Δr

000

001 002 003

004

005 006 007

008

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

028

031

032

034

036

037

038

039

040 041

042

043

044

046

047

048

051

053

Anonymous authors

Paper under double-blind review

ABSTRACT

Assistive agents should not only take actions on behalf of a human, but also step out of the way and cede control when there are important decisions to be made. However, current methods for building assistive agents, whether via mimicking expert humans or via RL finetuning on an inferred reward, often encourage agents to complete tasks on their own rather than truly assisting the human attain their objectives. Additionally, these methods often require costly explicit human feedback to provide a training signal. We propose a new approach to tuning assistive language models based on maximizing the human's *empowerment*, their ability to effect desired changes in the environment. Our empowerment-maximizing method, Empower, only requires offline text data, providing a self-supervised method for fine-tuning language models to better assist humans. To study the efficacy of our approach, we conducted an 18-person user study comparing our empowerment assistant with a strong baseline. Participants preferred our assistant 78% of the time (p = 0.015), with a 31% higher acceptance rate and 38% fewer suggestions. Additionally, we introduce a new environment for evaluating multi-turn code assistance using simulated humans. Using this environment, we show that agents trained with Empower increase the success rate of a simulated human programmer on challenging coding questions by an average of 192% over an SFT baseline. With this empowerment objective, we provide a framework for useful aligned AI agents at scale using only offline data without the need for any additional human feedback or verifiable rewards.

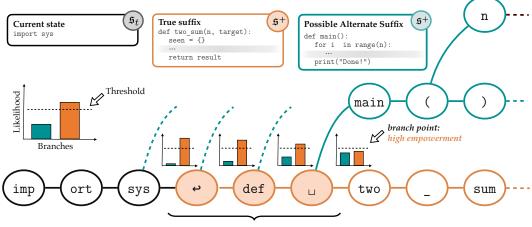
Website and code: https://anonymous.4open.science/r/codegen-384F/

1 Introduction

Software developers today face a challenge when using LLM coding agents: code suggestions start out helpful but then start implementing the wrong functions. Often an assistant will suggest a large block of code, the user accepts it, and then they have to spend time fixing the one part it got wrong, such as an incorrect assumption. How can we develop coding assistants that still produce helpful generations, but also know to stop their generations at critical junctures? While this problem is especially salient for coding assistants (the focus of this paper), such problems are likely to recur in applications from assistive robotics to interacting with autonomous web agents (Chen et al., 2021; Trivedi et al., 2024).

Optimizing for helpfulness is challenging. Gathering explicit human labels is expensive and time-consuming. Additionally, it is unclear how this sort of helpfulness can be learned from traces of a human expert — the problem is not that generations are unrealistic, but rather that they may be solving a problem that is different from what the user intends. One approach to this problem is for agents to ask clarifying questions to better infer the intentions of human users. However, this style of assistance requires interrupting the user, possibly impeding their flow and making the interaction feel burdensome. In many situations, it is desirable to have an assistant which does not rely on querying the user.

The key insight in this paper is to train assistive agents to *empower* human users, a training method that does not require that the agents know the human's underlying intention. Intuitively, empowerment refers to an agent's ability to effect changes in the environment. Rather than asking a human for explicit feedback, the LLM will automatically assess the usefulness of its actions by estimating whether they enable a human to solve more tasks more quickly. In coding contexts, empowerment might correspond to implementing helper functions, writing boilerplate, or wrapping up lines of code.



Empowering Completion

Figure 1: **Training assistive agents via** Empower. An LLM generates the cumulative likelihood of the suffix, shown below each token. Empowering completions are selected as the longest suffix where the cumulative likelihood is greater than a threshold. This trains the assistant to complete text up to a decision point. Then, the human will have more choices about where to take the program, so their next action is *empowered*.

Mathematically, empowerment is defined by a mutual information that measures the degree of control that an agent's actions exert on states that occur in the future (Klyubin et al., 2005). The assistive setting, where there are two agents (an assistant and a human), requires a more nuanced definition of empowerment: we aim to empower the *human* agent, enabling the human user's actions to exert a larger influence over future outcomes (Du et al., 2020; Myers et al., 2024). An agent that maximizes the human's empowerment will help them reach goals more effectively, without assuming any prior reward structure. Similar empowerment objectives are used in psychology to explain certain facets of human learning (Gopnik, 2024).

We use code generation as a context for studying empowerment-maximizing assistants because it is one of the few real-world applications today where humans regularly interact with assistive agents (e.g., Github Copilot). It is also an appealing starting point because preexisting datasets (Jain et al., 2024) allow us to measure the efficacy of empowerment maximization in a rigorous way.

Contributions. In this paper, we derive a practical and scalable algorithm for training LLM agents to maximize empowerment, and demonstrate its effectiveness in the code generation setting. Specifically, our work makes the following contributions:

- 1. Empower method (Section 4.2). We propose Empower, a method for aligning LLM agents to work with humans based on the objective of maximizing effective empowerment. Our method provides a proof-of-concept for training an LLM agent to maximize a human's empowerment.
- 2. **Simulated results** (Section 5.2). Experimental results with a Gemma-3-27B-it (Team et al., 2025) human on LiveCodeBench (Jain et al., 2024) show that our method leads to a higher Pass@1 without explicit human feedback. A Llama-3.1-8B-Instruct model trained with Empower over doubles the Pass@1 rate compared to the strongest baseline.
- 3. User study (Section 5.3). We demonstrate in a user study that human coders prefer our empowerment assistant over a baseline. Participants preferred our assistant in practice 78% of the time (p=0.015), and accepted our assistant's suggestions 31% more often than the baseline's suggestions (p=0.0002). Additionally, participants tended to delete 26% fewer characters they had accepted from our method than from the baseline (p=0.012). This amounts to a stronger assistant that is more likely to suggest code the user will accept and actually use.

Taken together, our results demonstrate that LLM assistants can be trained without receiving feedback or interaction from humans by reasoning about how their actions might enable humans to complete more tasks more quickly.

2 RELATED WORK

Past work has studied empowerment in the context of intrinsic motivation and reinforcement learning.

Empowerment. Informally, empowerment quantifies the influence an agent's actions have over outcomes in the environment. Empowerment has traditionally been defined as the channel capacity between a sequence of actions and the following state (Abel et al., 2025; Klyubin et al., 2005; 2008; Salge et al., 2014). Empowerment objectives have been used in single-agent reinforcement learning to enable intrinsic motivation and exploration (Choi et al., 2021; de Abril and Kanai, 2018). More recently, empowerment has been explored for collaborative settings, where a robot assistant learns to maximize the empowerment of a human user. Du et al. (2020) propose the AvE algorithm which enables assistance by computing empowerment with random rollouts. Myers et al. (2024) adopt a modified objective, the effective empowerment, which can be learned with a scalable contrastive objective. However, these prior works typically use simple gridworld-like or video game-like environments. On larger web agent benchmarks, Song et al. (2025) found that the effective empowerment is highly correlated with LLM task performance. Their work focused on evaluating the correlation between effective empowerment and reward, rather than on optimizing LLM agents with an empowerment objective. To the best of our knowledge, ours is the first to apply this principle to train LLM agents, applying it at scale to a realistic coding task. This is enabled by our insight that LLM uncertainty can be used to identify key decision points, and we can empower people by helping them reach those points.

Learning from Human Preferences. Many methods attempt to align AI agents by updating the agent with human preference information. Christiano et al. (2017) used an online stream of human preferences to train a reward model concurrently with an actor-critic policy. This method (RLHF) was later adapted to align LLMs to human preferences, enabling conversational agents like InstructGPT (Dong et al., 2023; Ouyang et al., 2022; Stiennon et al., 2020). These methods often use PPO or related policy-gradient methods to fine-tune a pre-trained LLM (DeepSeek-AI et al., 2025; Schulman et al., 2017; Sutton and Barto, 2018). Learning and optimizing a reward model can be expensive or unstable, leading to alternative methods like DPO (Rafailov et al., 2024) and IPL (Hejna and Sadigh, 2023) that directly optimize the policy to match human preferences without an intermediate reward model. Training with human feedback faces key limitations: human values may be difficult to represent with reward functions (Casper et al., 2023), they may change over time (Carroll et al., 2024), and optimizing them may lead to misaligned behaviors like power seeking and manipulation (Williams et al., 2024). Our empowerment objective offers an alternative strategy for aligning LLMs which instead completes tasks for the human that are obvious and general, rather than aligning assistance to a set of preferences.

Self-Supervision for LLMs. There is existing precedent for having LLMs provide their own feedback, as in self-critiquing methods that are common in mathematical and logical reasoning applications (Madaan et al., 2024; Shinn et al., 2024; Yao et al., 2024) or methods that aim to leverage the model itself to provide a learning signal for self improvement (Huang et al., 2025; 2023; Pang et al., 2023; Yuan et al., 2024). In contrast, our work places the human back at the center: rather than optimizing an LLM to produce text that another LLM thinks is correct, we optimize an LLM to produce code that enables a human to solve more tasks more quickly.

Assistive Agents. One mathematical framework for assistive agents is the assistance game (Hadfield-Menell et al., 2016). The assistance game extends the standard Markov decision process (MDP) definition to include a human and a robot agent which interact in a shared environment to maximize a joint reward that is only known to the human. The agent must combine inference of the human rewards or goals with reinforcement learning to optimize the inferred objective (Carroll et al., 2024; 2019; Hadfield-Menell et al., 2017; Laidlaw et al., 2024). Methods that learn from human preferences (Christiano et al., 2017; Rafailov et al., 2024) can be seen as special cases of the assistance game where the human's actions only exist to provide information about the reward to the agent. Other works within the assistive setting focus on task completion with humans in the loop, where the robot assistants need to learn when to ask humans for help and what to ask them for (Mullen Jr and Manocha, 2024; Ramrakhya et al., 2025; Ren et al., 2023). Empowerment methods are a special case of assistive games, where the empowerment objective acts as a proxy for the

human's reward function (Myers et al., 2024). Our work builds on this foundation to study how empowerment methods might be scaled to align LLMs.

