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Abstract

Using large language models (LLMs) for ed-
ucational applications such as dialogue-based
teaching is a hot topic. Effective teaching, how-
ever, requires adapting the difficulty of content
and explanations to the education level of their
students. Even the best LLMs today struggle
to do this well. If we want to improve LLMs
on this adaptation task, we need to be able to
reliably measure adaptation success. However,
current Static metrics for text difficulty, like the
Flesch-Kincaid Reading Ease score, are known
to be crude and brittle. We therefore introduce
and evaluate a new set of neural metrics for
text difficulty. Based on a user study, we create
Neural metrics as LLM prompts that leverage
the general language understanding capabilities
of LLMs to capture more abstract and complex
text features than Static metrics. Through re-
gression experiments, we show that our Neural
metrics improve text difficulty prediction over
Static metrics alone. Our results demonstrate
the promise of Neural metrics as a new class of
features for evaluating text adaptation to differ-
ent education levels.

1 Introduction

Large language models (LLMs) today can answer
wide-ranging questions and explain complex con-
cepts with high accuracy (Chung et al., 2022)(Ope-
nAl, 2023). This development has motivated ex-
plorations into their uses for education, ranging
from automated student assessment and person-
alised content to dialogue-based teaching (Upad-
hyay et al., 2023; Sallam, 2023; Yan et al., 2023;
Hosseini et al., 2023). Effective teaching requires
that the difficulty of content and explanations is
tailored to the education level of the students. Hu-
man teachers are trained to do this, and adjust their
material and style without much prompting. How-
ever, this adaptation is not just the adjustment of
one variable. It is a complex undertaking, touching
upon lexicon, syntax, pragmatics, and semantics.

What educational level is appropriate for this text?
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Gravity is the force by which a planet or other body
draws objects toward its center. The force of gravity
keeps all of the planets in orbit around the sun.
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Figure 1: Schematic overview of our proposed approach
to text difficulty classification. We calculate Static and
Neural metrics relevant to text difficulty based on a
given input text!. Either or both types of metrics are
then fed into a regression classifier that makes a final
prediction.

Consequently, even the best LLMs today strug-
gle to provide appropriate answers for a given au-
dience — they can adapt to different writing styles
(casual or formal) and domains (emails, blog posts,
and essays), but their ability to adapt to different
age ranges or levels of education is much more
limited (Kasneci et al., 2023). At best, they can dif-
ferentiate between child and adult learners, but that
distinction is rarely useful when adapting recurring
material for different grades.

Improving the ability of LLMs to adapt their
outputs to different levels of education is therefore
crucial to unlocking their usefulness for education.
One of the most basic requirements to achieve this
goal is a way to measure adaptation success.

However, whether a given output is appropriate
for a given level of education is still very hard to



measure. Existing Static metrics, like the Flesch-
Kincaid Reading Ease score, are based on sim-
ple formulas, heuristics, and word counts. They
share the brittleness of all heuristic approaches and
are known to be noisy measures of text difficulty
at best. Also, these metrics were developed for
longer-form explanations, like those found in text-
books, rather than dialogue-style teaching. Due to
their reliability on counts, their estimates are unre-
liable in shorter formats. To make improvements
on the adaptability of LLMs to education levels
measurable, we need better metrics. Only when we
can measure improvements can we make tangible
progress in automation.”

Alternatively, we can use (Neural) classifiers to
predict the educational level of a given text. They
generalize better and can be applied to texts of
varying length. However, these classifiers are ex-
pensive to train, and require more training data than
we usually have for a niche domain like educational
purposes.

The obvious goal is human assessment, but it is
expensive to collect and, like all annotation tasks,
suffers from disagreement.

In this paper, we introduce and evaluate a new
set of Neural metrics for text difficulty as comple-
ments to existing Static metrics. Neural metrics
exploit the general language understanding capa-
bilities of LLLMs to capture more abstract features
of educational texts than Static metrics. LLMs can,
for example, easily and flexibly classify whether a
given text uses a metaphor or not (which is one of
the adaptation techniques used by teachers to adjust
content to higher education levels). This would be
difficult to do with Static approaches.

First, to motivate our selection of Neural metrics,
we conduct a user study, where we ask a group of
university students to 1) assess the difficulty of
educational texts and explain their reasoning, and
2) come up with prompts for an LLM to change
the difficulty of a given text. We then translate the
qualitative findings from both parts of the study
into concrete Neural metrics — like the metaphor
example above.

