Under review as a conference paper at ICLR 2026

TRAINING LLM AGENTS TO EMPOWER HUMANS

Anonymous authors
Paper under double-blind review

ABSTRACT

A truly helpful assistive agent should not only take actions on behalf of a human,
but also step out of the way and cede control when there are important decisions
to be made. However, current methods for building assistive agents, whether
via mimicking expert humans or via RL finetuning on an inferred reward, often
encourage agents to complete tasks on their own rather than truly assisting the
human attain their objectives. Additionally, these methods often require costly
explicit human feedback to provide a training signal. We propose a new approach to
tuning assistive language models based on maximizing the human’s empowerment,
their ability to effect desired changes in the environment. Our empowerment-
maximizing method only requires offline text data, providing an unsupervised
method for fine-tuning language models to better assist humans. To study the
efficacy of our approach, we conducted an 18-person user study comparing our
empowerment assistant with a strong baseline. Participants preferred our assistant
78% of the time (p = 0.015), with a 31% higher acceptance rate and 38% fewer
suggestions. Additionally, we introduce a new environment for evaluating multi-
turn code assistance using simulated humans. Using this environment, we show
that agents trained with empowerment increase the success rate of a simulated
human programmer on challenging coding questions by an average of 192% over
an SFT baseline. With this empowerment objective, we provide a framework for
useful aligned Al agents at scale using only offline data without the need for any
additional human feedback or verifiable rewards. !

1 INTRODUCTION

Software developers today face a challenge when using LLM coding agents: code suggestions start
out helpful but then start implementing the wrong functions. Often an assistant will suggest a huge
block of code, the user accepts it, and then they have to spend time fixing the one part it got wrong,
such as an incorrect assumption the assistant made. How can we develop coding assistants that still
produce helpful generations, but also know to stop their generations at critical junctures? While this
problem is especially salient for coding assistants (the focus of this paper), such problems are likely
to recur in applications from assistive robotics to interacting with autonomous agents (Chen et al.,
2021; Trivedi et al., 2024).

Optimizing for helpfulness is challenging. Gathering explicit human labels is expensive and time-
consuming. Additionally, it is unclear how this sort of helpfulness can be learned from traces of
a human expert — the problem is not that generations are unrealistic, but rather that they may be
solving a problem that is different from what the user intends. One approach to this problem is for
agents to ask clarifying questions to better infer the intentions of human users. However, this style of
assistance requires interrupting the user, possibly impeding their flow and making the interaction feel
burdensome. In many situations, it is desirable to have an assistant which does not rely on querying
the user.

The key observation in this paper is that assistive agents can be helpful, even if they do not know
a human’s intention, if they aim to empower the human user. Intuitively, empowerment refers to
an agent’s ability to effect changes in the environment. Rather than asking a human for explicit
feedback, the LLM will automatically assess the usefulness of its actions by estimating whether
they enable a human to solve more tasks more quickly. In coding contexts, empowerment might

'Website and code: https://anonymous.4open.science/r/codegen—384F/

https://anonymous.4open.science/r/codegen-384F/

Under review as a conference paper at ICLR 2026

correspond to implementing helper functions, writing boilerplate, or wrapping up lines of code.
Mathematically, we codify empowerment with a mutual information that measures the degree of
control that an agent’s actions exert on states that occur in the future (Klyubin et al., 2005). The
assistive setting, where there are two agents (an assistant and a human), requires a more nuanced
definition of empowerment: we aim to empower the human agent, enabling the human user’s actions
to exert a larger influence over future outcomes (Du et al., 2020; Myers et al., 2024). An agent that
maximizes the human’s empowerment will help them reach goals more effectively, without assuming
any prior reward structure. Similar empowerment objectives are used in psychology to explain certain
facets of human learning (Gopnik, 2024).

We use code generation as a context for studying empowerment-maximizing assistants because it is
one of the few real-world applications today where humans regularly interact with assistive agents
(e.g., Github Copilot). It is also an appealing starting point because preexisting datasets (Jain et al.,
2024) allow us to measure the efficacy of empowerment maximization in a rigorous way.

Contributions. In this paper, we derive a practical and scalable algorithm for training LLM
agents to maximize empowerment, and demonstrate its effectiveness in the code generation setting.
Specifically, our work has the following contributions:

1. Empower method (Section 4.2). We propose Empower, a method for aligning LLM agents to
work with humans based on the objective of maximizing effective empowerment. Our method
provides a proof-of-concept for training an LLM agent to maximize a human’s empowerment.

2. Simulated results (Section 5.2). We demonstrate simulated results in LiveCodeBench (Jain
et al., 2024), and show that tuning an LLM to maximize empowerment leads to a higher Pass@ 1
without explicit human feedback. Evaluating with a Gemma-3-27B-it human, a Llama-3.1-8B-
Instruct model trained with Empower over doubles the Pass@1 rate compared to the strongest
baseline.

3. User study (Section 5.3). We demonstrate in a user study that people prefer our empowerment
assistant over a baseline. Participants preferred our assistant in practice 78% of the time (p =
0.015), and accepted our assistant’s suggestions 31% more often than the baseline’s suggestions
(p = 0.0002). Additionally, participants tended to delete 26% fewer characters they had accepted
from our method than from the baseline (p = 0.012). This amounts to a stronger assistant that is
more likely to suggest code the user will accept and actually use.

Taken together, our results demonstrate that LLM assistants can be trained without receiving feedback
or interaction from humans by reasoning about how their actions might enable humans to complete
more tasks more quickly.

2 RELATED WORK

Past work has studied empowerment in the context of intrinsic motivation and reinforcement learning.
Our contribution is to connect empowerment to the problem of aligning LLM agents to human users,
showing that the empowerment objective can provide a scalable unsupervised learning signal for an
LLM agent aiding a human in an assistive setting.

Empowerment. Informally, empowerment quantifies the influence an agent’s actions have over
outcomes in the environment. Empowerment has traditionally been defined as the channel capacity
between a sequence of actions and the following state (Klyubin et al., 2005; 2008; Salge et al.,
2014). Empowerment objectives have been used in single-agent reinforcement learning to enable
intrinsic motivation and exploration (Choi et al., 2021; de Abril and Kanai, 2018). More recently,
empowerment has been explored for collaborative settings, where a robot assistant learns to maximize
the empowerment of a human user. Du et al. (2020) propose the AVE algorithm which enables
assistance by computing empowerment with random rollouts. Myers et al. (2024) adopt a modified
objective, the effective empowerment, which can be learned with a scalable contrastive objective.
However, these prior works typically use simple gridworld-like or video game-like environments. To
the best of our knowledge, ours is the first to apply this principle to train LLM agents, applying it at
scale to a realistic coding task. This is enabled by our insight that LLM uncertainty can be used to
identify key decision points, and we can empower people by helping them reach those points.

Under review as a conference paper at ICLR 2026

Current state 5t

. . - +
import sys Possible Alternate Suffix \ 9
def read n(): def main(): ===
for i in range(n):
return n e
print ("Done!")