Our contribution is to connect empowerment to the problem of aligning LLM agents to human users, showing that the empowerment objective can provide a scalable self-supervised learning signal for an LLM agent aiding a human in an assistive setting.

3 Preliminaries

We cast the problem of an LLM agent assisting a human as a Markov decision process (MDP). The state is the program text at the given timestep. At each state, the LLM agent action suggests a piece of text to append to the conversation. The human agent first chooses to ACCEPT or REJECT the suggestion, or FINISH writing the program. Then, unless they choose to FINISH, they will append some number of tokens.

Notation. In this assistance MDP, the human policy $\pi_{\mathbf{H}}$ selects an action $a^{\mathbf{H}} \in \mathcal{A}_{\mathbf{H}}$, and the LLM agent's policy $\pi_{\mathbf{R}}$ selects an action $a^{\mathbf{R}} \in \mathcal{A}_{\mathbf{R}}$ to complete the code snippet. Let \mathcal{L} be the set of possible tokens and \mathcal{L}^* be the set of all strings consisting of these tokens. The human's actions are $\mathcal{A}_{\mathbf{H}} = (\{\mathtt{ACCEPT}, \mathtt{REJECT}\} \times \mathcal{L}) \cup \{\mathtt{FINISH}\}$, where ACCEPT appends the LLM agent's suggestion to the conversation followed by the human's own text, REJECT does not append the suggestion and only appends the human's text, and FINISH ends the episode. If the human does not choose FINISH, they will write one token. The LLM agent's actions are $\mathcal{A}_{\mathbf{R}} = \mathcal{L}^*$, where the agent suggests any sequence of tokens to append to the conversation. Note that $\ell_{i:j}$ indexes the tokens from i to j inclusive. We will use $s_t = \ell_{1:n}$ to indicate that the current state is n tokens. The assistant's suggestion is $a_t^{\mathbf{R}} = \ell_{n+1:n+i}$, where i is the number of tokens it proposed. If the human accepts the suggestion, then the human will write ℓ_{n+i+2} . If the human rejects the suggestion, then they will write ℓ_{n+1} .

The dynamics are then defined by the following transitions when $s_t = \ell_{1:n}$ and $a_t^{\mathbf{R}} = \ell_{n+1:n+i}$:

$$s_{t+1} = \begin{cases} \ell_{1:n+i+2} & \text{ for } a_t^{\mathbf{H}} = (\mathtt{ACCEPT}, \ell_{n+i+2}) \\ \ell_{1:n+1} & \text{ for } a_t^{\mathbf{H}} = (\mathtt{REJECT}, \ell_{n+i+1}) \\ \bot & \text{ for } a_t^{\mathbf{H}} = \mathtt{FINISH}. \end{cases}$$

We will define random variables \mathfrak{s}_t and $\mathfrak{a}_t^{\mathbf{H}}$ to denote the state and human action at time step t. Similarly, in state $s_t = \ell_{1:n}$ if the human does not accept the assistant's suggestion let $\ell_{n+1}^{\mathbf{H}}$ represent the random variable of the next token that the human writes. Let ℓ^+ be a random variable over possible future text. Additionally, $\hat{\pi}(\ell_{n+1:n+i} \mid \ell_{1:n})$ denotes a conditional probability distribution over possible completions. We will choose this to be a pre-trained LLM.

Empowerment. We will define empowerment using the mutual information $I(\cdot; \cdot)$ between two random variables. In a single-agent MDP, empowerment is defined by Klyubin et al. (2005) as the channel capacity between a sequence of n actions and the resulting state n steps into the future:

$$C(p(\mathfrak{s}_{t+n} \mid \mathfrak{a}_t^n, \mathfrak{s}_t)) \triangleq \max_{p(\mathfrak{a}_t^n \mid \mathfrak{s}_t)} I(\mathfrak{a}_t^n; \mathfrak{s}_{t+n} \mid \mathfrak{s}_t). \tag{1}$$

Informally, this objective states that empowerment is the maximal degree to which the next n actions \mathfrak{a}^n_t selected in the MDP can impact the resulting state \mathfrak{s}_{t+n} . This objective is intuitively appealing because it provides a mathematical way of quantifying whether an assistive agent's actions are useful, without knowing the humans reward function. However, it is challenging to use this objective in practice because (i) it involves optimizing over a sequence of actions, and (ii) mutual information is still non-trivial to compute in high-dimensional environments or over long horizons.

4 Maximizing Empowerment over Language

In this section we discuss how to train empowering assistants in the language domain. Empowerment is a useful objective for assistance because it helps people quickly reach states where they have many choices, so it takes broadly useful actions that are helpful for the most people. This leads to a more

Algorithm 1: Logit Threshold Empowerment (Empower)

Input: A text document $\ell_{1:N}$ with sampled state $\ell_{1:n}$ Output: Empowering suggestion $\ell_{n+1:n+i^*}$ for state $\ell_{1:n}$ 1: for $i \in \{1 \dots N\}$ do \triangleright Loop through the possible completion lengths

2: $\hat{H} \leftarrow -\log \pi(\ell_{n+1:n+i} \mid \ell_{1:n})$ \triangleright Compute the one-sample entropy

3: if $\hat{H} > \eta$ then \triangleright Check if estimated entropy exceeds threshold

4: \perp return $\ell_{n+1:n+i-1}$ \triangleright Return the last index that was below threshold

5: return $\ell_{n+1:N}$ \triangleright Entropy is always within bounds, so return rest of program

natural type of assistance that does not make assumptions about, or even try to infer, the human's goal.

Section 4.1 introduces the core problem of constructing a training dataset for the assistant with only offline human data. Section 4.2 describes Empower, our practical method for choosing completions to train the assistant. We take the longest completion where the cumulative likelihood of the completion, as judged by an LLM, is above a certain threshold. Section 4.3 shows that, under certain assumptions, our method is computing an approximate upper bound on the empowerment of a completion. We train the LLM assistant to complete text that has a low empowerment — text that is predictable — so that the human does not have to write it. Instead, the human can focus on important design decisions, rather than boilerplate code.

4.1 Using Offline Data

Given an offline dataset of text written by the human, $\ell_{1:N} \sim \pi_H$, the challenge is in choosing the best state-action pairs for finetuning the assistant. One approach would have an assistant model generate a proposed completion and then use some external feedback, such as whether the human would accept the suggestion, to score its quality. However, we do not assume access to human preference data, so the training signal must come from the text the human wrote. Therefore, we will train the assistant to output the same text that the human wrote in the dataset. This removes the need for ACCEPT/REJECT feedback, because the assistant proposes text that the human actually wrote, which we assume would be accepted. Formally, we train the assistant to output $\ell_{n+1:n+i}$ when it is given $\ell_{1:n}$ as the state. For each piece of text in the dataset, we sample a single state $\ell_{1:n}$ by uniformly sampling $t \in [1, N]$. The difficulty lies in choosing the appropriate length of completion to train on.

4.2 OUR ALGORITHM: EMPOWER

When the human writes boilerplate code, they have a low empowerment because their actions are easily predicted, so they carry little information about the future. To empower the human, an assistant should be trained to complete this predictable text so that the human does not have to. Our insight is that we can use an LLM, $\hat{\pi}$, to estimate how likely a completion is. We therefore propose the following algorithm to choose completions to train our assistant on:

$$i^* = \arg\max_{i} \{ i : -\log \hat{\pi}(\ell_{n+1:n+i} \mid \ell_{1:n}) < \eta \}.$$
 (2)

This optimization chooses the largest completion length, i, such that the negative log likelihood of that completion as judged by an LLM is below a threshold η which we choose. This can equivalently be viewed as choosing the longest completion length, i, where the cumulative likelihood of the completion is greater than $2^{-\eta}$. We write the optimization with a negative log likelihood to highlight that it is a one-sample estimate of the entropy. This mathematically connects our method to empowerment, which we will explain further in Section 4.3.

During training, we first sample a program from an offline dataset, then sample a prefix to that program which becomes the state $\ell_{1:n}$. Any suffix is a possible completion. We train on the suffix $\ell_{n+1:n+i^*}$ chosen by Eq. (2). Intuitively, we are training the assistant on obvious completions — those that the LLM thinks are likely — thereby leaving the human to write more impactful text in the future. We summarize our method in Algorithm 1, and show an illustration in Fig. 1.