Second, to evaluate the usefulness of our new
Neural metrics for measuring text appropriateness
for education levels, we run a series of experiments

2As examplified by the cases of BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), and BLANC (Recasens and Hovy,
2011), among others, which kickstarted and sustained the
development of automated approaches to machine translation,
summarization, and coreference resolution, respectively.

using a subset of the ScienceQA dataset (Auer et al.,
2023), which contains question-answer pairs across
several topics and education levels. Specifically, we
run multinomial logistic regressions based on Static
metrics, Neural metrics, and the combination of the
two to evaluate the marginal benefits of our new
Neural metrics. We also compare these regression
approaches with using an LLLM directly for zero-
shot classification.

We find that Neural metrics by themselves are
much less useful for text difficulty classification
than Static metrics — even if both perform on par
or better than a zero-shot LLM classifier. How-
ever, the combination of both Neural and Static
metrics clearly performs best overall. This shows
that Neural metrics do indeed capture relevant sig-
nals beyond what Static metrics can capture despite
the large number of Static metrics that we include
in our experiments. Therefore, the use of Neural
metrics in addition to Static metrics appears to be
a promising direction for improving text difficulty
classification.

To summarise, our main contributions are:

1. We conduct a user study to motivate the cre-
ation of novel Neural metrics of text difficulty
for educational texts.

2. We show in a series of regression experiments
that these novel Neural metrics hold additional
value for text difficulty classification beyond
what Static metrics can capture.

3. By leveraging the interpretability of our re-
gressions, we highlight the relative impor-
tance of individual Static and Neural metrics.

2 User Study

In this paper, we introduce novel Neural metrics for
text difficulty. To provide an empirical foundation
for these metrics, we ran a one-day user study with
a group of university students in November 2023.

2.1 Study Design

Our user study consists of two main parts.

In the first part of our study, we asked partici-
pants to review 60 educational texts randomly sam-
pled from the ScienceQA dataset (Lu et al., 2022).
Each text consists of a question (e.g. “What is the
mass of a dinner fork?””) with answer choices (‘70
grams or 70 kilograms”) and a longer-form expla-
nation of the solution. All texts we select here are



either from the social, natural, or language sciences.
Participants were tasked with a) labeling the edu-
cation level of each text as appropriate for either
elementary school, middle school, or high school
and b) explaining the reasoning behind their choice
in a short free-text answer.

In the second part of our study, we asked partic-
ipants to rewrite scientific text explanations, also
sampled from ScienceQA, to be appropriate for
different education levels, with the help of an LLM
— in this case, ChatGPT. For example, participants
were asked to rewrite a middle school explanation
of thermal energy at the elementary and high school
levels with the help of prompts. We recorded
the prompts they used to get ChatGPT to accom-
plish the adaptation for them. Thus, we collected
prompts that are used both for text simplification
and for text complexification.

2.2 Study Participants

We ran our study as part of a hackathon at
[REDACTED UNIVERSITY]. There were seven
participants aged between 21 and 31 years. Four
participants were female, three male. All partic-
ipants were students at [REDACTED UNIVER-
SITY] and were enrolled at the time in programs
specializing in computational linguistics, computer
science, and Al. Five were studying for a bachelor’s
degree and two for a master’s degree. The partic-
ipants held prior educational degrees from school
systems across five different countries. Their native
languages were diverse, including English, Italian,
German, Greek, and Ukrainian. They self-reported
their English language proficiency at C1 and C2
levels. Participants were compensated in study
credits that could be counted towards completing
their program.

2.3 Study Results

The first task of our study yielded 276 classification
labels together with their corresponding descriptive
justifications. These include 120 label-explanation
pairs for middle school texts, 89 for high school,
and 67 for elementary school texts. In the second
task of our study, we collected 103 prompts for text
simplification and complexification. We share il-
lustrative examples of classifications, explanations,
as well as prompts in Appendix A.

In the next section, we use the qualitative results
from our study to motivate the construction of novel
Neural metrics for text appropriateness for various
education levels.

3 Metrics for Text Difficulty
3.1 Neural Metrics

Since the metrics we introduce are based on the
prompts of Neural language models rather than
discrete heuristics, we refer to them as ‘Neural’ to
distinguish them. The goal of the Neural metrics
we develop is to capture more abstract features of
educational texts than would be possible with Static
metrics, which typically focus on individual words
and their statistics.