True suffix st
def two_sum(n, target):
seen = {}
;éturn result main \(/)
branch point:
e def U
........ -- . P S --
R LB_ ' LD_
. > two _ sum
\‘ .

Figure 1: Illustration of our empowerment method. An LLM generates the cumulative likelihood
of the suffix, shown below each token. Empowering completions are selected as the longest suffix
where the cumulative likelihood is greater than a threshold. This trains the assistant to complete text
up to a decision point. Then, the human will have more choices about where to take the program, so
their next action is empowered.

Learning from Human Preferences. Many methods attempt to align Al agents by updating
the agent with human preference information. Christiano et al. (2017) used an online stream of
human preferences to train a reward model concurrently with an actor-critic policy. This method
(RLHF) was later adapted to align LLMs to human preferences, enabling conversational agents
like InstructGPT (Stiennon et al., 2020; Ouyang et al., 2022; Dong et al., 2023). These methods
often use PPO or related policy-gradient methods to fine-tune a pre-trained LLM (Schulman et al.,
2017; Sutton and Barto, 2018; DeepSeek-Al et al., 2025). Learning and optimizing a reward model
can be expensive or unstable, leading to alternative methods like DPO (Rafailov et al., 2024) and
IPL (Hejna and Sadigh, 2023) that directly optimize the policy to match human preferences without
an intermediate reward model. Training with human feedback faces key limitations: human values
may be difficult to represent with reward functions (Casper et al., 2023), they may change over
time (Carroll et al., 2024), and optimizing them may lead to misaligned behaviors like power seeking
and manipulation (Williams et al., 2024). Our empowerment objective offers an alternative strategy
for aligning LLMs which instead completes tasks for the human that are obvious and general, rather
than aligning assistance to a set of preferences.

Self-Supervision for LLMs. There is existing precedent for having LLMs provide their own
feedback, as in “self-critiquing” methods that are common in mathematical and logical reasoning
applications (Yao et al., 2024; Madaan et al., 2024; Shinn et al., 2024). In contrast, our work places
the human back at the center: rather than optimizing an LLM to produce text that another LLM thinks
is correct, we optimize an LLM to produce code that enables a human to solve more tasks more
quickly.

Assistive Agents. One mathematical framework for assistive agents is the assistance game (Hadfield-
Menell et al., 2016). The assistance game extends the standard Markov decision process (MDP)
definition to include two agents, a human H and a robot agent R, which interact in a shared environ-
ment to maximize a joint reward that is only known to the human. The agent must combine inference
of the human rewards/goals with reinforcement learning to optimize the inferred objective (Carroll
etal., 2019; 2024; Hadfield-Menell et al., 2017; Laidlaw et al., 2024). Methods that learn from human
preferences, such as RLHF (Christiano et al., 2017) and DPO (Rafailov et al., 2024), can be seen
as special cases of the assistance game where the human’s actions only exist to provide information
about the reward to the agent. Empowerment methods are a special case of assistive games, where
empowerment objective as a proxy for the human’s reward function (Myers et al., 2024). Our work
builds on this foundation to study how empowerment methods might be scaled to align LLMs.

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

We cast the problem of an LLM agent assisting a human as a Markov decision process (MDP). The
state is the program text at the given timestep. At each state, the LLM agent action suggests a piece
of text to append to the conversation. The human agent first chooses to ACCEPT or REJECT the
suggestion, or FINISH writing the program. Then, unless they choose to FINISH, they will append
some number of tokens.

Notation. In this assistance MDP, the human policy 7y selects an action a® € Ag, and the LLM
agent’s policy g selects an action a® € Ag to complete the code snippet. Let £ be the set of possible
tokens. The human’s actions are Ag = {{ACCEPT} x L5KH [REJECT} x L5KH FINISH},
where ACCEPT appends the LLM agent’s suggestion to the conversation followed by the human’s
own text, REJECT does not append the suggestion and only appends the human’s text, and FINISH
ends the episode. Here, Ky is the maximum number of tokens typed per step by the human. The
LLM agent’s actions are Ar = LSXR, where the agent suggests a maximum of Kg tokens to
append to the conversation.

The dynamics are then defined by the following transitions:

(st,aft, 0) for af! = (ACCEPT, /)
Si41 = 4 (5¢,0) for af! = (REJECT, /)
1 for af! = FINISH.

We will define random variables s; and af! to denote the state and human action at time step ¢.

Empowerment. We will define empowerment using the mutual information I(-; -) between two
random variables. In a single-agent MDP, empowerment is defined by Klyubin et al. (2005) as the
channel capacity between a sequence of n actions and the resulting state n steps into the future:

C(p(si4n | af,8¢)) & max I(a};si4n | 5¢). (1)
p(ai|s:)

Informally, this objective states that empowerment is the maximal degree to which the next n actions
ay selected in the MDP can impact the resulting state s.,. This objective is intuitively appealing
because it provides a mathematical way of quantifying whether an assistive agent’s actions are useful,
without knowing the humans reward function. However, it is challenging to use this objective in
practice because (i) it involves optimizing over a sequence of actions, and (ii) mutual information is
still non-trivial to compute in high-dimensional environments or over long horizons.

4 MAXIMIZING EMPOWERMENT OVER LANGUAGE

In this section we discuss how to train empowering assistants in the language domain. Empowerment
is a useful objective for assistance because it helps people quickly reach states where they have many
choices, so it takes broadly useful actions that are helpful for the most people. This leads to a more
natural type of assistance that doesn’t make assumptions about, or even try to infer, the human’s goal.

Section 4.1 introduces the notation we use. Section 4.2 describes Empower, our practical method
for choosing completions to train the assistant. We take the longest completion where the cumulative
likelihood of the completion, as judged by an LLM, is above a certain threshold. Section 4.3
shows that, under certain assumptions, our method is computing an approximate upper bound on
the empowerment of a completion. We train the LLM assistant to complete text that has a low
empowerment — text that is predictable — so that the human doesn’t have to write it. Instead, the
human can focus on important design decisions, rather than boilerplate code.

4.1 NOTATION

To train our assistant, we assume access to a dataset of text written by the human, ¢1.7 ~ 7g.
Here, 7' is the total number of tokens in a particular document, and /;.; indexes the tokens from
i to 7 inclusive. For each piece of text in the dataset, we first sample a state ¢1.;, by uniformly

Under review as a conference paper at ICLR 2026

Algorithm 1: Logit Threshold Empowerment (Empower)

Input: A text document /1.7 with sampled state /1.,
Output: Empowering suggestion ¢;1.¢4;+ for state £7.;

1: forie {1...T} do > Loop through the possible completion lengths
2: H«+ — log (L1444 | C1:t) > Compute the one-sample entropy
3: if > 7 then > Check if estimated entropy exceeds threshold
4. | return {yyq.4451 > Return the last index that was below threshold
5: return {y 1.7 > Entropy is always within bounds, so return rest of program

sampling ¢ € [1,T]. Define ¢ to be the length of the completion after the state that we train on. That
is, we train the assistant to output #;1.;4; when it is given ¢;., as the state. The difficulty lies in
choosing the appropriate length of completion to train on. Similarly, let Eg_l represent the random
variable of the next token that the human writes, and let £ be a random variable over possible future
text. Additionally, 7 (€144 | ¢1.+) denotes a conditional probability distribution over possible
completions. We will choose this to be a pre-trained LLM.

