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Abstract

Using large language models (LLMs) for ed-001
ucational applications such as dialogue-based002
teaching is a hot topic. Effective teaching, how-003
ever, requires adapting the difficulty of content004
and explanations to the education level of their005
students. Even the best LLMs today struggle006
to do this well. If we want to improve LLMs007
on this adaptation task, we need to be able to008
reliably measure adaptation success. However,009
current Static metrics for text difficulty, like the010
Flesch-Kincaid Reading Ease score, are known011
to be crude and brittle. We therefore introduce012
and evaluate a new set of neural metrics for013
text difficulty. Based on a user study, we create014
Neural metrics as LLM prompts that leverage015
the general language understanding capabilities016
of LLMs to capture more abstract and complex017
text features than Static metrics. Through re-018
gression experiments, we show that our Neural019
metrics improve text difficulty prediction over020
Static metrics alone. Our results demonstrate021
the promise of Neural metrics as a new class of022
features for evaluating text adaptation to differ-023
ent education levels.024

1 Introduction025

Large language models (LLMs) today can answer026

wide-ranging questions and explain complex con-027

cepts with high accuracy (Chung et al., 2022)(Ope-028

nAI, 2023). This development has motivated ex-029

plorations into their uses for education, ranging030

from automated student assessment and person-031

alised content to dialogue-based teaching (Upad-032

hyay et al., 2023; Sallam, 2023; Yan et al., 2023;033

Hosseini et al., 2023). Effective teaching requires034

that the difficulty of content and explanations is035

tailored to the education level of the students. Hu-036

man teachers are trained to do this, and adjust their037

material and style without much prompting. How-038

ever, this adaptation is not just the adjustment of039

one variable. It is a complex undertaking, touching040

upon lexicon, syntax, pragmatics, and semantics.041

Figure 1: Schematic overview of our proposed approach
to text difficulty classification. We calculate Static and
Neural metrics relevant to text difficulty based on a
given input text1. Either or both types of metrics are
then fed into a regression classifier that makes a final
prediction.

Consequently, even the best LLMs today strug- 042

gle to provide appropriate answers for a given au- 043

dience – they can adapt to different writing styles 044

(casual or formal) and domains (emails, blog posts, 045

and essays), but their ability to adapt to different 046

age ranges or levels of education is much more 047

limited (Kasneci et al., 2023). At best, they can dif- 048

ferentiate between child and adult learners, but that 049

distinction is rarely useful when adapting recurring 050

material for different grades. 051

Improving the ability of LLMs to adapt their 052

outputs to different levels of education is therefore 053

crucial to unlocking their usefulness for education. 054

One of the most basic requirements to achieve this 055

goal is a way to measure adaptation success. 056

However, whether a given output is appropriate 057

for a given level of education is still very hard to 058
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measure. Existing Static metrics, like the Flesch-059

Kincaid Reading Ease score, are based on sim-060

ple formulas, heuristics, and word counts. They061

share the brittleness of all heuristic approaches and062

are known to be noisy measures of text difficulty063

at best. Also, these metrics were developed for064

longer-form explanations, like those found in text-065

books, rather than dialogue-style teaching. Due to066

their reliability on counts, their estimates are unre-067

liable in shorter formats. To make improvements068

on the adaptability of LLMs to education levels069

measurable, we need better metrics. Only when we070

can measure improvements can we make tangible071

progress in automation.2072

Alternatively, we can use (Neural) classifiers to073

predict the educational level of a given text. They074

generalize better and can be applied to texts of075

varying length. However, these classifiers are ex-076

pensive to train, and require more training data than077

we usually have for a niche domain like educational078

purposes.079

The obvious goal is human assessment, but it is080

expensive to collect and, like all annotation tasks,081

suffers from disagreement.082

In this paper, we introduce and evaluate a new083

set of Neural metrics for text difficulty as comple-084

ments to existing Static metrics. Neural metrics085

exploit the general language understanding capa-086

bilities of LLMs to capture more abstract features087

of educational texts than Static metrics. LLMs can,088

for example, easily and flexibly classify whether a089

given text uses a metaphor or not (which is one of090

the adaptation techniques used by teachers to adjust091

content to higher education levels). This would be092

difficult to do with Static approaches.093

First, to motivate our selection of Neural metrics,094

we conduct a user study, where we ask a group of095

university students to 1) assess the difficulty of096

educational texts and explain their reasoning, and097

2) come up with prompts for an LLM to change098

the difficulty of a given text. We then translate the099

qualitative findings from both parts of the study100

into concrete Neural metrics – like the metaphor101

example above.102

Second, to evaluate the usefulness of our new103

Neural metrics for measuring text appropriateness104

for education levels, we run a series of experiments105

2As examplified by the cases of BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), and BLANC (Recasens and Hovy,
2011), among others, which kickstarted and sustained the
development of automated approaches to machine translation,
summarization, and coreference resolution, respectively.