We derive our Neural metrics from the results
of our user study. Figure 2 shows an illustrative
example of our derivation process. We consider
the explanations provided by users for why they
consider a certain educational text to be of elemen-
tary, middle, or high school level difficulty. Then,
we identify recurring attributes and other explana-
tion features that are mentioned by several users
to reflect them in Neural metrics. More specifi-
cally, we examine the distributions of unigrams,
bigrams, and trigrams across all three labels, ex-
cluding function words (see Figure 3). Some of the
most frequent unigrams for the elementary level in-
clude simple, basic, elementary; for the high school
level, high, complex, concepts; and for the middle
school, explicit, explanation, middle.

We qualitatively assessed the n-gram distribu-
tions, considering both frequencies and topic ap-
propriateness, before finalizing the query construc-
tion. Each Neural metric takes the form of a sim-
ple yes-no question which we use to prompt the
LLMs. These metrics encompass the most frequent
unigrams as well as less common bigrams and tri-
grams derived from the findings of our study.

In total, we construct 41 Neural metrics using
this process. Each Neural metric relates to either
education level (24 metrics), lexical or syntactic
complexity (7 metrics), or the topic of the text at
hand (10 metrics). Table 1 shows an example of
each type of metric. For the full list of all Neural
metrics, see Appendix C.

3.2 Existing Static Metrics

Static metrics are the baseline we want to improve
on. All Static metrics are based on simple formu-
las, heuristics or counts of words or other textual
features. This makes them simple to apply but also
limits the conceptual complexity of what they can
reasonably be expected to measure. In total, we
include 38 Static metrics, selected from those com-
piled in prior work by Flekova et al. (2016). These
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employees.

Question: Which figure of speech is used in this text?
I've heard that Kinsley & Co. is downsizing, so I'm
happy to see that their store in downtown Greenville

Solution: The text uses a euphemism, a polite or
indirect expression that is used to de-emphasize an
unpleasant topic. Downsizing is an indirect way of
saying that the company is planning on firing

Label: High school

seems technical.

y a
( Neural metrics:

students?

. - Does this contain technical jargon? |
N~

Explanation: very specific and hard-to-understand
topic. The text uses more advanced vocabulary, and it

- Is this easy to understand for [educational level]

Figure 2: An illustrative example of the Neural metric process. The green box contains the education text from the
ScienceQA dataset. The blue box shows the predicted educational level and the explanation. The red box contains

the Neural metrics based on the sample.

label="Elementary’

‘simple’

/ unigrams
K bigrams

trigrams

‘basic concept’

Explanations
Neural Metrics

‘example simple language’ —

Figure 3: High-level view of the derivation process for
the Neural metrics using n-gram frequencies. Function
words are excluded.

range from text-level metrics that capture general
linguistic properties such as vocabulary size and
word frequency to sentence-level metrics such as
sentence length and syntactic complexity. For the
full list of 38 Static metrics see Appendix ??.

4 Experiments

To evaluate the usefulness of our novel Neural met-
rics for measuring text difficulty we conduct a se-
ries of text difficulty classification experiments.

4.1 Dataset

All our experiments are based on the recently-
released ScienceQA dataset (Auer et al., 2023).
There are ca. 21k texts in ScienceQA. Each text
consists of a question (e.g. “What is the mass of
a dinner fork?””) with answer choices (“70 grams

Neural Metric Category

Is this text suitable for an el-

Education level
ementary school student?

Does this text contain tech- Lexical/syntactic
nical jargon? complexity
Is this text about math? Topic

Table 1: Three example Neural metrics across the three
categories of Neural metrics. Each Neural metric is a
prompt for an LLM.

or 70 kilograms”) and a longer-form explanation
of the solution. Texts in ScienceQA are classified
according to their grade level using the K12 system
from the US education system. We simplify this
classification by collapsing the 12-grade levels into
just three: elementary school (grades 1 to 5), mid-
dle school (grades 6 to 8), and high school (grades
9 to 12).3 From the total 21k texts in ScienceQA,
we sample only those that do not use images in
questions or explanations. We then deduplicate
and sample 1,500 texts for each education level to
create a balanced dataset of 4,500 texts. Of these
4,548 texts, we use 3638 (80%) for training and
910 (20%) for evaluation. To our knowledge, ours

3https://usahello.org/education/children/
grade-levels/
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is the first use of the ScienceQA dataset for the
purposes of training and evaluating text difficulty
classifiers.