4.2 OUR ALGORITHM: EMPOWER

When the human writes boilerplate code, they have a low empowerment because their actions are
easily predicted, so they carry little information about the future. To empower the human, an assistant
should be trained to complete this predictable text so that the human doesn’t have to. Our insight
is that we can use an LLM, 7, to estimate how likely a completion is. We therefore propose the
following algorithm to choose completions to train our assistant on:

it = argmiax{z’ : —log @t (les1ie4i | L) <7} 2

This optimization chooses the largest completion length, ¢, such that the negative log likelihood
of that completion as judged by an LLM is below a threshold 1 which we choose. This can
equivalently be viewed as choosing the longest completion length, 7, where the cumulative likelihood
of the completion is greater than 27"7. We write the optimization with a negative log likelihood to
highlight that it is a one-sample estimate of the entropy. This mathematically connects our method to
empowerment, which we will explain further in Section 4.3.

During training, we first sample a program from an offline dataset, then sample a prefix to that
program which becomes the state ¢1.;. Any suffix is a possible completion. We train on the suffix
l441.4+4+ chosen by Equation (2). Intuitively, we are training the assistant on obvious completions —
those that the LLM thinks are likely — thereby leaving the human to write more impactful text in the
future. We summarize our method in Algorithm 1, and show an illustration in Figure 1.

4.3 MATHEMATICAL CONNECTIONS WITH EFFECTIVE EMPOWERMENT

Under some assumptions, our algorithm can be viewed as training the assistant to suggest text
that would have a low empowerment for the human to write. We use the effective empowerment
objective (Myers et al., 2024), which provides a computationally-tractable alternative to the canonical
empowerment objective (Klyubin et al., 2005) (see Equation (1)). Effective empowerment is defined
with respect to a specific policy, g, and a future state £7. We define the effective empowerment at a
state ¢1.; as:

E(mer,) 2 T 1507 | £120). 3)

This is the same objective introduced in (Myers et al., 2024), but with v = 0. This objective
measures the impact that the human’s action has on their future state. We can upper-bound the mutual
information with an entropy:

I(Et}—li-17é+ | glzt) = H(Egl | El:t) - H(ét}—l',-l ‘ €+7€1:t)
< H((E | bry).
If we can estimate H (EHH | ¢1.+), we can estimate an upper bound for single-action empowerment.

Computing this entropy exactly requires knowing the true human policy, 7y (Egl | £1.¢+), which we
don’t have access to. Instead, let’s assume access to another likelihood estimator, 7 (¢f%, | ¢1.,),

Under review as a conference paper at ICLR 2026

Llama-3.1-8B-Instruct Assistant

0.2 5
2 06 & 0.15
— 0.15 s 2
© z & 01
2 01 g 04 i g C
& g £
0.05 I 2 02 5 005 1
9
0 < \] Q Q 0 g \] Q Q 7 A 0 S N\ Q Q
Q (4 Q
0é ¢ Q&W Q&\ ;}a'\ ‘b‘b% e‘& Q‘Vw Q"\ %@'\ @‘)% oé ¢ Q&W Q&\ etf\ 45’%
P A P
Qwen3-8B Assistant
Q
0.2 o 06 S
1 S 2
5 g 04 A
é 0.1 ‘g g
S 0.2 3
0.05 < 2
0 0 S \] O QO 5
g \} Q Q Q Q
FTEEE S FEEE S
P & o9
Qwen3-14B Assistant
0.2 %
0.15 g 08 P
. = @
5 & g
2 0.1 g 04 2
g i g g I
0.05 < 02 g
Z
0 S \] QO Q 7 0 g N\ Q QO = S N QO Q 7
& N & & DN N & 3 N &
S L SHEE LS ST &
& T TN & T % & T T

Figure 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower to outperform all baselines in terms of pass@1 and DPR.
Error bars show standard errors.

which can approximate the human’s marginal likelihood of any action at a given state. Then we can
approximate the human’s marginal entropy H (EEH | £1.¢) by sampling an action from the human
and using a one-sample monte carlo estimate:

HE | 1) = —log (05| | £14).

In practice, we choose our human entropy estimator 7 to be a pre-trained LLM. Our estimated upper
bound on the empowerment becomes:

E(ma, b)) S —log A(LER | L1.4).

While this is a rough approximation of the entropy, it works well in practice for the purpose of
choosing empowering completions, and is simple to implement. Under these assumptions, the
algorithm described by Equation (2) can be seen as training an assistant to complete text which is
predictable, and therefore would not be empowering for the human to write.

5 EXPERIMENTS: CODE GENERATION

Our experiments apply the empowerment framework discussed in Section 4 to the task of code
generation. In Section 5.1, we describe our experiment setup. We then evaluate our method in a novel
simulated setup using LiveCodeBench (Section 5.2), after which we validate our findings in the real
world by running an 18-person double-blinded human study (Section 5.3).

Under review as a conference paper at ICLR 2026

5.1 EXPERIMENT SETUP

Datasets. We train all models and methods using a dataset of 4,138 unique questions from Code-
forces?, each of which is paired with one attempted solution by Gemma-3-27B-it (Team et al., 2025).
We do not filter the dataset for success on the testcases.

Models. We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Qwen3-8B (Yang et al., 2025),
and Qwen3-14B (Yang et al., 2025) as assistant models. For the simulated setting, we use Gemma-3-
27B-it (Team et al., 2025) as the human model. The prompts we use are provided in Appendix D. We
use all models with their default sampling parameters.

Baselines. We compare against both trained and untrained baselines. (1) SFT-N finetunes the
assistant on the next IV tokens that the human wrote in a particular state, followed by a stop token.
This should teach the model to output correct suggestions which are not too long, so that they don’t
make too many assumptions about what the human is trying to do. We evaluate SFT-10 and SFT-20.
(2) SFT-RAND trains on random human completions between 1 and 30 tokens long to avoid biasing
too much towards a specific completion length. (3) Base is simply the base assistant model without
any training or restrictions on top. (4) Base-N is the same as Base, but we cap the suggestion length
at N tokens. We include this baseline since we hypothesize that shorter completion lengths are more
likely to be accepted. We evaluate Base-10 and Base-20.

Our Method. Our method, Empower, trains on completions returned from Algorithm 1, which
we run on all completions in the training dataset before the start of training. We use the untrained
base assistant model as our likelihood estimator, 7. Crucially, we do not provide the likelihood model
access to the relevant Codeforces problem, only the text in the state (i.e. the completion tokens
written so far).

5.2 EVALUATING THE VALUE OF EMPOWERMENT IN A SIMULATED SETUP

To evaluate the empowerment assistant with a simulated human, we adopt the MDP structure
described in Section 3 where the assistant proposes suggested code completions which the human
may accept or reject, and then append their own code. We limit the human action size to Ky = 10
tokens and the number of rounds of human and assistant actions per problem to 50. We evaluate
on LiveCodeBench (Jain et al., 2024), a benchmark of competitive programming problems that is
regularly updated. We restrict the benchmark to problems from release #6 to avoid contamination.