4.3 MATHEMATICAL CONNECTIONS WITH EFFECTIVE EMPOWERMENT

 Under some assumptions, our algorithm can be viewed as training the assistant to suggest text that would have a low empowerment for the human to write. We use the *effective empowerment* objective (Myers et al., 2024), which provides a computationally-tractable alternative to the canonical empowerment objective (Klyubin et al., 2005) (see Eq. (1)). Effective empowerment is defined with respect to a specific policy, $\pi_{\mathbf{H}}$, and a future state ℓ^+ . We define the effective empowerment at a state $\ell_{1:n}$ as:

$$\mathcal{E}(\pi_{\mathbf{H}}, \ell_{1:n}) \triangleq I(\ell_{n+1}^{\mathbf{H}}; \ell^{+} \mid \ell_{1:n}). \tag{3}$$

This is the same objective introduced in (Myers et al., 2024), but with $\gamma=0$. This objective measures the impact that the human's action, $\ell_{n+1}^{\mathbf{H}}$, has on their future state. We can upper-bound the mutual information with an entropy:

$$I(\ell_{n+1}^{\mathbf{H}}; \ell^{+} \mid \ell_{1:n}) = H(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}) - H(\ell_{n+1}^{\mathbf{H}} \mid \ell^{+}, \ell_{1:n})$$
(4)

$$\leq H(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}). \tag{5}$$

If we can estimate $H(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n})$, we can estimate an upper bound for single-action empowerment. Computing this entropy exactly requires knowing the true human policy, $\pi_{\mathbf{H}}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n})$, which we do not have access to. Instead, we assume access to another likelihood estimator, $\hat{\pi}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n})$, which can approximate the human's marginal likelihood of any action at a given state. Then we can approximate the human's marginal entropy $H(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n})$ by sampling an action from the human and using a one-sample monte carlo estimate:

$$\hat{H}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}) \approx -\log \hat{\pi}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}).$$
 (6)

In practice, we choose our human entropy estimator $\hat{\pi}$ to be a pre-trained LLM. Our estimated upper bound on the empowerment becomes:

$$\mathcal{E}(\pi_{\mathbf{H}}, \ell_{1:n}) \lessapprox -\log \hat{\pi}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}). \tag{7}$$

While this is a rough approximation of the entropy, it works well in practice for the purpose of choosing empowering completions, and is simple to implement. This approximation does not capture the human's ability to control the environment, which would be measured in the $H(\ell_{n+1}^{\mathbf{H}} \mid \ell^+, \ell_{1:n})$ term of Eq. (4). In a textual environment such as ours, the human's control is complete because they fully determine what is included in the final program. In fact, in our exact MDP described in Section 3, this bound is an equality because the human's action is to append a single token onto the state, so knowing ℓ^+ and $\ell_{1:n}$ we can exactly deduce $\ell_{n+1}^{\mathbf{H}} = \ell_{n+1}^+$. Therefore, $H(\ell_{n+1}^{\mathbf{H}} \mid \ell^+, \ell_{1:n}) = 0$ and

$$\mathcal{E}(\pi_{\mathbf{H}}, \ell_{1:n}) \approx -\log \hat{\pi}(\ell_{n+1}^{\mathbf{H}} \mid \ell_{1:n}). \tag{8}$$

Although our approximate bound does not estimate control, this is a reasonable reduction for many textual environments. Under these assumptions, the algorithm described by Eq. (2) can be seen as training an assistant to complete text which is *predictable*, and therefore would not be empowering for the human to write.

5 EXPERIMENTS: CODE GENERATION

Our experiments apply the empowerment framework discussed in Section 4 to the task of code generation. In Section 5.1, we describe our experiment setup. We then evaluate our method in a novel simulated setup using LiveCodeBench (Section 5.2), after which we validate our findings in the real world by running an 18-person double-blinded human study (Section 5.3).

5.1 EXPERIMENT SETUP

Datasets. We train all models and methods using a dataset of 4,138 unique questions from Codeforces¹, each of which is paired with one attempted solution by Gemma-3-27B-it (Team et al., 2025). We do not filter the dataset for success on the testcases.

¹https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

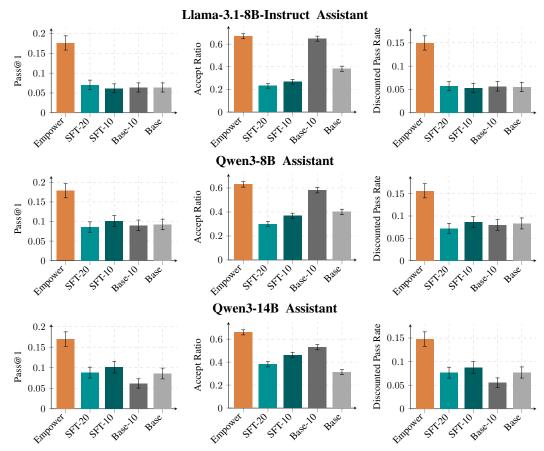


Figure 2: **Assistant results with Gemma-3-27B-it** as the human model. We evaluate on 554 Live-CodeBench problems. We find Empower to outperform all baselines in terms of pass@1 and DPR. Error bars show standard errors.

Models. We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Qwen3-8B (Yang et al., 2025), and Qwen3-14B (Yang et al., 2025) as assistant models. For the simulated setting, we use Gemma-3-27B-it (Team et al., 2025) as the human model. The prompts we use are provided in Section D. We use all models with their default sampling parameters.

Baselines. We compare against both trained and untrained baselines. (1) SFT-N finetunes the assistant on the next N tokens that the human wrote in a particular state, followed by a stop token. This should teach the model to output correct suggestions which are not too long, so that they do not make too many assumptions about what the human is trying to do. We evaluate SFT-10 and SFT-20. (2) SFT-RAND trains on random human completions between 1 and 30 tokens long to avoid biasing too much towards a specific completion length. (3) Base is simply the base assistant model without any training or restrictions on top. (4) Base-N is the same as Base, but we cap the suggestion length at N tokens. We include this baseline since we hypothesize that shorter completion lengths are more likely to be accepted. We evaluate Base-10 and Base-20.

Our Method. Our method, Empower, trains on completions returned from Algorithm 1, which we run on all completions in the training dataset before the start of training. We use the untrained base assistant model as our likelihood estimator, $\hat{\pi}$. Crucially, we do not provide the likelihood model access to the relevant Codeforces problem, only the text in the state (i.e. the completion tokens written so far).

5.2 EVALUATING EMPOWERMENT IN A SIMULATED SETUP

To evaluate the empowerment assistant with a simulated human, we adopt the MDP structure described in Section 3 where the assistant proposes suggested code completions which the human

may accept or reject, and then append their own code. We limit the human action size to $K_{\rm H}=10$ tokens and the number of rounds of human and assistant actions per problem to 50. We evaluate on LiveCodeBench (Jain et al., 2024), a benchmark of competitive programming problems that is regularly updated. We restrict the benchmark to problems from release #6 to avoid contamination.

Evaluation Metrics. To evaluate the performance of Empower compared to the baselines, we propose the following three different evaluation metrics. (1) **Pass@1** measures the success rate of the generated code snippets by evaluating them on the problem testcases, counting a success only if all of the testcases pass. The results are averaged across all problems in the dataset. (2) **Acceptance rate** provides a measure of the human's preference for one assistant's suggestions over another's.

Our third metric is (3) **Discounted Pass Rate (DPR).** A higher acceptance rate is not always beneficial if the suggested completions are not more helpful. Occasionally an assistant will propose a completion which looks good, but actually introduces a bug or confuses the human, leading to a lower pass@1. Similarly, a lower acceptance rate can lead to a higher pass@1, making an assistant appear better even though the real gain in performance is from the human solving the problem on their own. Therefore, we introduce a new metric which we call the *Discounted Pass Rate* (DPR), which is a better measure of good assistance because it accounts for both the pass rate and the amount of text the human had to read and write to get to a successful program. An assistant that makes long suggestions will occasionally be correct, however, more often than not the human will waste effort checking if an incorrect suggestion is correct. The DPR for a particular solution is defined as:

$$\mathrm{DPR} = 1_{\mathrm{Correct \ Solution}} \cdot \gamma^{\alpha \cdot \mathrm{Tokens \ Read} + \beta \cdot \mathrm{Tokens \ Written}} \tag{9}$$

The constant α specifies how "difficult" it is for the human to verify text that the assistant has suggested. Similarly, β specifies how "difficult" it is for the human to write text on their own. Under this metric, the best assistant will help the human have the highest pass rate, while only suggesting completions which are most likely to be accepted and bring the program closest to its conclusion. This measures how useful the assistant is at generating *correct* solutions, not just how often it convinces the user to accept their flawed suggestion. To get the total DPR, we take the mean across all problems in the benchmark. In this work, we use $\gamma=0.999$, $\alpha=0.1$, and $\beta=0.5$ to represent that it is often more difficult to generate than to verify, as well as to prevent the DPR of a long but correct solution from approaching 0.

Optimizing the DPR directly requires training with real human interaction data, or using an accurate human model, both of which are challenging. Our results show that empowerment is able to increase DPR and other metrics with an entirely offline dataset.

Quantitative Results. Comparisons between the baselines and our method with $\eta=0.32$ are shown in Fig. 2, using Gemma-3-27B-it as the simulated human model. Empower outperforms all baselines on pass@1, accept ratio, and DPR. It is worth noting that the accept ratios of Empower and Base-10 are close for Llama-3.1-8B-Instruct and Qwen3-8B. We hypothesize that shorter suggestions are more likely to be accepted, which is why Base-10 has a higher acceptance rate. However, in that case, acceptance ratio does not correspond to a higher Pass@1, and therefore the DPR is lower. Just because a suggestion is short does not mean that it is correct. Empower tends to output suggestions which are more likely to be accepted and at the same time are also more likely to create correct programs.

We also perform the same set of experiments with Llama-3.3-70B-Instruct as the human model, for which we show results in Table 1 of Section B. Empower similarly beats the baseline on pass@1 and DPR. See Section B for the full numeric results.