4.2 LLMs for Neural Metrics

We mainly use LLMs in our experiments to com-
pute the 41 Neural metrics described in Section ??.
In principle, any LLM can be used for this pur-
pose. We use three state-of-the-art LLMs: Llama2
(Touvron et al., 2023), Mistral (Jiang et al., 2023)
and GPT-4 (OpenAl, 2023). Llama2, launched in
July 2023, is a collection of both pre-trained and
fine-tuned LLMs, with sizes ranging from 7 billion
to 70 billion parameters. It has been reported to
outperform other open-access LLLMs and demon-
strates capabilities comparable to ChatGPT across
various tasks. In the main body of this paper, we fo-
cus on the chat-optimised 13 billion parameter ver-
sion of Llama2, which we refer to as Llama2-13b.
The Mistral-7B, released in September 2023, is an-
other open-source language model that surpasses
similar-sized open LLMs, including Llama2-13b.
‘We test the instruction-tuned version, Mistral-7b-
Instruct-v0.2, which was published in December
2023. Access to these models is provided with
Hugging Face. Additionally, we examine GPT-4, a
proprietary model from OpenAl released in March
2023. GPT-4 is accessed through its API. This
study aims to provide a comprehensive comparison
of these state-of-the-art LLMs.

In Appendix D, we report corresponding results
for Mistral-7B and GPT-4. We set the model tem-
perature to zero to make responses deterministic.
The maximum response length is 256 tokens. Oth-
erwise, we use standard generation parameters as
provided by the Hugging Face transformers library.
We collected all responses in November and De-
cember 2023.

4.3 Multinomial Logistic Regression

To classify the difficulty level of texts, we use sim-
ple multinomial logistic regression. Formally, the
task is to predict the difficulty level C; of a given
educational text S;. C; can take three ordinal val-
ues: elementary, middle, or high school difficulty.
Instead of including S; directly, we include sets
of Static and/or Neural metrics M; that are com-
puted based on S;. We regress M; on C; on the
3638 training texts and then evaluate on the 910
test education texts.

4.4 Baseline: Zero-Shot Classification

We exploit the general language capabilities of
LLMs to compute Neural metrics, which we then
use as inputs to a logistic classifier for text dif-
ficulty. A natural follow-up question is whether
LLMs could just as well predict education level text
difficulty directly. Therefore, we include a zero-
shot text classification baseline. We use the same
model for zero-shot classification as for computing
our Neural metrics. For the experiments here, this
is Llama2-13b. Note that while the logistic classi-
fier is fitted to our training data, the zero-shot LLM
has not seen any examples at inference time.

4.5 Experimental Setups

We vary which metrics we include across experi-
mental setups to evaluate the marginal benefits of
different metrics. There are three main setups of
interest: 1) Neural metrics only, which we refer to
as NEURAL, 2) Static metrics only, which we refer
to as STATIC, and 3) the combination of the two,
which we refer to as COMBO.

4.6 Results

Table 2 reports the overall results of our different
logistic classifier setups along with the zero-shot
LLM classification baseline.

Method Macro-F1 Accuracy (%)
NEURAL Reg. 0.42 45.9
STATIC Reg. 0.76 78.4
COMBO Reg. 0.80 80.7
Zero-shot LLM 0.42 45.5

Table 2: Overall performance for difficulty level clas-
sification on our ScienceQA testset. NEURAL metrics
and zero-shot LLM classification use the Llama2-13b
model. Best performance is highlighted in bold.

NEURAL regression performs relatively poorly,
at 0.42 macro-F1 and 45.9% accuracy. This is on-
par with directly prompting the LLM (in this case
Llama2-13b) to make a zero-shot classification. By
comparison, STATIC regression performs substan-
tially better, at 0.76 macro-F1 and 78.4% accuracy.
Best overall is COMBO, the combination of the
two sets of metrics, at 0.80 macro-F1 and 80.7%
accuracy.

To investigate performance in more detail, we
split out the results for each regression setup by
label, i.e. education level, in Table 3.



Level Precision Recall F1-Score
2 Elem. 0.55 0.36 0.43
&  Middle 0.50 0.21 0.30
Z High 0.43 0.78 0.55
O Elem. 0.80 0.84 0.82
< Middle 0.71 0.59 0.64
“  High 0.79 0.87%** 0.83
2 Elem. 0.86%+  (.87+%%  (.86%%*
2 Middle 073 Q.67+ 070+
O High 0.81%%%  (.87+%%  (.86%%*

Table 3: Performance for difficulty level classification
on our ScienceQA testset, split by level. *** indicates
statistically significant improvements. NEURAL metrics
use the Llama2-13b model. Best performance per level
is highlighted in bold.