Evaluation Metrics. To evaluate the performance of Empower compared to the baselines, we
propose the following three different evaluation metrics. (1) Pass@1 measures the success rate of the
generated code snippets by evaluating them on the problem testcases, counting a success only if all of
the testcases pass. The results are averaged across all problems in the dataset. (2) Acceptance rate
provides a measure of the human’s preference for one assistant’s suggestions over another’s.

(3) Discounted Pass Rate (DPR). A higher acceptance rate is not always beneficial if the suggested
completions are not more helpful. Occasionally an assistant will propose a completion which looks
good, but actually introduces a bug or confuses the human, leading to a lower pass@]1. Similarly, a
lower acceptance rate can lead to a higher pass@ 1, making an assistant appear better even though
the real gain in performance is from the human solving the problem on their own. Therefore, we
introduce a new metric which we call the Discounted Pass Rate (DPR), which is a better measure
of good assistance because it accounts for both the pass rate and the amount of text the human had
to read and write to get to a successful program. An assistant that makes long suggestions will
occasionally be correct, however, more often than not the human will waste effort checking if an
incorrect suggestion is correct. The DPR for a particular solution is defined as:

_ «-Tokens Read+3-Tokens Written
DPR = 1Correcl Solution * 7Y A (4)

The constant « specifies how “difficult” it is for the human to verify text that the assistant has
suggested. Similarly, 3 specifies how “difficult” it is for the human to write text on their own. Under

2https://hugqingface.co/datasets/MatrixStudio/CodeforcesnythonfSubmiss
ions

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

Under review as a conference paper at ICLR 2026

Human Study Results
Most Enjoy (1) Most Relevant (1) Accept Ratio (1) Characters Deleted (|)
5 1 5 ! 0.1 T
g 08 g 08 £ 0.08 { gl £ 15
2 : ; 2
< 0.6 < 0.6 [f 0.06 2 10 I
% 04 % 04 & 0.04 ke
= = g g 5
2 02 2 02 S 0.02 £
=% A _g
0 0 0 5 0
Qe ‘)g@ Qe ‘)r}‘ QB ‘bgz Qo ‘b?}(
Q)‘Q A @& A @é‘ D @é‘ A

Figure 3: Human study results with the Llama-3.1-8B-Instruct assistant. Exact 95% confidence
intervals are shown for Most Enjoy and Most Relevant as they represent Bernoulli data. Standard
error bars are shown for Accept Ratio and Characters Deleted. In all cases, participants preferred
using our Empower assistant.

this metric, the best assistant will help the human have the highest pass rate, while only suggesting
completions which are most likely to be accepted and bring the program closest to its conclusion. This
measures how useful the assistant is at generating correct solutions, not just how often it convinces
the user to accept their flawed suggestion. To get the total DPR, we take the mean across all problems
in the benchmark. In this work, we use v = 0.999, o = 0.1, and 8 = 0.5 to represent that it is often
more difficult to generate than to verify, as well as to prevent the DPR of a long but correct solution
from approaching 0.

Optimizing the DPR directly requires training with real human interaction data, or using an accurate
human model, both of which are challenging. Our results show that empowerment is able to increase
DPR and other metrics with an entirely offline dataset.

Quantitative Results. Comparisons between the baselines and our method with n = 0.32 are
shown in Figure 2, using Gemma-3-27B-it as the simulated human model. Empower outperforms all
baselines on pass@1, accept ratio, and DPR. It is worth noting that the accept ratios of Empower and
Base-10 are close for Llama-3.1-8B-Instruct and Qwen3-8B . We hypothesize that shorter suggestions
are more likely to be accepted, which is why Base-10 has a higher acceptance rate. However, in that
case, acceptance ratio does not correspond to a higher Pass@1, and therefore the DPR is lower. Just
because a suggestion is short does not mean that it is correct. Empower tends to output suggestions
which are more likely to be accepted and at the same time are also more likely to create correct
programs.

We also perform the same set of experiments with Llama-3.3-70B-Instruct as the human model, for
which we show results in Table 1 of Appendix B. Empower similarly beats the baseline on pass@1
and DPR. See Appendix B for the full numeric results.

5.3 HUMAN STUDY: EVALUATING EMPOWERMENT FOR REAL-WORLD CODE ASSISTANCE

To evaluate empowerment at scale, we conducted an 18-person double-blinded user study in a
code-generation setting with an assistant, similar to GitHub Copilot. Participants were randomly
assigned to complete one of two python coding problems with corresponding testcases. The editor
was configured to log whenever they accepted a suggestion or typed a character. They first spent
25 minutes attempting the problem with no assistant. Then, they spent 15 minutes attempting the
problem with Assistant 1, took notes on what they liked and didn’t like about it, and then repeated
this step for Assistant 2. Finally, they were asked to rank the assistants on several metrics including
how relevant they found the suggestions and which assistant they would most enjoy using in practice.
The order of the assistants was randomized and hidden from the researcher’s view.

To choose which two assistants to compare, we ran a pilot study with Llama-3.1-8B-Instruct as the
assistant. Participants in the pilot tended to prefer Empower with n = 4, and the Base-20 baseline,
so we chose these to focus on for the full study.

Under review as a conference paper at ICLR 2026

Survey Results. We show the results of the study in Figure 3. Participants ranked the Empower as-
sistant as the one they would more enjoy using in practice 78% of the time, preferring Empowe r with
a p-value of 0.015. Additionally, they ranked our assistant as providing more relevant suggestions
61% of the time, although the result was not statistically significant with a p-value of 0.240. Although
both assistants tended to provide relevant suggestions, the Empower assistant was more judicious,
providing fewer suggestions overall. Participants preferred this approach to assistance, which we
attribute to the empowerment objective teaching the model to only complete as long as it is confident
about what the user will type next.

Quantitative Results. We also collected quantitative data about the user-assistant interaction. The
Empower assistant had an acceptance rate of 8.08% compared to the 6.18% of the Base-20 assistant.
Participants accepted suggestions from our assistant more with p = 0.0002. Participants also tended
to delete more accepted text from the Base-20 assistant than from ours. The average number of
deleted characters per accepted suggestion was 12.91 for Base-20 and 9.56 for ours with p = 0.0118.
On average, Empower suggested ~208 suggestions per user, whereas Base-20 suggested ~333.
The baseline also tended to give longer suggestions, at 82.2 characters per suggestion compared to
43.6 for Empower. These differences highlight the type of assistance that empowerment enables.
Rather than making decisions for the human, our empowerment objective trains an assistant that
completes the obvious and no more. This leads to a more natural interaction, and reduces the feeling
of frustration that comes from an assistant completing too much.

6 DISCUSSION

In this paper, we showed how assistive (LLM) agents can provide their own feedback signal for
learning by estimating how empowered a human coder is. Our logit threshold method tractably
computes empowering suggestions, which maximize the impact that the human will have.

