.25 (+0.004) 0.929 (-0.015) 0.187 (+43min) 88min (-26) 102

Our MixRF can significantly improve all metrics of 3D-GS-based methods with a computational overhead of no more than 25% increasement. All metrics are tested on the room scene in
MipNeRF360 dataset. The magnitude of metric change is shown in parentheses, with improvements highlighted in bold.

detailed regions. Conversely, incorporating the RF-mixer into
NeRF, as shown in Fig. 14(b), greatly enhances the model’s
ability to capture complex details like the fan, thereby improving
its geometric perception and scene representation. For NeRF
with CD-mixer, depicted in Fig. 14(c), we observe a marked
reduction in noise in the synthesized image, resulting in an
overall smoother output. This enhancement indicates that the
CD-mixer optimizes image rendering at the sub-pixel level.
Finally, combining both modules into the NeRF model, as
illustrated in Fig. 14(d), yields a synthesized output closely
resembling the ground truth in terms of structural accuracy and
pixel smoothness.

6) Additional Computational Overhead: We evaluate the
additional computational overhead introduced by integrating
MixRF into baseline models. As shown in Tables III and IV,
integrating both the RF-mixer and CD-mixer results in less than
a 25% increase in inference overhead. By comparison, DVGO,
iNGP, 3D-GS, and Scaffold-GS, which only integrate the CD-
mixer, also maintain an inference overhead below 25% . The
higher training overhead is mainly due to the CD-mixer being
optimized over multiple batches, whereas inference requires
only asingle forward pass per image, resulting in a notable differ-
ence in efficiency. Given the significant performance improve-
ments compared to the base models, this additional overhead is
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TABLE V
WE REPORT THE EFFECT OF KERNEL SIZE K ON THE PERFORMANCE OF THE
RF-MIXER AND CD-MIXER

RF-mixer (Test on the Bike scene in Synthetic-NSVF dataset)
PSNR 1+ SSIM 1 LPIPS | Train time | Infer. time |

Kernel size

k=1 3324 0978 0.040 22.55h 26.432s
k=3 3533 0.984 0.023 27.23h 33.412s
k=5 3466 0981  0.031 29.50h 36.600s

CD-mixer (Test on the room scene in the MipNeRF360 dataset)

Kernel size |[PSNR 1 SSIM 1 LPIPS | Train time | FPS 1
k=1 30.63 0914 0.220 51min 104
k=3 31.21 0918 0.192 86min 93
k=5 31.74 0928 0.187 95min 90
k=7 31.04 0916 0.190 98min 88

The best metrics are highlighted in bold.

acceptable. Additionally, Table V illustrates the effect of kernel
size on computational efficiency. As expected, larger kernel sizes
k negatively affect both training and inference efficiency. After
balancing performance against efficiency, we determine that the
optimal kernel sizes are k = 3 for the RF-mixer and k& = 5 for
the CD-mixer.

V. DISCUSSIONS AND LIMITATIONS

Experimental results demonstrate that our method signifi-
cantly improves the performance of general neural rendering
approaches by effectively aggregating local context, benefiting
both NeRF-based and 3D Gaussian Splatting (3D-GS) methods.
Howeyver, there are still some limitations to address. First, while
the kernel-based mixing strategy simplifies the complexity of
3D operations, it introduces computational overhead due to the
convolutional operations required for weight prediction. Second,
although our RF-mixer can handle neural rendering models
that utilize non-uniform sampling, it currently struggles with
sampling techniques that produce an inconsistent number of
samples per ray, such as adaptive sampling. Additionally, our
method assumes that local spatial interactions can be effectively
captured, which may not generalize well to highly dynamic
or rapidly changing scenes. To overcome these limitations and
extend the applicability of the method, further optimization of
the mixing strategy and exploration of more advanced feature
aggregation techniques are necessary.

VI. CONCLUSION

MixRF addresses limitations observed in NeRF- and 3D-GS-
based methods, particularly the assumption of independence
between point sampling and ray casting. This assumption can
lead to synthesized images lacking fine details and smoothness.
By tackling these challenges, MixRF significantly enhances the
rendering quality of radiance field-based methods. Addition-
ally, we introduce an efficient and controllable kernel-based
mixing strategy that substantially improves performance both

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 10, OCTOBER 2025

quantitatively and qualitatively, with less than a 25% increase of
computational overhead during inference. Moreover, we suggest
that our approach holds promise for broad applicability across
various NeRF- and 3D-GS-based models, extending beyond
those discussed in our paper.
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