The overall picture remains unchanged: NEU-
RAL regression still performs worst, while STATIC
performs much better, and COMBO performs best,
which indicates some marginal benefit to including
the NEURAL metrics. The most challenging task
appears to be identifying middle school-level texts,
with no model scoring more than 0.70 macro-F1.
This may, in part, be explained by the ordinal nature
of our labels, making it easier to classify content
at the extremes of the difficulty scale than in the
middle. The NEURAL model struggles more with
elementary school than high school texts, whereas
the STATIC and COMBO models perform equally
well on both.

we collect multiple (1000) bootstrap samples to
train and test the logistic regression models for each
approach. This method helps in understanding the
variability and reliability of the model performance.
We use t-tests to determine if the observed differ-
ences in accuracies are statistically significant. The
results indicate a statistically significant improve-
ment when using COMBO over both STATIC and
NEURAL approaches individually.

One big benefit of our regression approach over,
for example, classification with an LLM, is that
we can easily measure the feature importance of
each metric that goes into the classification result.
For this purpose, we calculate univariate F-tests
between each metric and the difficulty level vari-
able. Table 4 shows the top-five most important
features each among the Neural and the Static met-
rics, based on these F-tests.

Most noticeably, the Neural metrics are gener-

ally much less important than the Static metrics.
The top Neural metric, which gives a binary assess-
ment of whether a given text is appropriate for the
skill level of elementary school students, is roughly
10% as relevant to difficulty level as the fifth-most-
important Static metric counting the number of
unique tokens (62.38 vs 629.00 F). However, while
they may not hold the same importance, all of the
top metrics are highly statistically significant.

5 Discussion

5.1 The Value of Neural Metrics

Neural metrics by themselves may not be a good-
enough basis for classifying text difficulty (Table
2). Static metrics are much more effective by com-
parison. However, our results also show that Neural
metrics do indeed capture relevant features of the
text that are not captured by Static metrics, since
models that combine both kinds of metrics clearly
perform best overall. This is despite the fact that
the Static metrics we include are many and highly
diverse.

Beyond the demonstrated practical utility of the
specific Neural metrics we introduced in this paper,
the use of Neural metrics more generally appears
to be a promising direction for assessing text dif-
ficulty. Better Neural metrics identified in future
work may be even more effective complements to
Static metrics.

5.2 Limitations

The user study we conducted provides a clear em-
pirical motivation for the Neural metrics we se-
lected. This in itself is a core contribution of our
work. However, due to resource and time con-
straints, the sample of participants in the study
is fairly small and of limited diversity. Future
work could improve on our approach by conduct-
ing larger studies or recruiting participants from
even more relevant professions (e.g. teachers) to
motivate the selection of even better Neural met-
rics.

Our experiments are mostly constrained by the
availability of relevant data for text difficulty clas-
sification. The ScienceQA dataset that we use is,
to our knowledge, the only dataset that fits our
experimental setup in terms of size and detail on
education level. Therefore, we cannot make any
strong claims about the generalisability of our re-
sults. Future work could invest into building new
datasets and testing cross-domain performance of



Rank Metric

F

S 1 Is this appropriate for the skill level of elementary school students? 62.38%%*
3 2 Does this contain a complex language structure? 58.04 %%
E 3 Is this easy to understand for elementary school students? 46.72%%*
g 4 Is this suitable for an elementary school student? 34.43%%
2 5 Is this about earth science? 27.71%%*
s 1 Herdan’s C (measures lexical diversity) 916.40%**
g 2 Entropy (measures the lexical diversity) 875.73%*%*
% 3 Flesch-Kincaid Reading Ease (measures readability) 715.95%**
= 4 Simpson’s Diversity Index (measures lexical diversity) 686.87***
ZI # unique tokens (measures length and lexical diversity) 629.00%**

Table 4: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. *** indicates significance at >99.999%

confidence.

both Static and Neural metrics, which would give
useful insights into which text features are most
generally indicate of text difficulty.