While we demonstrated success in coding assistance, we expect that LLM assistants trained with
empowerment can be useful in many other domains, such as writing assistance or navigating an
application. These also include more agentic applications where the assistant can infer when the
human would predictably take an action, and instead take the action automatically. Our work enables
the training of these agents at scale by simply configuring the likelihood estimator for a given domain.

While there has been much discussion of LLM post-training methods in recent years, there has been
relatively less discussion of how these post-training methods are connected with the training objectives
of the underlying LLMs. LLMs are trained primarily on next-token prediction, a self-supervised
objective. Our work suggests that, in addition to training the base LLM with a self-supervised
objective, the post-training (i.e., alignment) might also be done with a self-supervised objective.

Limitations. All experiments were conducted on competitive programming problems. Real-world
code will often differ significantly in style and difficulty, which may require a more robust marginal
likelihood estimator. The application of empowerment to more general coding tasks is left for future
work.

REPRODUCIBILITY

To ensure that our results are reproducible, we provide a link to our code in Appendix A. The
algorithm we used is described in Section 4.2, and the exact prompts we used for the assistants are
detailed in Appendix D. The study instructions we provided to users, as well as the two problems
they attempted, are given in Appendix E.

ETHICS STATEMENT

The human study was conducted with Institutional Review Board (IRB) approval.

Empowerment methods may be used to create better assistive agents, improving the experience of
people who collaborate with LLMs. There is a risk of an assistant being trained to self-empower,

Under review as a conference paper at ICLR 2026

which would create a general power-seeking agent. However, our methods are focused on human-Al
collaboration, which does not pose this risk.

REFERENCES

Carroll, M., Foote, D., Siththaranjan, A., Russell, S., and Dragan, A. Al Alignment With Changing
and Influenceable Reward Functions. International Conference on Machine Learning, 2024.

Carroll, M., Shah, R., Ho, M.K., Griffiths, T.L., Seshia, S.A., Abbeel, P., and Dragan, A. On the
Utility of Learning About Humans for Human-AI Coordination. Neural Information Processing
Systems, 2019.

Casper, S., Davies, X., Shi, C., Gilbert, T.K., Scheurer, J., Rando, J., Freedman, R., Korbak, T., et al.
Open Problems and Fundamental Limitations of Reinforcement Learning From Human Feedback.
arXiv:2307.15217, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., et al. Evaluating Large Language Models Trained on Code. arXiv:2107.03374,
2021.

Choi, J., Sharma, A., Lee, H., Levine, S., and Gu, S.S. Variational Empowerment as Representation
Learning for Goal-Conditioned Reinforcement Learning. International Conference on Machine
Learning, pp. 1953-1963, 2021.

Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., and Amodei, D. Deep Reinforcement
Learning From Human Preferences. Neural Information Processing Systems, 2017.

de Abril, .M. and Kanai, R. A Unified Strategy for Implementing Curiosity and Empowerment
Driven Reinforcement Learning. arXiv:1806.06505, 2018.

DeepSeek-Al Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., et al. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948,
2025.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., Shum, K.,
and Zhang, T. RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment.
arXiv:2304.06767, 2023.

Du, Y., Tiomkin, S., Kiciman, E., Polani, D., Abbeel, P., and Dragan, A.D. AvE: Assistance via
Empowerment. arXiv:2006.14796, 2020.

Gopnik, A. Empowerment as Causal Learning, Causal Learning as Empowerment: A Bridge Between
Bayesian Causal Hypothesis Testing and Reinforcement Learning. 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A.,
et al. The Llama 3 Herd of Models. arXiv:2407.21783, 2024.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., and Dragan, A. Inverse Reward Design.
Neural Information Processing Systems, 30, 2017.

Hadfield-Menell, D., Russell, S.J., Abbeel, P., and Dragan, A. Cooperative Inverse Reinforcement
Learning. Neural Information Processing Systems, 29, 2016.

Hejna, J. and Sadigh, D. Inverse Preference Learning: Preference-Based RL Without a Reward
Function. Neural Information Processing Systems, 2023.

Jain, N., Han, K., Gu, A., Li, W.D., Yan, F., Zhang, T., Wang, S., Solar-Lezama, A., Sen, K., and
Stoica, I. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models
for Code. arXiv:2403.07974, 2024.

Klyubin, A.S., Polani, D., and Nehaniv, C.L. Empowerment: A Universal Agent-Centric Measure of
Control. IEEE Congress on Evolutionary Computation, volume 1, pp. 128-135, 2005.

Klyubin, A.S., Polani, D., and Nehaniv, C.L. Keep Your Options Open: An Information-Based
Driving Principle for Sensorimotor Systems. PLOS One, 3(12):e4018, 2008.

Laidlaw, C., Bronstein, E., Guo, T., Feng, D., Berglund, L., Svegliato, J., Russell, S., and Dragan, A.
Scalably Solving Assistance Games. ICML 2024 Workshop on Models of Human Feedback for Al
Alignment, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N.,
Prabhumoye, S., Yang, Y., et al. Self-Refine: Iterative Refinement With Self-Feedback. Neural
Information Processing Systems, 36, 2024.

10

https://openreview.net/forum?id=itYGbe0Cs1
https://openreview.net/forum?id=itYGbe0Cs1
http://arxiv.org/abs/1910.05789
http://arxiv.org/abs/1910.05789
https://arxiv.org/abs/2307.15217
https://proceedings.mlr.press/v139/choi21b.html
https://proceedings.mlr.press/v139/choi21b.html
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1806.06505
http://arxiv.org/abs/1806.06505
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2006.14796
https://arxiv.org/abs/2006.14796
https://philsci-archive.pitt.edu/23268/
https://philsci-archive.pitt.edu/23268/
https://arxiv.org/abs/2407.21783
https://proceedings.neurips.cc/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607028/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607028/
https://openreview.net/forum?id=xVS7dFKoMR

Under review as a conference paper at ICLR 2026

Myers, V., Ellis, E., Levine, S., Eysenbach, B., and Dragan, A. Learning to Assist Humans Without
Inferring Rewards. Neural Information Processing Systems, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang, C., Agarwal, S.,
et al. Training Language Models to Follow Instructions With Human Feedback. arXiv:2203.02155,
2022.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C.D., and Finn, C. Direct Preference
Optimization: Your Language Model Is Secretly a Reward Model. arXiv:2305.18290, 2024.

Salge, C., Glackin, C., and Polani, D. Empowerment—an Introduction. Guided Self-Organization:
Inception, (arXiv:1310.1863):67-114, 2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy Optimization
Algorithms. arXiv:1707.06347, 2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and Yao, S. Reflexion: Language Agents With
Verbal Reinforcement Learning. Neural Information Processing Systems, 36, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D.M., Lowe, R., Voss, C., Radford, A., Amodei, D., and
Christiano, P.F. Learning to Summarize From Human Feedback. arXiv:2009.01325, 2020.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction. MIT press, 2018.

Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T.,
et al. Gemma 3 Technical Report. arXiv:2503.19786, 2025.