using a subset of the ScienceQA dataset (Auer et al., 106

2023), which contains question-answer pairs across 107

several topics and education levels. Specifically, we 108

run multinomial logistic regressions based on Static 109

metrics, Neural metrics, and the combination of the 110

two to evaluate the marginal benefits of our new 111

Neural metrics. We also compare these regression 112

approaches with using an LLM directly for zero- 113

shot classification. 114

We find that Neural metrics by themselves are 115

much less useful for text difficulty classification 116

than Static metrics – even if both perform on par 117

or better than a zero-shot LLM classifier. How- 118

ever, the combination of both Neural and Static 119

metrics clearly performs best overall. This shows 120

that Neural metrics do indeed capture relevant sig- 121

nals beyond what Static metrics can capture despite 122

the large number of Static metrics that we include 123

in our experiments. Therefore, the use of Neural 124

metrics in addition to Static metrics appears to be 125

a promising direction for improving text difficulty 126

classification. 127

To summarise, our main contributions are: 128

1. We conduct a user study to motivate the cre- 129

ation of novel Neural metrics of text difficulty 130

for educational texts. 131

2. We show in a series of regression experiments 132

that these novel Neural metrics hold additional 133

value for text difficulty classification beyond 134

what Static metrics can capture. 135

3. By leveraging the interpretability of our re- 136

gressions, we highlight the relative impor- 137

tance of individual Static and Neural metrics. 138

2 User Study 139

In this paper, we introduce novel Neural metrics for 140

text difficulty. To provide an empirical foundation 141

for these metrics, we ran a one-day user study with 142

a group of university students in November 2023. 143

2.1 Study Design 144

Our user study consists of two main parts. 145

In the first part of our study, we asked partici- 146

pants to review 60 educational texts randomly sam- 147

pled from the ScienceQA dataset (Lu et al., 2022). 148

Each text consists of a question (e.g. “What is the 149

mass of a dinner fork?”) with answer choices (“70 150

grams or 70 kilograms”) and a longer-form expla- 151

nation of the solution. All texts we select here are 152
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either from the social, natural, or language sciences.153