6 Related Work

6.1 Automatic Evaluation of Educational
Content

The difficulty level prediction of questions pre-
sented to students is crucial for facilitating more
effective and efficient learning. Pérez et al. (2012)
shows teachers usually fail to identify the correct
difficulty level of the questions according to their
students’ answers and final scores. The student’s
perception of the difficulty also changes across
grades and subjects. AlKhuzaey et al. (2023) dis-
covers that linguistic features significantly influ-
ence the determination of question difficulty levels
in educational assessments. They have explored
various syntactic and semantic aspects to under-
stand the complexity of these questions. Crossley
et al. (2019) shows the value of using crowdsourc-
ing methods to gather human assessments of text
comprehension, coupled with linguistic attributes
derived from advanced readability metrics. This
approach aids in creating models that explain how
humans understand and process text, as well as
factors influencing reading speed. Imperial and
Madabushi (2023) and Rooein et al. (2023) use lan-
guage models for content generation over text sim-
plification tasks and controlling readability scores
for specific age and educational levels. They show
the limitations of the LLLMs in adaptation to the
specific educational grades.

6.2 Question Answering Datasets in
Education

The review study by AlKhuzaey et al. (2023) about
the literature on item difficulty prediction reveals a
significant shortage of publicly accessible datasets
with items that are labeled according to their dif-
ficulty levels. For example, Hsu et al. (2018)
gathered their dataset from national standardized
entrance tests that often concentrate on the med-
ical and language fields, annotated with the per-
formance data of 270,000 examinees. This study
includes the necessity for a publicly accessible col-
lection of standardized datasets and the need for
further exploration into alternative methods for fea-
ture elicitation and prediction modeling. The lack
of publicly available datasets for measuring dif-
ficulty has led researchers toward the domain of
Automatic Question Generation (AQG) in recent
years. Typically, AQG tends to be more straightfor-
ward in structure and cognitive demand compared
to questions written by humans. Most of these
automatically generated questions are basic, pri-
marily addressing only the first level of Bloom’s
taxonomy, which is focused on recall (Leo et al.,
2019). Another source of educational datasets is
retrieved from online learning platforms or web-
sites specific to the study’s domain. An example
includes the collection of 1657 programming prob-
lems from LeetCode?*, labeled with the number of
solutions submitted and the pass rate for each prob-
lem. Additionally, fewer datasets are from domain-
specific textbooks and preparation books, particu-
larly prevalent in the language domain for their role

4https: //leetcode.com
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in training students for language proficiency exams.
The remaining sources were developed by domain
experts to meet specific study goals, and according
to AlKhuzaey et al. (2023), only 7% from school
or university-level assessments.

The Stanford Question Answering Dataset
(SQuAD), developed by Rajpurkar et al. (2016)
in 2016, features 150,000 questions in the form of
paragraph-answer pairs sourced from Wikipedia
articles. This dataset was utilized by Bi et al.
(2021) to develop and test their models for predict-
ing the difficulty of reading comprehension ques-
tions. Lu et al. (2022) created a new multimodal sci-
ence question-answering datasets, which includes
21,000 English passages from school reading ex-
ams, each accompanied by four multiple-choice
questions. The ScienceQA dataset provides sev-
eral metadata fields associated with each question,
including extensive solutions and general explana-
tions. In contrast to SQuAD, this dataset demands
more advanced reasoning abilities to answer its
questions.

7 Conclusion

Good teachers succeed in making the material un-
derstandable for their respective audiences. This
adaptation is a complex process which goes well be-
yond replacing individual words and phrases. How-
ever, existing Static metrics for text difficulty, like
the Flesh-Kincaid Reading Ease score, still focus
on precisely those elements. As a result, these
metrics are crude and brittle, failing to adapt to
new domains and working mainly on long-form
documents.

Large Language Models are increasingly used in
educational domains and offer ways to go beyond
individual word replacement due to their general
language capabilities. However, at the same time,
they still struggle to adapt to precise education
levels. To effectively automate text adaption to
education levels, we need to measure the success
of that adaptation, which requires more flexible
metrics than the ones we currently have.

We introduce a suite of prompt-based Neural
metrics for text adaptation based on a user study.
We empirically show that these metrics, in com-
bination with traditional Static metrics, improve
text difficulty prediction. Our work opens up new
avenues for the use of LLMs in educational appli-
cations.

Ethical Considerations

The participants in the user study we used in our
paper were student volunteers of a course on re-
lated topics. They were able to leave the study at
any point, and were compensated in course credits
that could be counted towards their study program.
The study was conducted in accordance with the
rules of the host university and passed their ethics
assessment. The risk for harm to the participants
in this setting was assessed as minimal.
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A Selected Prompts from the User Study

We collect the top prompts of the students from
the chat history with analytical, manual, and Al
Assistant (ChatGPT).