Trivedi, H., Khot, T., Hartmann, M., Manku, R., Dong, V., Li, E., Gupta, S., Sabharwal, A., and
Balasubramanian, N. AppWorld: A Controllable World of Apps and People for Benchmarking
Interactive Coding Agents. Annual Meeting of the Association for Computational Linguistics, pp.
16022-16076, 2024.

Williams, M., Carroll, M., Narang, A., Weisser, C., Murphy, B., and Dragan, A. On Targeted
Manipulation and Deception When Optimizing LLMs for User Feedback. arXiv:2411.02306,
2024.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., et al. Qwen3 Technical
Report. arXiv:2505.09388, 2025.

Yao, S., Yu, D., Zhao, J., Shafran, L., Griffiths, T., Cao, Y., and Narasimhan, K. Tree of Thoughts:

Deliberate Problem Solving With Large Language Models. Neural Information Processing Systems,
36, 2024.

11

https://openreview.net/forum?id=WCnJmb7cv1
https://openreview.net/forum?id=WCnJmb7cv1
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
http://arxiv.org/abs/1310.1863
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2411.02306
https://arxiv.org/abs/2411.02306
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Base Model Name Pass@1 (1) Accept Ratio (1) Discounted Pass Rate (1)
Qwen3-8B Empower 0.218(F0019) 0.488(+0:024) 0.176(F0016)
Qwen3-8B SFT-20 0.167(+0018) 0.192(£0018) 0.116(0013)
Qwen3-8B SFT-10 0.152(F0017) 0.299(+0021) 0.114(+0013)
Qwen3-8B SFT-RAND-1-30 0.156(*%017) 0.201 (+0019) 0.109(+0012)
Qwen3-8B Base-10 0.198(F0019) 0.592(£0:023) 0.162(F0013)
Qwen3-8B Base 0.183(+0018) 0.351(+0022) 0.143(+0019)
Llama3.1-8B Instruct Empower 0.282(F0:021) 0.317F0022) 0.208 (£0-016)
Llama3.1-8B Instruct SFT-20 0.097(F0.014) 0.165(F0017) 0.066(£0010)
Llama3.1-8B Instruct SFT-10 0.104(F0.014) 0.257(£0:021) 0.074(£0.010)
Llama3.1-8B Instruct SFT-RAND-1-30 0.112(+0015) 0.184(£0.018) 0.075(£0.010)
Llama3.1-8B Instruct Base-10 0.156(F0017) 0.537(£0023) 0.127(F0014)
Llama3.1-8B Instruct Base 0.170(F0.018) 0.297(£0:021) 0.134(F0014)
Qwen3-14B Empower 0.249(F0020) 0.459(+0:023) 0.201(F0016)
Qwen3-14B SFT-20 0.145(F0017) 0.188(£0.018) 0.102(£0012)
Qwen3-14B SFT-10 0.165(F0017) 0.292(£0.021) 0.126(£0013)
Qwen3-14B SFT-RAND-1-30 0.145(£0017) 0.226(£0:020) 0.106(£0012)
Qwen3-14B Base-10 0.174(F0018) 0.597(£0.023) 0.143(£0015)
Qwen3-14B Base 0.161(F0017) 0.299(£0.021) 0.127(F0014)

Table 1: Assistant results with Llama-3.3-70B-Instruct as the human model. We evaluate on
554 LiveCodeBench problems, and find that Empower outperforms all baselines in terms of Pass@1
and DPR. Standard errors are shown in parentheses.

Base Model Name Pass@1 (1) Accept Ratio (1) Discounted Pass Rate (1)
Qwen3-8B Empower 0.178(£0-018) 0.630(£0023) 0.156(F0016)
Qwen3-8B SFT-20 0.086(F0013) 0.299(F0.021) 0.072(F001)
Qwen3-8B SFT-10 0.101(F0014) 0.367(£0:023) 0.086(F0012)
Qwen3-8B Base-10 0.090(0019) 0.582(+0:023) 0.080(%0.012)
Qwen3-8B Base 0.092(£0019) 0.400(=0023) 0.083(£0012)
Llama3.1-8B Instruct Empower 0.176(=%1%) 0.670(+0022) 0.150(F0-015)
Llama3.1-8B Instruct ~ SFT-20 0.070(*0%" 2310020 0.057(0010)
Llama3.1-8B Instruct ~ SFT-10 0.0620°'V) 0.268(+0") 0.053(+0010)
Llama3.1-8B Instruct ~ Base-10 0.064(0%'V) (.649(+0022) 0.057(0010)
Llama3.1-8B Instruct ~ Base 0.064(F001) 0,383(=0023) 0.055(=001)
Qwen3-14B Empower 0.170(=0018) 0.659(£0-022) 0.148 (£0.015)
Qwen3—14B SFT-20 0.088(i0'013> 0.381(:!:0023) 0.077(:‘:0,012)
Qwen3-14B SFT-10 0.101 (£0.014) 0.46] (£0.023) 0.088(£0012)
Qwen3-14B Base-10 0.062(F001D) 0.530(+0:023) 0.055(£0010)
Qwen3-14B Base 0.086(£0013) 0.312(£0:022) 0.077(20012)

Table 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower outperforms all baselines in terms of Pass@ 1 and DPR.
Standard errors are shown in parentheses.

A WEBSITE AND CODE

The code and configs to reproduce our experiments can be found at https://anonymous . 4ope
n.science/r/codegen—-384F/.

B MORE RESULTS

Full experimental results are presented in Tables | and 2. We ablated the choice of human model, also
training models on a Llama-3.3-70B-Instruct generated dataset and using it as the simulated human.

12

https://anonymous.4open.science/r/codegen-384F/
https://anonymous.4open.science/r/codegen-384F/

Under review as a conference paper at ICLR 2026

C TRAINING DETAILS

Experiments were performed on a NVIDIA H100 node with 8 GPUs, each with 0GB of VRAM.
Pre-trained weights were taken from the LLaMA-3.1-8B, LLaMA-3.3-70B (Grattafiori et al., 2024),
Qwen3-8B , Qwen3-14B (Yang et al., 2025), and Gemma-3-27B-it (Team et al., 2025) models, as
described in Section 5. We finetuned the assistant for one epoch on a dataset of 4,138 examples with
a test split size of 0.2.

The LIaMA models were used under the Llama 3.1 Community License Agreement. The Qwen
models were used under the Apache 2.0 license. Gemma was used under the Gemma Terms
of Use. Our training dataset was initialized from MatrixStudio/Codeforces-Python-Submissions,
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Sub
missions. We de-duplicated the problems and re-generated the solutions using the corresponding
human model that was being assisted.

D PROMPTS
We provide prompts used for the LLMs in our experiments.

D.1 ASSISTANT PROMPT

The assistant system prompt is:

I You are assisting a human in a python code generation task. Your role
is to provide suggested completions given
what they have already typed. Please try to infer what the human wants
the next piece of code to be given the
3 code they have already written. If they have not written any code,
please provide a good start to their program, such as with import
statements or function definitions.

&)

5 The way you will compose your suggestion is by providing the next
version of the code which would replace the current code.