Participants were tasked with a) labeling the edu-154

cation level of each text as appropriate for either155

elementary school, middle school, or high school156

and b) explaining the reasoning behind their choice157

in a short free-text answer.158

In the second part of our study, we asked partic-159

ipants to rewrite scientific text explanations, also160

sampled from ScienceQA, to be appropriate for161

different education levels, with the help of an LLM162

– in this case, ChatGPT. For example, participants163

were asked to rewrite a middle school explanation164

of thermal energy at the elementary and high school165

levels with the help of prompts. We recorded166

the prompts they used to get ChatGPT to accom-167

plish the adaptation for them. Thus, we collected168

prompts that are used both for text simplification169

and for text complexification.170

2.2 Study Participants171

We ran our study as part of a hackathon at172

[REDACTED UNIVERSITY]. There were seven173

participants aged between 21 and 31 years. Four174

participants were female, three male. All partic-175

ipants were students at [REDACTED UNIVER-176

SITY] and were enrolled at the time in programs177

specializing in computational linguistics, computer178

science, and AI. Five were studying for a bachelor’s179

degree and two for a master’s degree. The partic-180

ipants held prior educational degrees from school181

systems across five different countries. Their native182

languages were diverse, including English, Italian,183

German, Greek, and Ukrainian. They self-reported184

their English language proficiency at C1 and C2185

levels. Participants were compensated in study186

credits that could be counted towards completing187

their program.188

2.3 Study Results189

The first task of our study yielded 276 classification190

labels together with their corresponding descriptive191

justifications. These include 120 label-explanation192

pairs for middle school texts, 89 for high school,193

and 67 for elementary school texts. In the second194

task of our study, we collected 103 prompts for text195

simplification and complexification. We share il-196

lustrative examples of classifications, explanations,197

as well as prompts in Appendix A.198

In the next section, we use the qualitative results199

from our study to motivate the construction of novel200

Neural metrics for text appropriateness for various201

education levels.202

3 Metrics for Text Difficulty 203

3.1 Neural Metrics 204

Since the metrics we introduce are based on the 205

prompts of Neural language models rather than 206

discrete heuristics, we refer to them as ‘Neural’ to 207

distinguish them. The goal of the Neural metrics 208

we develop is to capture more abstract features of 209

educational texts than would be possible with Static 210

metrics, which typically focus on individual words 211

and their statistics. 212

We derive our Neural metrics from the results 213

of our user study. Figure 2 shows an illustrative 214

example of our derivation process. We consider 215

the explanations provided by users for why they 216

consider a certain educational text to be of elemen- 217

tary, middle, or high school level difficulty. Then, 218

we identify recurring attributes and other explana- 219

tion features that are mentioned by several users 220

to reflect them in Neural metrics. More specifi- 221

cally, we examine the distributions of unigrams, 222

bigrams, and trigrams across all three labels, ex- 223

cluding function words (see Figure 3). Some of the 224

most frequent unigrams for the elementary level in- 225

clude simple, basic, elementary; for the high school 226

level, high, complex, concepts; and for the middle 227

school, explicit, explanation, middle. 228

We qualitatively assessed the n-gram distribu- 229

tions, considering both frequencies and topic ap- 230

propriateness, before finalizing the query construc- 231

tion. Each Neural metric takes the form of a sim- 232

ple yes-no question which we use to prompt the 233

LLMs. These metrics encompass the most frequent 234

unigrams as well as less common bigrams and tri- 235

grams derived from the findings of our study. 236

In total, we construct 41 Neural metrics using 237

this process. Each Neural metric relates to either 238

education level (24 metrics), lexical or syntactic 239

complexity (7 metrics), or the topic of the text at 240

hand (10 metrics). Table 1 shows an example of 241

each type of metric. For the full list of all Neural 242

metrics, see Appendix C. 243

3.2 Existing Static Metrics 244

Static metrics are the baseline we want to improve 245

on. All Static metrics are based on simple formu- 246

las, heuristics or counts of words or other textual 247

features. This makes them simple to apply but also 248

limits the conceptual complexity of what they can 249

reasonably be expected to measure. In total, we 250

include 38 Static metrics, selected from those com- 251

piled in prior work by Flekova et al. (2016). These 252
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Figure 2: An illustrative example of the Neural metric process. The green box contains the education text from the
ScienceQA dataset. The blue box shows the predicted educational level and the explanation. The red box contains
the Neural metrics based on the sample.
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Figure 3: High-level view of the derivation process for
the Neural metrics using n-gram frequencies. Function
words are excluded.

range from text-level metrics that capture general253

linguistic properties such as vocabulary size and254

word frequency to sentence-level metrics such as255

sentence length and syntactic complexity. For the256

full list of 38 Static metrics see Appendix ??.257

4 Experiments258

To evaluate the usefulness of our novel Neural met-259

rics for measuring text difficulty we conduct a se-260

ries of text difficulty classification experiments.261

4.1 Dataset262

All our experiments are based on the recently-263

released ScienceQA dataset (Auer et al., 2023).264

There are ca. 21k texts in ScienceQA. Each text265

consists of a question (e.g. “What is the mass of266

a dinner fork?”) with answer choices (“70 grams267

Neural Metric Category

Is this text suitable for an el-
ementary school student?

Education level

Does this text contain tech-
nical jargon?

Lexical/syntactic
complexity

Is this text about math? Topic

Table 1: Three example Neural metrics across the three
categories of Neural metrics. Each Neural metric is a
prompt for an LLM.

or 70 kilograms”) and a longer-form explanation 268

of the solution. Texts in ScienceQA are classified 269

according to their grade level using the K12 system 270

from the US education system. We simplify this 271

classification by collapsing the 12-grade levels into 272

just three: elementary school (grades 1 to 5), mid- 273

dle school (grades 6 to 8), and high school (grades 274

9 to 12).3 From the total 21k texts in ScienceQA, 275

we sample only those that do not use images in 276

questions or explanations. We then deduplicate 277

and sample 1,500 texts for each education level to 278

create a balanced dataset of 4,500 texts. Of these 279

4,548 texts, we use 3638 (80%) for training and 280

910 (20%) for evaluation. To our knowledge, ours 281

3https://usahello.org/education/children/
grade-levels/
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is the first use of the ScienceQA dataset for the282