5.3 Human Study: Evaluating Empowerment for Real-World Code Assistance

To evaluate empowerment at scale, we conducted an 18-person double-blinded user study in a code-generation setting with an assistant, similar to GitHub Copilot. Participants were randomly assigned to complete one of two python coding problems with corresponding testcases. The editor was configured to log whenever they accepted a suggestion or typed a character. This editor is very similar to Nano, and, unlike in the simulated results, allows the user to edit previous code. They first spent 25 minutes attempting the problem with no assistant. Then, they spent 15 minutes attempting the problem with Assistant 1, took notes on what they liked and didn't like about it, and then repeated

Human Study Results

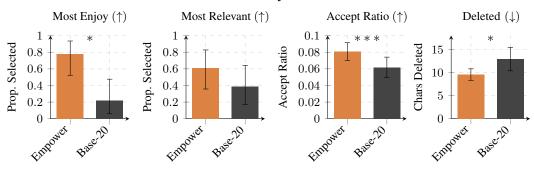


Figure 3: **Human study results with the Llama-3.1-8B-Instruct** assistant. Exact 95% confidence intervals are shown for Most Enjoy and Most Relevant as they represent Bernoulli data. Standard error bars are shown for Accept Ratio and Characters Deleted. In all cases, participants preferred using our Empower assistant.

this step for Assistant 2. Finally, they were asked to rank the assistants on several metrics including how relevant they found the suggestions and which assistant they would most enjoy using in practice. The order of the assistants was randomized and hidden from the researcher's view.

To choose which two assistants to compare, we ran a pilot study with Llama-3.1-8B-Instruct as the assistant. Participants in the pilot tended to prefer Empower with $\eta=4$, and the Base-20 baseline, so we chose these to focus on for the full study.

Survey Results. We show the results of the study in Fig. 3. Participants ranked the Empower assistant as the one they would more enjoy using in practice 78% of the time, preferring Empower with a p-value of 0.015. Additionally, they ranked our assistant as providing more relevant suggestions 61% of the time, although the result was not statistically significant with a p-value of 0.240. Although both assistants tended to provide relevant suggestions, the Empower assistant was more judicious, providing fewer suggestions overall. Participants preferred this approach to assistance, which we attribute to the empowerment objective teaching the model to only complete as long as it is confident about what the user will type next.

Quantitative Results. We also collected quantitative data about the user-assistant interaction. The Empower assistant had an acceptance rate of 8.08% compared to the 6.18% of the Base-20 assistant. Participants accepted suggestions from our assistant more with p=0.0002. Participants also tended to delete more accepted text from the Base-20 assistant than from ours. The average number of deleted characters per accepted suggestion was 12.91 for Base-20 and 9.56 for ours with p=0.0118. On average, Empower suggested $\sim\!208$ suggestions per user, whereas Base-20 suggested $\sim\!333$. The baseline also tended to give longer suggestions, at 82.2 characters per suggestion compared to 43.6 for Empower. These differences highlight the type of assistance that empowerment enables. Rather than making decisions for the human, our empowerment objective trains an assistant that completes the obvious and no more. This leads to a more natural interaction, and reduces the feeling of frustration that comes from an assistant completing too much.

6 Discussion

In this paper, we showed how assistive (LLM) agents can provide their own feedback signal for learning by estimating how empowered a human coder is. Our logit threshold method tractably computes empowering suggestions, which maximize the impact that the human will have.

While we demonstrated success in coding assistance, we expect that LLM assistants trained with empowerment can be useful in many other domains, such as writing assistance or navigating an application. These also include more agentic applications where the assistant can infer when the human would predictably take an action, and instead take the action automatically. Our work enables the training of these agents at scale by simply configuring the likelihood estimator for a given domain.

While there has been much discussion of LLM post-training methods in recent years, there has been relatively less discussion of how these post-training methods are connected with the training objectives of the underlying LLMs. LLMs are trained primarily on next-token prediction, a self-supervised objective. Our work suggests that, in addition to training the base LLM with a self-supervised objective, the post-training (i.e., alignment) might also be done with a self-supervised objective.

Limitations. All experiments were conducted on competitive programming problems. Real-world code will often differs significantly in style and difficulty, which may require a more robust marginal likelihood estimator. The application of empowerment to more general coding tasks is left for future

495 work.

As we have shown, our empowerment estimator works well for a coding environment where the human has full control over the future state. The estimator may become less accurate in an environment where some actions have more variable impact on the future than others.

REPRODUCIBILITY

To ensure that our results are reproducible, we provide a link to our code in Section A. The algorithm we used is described in Section 4.2, and the exact prompts we used for the assistants are detailed in Section D. The study instructions we provided to users, as well as the two problems they attempted, are given in Section E.

ETHICS STATEMENT

The human study was conducted with Institutional Review Board (IRB) approval.

Empowerment methods may be used to create better assistive agents, improving the experience of people who collaborate with LLMs. There is a risk of an assistant being trained to self-empower, which would create a general power-seeking agent. However, our methods are focused on human-AI collaboration, which does not pose this risk.

REFERENCES

Abel, D., Bowling, M., Barreto, A., Dabney, W., Dong, S., Hansen, S., Harutyunyan, A., Khetarpal, K., et al. Plasticity as the Mirror of Empowerment. arXiv:2505.10361, 2025.

- Carroll, M., Foote, D., Siththaranjan, A., Russell, S., and Dragan, A. AI Alignment With Changing and Influenceable Reward Functions. *International Conference on Machine Learning*, 2024.
- Carroll, M., Shah, R., Ho, M.K., Griffiths, T.L., Seshia, S.A., Abbeel, P., and Dragan, A. On the Utility of Learning About Humans for Human-AI Coordination. *Neural Information Processing Systems*, 2019.
- Casper, S., Davies, X., Shi, C., Gilbert, T.K., Scheurer, J., Rando, J., Freedman, R., Korbak, T., et al. Open Problems and Fundamental Limitations of Reinforcement Learning From Human Feedback. arXiv:2307.15217, 2023.
- Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating Large Language Models Trained on Code. arXiv:2107.03374, 2021.
- Choi, J., Sharma, A., Lee, H., Levine, S., and Gu, S.S. Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning. *International Conference on Machine Learning*, pp. 1953–1963, 2021.
- Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., and Amodei, D. Deep Reinforcement Learning From Human Preferences. *Neural Information Processing Systems*, 2017.
 - de Abril, I.M. and Kanai, R. A Unified Strategy for Implementing Curiosity and Empowerment Driven Reinforcement Learning. arXiv:1806.06505, 2018.
- DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948, 2025.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T. RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment. arXiv:2304.06767, 2023.

- Du, Y., Tiomkin, S., Kiciman, E., Polani, D., Abbeel, P., and Dragan, A.D. AvE: Assistance via Empowerment. arXiv:2006.14796, 2020.
- Gopnik, A. Empowerment as Causal Learning, Causal Learning as Empowerment: A Bridge Between Bayesian Causal Hypothesis Testing and Reinforcement Learning. 2024.
 - Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., et al. The Llama 3 Herd of Models. arXiv:2407.21783, 2024.
- Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., and Dragan, A. Inverse Reward Design. *Neural Information Processing Systems*, 30, 2017.
- Hadfield-Menell, D., Russell, S.J., Abbeel, P., and Dragan, A. Cooperative Inverse Reinforcement Learning. *Neural Information Processing Systems*, 29, 2016.
- Hejna, J. and Sadigh, D. Inverse Preference Learning: Preference-Based RL Without a Reward Function. *Neural Information Processing Systems*, 2023.
- Huang, A., Block, A., Foster, D.J., Rohatgi, D., Zhang, C., Simchowitz, M., Ash, J.T., and Krishnamurthy, A. Self-Improvement in Language Models: The Sharpening Mechanism. *The Thirteenth International Conference on Learning Representations*, 2025.
- Huang, J., Gu, S., Hou, L., Wu, Y., Wang, X., Yu, H., and Han, J. Large Language Models Can Self-Improve. *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 1051–1068, 2023.
- Jain, N., Han, K., Gu, A., Li, W.D., Yan, F., Zhang, T., Wang, S., Solar-Lezama, A., Sen, K., and
 Stoica, I. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models
 for Code. arXiv:2403.07974, 2024.
 - Klyubin, A.S., Polani, D., and Nehaniv, C.L. Empowerment: A Universal Agent-Centric Measure of Control. *IEEE Congress on Evolutionary Computation*, volume 1, pp. 128–135, 2005.
 - Klyubin, A.S., Polani, D., and Nehaniv, C.L. Keep Your Options Open: An Information-Based Driving Principle for Sensorimotor Systems. *PLOS One*, 3(12):e4018, 2008.
 - Laidlaw, C., Bronstein, E., Guo, T., Feng, D., Berglund, L., Svegliato, J., Russell, S., and Dragan, A. Scalably Solving Assistance Games. ICML 2024 Workshop on Models of Human Feedback for AI Alignment, 2024.
 - Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., et al. Self-Refine: Iterative Refinement With Self-Feedback. *Neural Information Processing Systems*, 36, 2024.
 - Mullen Jr, J.F. and Manocha, D. LBAP: Improved Uncertainty Alignment of LLM Planners using Bayesian Inference. *arXiv preprint arXiv:2403.13198*, 2024.
 - Myers, V., Ellis, E., Levine, S., Eysenbach, B., and Dragan, A. Learning to Assist Humans Without Inferring Rewards. *Neural Information Processing Systems*, 2024.
 - Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang, C., Agarwal, S., et al. Training Language Models to Follow Instructions With Human Feedback. arXiv:2203.02155, 2022.
 - Pang, J.C., Wang, P., Li, K., Chen, X.H., Xu, J., Zhang, Z., and Yu, Y. Language model self-improvement by reinforcement learning contemplation. *arXiv* preprint arXiv:2305.14483, 2023.
- Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C.D., and Finn, C. Direct Preference Optimization: Your Language Model Is Secretly a Reward Model. arXiv:2305.18290, 2024.
- Ramrakhya, R., Chang, M., Puig, X., Desai, R., Kira, Z., and Mottaghi, R. Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning. *arXiv preprint arXiv:2504.00907*, 2025.
- Ren, A.Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N., Xu, P., Takayama, L., Xia, F., Varley, J., et al. Robots That Ask For Help: Uncertainty Alignment for Large Language Model Planners. *Conference on Robot Learning*, pp. 661–682, 2023.
- Salge, C., Glackin, C., and Polani, D. Empowerment–an Introduction. *Guided Self-Organization: Inception*, (arXiv:1310.1863):67–114, 2014.

- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy Optimization
 Algorithms. arXiv:1707.06347, 2017.
 - Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and Yao, S. Reflexion: Language Agents With Verbal Reinforcement Learning. *Neural Information Processing Systems*, 36, 2024.
 - Song, J., Gore, J., and Kleiman-Weiner, M. Estimating the Empowerment of Language Model Agents. arXiv:2509.22504, 2025.
 - Stiennon, N., Ouyang, L., Wu, J., Ziegler, D.M., Lowe, R., Voss, C., Radford, A., Amodei, D., and Christiano, P.F. Learning to Summarize From Human Feedback. arXiv:2009.01325, 2020.
 - Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction. MIT press, 2018.
 - Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., et al. Gemma 3 Technical Report. arXiv:2503.19786, 2025.
 - Trivedi, H., Khot, T., Hartmann, M., Manku, R., Dong, V., Li, E., Gupta, S., Sabharwal, A., and Balasubramanian, N. AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents. *Annual Meeting of the Association for Computational Linguistics*, pp. 16022–16076, 2024.
 - Williams, M., Carroll, M., Narang, A., Weisser, C., Murphy, B., and Dragan, A. On Targeted Manipulation and Deception When Optimizing LLMs for User Feedback. arXiv:2411.02306, 2024.
 - Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., et al. Qwen3 Technical Report. arXiv:2505.09388, 2025.
 - Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. Tree of Thoughts: Deliberate Problem Solving With Large Language Models. *Neural Information Processing Systems*, 36, 2024.
 - Yuan, W., Pang, R.Y., Cho, K., Li, X., Sukhbaatar, S., Xu, J., and Weston, J.E. Self-rewarding language models. *Forty-first International Conference on Machine Learning*, 2024.
 - Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou, C., and Zhou, J. Scaling Relationship on Learning Mathematical Reasoning with Large Language Models. arXiv:2308.01825, 2023.

A WEBSITE AND CODE

The website that links to the code and configs to reproduce our experiments can be found at https://anonymous.4open.science/r/codegen-384F/.

B ADDITIONAL SIMULATED RESULTS

Full experimental results are presented in Tables 1 and 2. We ablated the choice of human model, also training models on a Llama-3.3-70B-Instruct generated dataset and using it as the simulated human. We ablate the choice of η and show results in Table 3. We train a Rejection Fine-Tuned (RFT) baseline on a single round of accepted suggestions to Codeforces problems, and include the results in Table 3 (Yuan et al., 2023). Table 3 also includes an evaluation of GPT-5-mini on our simulated environment.

C TRAINING DETAILS

Experiments were performed on a NVIDIA H100 node with 8 GPUs, each with 80GB of VRAM. Pre-trained weights were taken from the LLaMA-3.1-8B, LLaMA-3.3-70B (Grattafiori et al., 2024), Qwen3-8B, Qwen3-14B (Yang et al., 2025), and Gemma-3-27B-it (Team et al., 2025) models, as described in Section 5. We finetuned the assistant for one epoch on a dataset of 4,138 examples with a test split size of 0.2.

The LlaMA models were used under the Llama 3.1 Community License Agreement. The Qwen models were used under the Apache 2.0 license. Gemma was used under the Gemma Terms of Use. Our training dataset was initialized from MatrixStudio/Codeforces-Python-Submissions, https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions.

Base Model	Name	Pass@1 (†)	Accept Ratio (†)	Discounted Pass Rate (↑)
Qwen3-8B	Empower	0.218 ^(±0.019)	$0.488^{(\pm 0.024)}$	$0.176^{(\pm 0.016)}$
Qwen3-8B	SFT-20	$0.167^{(\pm 0.018)}$	$0.192^{(\pm 0.018)}$	$0.116^{(\pm 0.013)}$
Qwen3-8B	SFT-10	$0.152^{(\pm 0.017)}$	$0.299^{(\pm 0.021)}$	$0.114^{(\pm 0.013)}$
Qwen3-8B	SFT-RAND-1-30	$0.156^{(\pm 0.017)}$	$0.201^{(\pm 0.019)}$	$0.109^{(\pm 0.012)}$
Qwen3-8B	Base-10	$0.198^{(\pm 0.019)}$	$0.592^{(\pm 0.023)}$	$0.162^{(\pm 0.015)}$
Qwen3-8B	Base	$0.183^{(\pm 0.018)}$	$0.351^{(\pm 0.022)}$	$0.143^{(\pm 0.014)}$
Llama3.1-8B Instruct	Empower	0.282 ^(±0.021)	$0.317^{(\pm 0.022)}$	$0.208^{(\pm 0.016)}$
Llama3.1-8B Instruct	SFT-20	$0.097^{(\pm 0.014)}$	$0.165^{(\pm 0.017)}$	$0.066^{(\pm 0.010)}$
Llama3.1-8B Instruct	SFT-10	$0.104^{(\pm 0.014)}$	$0.257^{(\pm 0.021)}$	$0.074^{(\pm 0.010)}$
Llama3.1-8B Instruct	SFT-RAND-1-30	$0.112^{(\pm 0.015)}$	$0.184^{(\pm 0.018)}$	$0.075^{(\pm 0.010)}$
Llama3.1-8B Instruct	Base-10	$0.156^{(\pm 0.017)}$	$0.537^{(\pm 0.023)}$	$0.127^{(\pm 0.014)}$
Llama3.1-8B Instruct	Base	$0.170^{(\pm 0.018)}$	$0.297^{(\pm 0.021)}$	$0.134^{(\pm 0.014)}$
Qwen3-14B	Empower	0.249 ^(±0.020)	$0.459^{(\pm 0.023)}$	$0.201^{(\pm 0.016)}$
Qwen3-14B	SFT-20	$0.145^{(\pm 0.017)}$	$0.188^{(\pm 0.018)}$	$0.102^{(\pm 0.012)}$
Qwen3-14B	SFT-10	$0.165^{(\pm 0.017)}$	$0.292^{(\pm 0.021)}$	$0.126^{(\pm 0.013)}$
Qwen3-14B	SFT-RAND-1-30	$0.145^{(\pm 0.017)}$	$0.226^{(\pm 0.020)}$	$0.106^{(\pm 0.012)}$
Qwen3-14B	Base-10	$0.174^{(\pm 0.018)}$	$0.597^{(\pm 0.023)}$	$0.143^{(\pm 0.015)}$
Qwen3-14B	Base	$0.161^{(\pm 0.017)}$	$0.299^{(\pm 0.021)}$	$0.127^{(\pm 0.014)}$

Table 1: Assistant results with Llama-3.3-70B-Instruct as the human model. We evaluate on 554 LiveCodeBench problems, and find that Empower outperforms all baselines in terms of Pass@1 and DPR. Standard errors are shown in parentheses.

Base Model	Name	Pass@1 (†)	Accept Ratio (†)	Discounted Pass Rate (\uparrow)
Qwen3-8B	Empower	0.178 ^(±0.018)	0.630 ^(±0.023)	$0.156^{(\pm0.016)}$
Qwen3-8B	SFT-20	$0.086^{(\pm 0.013)}$	$0.299^{(\pm 0.021)}$	$0.072^{(\pm 0.011)}$
Qwen3-8B	SFT-10	$0.101^{(\pm 0.014)}$	$0.367^{(\pm 0.023)}$	$0.086^{(\pm 0.012)}$
Qwen3-8B	Base-10	$0.090^{(\pm 0.013)}$	$0.582^{(\pm 0.023)}$	$0.080^{(\pm 0.012)}$
Qwen3-8B	Base	$0.092^{(\pm 0.014)}$	$0.400^{(\pm 0.023)}$	$0.083^{(\pm 0.012)}$
Llama3.1-8B Instruct	Empower	0.176 ^(±0.018)	0.670 ^(±0.022)	$0.150^{(\pm 0.015)}$
Llama3.1-8B Instruct	SFT-20	$0.070^{(\pm 0.012)}$	$0.231^{(\pm 0.020)}$	$0.057^{(\pm0.010)}$
Llama3.1-8B Instruct	SFT-10	$0.062^{(\pm 0.011)}$	$0.268^{(\pm 0.021)}$	$0.053^{(\pm 0.010)}$
Llama3.1-8B Instruct	Base-10	$0.064^{(\pm 0.011)}$	$0.649^{(\pm 0.022)}$	$0.057^{(\pm 0.010)}$
Llama3.1-8B Instruct	Base	$0.064^{(\pm 0.011)}$	$0.383^{(\pm 0.023)}$	$0.055^{(\pm 0.010)}$
Qwen3-14B	Empower	0.170 ^(±0.018)	0.659 ^(±0.022)	$0.148^{(\pm 0.015)}$
Qwen3-14B	SFT-20	$0.088^{(\pm 0.013)}$	$0.381^{(\pm 0.023)}$	$0.077^{(\pm 0.012)}$
Qwen3-14B	SFT-10	$0.101^{(\pm 0.014)}$	$0.461^{(\pm 0.023)}$	$0.088^{(\pm 0.012)}$
Qwen3-14B	Base-10	$0.062^{(\pm 0.011)}$	$0.530^{(\pm 0.023)}$	$0.055^{(\pm0.010)}$
Qwen3-14B	Base	$0.086^{(\pm 0.013)}$	$0.312^{(\pm 0.022)}$	$0.077^{(\pm 0.012)}$

Table 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-CodeBench problems. We find Empower outperforms all baselines in terms of Pass@1 and DPR. Standard errors are shown in parentheses.

