
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING LLM AGENTS TO EMPOWER HUMANS

Anonymous authors
Paper under double-blind review

ABSTRACT

A truly helpful assistive agent should not only take actions on behalf of a human,
but also step out of the way and cede control when there are important decisions
to be made. However, current methods for building assistive agents, whether
via mimicking expert humans or via RL finetuning on an inferred reward, often
encourage agents to complete tasks on their own rather than truly assisting the
human attain their objectives. Additionally, these methods often require costly
explicit human feedback to provide a training signal. We propose a new approach to
tuning assistive language models based on maximizing the human’s empowerment,
their ability to effect desired changes in the environment. Our empowerment-
maximizing method only requires offline text data, providing an unsupervised
method for fine-tuning language models to better assist humans. To study the
efficacy of our approach, we conducted an 18-person user study comparing our
empowerment assistant with a strong baseline. Participants preferred our assistant
78% of the time (p = 0.015), with a 31% higher acceptance rate and 38% fewer
suggestions. Additionally, we introduce a new environment for evaluating multi-
turn code assistance using simulated humans. Using this environment, we show
that agents trained with empowerment increase the success rate of a simulated
human programmer on challenging coding questions by an average of 192% over
an SFT baseline. With this empowerment objective, we provide a framework for
useful aligned AI agents at scale using only offline data without the need for any
additional human feedback or verifiable rewards.1

1 INTRODUCTION

Software developers today face a challenge when using LLM coding agents: code suggestions start
out helpful but then start implementing the wrong functions. Often an assistant will suggest a huge
block of code, the user accepts it, and then they have to spend time fixing the one part it got wrong,
such as an incorrect assumption the assistant made. How can we develop coding assistants that still
produce helpful generations, but also know to stop their generations at critical junctures? While this
problem is especially salient for coding assistants (the focus of this paper), such problems are likely
to recur in applications from assistive robotics to interacting with autonomous agents (Chen et al.,
2021; Trivedi et al., 2024).

Optimizing for helpfulness is challenging. Gathering explicit human labels is expensive and time-
consuming. Additionally, it is unclear how this sort of helpfulness can be learned from traces of
a human expert — the problem is not that generations are unrealistic, but rather that they may be
solving a problem that is different from what the user intends. One approach to this problem is for
agents to ask clarifying questions to better infer the intentions of human users. However, this style of
assistance requires interrupting the user, possibly impeding their flow and making the interaction feel
burdensome. In many situations, it is desirable to have an assistant which does not rely on querying
the user.

The key observation in this paper is that assistive agents can be helpful, even if they do not know
a human’s intention, if they aim to empower the human user. Intuitively, empowerment refers to
an agent’s ability to effect changes in the environment. Rather than asking a human for explicit
feedback, the LLM will automatically assess the usefulness of its actions by estimating whether
they enable a human to solve more tasks more quickly. In coding contexts, empowerment might

1Website and code: https://anonymous.4open.science/r/codegen-384F/

1

https://anonymous.4open.science/r/codegen-384F/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

correspond to implementing helper functions, writing boilerplate, or wrapping up lines of code.
Mathematically, we codify empowerment with a mutual information that measures the degree of
control that an agent’s actions exert on states that occur in the future (Klyubin et al., 2005). The
assistive setting, where there are two agents (an assistant and a human), requires a more nuanced
definition of empowerment: we aim to empower the human agent, enabling the human user’s actions
to exert a larger influence over future outcomes (Du et al., 2020; Myers et al., 2024). An agent that
maximizes the human’s empowerment will help them reach goals more effectively, without assuming
any prior reward structure. Similar empowerment objectives are used in psychology to explain certain
facets of human learning (Gopnik, 2024).

We use code generation as a context for studying empowerment-maximizing assistants because it is
one of the few real-world applications today where humans regularly interact with assistive agents
(e.g., Github Copilot). It is also an appealing starting point because preexisting datasets (Jain et al.,
2024) allow us to measure the efficacy of empowerment maximization in a rigorous way.

Contributions. In this paper, we derive a practical and scalable algorithm for training LLM
agents to maximize empowerment, and demonstrate its effectiveness in the code generation setting.
Specifically, our work has the following contributions:

1. Empower method (Section 4.2). We propose Empower, a method for aligning LLM agents to
work with humans based on the objective of maximizing effective empowerment. Our method
provides a proof-of-concept for training an LLM agent to maximize a human’s empowerment.

2. Simulated results (Section 5.2). We demonstrate simulated results in LiveCodeBench (Jain
et al., 2024), and show that tuning an LLM to maximize empowerment leads to a higher Pass@1
without explicit human feedback. Evaluating with a Gemma-3-27B-it human, a Llama-3.1-8B-
Instruct model trained with Empower over doubles the Pass@1 rate compared to the strongest
baseline.