purposes of training and evaluating text difficulty283

classifiers.284

4.2 LLMs for Neural Metrics285

We mainly use LLMs in our experiments to com-286

pute the 41 Neural metrics described in Section ??.287

In principle, any LLM can be used for this pur-288

pose. We use three state-of-the-art LLMs: Llama2289

(Touvron et al., 2023), Mistral (Jiang et al., 2023)290

and GPT-4 (OpenAI, 2023). Llama2, launched in291

July 2023, is a collection of both pre-trained and292

fine-tuned LLMs, with sizes ranging from 7 billion293

to 70 billion parameters. It has been reported to294

outperform other open-access LLMs and demon-295

strates capabilities comparable to ChatGPT across296

various tasks. In the main body of this paper, we fo-297

cus on the chat-optimised 13 billion parameter ver-298

sion of Llama2, which we refer to as Llama2-13b.299

The Mistral-7B, released in September 2023, is an-300

other open-source language model that surpasses301

similar-sized open LLMs, including Llama2-13b.302

We test the instruction-tuned version, Mistral-7b-303

Instruct-v0.2, which was published in December304

2023. Access to these models is provided with305

Hugging Face. Additionally, we examine GPT-4, a306

proprietary model from OpenAI released in March307

2023. GPT-4 is accessed through its API. This308

study aims to provide a comprehensive comparison309

of these state-of-the-art LLMs.310

In Appendix D, we report corresponding results311

for Mistral-7B and GPT-4. We set the model tem-312

perature to zero to make responses deterministic.313

The maximum response length is 256 tokens. Oth-314

erwise, we use standard generation parameters as315

provided by the Hugging Face transformers library.316

We collected all responses in November and De-317

cember 2023.318

4.3 Multinomial Logistic Regression319

To classify the difficulty level of texts, we use sim-320

ple multinomial logistic regression. Formally, the321

task is to predict the difficulty level Ci of a given322

educational text Si. Ci can take three ordinal val-323

ues: elementary, middle, or high school difficulty.324

Instead of including Si directly, we include sets325

of Static and/or Neural metrics Mi that are com-326

puted based on Si. We regress Mi on Ci on the327

3638 training texts and then evaluate on the 910328

test education texts.329

4.4 Baseline: Zero-Shot Classification 330

We exploit the general language capabilities of 331

LLMs to compute Neural metrics, which we then 332

use as inputs to a logistic classifier for text dif- 333

ficulty. A natural follow-up question is whether 334

LLMs could just as well predict education level text 335

difficulty directly. Therefore, we include a zero- 336

shot text classification baseline. We use the same 337

model for zero-shot classification as for computing 338

our Neural metrics. For the experiments here, this 339

is Llama2-13b. Note that while the logistic classi- 340

fier is fitted to our training data, the zero-shot LLM 341

has not seen any examples at inference time. 342

4.5 Experimental Setups 343

We vary which metrics we include across experi- 344

mental setups to evaluate the marginal benefits of 345

different metrics. There are three main setups of 346

interest: 1) Neural metrics only, which we refer to 347

as NEURAL, 2) Static metrics only, which we refer 348

to as STATIC, and 3) the combination of the two, 349

which we refer to as COMBO. 350

4.6 Results 351

Table 2 reports the overall results of our different 352

logistic classifier setups along with the zero-shot 353

LLM classification baseline. 354

Method Macro-F1 Accuracy (%)

NEURAL Reg. 0.42 45.9
STATIC Reg. 0.76 78.4
COMBO Reg. 0.80 80.7

Zero-shot LLM 0.42 45.5

Table 2: Overall performance for difficulty level clas-
sification on our ScienceQA testset. NEURAL metrics
and zero-shot LLM classification use the Llama2-13b
model. Best performance is highlighted in bold.

NEURAL regression performs relatively poorly, 355

at 0.42 macro-F1 and 45.9% accuracy. This is on- 356

par with directly prompting the LLM (in this case 357

Llama2-13b) to make a zero-shot classification. By 358

comparison, STATIC regression performs substan- 359

tially better, at 0.76 macro-F1 and 78.4% accuracy. 360

Best overall is COMBO, the combination of the 361

two sets of metrics, at 0.80 macro-F1 and 80.7% 362

accuracy. 363

To investigate performance in more detail, we 364

split out the results for each regression setup by 365

label, i.e. education level, in Table 3. 366
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Level Precision Recall F1-Score
N

E
U

R
A

L Elem. 0.55 0.36 0.43
Middle 0.50 0.21 0.30
High 0.43 0.78 0.55

S
TA

T
IC Elem. 0.80 0.84 0.82

Middle 0.71 0.59 0.64
High 0.79 0.87*** 0.83

C
O

M
B

O Elem. 0.86*** 0.87*** 0.86***
Middle 0.73*** 0.67*** 0.70***
High 0.81*** 0.87*** 0.86***

Table 3: Performance for difficulty level classification
on our ScienceQA testset, split by level. *** indicates
statistically significant improvements. NEURAL metrics
use the Llama2-13b model. Best performance per level
is highlighted in bold.