Base Model	Name	Pass@1 (↑)	Accept Ratio (↑)	Discounted Pass Rate (†)
GPT-5-mini	GPT-5-mini	0.249 ^(±0.020)	0.699 ^(±0.021)	0.203 ^(±0.017)
Llama3.1-8B Instruct	RFT	$0.057^{(\pm 0.011)}$	$0.384^{(\pm 0.023)}$	$0.049^{(\pm 0.009)}$
Llama3.1-8B Instruct	$\eta = 0.32$	$0.176^{(\pm 0.018)}$	$0.670^{(\pm 0.022)}$	$0.150^{(\pm 0.015)}$
Llama3.1-8B Instruct	$\dot{\eta} = 0.5$	$0.174^{(\pm 0.018)}$	$0.627^{(\pm 0.023)}$	$0.149^{(\pm 0.015)}$
Llama3.1-8B Instruct	$\dot{\eta}=1$	$0.132^{(\pm 0.016)}$	$0.537^{(\pm 0.023)}$	$0.116^{(\pm 0.014)}$
Llama3.1-8B Instruct	$\dot{\eta}=2$	$0.117^{(\pm 0.015)}$	$0.524^{(\pm 0.023)}$	$0.104^{(\pm 0.014)}$
Llama3.1-8B Instruct	$\dot{\eta} = 4$	$0.084^{(\pm 0.013)}$	$0.473^{(\pm 0.023)}$	$0.073^{(\pm 0.011)}$
Llama3.1-8B Instruct	SFT-20	$0.070^{(\pm 0.012)}$	$0.231^{(\pm 0.020)}$	$0.057^{(\pm0.010)}$
Llama3.1-8B Instruct	SFT-10	$0.062^{(\pm 0.011)}$	$0.268^{(\pm 0.021)}$	$0.053^{(\pm 0.010)}$
Llama3.1-8B Instruct	Base-10	$0.064^{(\pm 0.011)}$	$0.649^{(\pm 0.022)}$	$0.057^{(\pm 0.010)}$
Llama3.1-8B Instruct	Base	$0.064^{(\pm 0.011)}$	$0.383^{(\pm 0.023)}$	$0.055^{(\pm0.010)}$

Table 3: Additional baselines and η ablations with Gemma-3-27B-it as the human model. We evaluate GPT-5-mini as an assistant. We also evaluate a Rejection Fine-Tuned (RFT) baseline. Our method with any choice of η outperforms all baselines, except for GPT-5-mini, on Pass@1 and DPR. Base-10 has a higher acceptance rate than most choices of η , except for $\eta = 0.32$. Standard errors are shown in parentheses.

We de-duplicated the problems and re-generated the solutions using the corresponding human model that was being assisted.

D PROMPTS

We provide prompts used for the LLMs in our experiments.

D.1 ASSISTANT PROMPT

The assistant system prompt is:

```
You are assisting a human in a python code generation task. Your
     role is to provide suggested completions given
2 what they have already typed. Please try to infer what the human
     wants the next piece of code to be given the
3 code they have already written. If they have not written any code,
     please provide a good start to their program, such as with
     import statements or function definitions.
5 The way you will compose your suggestion is by providing the next
     version of the code which would replace the current code.
6 Please re-type the current code and then add in your suggested
     completion.
7 DO NOT output any other text, including no quotation marks.
9 ## Remember to always re-type the code written so far and then add
     in your suggested completion.
10 If you don't re-type the code written so far *exactly as it is
     written* (with all of the functions, comments, import statements
      , etc)
an error will be raised.
```

The assistant user prompt is:

```
Now it's your turn! Please provide a completion for the following
    code:
2 ``python
3 {{ code_to_complete }}
4 ```
```

D.2 FEW SHOT EXAMPLES FOR ASSISTANT

```
758
759
            # > Now it's your turn! Please provide a completion for the following code:
           # ```python
760
            def twoSum(self, nums: List[int], target: int) -> List[int]:
761
                numMap = \{\}
762
                n = len(nums)
763
                # Build the hash table
764
         8
                for i in range(n):
         9
765
                    numMap[nums[i]] = i
        10
766
767
                # Find the complement
        12
768
        13
                for i in range(n):
769
        770
        16 # > assistant
771
        17 # > Here is my suggested completion:
        18 # ```python
772
        19 def twoSum(self, nums: List[int], target: int) -> List[int]:
773
                numMap = {}
        20
774
                n = \overline{len(nums)}
        21
775
        22
776
                # Build the hash table
                for i in range(n):
        24
777
                    numMap[nums[i]] = i
        25
778
779
                # Find the complement
        27
780
                for i in range(n):
        28
781
                    complement = target - nums[i]
        30 # * * * *
782
        31 # > user
783
        32 # > Now it's your turn! Please provide a completion for the following code:
784
        33 # ```python
        34 def whoami(name:
785
        35 #
786
        36 # > assistant
787
        37 # > Here is my suggested completion:
788
        38 # ```python
789
           def whoami(name: str, age: int) -> str:
790
791
```

D.3 HUMAN MODEL PROMPTS

Human Appender Prompt. The prompts given to the human when they are deciding what to write next. They are provided both a system prompt and a user prompt. The system prompt is the following:

```
You are an expert Python programmer. You will be given a question (
    problem specification) and will generate a correct Python
    program that matches the specification and passes all tests.

*Please do not provide any sample outputs or testcases in your
    response. Additionally, you are only allowed to solve the
    problem *ONCE*.

Do not attempt to retry your solution if you are unhappy with it.

For example, if your solution is in a function called `solve`, you
    should only define one function called `solve`. DO NOT try to
    retry it if you think it has a bug.

For example, you should not write `solve2` if you think `solve` has
    a bug. Only the first solution will be counted, so simply stop
    writing once the first solution is finished--even if it is not
    correct.
```

The user prompt is the following:

```
810
       ### Question:
811
       2 {{problem.question_content}}
       4 ### Format:
813
       5 {
814
       6 You will use the following starter code to write the solution to
815
            the problem and enclose your code within delimiters.
816
            python
817
       8 {{ problem.starter_code }}
818
       10 {
819
       \scriptstyle\rm II Read the inputs from stdin solve the problem and write the answer
820
             to stdout (do not directly test on the sample inputs). Enclose
821
            your code within delimiters as follows. Ensure that when the
822
            python program runs, it reads the inputs, runs the algorithm and
823
             writes output to STDOUT.
       12 ```python
824
       13 # YOUR CODE HERE
825
       14
826
       15 {
827
```

828 829

830

831

832

833 834

835

836

837

838

839

840

841

842 843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859 860

861

862

863

Human Acceptor Prompt. When the human is choosing whether or not to accept or reject a suggestion, it has a different prompt. There is a system prompt, a user prompt that encourages it to reason about the suggestion, and finally a user prompt that asks it for its final decision to accept, reject, or finish. The system prompt is the following:

```
You are an expert Python programming agent. You will be given a
     question (problem specification) and will generate a correct
     Python program that matches the specification and passes all
     tests.
3 The way you will compose your program is by interacting with the
     file editing interface through tools.
4 In addition, you will be assisted by an automated assistant that
     will sometimes propose suggested completions to whatever you are
5 At every step you will first write your thoughts on the suggestion
     and whether it correctly continues your solution, or instead
     introduces bugs.
6 Please *only consider the assistant suggestion* in your decision to
      accept the suggestion, reject the suggestion, or finish and
     submit your code for testing.
_{7} Previous code that you have written is not able to be changed, so
     you should only look at the changes the assistant is proposing.
8 At the very end of your thought process, you will write one word to
      specify which action you are taking.
9 Unless you take the "finish" action, you will be prompted
     afterwards to write what you would like to append to your
10 Therefore, please accept suggestions as long as they do not
     introduce bugs, and either help you solve the problem or improve
      the quality of your code.
II It's ok if the the suggested completion is incomplete, because you
     can always append to it later.
13 You will first be prompted to write your thoughts on the suggestion
14 Afterwords, you will be prompted to write which action you would
     like to take.
15
16 Here are the actions you have access to:
17 ### "accept"
```

```
864
            description: Accepts a suggested completion given by an
865
            intelligent assistant. The suggested completion will then be
866
            incorporated into the code you have written.
      19 ### "reject"
867
            description: Rejects a suggested completion given by an
868
            intelligent assistant. The suggested completion will not be
869
            incorporated into the code you have written.
870
      21 ### "finish"
871
            description: Tells the editor that you have finished writing
            the program and to run the testcases. Only call this tool if you
872
             are confident that your program is finished. You will not be
            prompted to write any more code after calling this tool.
874
875
      24 Remember, you will be able to continue writing your program
876
            regardless of whether you accept the suggested completion or not
877
      25 As long as the suggested completion does not introduce bugs, and
878
            either helps you solve the problem or improves the quality of
879
            your code, you should accept it.
880
      26 DO NOT reject a suggestion because it is "minor" or "short". Only
881
            reject the suggestion if it is wrong, introduces a bug, or
            otherwise sets you back.
882
```

The user reasoning prompt is the following:

883 884

885

886

887

888

891

893

894

895

897

898

899

900

901

902

903

904

905

906

907

908 909

910

911

912

913

914

915

916

917

```
## You have written the following code:
2 ```python
3 {code}
6 ## Suggested Completion
7 Here is what your code would look like with a suggested completion:
8 ```python
9 {suggestion}
10
11
12 ## Suggested Completion diff
13 For clarity, here is the diff between your current code and the
      suggested completion code:
14 {git_diff_string(code, suggestion)}
15
16 ## Instructions:
17 What do you think of the suggested completion? Do you think it is
      solving the question correctly, or does it introduce a bug or
      error?
18 Please write down your thoughts. You are not allowed to write any
     new code in your response, only your thoughts on whether the
      suggested completion helps you on your way to solving the
     problem, or otherwise improves the quality of your code.
19 It is ok if the the suggested completion is incomplete, because you
      will be prompted to append to it later.
20 You are also not able to take any actions at this stage.
```