A.1 Elementary School:

- Simplify a text for elementary school, using sim-
ple language for 6-12 year olds. - Create an el-
ementary version of a high school lecture text. -
Simplify a high school text for elementary school.
- Explain in a way an 8-year-old would understand.
- This is a text meant for high school students. Can
you help me make an appropriate version for ele-
mentary school students with very simple language
and comprehensive, easy-to-understand examples?

A.2 Middle School:

- Give examples from middle school lectures. -
Adapt a high school text for middle school, using
less advanced language. - Be more textbook-like
and more to the point for level of middle school.
- Adapt content for a student in middle school. -
Simplify a lecture text for middle school, using
illustrative examples.

A.3 High School:

- Enhance scientific accuracy and add comprehen-
sive examples for high school level. - Adapt a
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middle school text for high school, using advanced
language. - Increase difficulty for high school, with
advanced vocabulary and scientific concepts. - Can
you make it more scientific and less story-telling-
like? - Increase difficulty level with comprehensive
examples.

B Parameter settings

The Static matrics are collected by Python pack-
ages such as pandas, textstat, spacy, wordfreq,
and wordfreq. We use _en_core_web_sm param-
eter from the spacy model. For Regression model,
we use sklearn package and SelectKBest with
f_classif score function.

C List of Metrics

Static Metrics. num_words: Number of words in
the text. num_sentences: Number of sentences
in the text. type_token_ratio: Ratio of unique
words to total words, indicating vocabulary rich-
ness. avg_word_length: The average length of
words in the text. academic_word_list_ratio:
Ratio of academic or domain-specific words
to total words. complex_words: Number of
complex words, often based on syllable count
or other criteria. mtld: Measure of Textual
Lexical Diversity, a metric for vocabulary rich-
ness. num_unique_tokens: Number of unique
words or tokens in the text. avg_sent_length:
The average length of sentences in the text.
std_sent_length: The standard deviation of sen-
tence lengths, indicating sentence length variation.
clauses_sentences_ratio: Ratio of clauses to
sentences, providing insight into sentence com-
plexity. pos_ratios: Ratios of different parts of
speech (e.g., nouns, verbs) in the text. FKGL: Flesch-
Kincaid Grade Level, an estimate of the text’s read-
ability. FKES: Flesch Reading Ease score is a read-
ability measure for US education systems. ttr:
TypeToken Ratio. brunet_index: A metric for
text diversity and richness. d_measure: A mea-
sure of lexical diversity. yules_k: Yule’s K, a
measure of text’s distribution of word frequencies.
herdan_c: Herdan’s C, a metric for vocabulary
richness. simpsons_di: Simpson’s Diversity In-
dex, indicating the diversity of words in the text.
entropy: A measure of information entropy, indi-
cating unpredictability or randomness of the text.
Neural Metrics. Is this readable for an elemen-
tary school student based on the Flesch-Kincaid
grade scale?, Is this suitable for an elementary
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school student?, Is this easy to understand for el-
ementary school students?, Is this relevant to cur-
riculum topics for elementary school students?, Is
this relevant to the knowledge and experiences of
elementary school students?, Is this content suit-
able for meeting the expected knowledge level of
elementary school students? Is this able to provide
detailed feedback to help elementary school stu-
dents learn?, Is this appropriate for the skill level
of elementary school students?, Is the length of
this suitable for elementary school students?, Is
this readable for a middle school student based on
the Flesch-Kincaid grade scale?, Is this suitable
for a middle school student?, Is this easy to under-
stand for middle school students?, Is this relevant
to curriculum topics for middle school students?, Is
this relevant to the knowledge and experiences of
middle school students?, Is this content suitable for
meeting the expected knowledge level of middle
school students? Is this able to provide detailed
feedback to help middle school students learn?, Is
this appropriate for the skill level of middle school
students?, Is the length of this suitable for middle
school students?, Is this readable for a high school
student based on the Flesch-Kincaid grade scale?,
Is this suitable for a high school student?, Is this
easy to understand for high school students?, Is
this relevant to curriculum topics for high school
students?, Is this relevant to the knowledge and
experiences of high school students?, Is this con-
tent suitable for meeting the expected knowledge
level of high school students? Is this able to pro-
vide detailed feedback to help high school students
learn?, Is this appropriate for the skill level of high
school students?, Is the length of this suitable for
high school students?, Does this contain metaphors
and/or figurative language?, Does this contain a
complex language structure?, Does this contain
technical jargon?, Is the language of this simple?,
Is this about science?, Is this about language sci-
ence?, Is this about natural science?, Is this about
social science?, Is this about math?, Is this about
physics?, Is this about chemistry?, Is this about
earth science?, Is this about world history?, Is this
about geography?