The overall picture remains unchanged: NEU-367

RAL regression still performs worst, while STATIC368

performs much better, and COMBO performs best,369

which indicates some marginal benefit to including370

the NEURAL metrics. The most challenging task371

appears to be identifying middle school-level texts,372

with no model scoring more than 0.70 macro-F1.373

This may, in part, be explained by the ordinal nature374

of our labels, making it easier to classify content375

at the extremes of the difficulty scale than in the376

middle. The NEURAL model struggles more with377

elementary school than high school texts, whereas378

the STATIC and COMBO models perform equally379

well on both.380

we collect multiple (1000) bootstrap samples to381

train and test the logistic regression models for each382

approach. This method helps in understanding the383

variability and reliability of the model performance.384

We use t-tests to determine if the observed differ-385

ences in accuracies are statistically significant. The386

results indicate a statistically significant improve-387

ment when using COMBO over both STATIC and388

NEURAL approaches individually.389

One big benefit of our regression approach over,390

for example, classification with an LLM, is that391

we can easily measure the feature importance of392

each metric that goes into the classification result.393

For this purpose, we calculate univariate F-tests394

between each metric and the difficulty level vari-395

able. Table 4 shows the top-five most important396

features each among the Neural and the Static met-397

rics, based on these F-tests.398

Most noticeably, the Neural metrics are gener-399

ally much less important than the Static metrics. 400

The top Neural metric, which gives a binary assess- 401

ment of whether a given text is appropriate for the 402

skill level of elementary school students, is roughly 403

10% as relevant to difficulty level as the fifth-most- 404

important Static metric counting the number of 405

unique tokens (62.38 vs 629.00 F). However, while 406

they may not hold the same importance, all of the 407

top metrics are highly statistically significant. 408

5 Discussion 409

5.1 The Value of Neural Metrics 410

Neural metrics by themselves may not be a good- 411

enough basis for classifying text difficulty (Table 412

2). Static metrics are much more effective by com- 413

parison. However, our results also show that Neural 414

metrics do indeed capture relevant features of the 415

text that are not captured by Static metrics, since 416

models that combine both kinds of metrics clearly 417

perform best overall. This is despite the fact that 418

the Static metrics we include are many and highly 419

diverse. 420

Beyond the demonstrated practical utility of the 421

specific Neural metrics we introduced in this paper, 422

the use of Neural metrics more generally appears 423

to be a promising direction for assessing text dif- 424

ficulty. Better Neural metrics identified in future 425

work may be even more effective complements to 426

Static metrics. 427

5.2 Limitations 428

The user study we conducted provides a clear em- 429

pirical motivation for the Neural metrics we se- 430

lected. This in itself is a core contribution of our 431

work. However, due to resource and time con- 432

straints, the sample of participants in the study 433

is fairly small and of limited diversity. Future 434

work could improve on our approach by conduct- 435

ing larger studies or recruiting participants from 436

even more relevant professions (e.g. teachers) to 437

motivate the selection of even better Neural met- 438

rics. 439

Our experiments are mostly constrained by the 440

availability of relevant data for text difficulty clas- 441

sification. The ScienceQA dataset that we use is, 442

to our knowledge, the only dataset that fits our 443

experimental setup in terms of size and detail on 444

education level. Therefore, we cannot make any 445

strong claims about the generalisability of our re- 446

sults. Future work could invest into building new 447

datasets and testing cross-domain performance of 448
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Rank Metric F
N

eu
ra

lM
et

ri
cs 1 Is this appropriate for the skill level of elementary school students? 62.38***

2 Does this contain a complex language structure? 58.04***
3 Is this easy to understand for elementary school students? 46.72***
4 Is this suitable for an elementary school student? 34.43***
5 Is this about earth science? 27.71***

St
at

ic
M

et
ri

cs 1 Herdan’s C (measures lexical diversity) 916.40***
2 Entropy (measures the lexical diversity) 875.73***
3 Flesch-Kincaid Reading Ease (measures readability) 715.95***
4 Simpson’s Diversity Index (measures lexical diversity) 686.87***
5 # unique tokens (measures length and lexical diversity) 629.00***

Table 4: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. *** indicates significance at >99.999%
confidence.