After it has provided reasoning for whether or not it believes the suggestion is a good one, we prompt it to make its final decision with the following user prompt:

```
Now, please write which action you would like to take.
Remember, the actions available are "accept" to accept the suggested completion, "reject" to reject the suggested completion, and "finish" to finish writing your code and run the tests.
Please only call "finish" if you are confident that your code is correct and you are ready to run the tests.
```

918 **HUMAN STUDY** 919 920 STUDY INSTRUCTIONS 921 922 SETUP 923 924 1. Sign research consent form. 925 2. Run locally: git clone redacted 926 If on Mac: 927 928 3.1. Navigate to the cloned repository and run: ./install.sh 929 4. If on Windows: 930 4.1. Install node: https://nodejs.org/en/download 931

- 4.2. Run npm install
- 4.3. Run npm start
- 5. If on Linux:

932 933

934

935

936 937

938

939

940

941 942

943

944

945 946

947 948

949 950

951

952

953

954

955

956 957

958

959

960 961

962

964

965 966

967

968 969

970

971

- 5.1. Run sudo apt install nodejs npm
- 6. Enter your name in the box.
- 7. Switch the assistant to **Assistant 1**. Open up the scratchpad, type a few things, and make sure that a suggestion appears (suggestions will not always appear).
- 8. You can accept suggestions using the Tab key.
- 9. You can explicitly reject a suggestion using the Esc key.
- 10. Click **Back to Launch** at the top of the window.
- 11. Switch the assistant to No Assistant.
- 12. Move on to the Study section.

STUDY

- 1. You are only allowed to use the Python docs: https://docs.python.org/3/. You may not use anything else on the internet.
- 2. To run the test cases:
 - 2.1. Save your file (CMD + S).
 - 2.2. At the top of the editor, click **Run Testcases**. This will copy a command to your clipboard which you can then paste and run in your terminal.
- 3. Set a timer for 25 minutes.
- 4. Switch the assistant to **No Assistant**.
- 5. Begin the problem.
- 6. Whenever you or the timer finish, switch to **Assistant 1**.
- 7. Open up the same problem.
 - 8. Set a timer for 15 minutes and solve the problem with Assistant 1. Pay attention to what you like and dislike about this assistant.
 - 9. Fill out your notes in this form: redacted.
- 10. Save the file you are working on (CMD + S).
- 11. Repeat steps 6–10 for Assistant 2.
- 12. Complete the rest of the form and rank the assistants.
- 13. Make sure to zip and upload your problems directory to the form.

E.2 PROBLEM 1: LAVA TRAP Simulate a single player walking on a square grid with lava squares. After each command, print if they fell into the lava, or, if they survived, print the player's current row, column, and facing. The player will never move out of bounds of the grid. The top left of the grid is (1,1) and the bottom right is (N, N). BOARD • An $N \times N$ grid of characters: - . — empty cell - L - lava • Cells are 1-indexed: row 1..N, column 1..N. **PLAYER** • Starts at row r, column c, facing $dir \in \{U, D, L, R\}$. **COMMANDS** You are given Q commands: 1. MOVE Move forward one step in the current direction. 2. FACE X where $X \in \{U, D, L, R\}$ Set the facing direction. TILE EFFECTS (AFTER THE MOVE) • If the player moves into lava, the simulation ends, and Game Over is printed. **INPUT** The input will come from standard in: 2. N lines of grid (each of length N) 3. rcdir4. *Q* 5. Q lines of commands **CONSTRAINTS** • 2 < N < 50• $1 \le r, c \le N$ • $dir \in \{U, D, L, R\}$ • Commands: - MOVE - FACE U|D|L|R

• $1 \le Q \le 2 \times 10^5$

```
1026
       OUTPUT
1027
       After each command, print one line:
1028
1029
       r c dir
1030
1031
       (with the player's 1-indexed row/col and facing as U|D|L|R).
1032
1033
       EXAMPLE
1034
       Input:
1035
1036
       3
1037
       ..L
1038
1039
1040
       2 2 R
       3
1041
       MOVE
1042
       FACE U
1043
       MOVE
1044
1045
       Output:
1046
       2 3 R
1047
       2 3 U
1048
       Game Over
1049
1050
       STARTER CODE
1051
1052
           import sys
1053
        2
1054
        3
           def read_grid():
1055
                """Reads N and then N lines of the grid. Returns (N, grid)."""
         5
1056
         6
                n = int(sys.stdin.readline().strip())
1057
                grid = [list(sys.stdin.readline().strip()) for _ in range(n)]
1058
                return n, grid
         8
1059
1060
        11 def read_starting_position():
1061
                """Reads r, c, dir. Returns (r, c, dir)."""
        12
1062
                parts = sys.stdin.readline().split()
        13
                r, c, d = int(parts[0]), int(parts[1]), parts[2]
1063
        14
                return r, c, d
        15
1064
1065
           def read_q():
        17
1066
                """Reads q from stdin."""
        18
                return int(sys.stdin.readline().strip())
1067
        19
        20
1068
           def read_next_move():
        21
1069
                """Reads and returns the next command as a string, or None if EOF."""
1070
                line = sys.stdin.readline()
        23
                if not line:
1071
        24
        25
                   return None
1072
        26
                return line.strip()
1073
        27
1074
1075
           def main():
1076
1077
       E.3 PROBLEM 2: SPECIAL KEYBOARD
```

Simulate a user typing on a special keyboard. They will type one character at a time. After they have finished typing, print what they wrote.

INPUT The input will come from standard in: 1. The number of characters that the user will type, q ($1 \le q \le 2000$). 2. One character that the user types per line. 3. Characters may include letters, digits, spaces, punctuation, and the markers below. OUTPUT • One line: the transformed string. SPECIAL TOGGLES Most keyboards have a Caps Lock key that toggles between lowercase and uppercase letters. This special keyboard has that, in addition to several non-standard toggles. When the user types a special toggle key, turn the toggle on, and apply its rule for all of the text that the user types until they type the special toggle key again to turn it off. • Toggle keys do not affect previously written text, only future text. • Do not append the toggle character to the user's output. • More than one toggle may be active at the same time. TOGGLE RULES • ^ Caps Lock: uppercase all letters while this toggle is active. (In Python: s.upper()) ullet \sim While active, consonants (letters that are not vowels) are duplicated, preserving case. ("y" counts as a consonant.) • # \rightarrow While active, only digits and the first "." encountered are appended to the output. - Skip all other characters. - If a second "." appears (or any additional one), skip it. (In Python: check if a character is a digit with s.isdigit().) **EXAMPLES** Input а b С Output ABc Input a

b

С

```
1134
1135
       d
1136
1137
       е
1138
       Output
1139
1140
       ABBCCDe
1141
1142
1143
       Input
1144
1145
       18
1146
1147
       d
1148
       b
1149
       #
1150
       Ι
1151
       6
1152
       7
1153
1154
       9
1155
1156
       1
1157
       Z
1158
       #
1159
       a
1160
       С
1161
1162
1163
       Output
1164
1165
       DBB67.91Acc.
1166
1167
       STARTER CODE
1168
1169
            import sys
         2 from typing import List, Tuple
1170
1171
1172
            def read_q() -> int:
1173
                """Read the number of typed characters (q) from the first line."""
                line = sys.stdin.readline()
1174
                if not line:
1175
                    raise EOFError("Expected an integer q on the first line.")
         9
1176
                return int(line.strip())
        10
1177
        11
1178
        12
            def read_next_char() -> str:
        13
1179
        14
1180
                Read the next 'character per line'.
        15
1181
        16
1182
        17
                line = sys.stdin.readline()
                if line == "":
1183
        18
                    raise EOFError("Unexpected end of input while reading characters.")
        19
1184
                # Take the first character on the line.
        20
1185
                return line[0]
        21
1186
        22
1187
        23
        24 def main() -> None:
```

E.4 QUESTIONNAIRE

This questionnaire was given to participants through a Google Form.

1192 1. What is your name?

- 2. Which question are you solving?
- 3. Assistant 1 Notes (Paragraph entry).
- 4. Assistant 2 Notes (Paragraph entry).
- 5. How relevant are the assistant's suggestions? (Assign each label to only one assistant)
 - (a) Assistant 1. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]
 - (b) Assistant 2. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]
- 6. How often did you have to delete the assistant's work? (Assign each label to only one assistant)
 - (a) Assistant 1. [1 (Fewest deletes) or 2 (Most deletes)]
 - (b) Assistant 2. [1 (Fewest deletes) or 2 (Most deletes)]
- 7. Which would you most enjoy using in practice? (Assign each label to only one assistant)
 - (a) Assistant 1. [1 (Most enjoy) or 2 (Least enjoy)]
 - (b) Assistant 2. [1 (Most enjoy) or 2 (Least enjoy)]

E.5 ADDITIONAL RESULTS

In the survey we asked participants to rank the assistants based on how often they had to delete the assistant's work. In total, 17 out of the 18 participants ranked our Empower method over the baseline (p=0.00007). As we also collected the participant's keypresses, we instead included the exact number of characters which were accepted and later deleted in the main text, which is a more informative metric.

1216 E.6 EXAMPLE FINAL PROGRAMS

We include examples of final programs written by two randomly chosen human study participants. The code is highlighted to indicate the source of each character: the starter code is colored beige, the participant code is colored blue, and the assistant code is colored green.