D Details over Mistral-7B and GPT-4
Models

We describe the performance of Mistral-7B over
the subset of our dataset with 4500 samples (1500
samples for each educational level) and GPT-4 for



450 samples (150 for each educational level).

Method Macro-F1 Accuracy (%)
NEURAL Reg. 0.37 41.66
STATIC Reg. 0.73 74.00 . .
COMBO Reg. 0.76 773 Level Precision Recall F1-Score
= Elem. 0.59 0.34 0.43
Zero-shot LLM 37 : ~
cro~ 03 3690 % Middle 0.55 0.1 0.18
Table 5: Overall performance for difficulty level classifi- z High 0.36 0.91 0.51
cation on our ScienceQA testset. NEURAL metrics and O  Elem. 0.76 0.88 0.82
zero-shot LLM classification use the Mistral-7B model. & Middle 0.81 0.45 0.58
Best performance is highlighted in bold. ; High 0.68 0.94 0.79
S Elem. 0.80 0.90 0.85
Method Macro-F1 Accuracy (%) % Middle 0.82 0.51 0.63
O High 0.71 0.94 0.81
NEURAL Reg. 0.55 54.44
STATIC Reg. 0.74 74.44 Table 7: Performance for difficulty level classification
COMBO Reg. 0.76 76.22 on ScienceQA testset, split by level. NEURAL metrics
Zero-shot LLM 0.56 54.88 use the Mistral-7B model. Best performance per level

is highlighted in bold.

Table 6: Overall performance for difficulty level clas-
sification on our ScienceQA testset. NEURAL metrics
and zero-shot LLM classification use the GPT-4 model.
Best performance is highlighted in bold.

Level Precision Recall F1-Score

2 Elem. 065 057 0.61
% Middle 041 038 0.39
Z High 0.57  0.74 0.64
O Elem. 0.87  0.74 0.80
< Middle 0.68  0.72 0.70
“  High 0.69  0.78 0.73
2 Elem. 0.81 0.74 0.78
= Middle 0.65  0.69 0.67
O High 071  0.74 0.73

Table 8: Performance for difficulty level classification
on our ScienceQA testset, split by level. NEURAL met-
rics use the GPT-4 model. Best performance per level is
highlighted in bold.
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Rank Metric F

Is this easy to understand for elementary school students? 79.75%*%
Does this contain metaphors and/or figurative language? 42.20%%*
Is this readable for elementary school students 40.80%**

Is this appropriate for the skill level of elementary school students?  35.65%**
Is this relevant to curriculum topics for elementary school students? 16.57***

Static Metrics | Neural Metrics
DN AW N = WD W N =

Herdan’s C (measures lexical diversity) 348.82%**
Entropy (measures variability or complexity) 346.36%**
Flesch-Kincaid Reading Ease (measures readability) 284.60%***
Simpson’s Diversity Index (measures lexical diversity) 255.80%**
Flesch-Kincaid Grade Level (measures the school grade level) 235.771#**

Table 9: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. NEURAL metrics use the Mistral-7B model.
*#* indicates significance at >99.999% confidence.

Rank Metric F
s 1 Is this appropriate for the skill level of elementary school students? 62.38%*%*
5 2 Does this contain a complex language structure? 58.04%**
E 3 Is this easy to understand for elementary school students? 46.72%*%*
§ 4 Is this suitable for an elementary school student? 34.43%%*
£ 5 Is this about earth science? 27.T1%%%
s 1 Herdan’s C (measures lexical diversity) 916.40%**
g 2 Entropy (measures variability or complexity) 875.73%*%*
% 3 Flesch-Kincaid Reading Ease (measures readability) T15.95%**
= 4 Simpson’s Diversity Index (measures lexical diversity) 686.87%*%*
ZI Number of unique tokens (measures length and lexical diversity) 629.00%**

Table 10: Top five most important features among the Neural and Static metrics. Feature importance is measured
using univariate F-tests. Larger F indicates higher feature importance. NEURAL metrics use the GPT-4 model. ***
indicates significance at >99.999% confidence.
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