both Static and Neural metrics, which would give449

useful insights into which text features are most450

generally indicate of text difficulty.451

6 Related Work452

6.1 Automatic Evaluation of Educational453

Content454

The difficulty level prediction of questions pre-455

sented to students is crucial for facilitating more456

effective and efficient learning. Pérez et al. (2012)457

shows teachers usually fail to identify the correct458

difficulty level of the questions according to their459

students’ answers and final scores. The student’s460

perception of the difficulty also changes across461

grades and subjects. AlKhuzaey et al. (2023) dis-462

covers that linguistic features significantly influ-463

ence the determination of question difficulty levels464

in educational assessments. They have explored465

various syntactic and semantic aspects to under-466

stand the complexity of these questions. Crossley467

et al. (2019) shows the value of using crowdsourc-468

ing methods to gather human assessments of text469

comprehension, coupled with linguistic attributes470

derived from advanced readability metrics. This471

approach aids in creating models that explain how472

humans understand and process text, as well as473

factors influencing reading speed. Imperial and474

Madabushi (2023) and Rooein et al. (2023) use lan-475

guage models for content generation over text sim-476

plification tasks and controlling readability scores477

for specific age and educational levels. They show478

the limitations of the LLMs in adaptation to the479

specific educational grades.480

6.2 Question Answering Datasets in 481

Education 482

The review study by AlKhuzaey et al. (2023) about 483

the literature on item difficulty prediction reveals a 484

significant shortage of publicly accessible datasets 485

with items that are labeled according to their dif- 486

ficulty levels. For example, Hsu et al. (2018) 487

gathered their dataset from national standardized 488

entrance tests that often concentrate on the med- 489

ical and language fields, annotated with the per- 490

formance data of 270,000 examinees. This study 491

includes the necessity for a publicly accessible col- 492

lection of standardized datasets and the need for 493

further exploration into alternative methods for fea- 494

ture elicitation and prediction modeling. The lack 495

of publicly available datasets for measuring dif- 496

ficulty has led researchers toward the domain of 497

Automatic Question Generation (AQG) in recent 498

years. Typically, AQG tends to be more straightfor- 499

ward in structure and cognitive demand compared 500

to questions written by humans. Most of these 501

automatically generated questions are basic, pri- 502

marily addressing only the first level of Bloom’s 503

taxonomy, which is focused on recall (Leo et al., 504

2019). Another source of educational datasets is 505

retrieved from online learning platforms or web- 506

sites specific to the study’s domain. An example 507

includes the collection of 1657 programming prob- 508

lems from LeetCode4, labeled with the number of 509

solutions submitted and the pass rate for each prob- 510

lem. Additionally, fewer datasets are from domain- 511

specific textbooks and preparation books, particu- 512

larly prevalent in the language domain for their role 513

4https://leetcode.com
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in training students for language proficiency exams.514

The remaining sources were developed by domain515

experts to meet specific study goals, and according516

to AlKhuzaey et al. (2023), only 7% from school517

or university-level assessments.518

The Stanford Question Answering Dataset519

(SQuAD), developed by Rajpurkar et al. (2016)520

in 2016, features 150,000 questions in the form of521

paragraph-answer pairs sourced from Wikipedia522

articles. This dataset was utilized by Bi et al.523

(2021) to develop and test their models for predict-524

ing the difficulty of reading comprehension ques-525

tions. Lu et al. (2022) created a new multimodal sci-526

ence question-answering datasets, which includes527

21,000 English passages from school reading ex-528

ams, each accompanied by four multiple-choice529

questions. The ScienceQA dataset provides sev-530

eral metadata fields associated with each question,531

including extensive solutions and general explana-532

tions. In contrast to SQuAD, this dataset demands533

more advanced reasoning abilities to answer its534

questions.535

7 Conclusion536

Good teachers succeed in making the material un-537

derstandable for their respective audiences. This538

adaptation is a complex process which goes well be-539

yond replacing individual words and phrases. How-540

ever, existing Static metrics for text difficulty, like541

the Flesh-Kincaid Reading Ease score, still focus542

on precisely those elements. As a result, these543

metrics are crude and brittle, failing to adapt to544

new domains and working mainly on long-form545

documents.546

Large Language Models are increasingly used in547

educational domains and offer ways to go beyond548

individual word replacement due to their general549

language capabilities. However, at the same time,550

they still struggle to adapt to precise education551

levels. To effectively automate text adaption to552

education levels, we need to measure the success553

of that adaptation, which requires more flexible554

metrics than the ones we currently have.555

We introduce a suite of prompt-based Neural556

metrics for text adaptation based on a user study.557

We empirically show that these metrics, in com-558

bination with traditional Static metrics, improve559

text difficulty prediction. Our work opens up new560

avenues for the use of LLMs in educational appli-561

cations.562

Ethical Considerations 563

The participants in the user study we used in our 564

paper were student volunteers of a course on re- 565

lated topics. They were able to leave the study at 566

any point, and were compensated in course credits 567

that could be counted towards their study program. 568

The study was conducted in accordance with the 569

rules of the host university and passed their ethics 570

assessment. The risk for harm to the participants 571

in this setting was assessed as minimal. 572
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A Selected Prompts from the User Study 693