6 Please re-type the current code and then add in your suggested
completion.

7 DO NOT output any other text, including no quotation marks.

9 ## Remember to always re-type the code written so far and then add in
your suggested completion.
10 If you don't re-type the code written so far *exactly as it is writtenx
(with all of the functions, comments, import statements, etc)
11 an error will be raised.

The assistant user prompt is:

I Now it's your turn! Please provide a completion for the following code:
2 " "python
3 {{ code_to_complete }}

4

D.2 FEW SHOT EXAMPLES FOR ASSISTANT

1 # > user

2 # > Now it's your turn! Please provide a completion for the following
— code:

3 # *“"python

4 def twoSum(self, nums: List[int], target: int) -> List[int]:

5 numMap = {}

6 n = len (nums)

7

8 # Build the hash table

9 for i in range(n):

13

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

Under review as a conference paper at ICLR 2026

[RENE S

VARV

ef

numMap [nums [1]] = 1
Find the complement

for i in range(n):

assistant
Here is my suggested completion:

““python

twoSum(self, nums: List[int], target: int) -> List[int]:
numMap = {}
n = len (nums)

Build the hash table
for i in range(n):
numMap [nums [1]] = 1

Find the complement
for i in range(n):
complement = target - nums[i]

user
Now it's your turn! Please provide a completion for the following
code:

““python

whoami (name:

assistant

Here is my suggested completion:
“‘python

whoami (name: str, age: int) -> str:

D.3 HUMAN MODEL PROMPTS

Human Appender Prompt. The prompts given to the human when they are deciding what to
write next. They are provided both a system prompt and a user prompt. The system prompt is the
following:

I You are an expert Python programmer. You will be given a question (
problem specification) and will generate a correct Python program
that matches the specification and passes all tests.

3

+*Please do not provide any sample outputs or testcases in your response

Additionally, you are only allowed to solve the problem xONCEx.

Do not attempt to retry your solution if you are unhappy with it.

4 For example, if your solution is in a function called “solve™, you
should only define one function called “solve”. DO NOT try to retry

it if you think it has a bug.

For example, you should not write “solve2® if you think “solve”™ has a

bug. Only the first solution will be counted, so simply stop
writing once the first solution is finished--even if it is not
correct.

The user prompt is the following:

1
2
3
4
5

6

Question:
{{problem.question_content}}

Format:
{%$ if problem.has_starter_code %}
You will use the following starter code to write the solution to the

problem and enclose your code within delimiters.
“python

{{ problem.starter_code }}

14

Under review as a conference paper at ICLR 2026

{% else %}

Read the inputs from stdin solve the problem and write the answer to
stdout (do not directly test on the sample inputs). Enclose your
code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes
output to STDOUT.

" “python
YOUR CODE HERE

{% endif %}

Human Acceptor Prompt. When the human is choosing whether or not to accept or reject a
suggestion, it has a different prompt. There is a system prompt, a user prompt that encourages it
to reason about the suggestion, and finally a user prompt that asks it for its final decision to accept,
reject, or finish. The system prompt is the following:

1

You are an expert Python programming agent. You will be given a
question (problem specification) and will generate a correct Python
program that matches the specification and passes all tests.

3 The way you will compose your program is by interacting with the file

[

15
16
17
18

editing interface through tools.

In addition, you will be assisted by an automated assistant that will
sometimes propose suggested completions to whatever you are typing.

At every step you will first write your thoughts on the suggestion and
whether it correctly continues your solution, or instead introduces

bugs.

Please xonly consider the assistant suggestionx in your decision to
accept the suggestion, reject the suggestion, or finish and submit
your code for testing.

Previous code that you have written is not able to be changed, so you
should only look at the changes the assistant is proposing.

At the very end of your thought process, you will write one word to
specify which action you are taking.

Unless you take the "finish" action, you will be prompted afterwards to

write what you would like to append to your program.

Therefore, please accept suggestions as long as they do not introduce
bugs, and either help you solve the problem or improve the quality
of your code.

It's ok if the the suggested completion is incomplete, because you can
always append to it later.

You will first be prompted to write your thoughts on the suggestion.
Afterwords, you will be prompted to write which action you would like
to take.

Here are the actions you have access to:
"accept"
description: Accepts a suggested completion given by an intelligent
assistant. The suggested completion will then be incorporated into
the code you have written.
"reject"
description: Rejects a suggested completion given by an intelligent
assistant. The suggested completion will not be incorporated into
the code you have written.
"finish"
description: Tells the editor that you have finished writing the
program and to run the testcases. Only call this tool if you are
confident that your program is finished. You will not be prompted
to write any more code after calling this tool.

Remember, you will be able to continue writing your program regardless
of whether you accept the suggested completion or not.

15

Under review as a conference paper at ICLR 2026

25 As long as the suggested completion does not introduce bugs, and either
helps you solve the problem or improves the quality of your code,
you should accept it.

26 DO NOT reject a suggestion because it is "minor" or "short". Only
reject the suggestion if it is wrong, introduces a bug, or
otherwise sets you back.

The user reasoning prompt is the following:

I ## You have written the following code:

2 python
{code}

6 ## Suggested Completion
7 Here is what your code would look like with a suggested completion:

8 python
9 {suggestion}

12 ## Suggested Completion diff

13 For clarity, here is the diff between your current code and the
suggested completion code:

14 {git_diff_string(code, suggestion) }

16 ## Instructions:

17 What do you think of the suggested completion? Do you think it is
solving the question correctly, or does it introduce a bug or error
?

18 Please write down your thoughts. You are not allowed to write any new
code in your response, only your thoughts on whether the suggested
completion helps you on your way to solving the problem, or
otherwise improves the quality of your code.

19 It is ok if the the suggested completion is incomplete, because you
will be prompted to append to it later.

20 You are also not able to take any actions at this stage.

After it has provided reasoning for whether or not it believes the suggestion is a good one, we prompt
it to make its final decision with the following user prompt:

I Now, please write which action you would like to take.

> Remember, the actions available are "accept" to accept the suggested
completion, "reject" to reject the suggested completion, and "
finish" to finish writing your code and run the tests.

3 Please only call "finish" if you are confident that your code is
correct and you are ready to run the tests.

E HUMAN STUDY

E.1 STUDY INSTRUCTIONS

SETUP

1. Sign research consent form.
2. Runlocally: git clone redacted
3. If on Mac:
3.1. Navigate to the cloned repository and run: . /install.sh
4. If on Windows:

4.1. Install node: https://nodejs.org/en/download
4.2. Run npm install

16

https://nodejs.org/en/download

Under review as a conference paper at ICLR 2026

4.3. Run npm start
5. If on Linux:

5.1. Run sudo apt install nodejs npm
6. Enter your name in the box.

7. Switch the assistant to Assistant 1. Open up the scratchpad, type a few things, and make
sure that a suggestion appears (suggestions will not always appear).

8. You can accept suggestions using the Tab key.

9. You can explicitly reject a suggestion using the Esc key.
10. Click Back to Launch at the top of the window.
11. Switch the assistant to No Assistant.