E.6.1 LAVA TRAP BASE-20

The final program written by a participant with the Base-20 assistant on the Lava Trap problem.

```
USER ASSISTANT STARTER_CODE
```

```
1226
1227
            import sys
1228
            def read_grid():
1230
                """Reads N and then N lines of the grid. Returns (N, grid)."""
         5
1231
                n = int(sys.stdin.readline().strip())
         6
                grid = [list(sys.stdin.readline().strip()) for _ in range(n)]
1232
                return n, grid
         8
1233
         9
1234
        10
1235
           def read_starting_position():
        11
                """Reads r, c, dir. Returns (r, c, dir)."""
1236
        12
                parts = sys.stdin.readline().split()
        13
1237
                r, c, d = int(parts[0]), int(parts[1]), parts[2]
        14
1238
        15
                return r, c, d
1239
        16
           def read_q():
1240
        17
                """Reads q from stdin."""
        18
                return int(sys.stdin.readline().strip())
```

```
1242
1243
        21
            def read_next_move():
1244
                 """Reads and returns the next command as a string, or None if EOF."""
        22
        23
                 line = sys.stdin.readline()
1245
                 if not line:
1246
                    return None
        25
1247
                return line.strip()
         26
1248
        27
1249
        28
            def main():
        29
1250
                 q = read_q()
1251
                n, grid = read_grid()
        31
1252
        32
                r,c,d = read_starting_position()
1253
                 for _ in range(q):
        33
                     print(f"this is q{q}")
1254
        34
                     next_move = read_next_move()
         35
1255
         36
                     print("running this here")
1256
         37
                     # Process the move
1257
                     # For example, let's assume we want to print the positi
         38
                     # Process the move here, for example:
1258
                     if next_move == "MOVE":
        40
1259
                         # Get the direction
        41
1260
                         print("running this")
1261
        43
                         # Move in the given direction
                         if d == "U":
1262
        44
                             r = 1
        45
1263
                         elif d == "D":
1264
                             r += 1
        47
1265
                         elif d == "L":
        48
1266
         49
                             c -= 1
                         elif d == "R":
1267
        50
                             c += 1
        51
1268
                         if grid[r-1][c-1] == "L":
         52
1269
                             print("Game Over")
        53
1270
                             return
        54
         55
                         else:
1271
                              print(f"{r} {c} {d}")
         56
1272
        57
                     else:
1273
                         d = next_move[-1]
1274
                         print(f"{r} {c} {d}")
1275
```

E.6.2 LAVA TRAP EMPOWER

The final program written by the same participant with the Empower assistant on the Lava Trap problem.

```
1280
        USER
                  ASSISTANT
                                 STARTER CODE
1281
1282
            import sys
1283
1284
1285
            def read_grid():
                """Reads N and then N lines of the grid. Returns (N, grid)."""
1286
                n = int(sys.stdin.readline().strip())
         6
1287
                grid = [list(sys.stdin.readline().strip()) for _ in range(n)]
1288
                return n, grid
1289
1290
        10
            def read_starting_position():
        11
1291
                """Reads r, c, dir. Returns (r, c, dir)."""
1292
                parts = sys.stdin.readline().split()
        13
1293
        14
                r, c, d = int(parts[0]), int(parts[1]), parts[2]
                return r, c, d
1294
        15
        16
1295
           def read_q():
```

```
1296
                 """Reads q from stdin."""
        18
1297
        19
                 return int(sys.stdin.readline().strip())
1298
        20
        21
            def read_next_move():
1299
                 """Reads and returns the next command as a string, or None if EOF."""
1300
                 line = sys.stdin.readline()
        23
1301
                 if not line:
         24
1302
         25
                     return None
1303
        26
                 return line.strip()
        27
1304
1305
            def main():
        29
1306
        30
                 n, grid = read_grid()
1307
                 r, c, dir = read_starting_position()
        31
                 q= read_q()
        32
1308
        33
1309
         34
1310
         35
1311
                 while q >=0:
         36
                     next_dirs = {"L":-1, "R": 1, "U": -1, "D": 1}
1312
                     m = read_next_move()
         38
1313
                     if not m:
        39
1314
                         return
1315
                     if m == "MOVE":
        41
                         if dir in ["U", "D"]:
1316
        42
                              r += next_dirs[dir]
        43
1317
        44
1318
                              c += next_dirs[dir]
        45
1319
                          if grid[r-1][c-1] == "L":
        46
1320
                              print("Game Over")
                              return
1321
        48
         49
                          else:
1322
         50
                              print(f"{r} {c} {dir}")
1323
        51
                     else:
                          new_dir = m[-1]
1324
        52
                          dir = new_dir
        53
1325
                          print(f"{r} {c} {dir}")
         54
1326
        55
                     q -= 1
1327
        56
1328
            main()
        57
1329
```

E.6.3 SPECIAL KEYBOARD BASE-20

The final program written by a different participant with the Base-20 assistant on the Special Keyboard problem.

```
1334
        USER
                  ASSISTANT
                                 STARTER CODE
1335
1336
            import sys
1337
            from typing import List, Tuple
1338
1339
            def read_q() -> int:
1340
                """Read the number of typed characters (q) from the first line."""
         6
1341
                line = sys.stdin.readline()
1342
                if not line:
         8
1343
                    raise EOFError("Expected an integer q on the first line.")
         9
                return int(line.strip())
1344
        10
        11
1345
        12
1346
            def read_next_char() -> str:
        13
1347
        14
1348
                Read the next 'character per line'.
        15
        16
1349
                line = sys.stdin.readline()
```

```
1350
                 if line == "":
         18
1351
                     raise EOFError("Unexpected end of input while reading characters.")
         19
                 # Take the first character on the line.
        20
         21
                 return line[0]
1353
         22
1354
         23
1355
            def main() -> None:
         24
1356
         25
                 output = ''
1357
         26
         27
1358
         28
1359
                 # Read the number of characters
         29
1360
         30
                 q = read_q()
1361
         31
                 caps_flag = False
         32
1362
                 duplicate_flag = False
         33
1363
                 digits_flag = False
         34
1364
                 saw_dot = False
         35
1365
         36
         37
                 # Read and process
1366
                 for _ in range(q):
         38
                     char = read_next_char()
         39
1368
         40
1369
                     if char == '^':
         41
                          caps_flag = not caps_flag
        42
1370
                          continue
         43
1371
                     if char == '#':
         44
1372
                          digits_flag = not digits_flag
         45
1373
                          saw_dot = False
         46
1374
         47
                          continue
                     if char == '~':
1375
         48
                          duplicate_flag = not duplicate_flag
         49
1376
         50
1377
         51
1378
                     # Check if we need to process the character based on the flags
         52
                     if caps_flag:
1379
                          char = char.upper()
         54
1380
                     if duplicate_flag:
         55
1381
                          if char not in {'a', 'e', 'i', 'o', 'u'}:
1382
                              char = 2*char
         57
                     if digits_flag:
1383
         58
                          if char == '.' and not saw_dot:
1384
                              saw_dot = True
         60
1385
                          elif not char.isdigit():
        61
1386
                              char = ''
        62
1387
        63
                     output += char
1388
        64
        65
1389
                 print(output)
1390
        67
        68
             main()
1392
1393
1394
               SPECIAL KEYBOARD EMPOWER
1395
```

The final program written by the different participant with the Empower assistant on the Special Keyboard problem.

```
1398 USER ASSISTANT STARTER_CODE
1399
1400
1 import sys
1401 2 from typing import List, Tuple
1402 3
1403
4
5 def read_q() -> int:
```

```
1404
                 """Read the number of typed characters (q) from the first line."""
         6
1405
         7
                 line = sys.stdin.readline()
                 if not line:
1406
         8
         9
                     raise EOFError("Expected an integer q on the first line.")
1407
                 return int(line.strip())
1408
         11
1409
1410
            def read_next_char() -> str:
         13
1411
         14
                 Read the next 'character per line'.
         15
1412
         16
1413
         17
                 line = sys.stdin.readline()
1414
        18
                 if line == "":
                     raise EOFError("Unexpected end of input while reading characters.")
1415
         19
         20
                 # Take the first character on the line.
1416
                 return line[0]
        21
1417
        22
1418
        23
            def main():
1419
        24
        25
1420
                 output = ''
        26
1421
                 caps_flag = False
        27
1422
                 digits_flag = False
        28
1423
        29
                 duplicate_flag = False
                 saw_dot = False
1424
        30
        31
1425
         32
                 q = read_q()
1426
1427
         34
                 for _ in range(q):
1428
         35
                     char = read_next_char()
         36
1429
                     if char == '^': caps_flag = 1 - caps_flag
         37
1430
                     elif char == '~': duplicate_flag = 1 - duplicate_flag
         38
1431
                     elif char == '#': digits_flag = 1 - digits_flag
         39
1432
        40
                     if digits_flag:
        41
1433
                         if char == '.' and saw_dot = True:
        42
1434
                              char = ''
        43
1435
                         if char == '.' and saw_dot = False:
1436
                              saw_dot = True
        45
        46
1437
                          elif not char.isdigit():
         47
1438
        48
                              char = ''
1439
        49
1440
                     elif caps_flag:
         50
1441
         51
                         char = char.upper()
                     elif duplicate_flag:
        52
1442
                         if char not in {'a', 'e', 'i', 'o', 'u'}:
        53
1443
         54
                              char = char*2
1444
        55
1445
        56
                     output += char
         57
1446
                 return output
         58
1447
         59
1448
        60
1449
        61
            print(main())
1450
1451
```

F LLM ACKNOWLEDGMENT

We did not use LLMs significantly in the writing or ideation of this paper. An LLM was used to proof-read, and a few sentences were reworded accordingly.