We collect the top prompts of the students from 694

the chat history with analytical, manual, and AI 695

Assistant (ChatGPT). 696

A.1 Elementary School: 697

- Simplify a text for elementary school, using sim- 698

ple language for 6-12 year olds. - Create an el- 699

ementary version of a high school lecture text. - 700

Simplify a high school text for elementary school. 701

- Explain in a way an 8-year-old would understand. 702

- This is a text meant for high school students. Can 703

you help me make an appropriate version for ele- 704

mentary school students with very simple language 705

and comprehensive, easy-to-understand examples? 706

A.2 Middle School: 707

- Give examples from middle school lectures. - 708

Adapt a high school text for middle school, using 709

less advanced language. - Be more textbook-like 710

and more to the point for level of middle school. 711

- Adapt content for a student in middle school. - 712

Simplify a lecture text for middle school, using 713

illustrative examples. 714

A.3 High School: 715

- Enhance scientific accuracy and add comprehen- 716

sive examples for high school level. - Adapt a 717
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middle school text for high school, using advanced718

language. - Increase difficulty for high school, with719

advanced vocabulary and scientific concepts. - Can720

you make it more scientific and less story-telling-721

like? - Increase difficulty level with comprehensive722

examples.723

B Parameter settings724

The Static matrics are collected by Python pack-725

ages such as pandas, textstat, spacy, wordfreq,726

and wordfreq. We use _en_core_web_sm param-727

eter from the spacy model. For Regression model,728

we use sklearn package and SelectKBest with729

f_classif score function.730

C List of Metrics731

Static Metrics. num_words: Number of words in732

the text. num_sentences: Number of sentences733

in the text. type_token_ratio: Ratio of unique734

words to total words, indicating vocabulary rich-735

ness. avg_word_length: The average length of736

words in the text. academic_word_list_ratio:737

Ratio of academic or domain-specific words738

to total words. complex_words: Number of739

complex words, often based on syllable count740

or other criteria. mtld: Measure of Textual741

Lexical Diversity, a metric for vocabulary rich-742

ness. num_unique_tokens: Number of unique743

words or tokens in the text. avg_sent_length:744

The average length of sentences in the text.745

std_sent_length: The standard deviation of sen-746

tence lengths, indicating sentence length variation.747

clauses_sentences_ratio: Ratio of clauses to748

sentences, providing insight into sentence com-749

plexity. pos_ratios: Ratios of different parts of750

speech (e.g., nouns, verbs) in the text. FKGL: Flesch-751

Kincaid Grade Level, an estimate of the text’s read-752

ability. FKES: Flesch Reading Ease score is a read-753

ability measure for US education systems. ttr:754

TypeToken Ratio. brunet_index: A metric for755

text diversity and richness. d_measure: A mea-756

sure of lexical diversity. yules_k: Yule’s K, a757

measure of text’s distribution of word frequencies.758

herdan_c: Herdan’s C, a metric for vocabulary759

richness. simpsons_di: Simpson’s Diversity In-760

dex, indicating the diversity of words in the text.761

entropy: A measure of information entropy, indi-762

cating unpredictability or randomness of the text.763

Neural Metrics. Is this readable for an elemen-764

tary school student based on the Flesch-Kincaid765

grade scale?, Is this suitable for an elementary766

school student?, Is this easy to understand for el- 767

ementary school students?, Is this relevant to cur- 768

riculum topics for elementary school students?, Is 769

this relevant to the knowledge and experiences of 770

elementary school students?, Is this content suit- 771

able for meeting the expected knowledge level of 772

elementary school students? Is this able to provide 773

detailed feedback to help elementary school stu- 774

dents learn?, Is this appropriate for the skill level 775

of elementary school students?, Is the length of 776

this suitable for elementary school students?, Is 777

this readable for a middle school student based on 778

the Flesch-Kincaid grade scale?, Is this suitable 779

for a middle school student?, Is this easy to under- 780

stand for middle school students?, Is this relevant 781

to curriculum topics for middle school students?, Is 782

this relevant to the knowledge and experiences of 783

middle school students?, Is this content suitable for 784

meeting the expected knowledge level of middle 785

school students? Is this able to provide detailed 786

feedback to help middle school students learn?, Is 787

this appropriate for the skill level of middle school 788

students?, Is the length of this suitable for middle 789