12. Move on to the Study section.

STUDY
1. You are only allowed to use the Python docs: https://docs.python.org/3/. You
may not use anything else on the internet.
2. To run the test cases:

2.1. Save your file (CMD + S).

2.2. At the top of the editor, click Run Testcases. This will copy a command to your
clipboard which you can then paste and run in your terminal.

. Set a timer for 25 minutes.

. Switch the assistant to No Assistant.

. Begin the problem.

. Whenever you or the timer finish, switch to Assistant 1.

. Open up the same problem.

0 N N Lt AW

. Set a timer for 15 minutes and solve the problem with Assistant 1. Pay attention to what
you like and dislike about this assistant.

9. Fill out your notes in this form: redacted.
10. Save the file you are working on (CMD + S).
11. Repeat steps 610 for Assistant 2.
12. Complete the rest of the form and rank the assistants.
13. Make sure to zip and upload your problems directory to the form.

E.2 PROBLEM 1: LAVA TRAP

Simulate a single player walking on a square grid with lava squares. After each command, print if
they fell into the lava, or, if they survived, print the player’s current row, column, and facing.

The player will never move out of bounds of the grid. The top left of the grid is (1, 1) and the bottom
right is (IV, N).

BOARD

* An N x N grid of characters:
— . —empty cell
- L—lava
¢ Cells are 1-indexed: row 1..N, column 1..]N.

PLAYER

* Starts at row r, column ¢, facing dir € {U,D, L, R}.

17

https://docs.python.org/3/

Under review as a conference paper at ICLR 2026

COMMANDS

You are given () commands:

1. MOVE
Move forward one step in the current direction.

2. FACE X where X € {U,D,L,R}
Set the facing direction.

TILE EFFECTS (AFTER THE MOVE)

« If the player moves into lava, the simulation ends, and Game Over is printed.

INPUT

The input will come from standard in:

1. N
2. N lines of grid (each of length N)

3. redir

4. @

5. Q lines of commands
CONSTRAINTS

¢ 2< N <50

e 1<r,c<N

» dir € {U,D,L,R}
e Commands:

- MOVE
- FACE U|D|LIR

e 1<QR<2x10°

OuTPUT
After each command, print one line:
r c dir
(with the player’s 1-indexed row/col and facing as U |D | L | R).
EXAMPLE
Input
3

.L
2 2 R
MOVE
FACE U
MOVE

QOutput

18

Under review as a conference paper at ICLR 2026

2 3 R
2 30U
Game Over

STARTER CODE

import sys

1

2

3

4 def read_grid():

5 """Reads N and then N lines of the grid. Returns (N, grid)."""
6 n = int (sys.stdin.readline () .strip())

7 grid = [list(sys.stdin.readline () .strip()) for _ in range(n)]
8 return n, grid

9

10

11 def read_starting position():

12 """Reads r, ¢, dir. Returns (r, c, dir)."""

13 parts = sys.stdin.readline () .split ()

14 r, ¢, d = int(parts[0]), int(parts[l]), parts[2]

15 return r, c, d

16
17 def read_g():

18 """Reads g from stdin."""

19 return int (sys.stdin.readline () .strip())

20

21 def read_next_move():

22 """Reads and returns the next command as a string, or None if
[N EOF R mmn

23 line = sys.stdin.readline ()

24 if not line:

25 return None

26 return line.strip/()

27

28

29 def main():

E.3 PROBLEM 2: SPECIAL KEYBOARD

Simulate a user typing on a special keyboard. They will type one character at a time. After they have
finished typing, print what they wrote.

INPUT
The input will come from standard in:

1. The number of characters that the user will type, ¢ (1 < ¢ < 2000).

2. One character that the user types per line.

3. Characters may include letters, digits, spaces, punctuation, and the markers below.
OUTPUT

* One line: the transformed string.

SPECIAL TOGGLES

Most keyboards have a Caps Lock key that toggles between lowercase and uppercase letters. This
special keyboard has that, in addition to several non-standard toggles. When the user types a special
toggle key, turn the toggle on, and apply its rule for all of the text that the user types until they type
the special toggle key again to turn it off.

» Toggle keys do not affect previously written text, only future text.

19

Under review as a conference paper at ICLR 2026

* Do not append the toggle character to the user’s output.

* More than one toggle may be active at the same time.

TOGGLE RULES

* = — Caps Lock: uppercase all letters while this toggle is active. (In Python: s .upper ())

. — While active, consonants (letters that are not vowels) are duplicated, preserving case.
(“y” counts as a consonant.)

* # — While active, only digits and the first “.” encountered are appended to the output.

— Skip all other characters.
— Ifasecond “.” appears (or any additional one), skip it.

(In Python: check if a character is a digit with s .isdigit ().)

EXAMPLES

Input

ul

>o o >

Q

QOutput

ABc

Input

NeJ

>0, Q0 v >

]

Output

ABBCCDe

Input

18

A

<o HFO ! Q

20

Under review as a conference paper at ICLR 2026

>0 H N o

Q

Output

DBB67.91Acc.

STARTER CODE

import sys

1

2 from typing import List, Tuple

J

4

5 def read_g() -> int:

6 """Read the number of typed characters (q) from the first

< line."""

7 line = sys.stdin.readline ()

8 if not line:

9 raise EOFError ("Expected an integer g on the first line.")
10 return int (line.strip())

11

12

13 def read _next_char () -> str:

14 e

15 Read the next 'character per line'.

16 e

17 line = sys.stdin.readline()

18 if line == "":

19 raise EOFError ("Unexpected end of input while reading

— characters.")

20 # Take the first character on the line.
21 return line[0]
22
23
24 def main() -> None:

E.4 QUESTIONNAIRE

This questionnaire was given to participants through a Google Form.

WD AW =

. What is your name?

. Which question are you solving?

. Assistant 1 Notes (Paragraph entry).

. Assistant 2 Notes (Paragraph entry).

. How relevant are the assistant’s suggestions? (Assign each label to only one assistant)

(a) Assistant 1. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]
(b) Assistant 2. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]

. How often did you have to delete the assistant’s work? (Assign each label to only one

assistant)

(a) Assistant 1. [1 (Fewest deletes) or 2 (Most deletes)]
(b) Assistant 2. [1 (Fewest deletes) or 2 (Most deletes)]

. Which would you most enjoy using in practice? (Assign each label to only one assistant)

21

Under review as a conference paper at ICLR 2026

(a) Assistant 1. [1 (Most enjoy) or 2 (Least enjoy)]
(b) Assistant 2. [1 (Most enjoy) or 2 (Least enjoy)]

E.5 ADDITIONAL RESULTS

In the survey we asked participants to rank the assistants based on how often they had to delete
the assistant’s work. In total, 17 out of the 18 participants ranked our Empower method over the
baseline (p = 0.00007). As we also collected the participant’s keypresses, we instead included the
exact number of characters which were accepted and later deleted in the main text, which is a more
informative metric.

F LLM ACKNOWLEDGMENT

We did not use LLMs significantly in the writing or ideation of this paper. An LLM was used to
proof-read, and a few sentences were reworded accordingly.

22