school students?, Is this readable for a high school 790

student based on the Flesch-Kincaid grade scale?, 791

Is this suitable for a high school student?, Is this 792

easy to understand for high school students?, Is 793

this relevant to curriculum topics for high school 794

students?, Is this relevant to the knowledge and 795

experiences of high school students?, Is this con- 796

tent suitable for meeting the expected knowledge 797

level of high school students? Is this able to pro- 798

vide detailed feedback to help high school students 799

learn?, Is this appropriate for the skill level of high 800

school students?, Is the length of this suitable for 801

high school students?, Does this contain metaphors 802

and/or figurative language?, Does this contain a 803

complex language structure?, Does this contain 804

technical jargon?, Is the language of this simple?, 805

Is this about science?, Is this about language sci- 806

ence?, Is this about natural science?, Is this about 807

social science?, Is this about math?, Is this about 808

physics?, Is this about chemistry?, Is this about 809

earth science?, Is this about world history?, Is this 810

about geography? 811

D Details over Mistral-7B and GPT-4 812

Models 813

We describe the performance of Mistral-7B over 814

the subset of our dataset with 4500 samples (1500 815

samples for each educational level) and GPT-4 for 816
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450 samples (150 for each educational level).817

Method Macro-F1 Accuracy (%)

NEURAL Reg. 0.37 41.66
STATIC Reg. 0.73 74.00
COMBO Reg. 0.76 77.3

Zero-shot LLM 0.37 36.90

Table 5: Overall performance for difficulty level classifi-
cation on our ScienceQA testset. NEURAL metrics and
zero-shot LLM classification use the Mistral-7B model.
Best performance is highlighted in bold.

Method Macro-F1 Accuracy (%)

NEURAL Reg. 0.55 54.44
STATIC Reg. 0.74 74.44
COMBO Reg. 0.76 76.22

Zero-shot LLM 0.56 54.88

Table 6: Overall performance for difficulty level clas-
sification on our ScienceQA testset. NEURAL metrics
and zero-shot LLM classification use the GPT-4 model.
Best performance is highlighted in bold.

Level Precision Recall F1-Score

N
E

U
R

A
L Elem. 0.59 0.34 0.43

Middle 0.55 0.11 0.18
High 0.36 0.91 0.51

S
TA

T
IC Elem. 0.76 0.88 0.82

Middle 0.81 0.45 0.58
High 0.68 0.94 0.79

C
O

M
B

O Elem. 0.80 0.90 0.85
Middle 0.82 0.51 0.63
High 0.71 0.94 0.81

Table 7: Performance for difficulty level classification
on ScienceQA testset, split by level. NEURAL metrics
use the Mistral-7B model. Best performance per level
is highlighted in bold.

Level Precision Recall F1-Score

N
E

U
R

A
L Elem. 0.65 0.57 0.61

Middle 0.41 0.38 0.39
High 0.57 0.74 0.64

S
TA

T
IC Elem. 0.87 0.74 0.80

Middle 0.68 0.72 0.70
High 0.69 0.78 0.73

C
O

M
B

O Elem. 0.81 0.74 0.78
Middle 0.65 0.69 0.67
High 0.71 0.74 0.73

Table 8: Performance for difficulty level classification
on our ScienceQA testset, split by level. NEURAL met-
rics use the GPT-4 model. Best performance per level is
highlighted in bold.
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Rank Metric F

N
eu

ra
lM

et
ri

cs 1 Is this easy to understand for elementary school students? 79.75***
2 Does this contain metaphors and/or figurative language? 42.20***
3 Is this readable for elementary school students 40.80***
4 Is this appropriate for the skill level of elementary school students? 35.65***
5 Is this relevant to curriculum topics for elementary school students? 16.57***

St
at

ic
M

et
ri

cs 1 Herdan’s C (measures lexical diversity) 348.82***
2 Entropy (measures variability or complexity) 346.36***
3 Flesch-Kincaid Reading Ease (measures readability) 284.60***
4 Simpson’s Diversity Index (measures lexical diversity) 255.80***
5 Flesch-Kincaid Grade Level (measures the school grade level) 235.71***

Table 9: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. NEURAL metrics use the Mistral-7B model.
*** indicates significance at >99.999% confidence.

Rank Metric F

N
eu

ra
lM

et
ri

cs 1 Is this appropriate for the skill level of elementary school students? 62.38***
2 Does this contain a complex language structure? 58.04***
3 Is this easy to understand for elementary school students? 46.72***
4 Is this suitable for an elementary school student? 34.43***
5 Is this about earth science? 27.71***

St
at

ic
M

et
ri

cs 1 Herdan’s C (measures lexical diversity) 916.40***
2 Entropy (measures variability or complexity) 875.73***
3 Flesch-Kincaid Reading Ease (measures readability) 715.95***
4 Simpson’s Diversity Index (measures lexical diversity) 686.87***
5 Number of unique tokens (measures length and lexical diversity) 629.00***

Table 10: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. NEURAL metrics use the GPT-4 model. ***
indicates significance at >99.999% confidence.
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