3. User study (Section 5.3). We demonstrate in a user study that people prefer our empowerment
assistant over a baseline. Participants preferred our assistant in practice 78% of the time (p =
0.015), and accepted our assistant’s suggestions 31% more often than the baseline’s suggestions
(p = 0.0002). Additionally, participants tended to delete 26% fewer characters they had accepted
from our method than from the baseline (p = 0.012). This amounts to a stronger assistant that is
more likely to suggest code the user will accept and actually use.

Taken together, our results demonstrate that LLM assistants can be trained without receiving feedback
or interaction from humans by reasoning about how their actions might enable humans to complete
more tasks more quickly.

2 RELATED WORK

Past work has studied empowerment in the context of intrinsic motivation and reinforcement learning.
Our contribution is to connect empowerment to the problem of aligning LLM agents to human users,
showing that the empowerment objective can provide a scalable unsupervised learning signal for an
LLM agent aiding a human in an assistive setting.

Empowerment. Informally, empowerment quantifies the influence an agent’s actions have over
outcomes in the environment. Empowerment has traditionally been defined as the channel capacity
between a sequence of actions and the following state (Klyubin et al., 2005; 2008; Salge et al.,
2014). Empowerment objectives have been used in single-agent reinforcement learning to enable
intrinsic motivation and exploration (Choi et al., 2021; de Abril and Kanai, 2018). More recently,
empowerment has been explored for collaborative settings, where a robot assistant learns to maximize
the empowerment of a human user. Du et al. (2020) propose the AvE algorithm which enables
assistance by computing empowerment with random rollouts. Myers et al. (2024) adopt a modified
objective, the effective empowerment, which can be learned with a scalable contrastive objective.
However, these prior works typically use simple gridworld-like or video game-like environments. To
the best of our knowledge, ours is the first to apply this principle to train LLM agents, applying it at
scale to a realistic coding task. This is enabled by our insight that LLM uncertainty can be used to
identify key decision points, and we can empower people by helping them reach those points.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

def ␣

two

main (

n

_

)

sum

Empowering Completion

↩

import sys
def read_n():

return n
⋯

Current state
Possible Alternate Suffix
def main():

for i in range(n):

print(“Done!”)
⋯

s+

True suffix
def two_sum(n, target):

seen = {}

return result
⋯

s+

branch point:
high empowerment

Figure 1: Illustration of our empowerment method. An LLM generates the cumulative likelihood
of the suffix, shown below each token. Empowering completions are selected as the longest suffix
where the cumulative likelihood is greater than a threshold. This trains the assistant to complete text
up to a decision point. Then, the human will have more choices about where to take the program, so
their next action is empowered.

Learning from Human Preferences. Many methods attempt to align AI agents by updating
the agent with human preference information. Christiano et al. (2017) used an online stream of
human preferences to train a reward model concurrently with an actor-critic policy. This method
(RLHF) was later adapted to align LLMs to human preferences, enabling conversational agents
like InstructGPT (Stiennon et al., 2020; Ouyang et al., 2022; Dong et al., 2023). These methods
often use PPO or related policy-gradient methods to fine-tune a pre-trained LLM (Schulman et al.,
2017; Sutton and Barto, 2018; DeepSeek-AI et al., 2025). Learning and optimizing a reward model
can be expensive or unstable, leading to alternative methods like DPO (Rafailov et al., 2024) and
IPL (Hejna and Sadigh, 2023) that directly optimize the policy to match human preferences without
an intermediate reward model. Training with human feedback faces key limitations: human values
may be difficult to represent with reward functions (Casper et al., 2023), they may change over
time (Carroll et al., 2024), and optimizing them may lead to misaligned behaviors like power seeking
and manipulation (Williams et al., 2024). Our empowerment objective offers an alternative strategy
for aligning LLMs which instead completes tasks for the human that are obvious and general, rather
than aligning assistance to a set of preferences.

Self-Supervision for LLMs. There is existing precedent for having LLMs provide their own
feedback, as in “self-critiquing” methods that are common in mathematical and logical reasoning
applications (Yao et al., 2024; Madaan et al., 2024; Shinn et al., 2024). In contrast, our work places
the human back at the center: rather than optimizing an LLM to produce text that another LLM thinks
is correct, we optimize an LLM to produce code that enables a human to solve more tasks more
quickly.

Assistive Agents. One mathematical framework for assistive agents is the assistance game (Hadfield-
Menell et al., 2016). The assistance game extends the standard Markov decision process (MDP)
definition to include two agents, a human H and a robot agent R, which interact in a shared environ-
ment to maximize a joint reward that is only known to the human. The agent must combine inference
of the human rewards/goals with reinforcement learning to optimize the inferred objective (Carroll
et al., 2019; 2024; Hadfield-Menell et al., 2017; Laidlaw et al., 2024). Methods that learn from human
preferences, such as RLHF (Christiano et al., 2017) and DPO (Rafailov et al., 2024), can be seen
as special cases of the assistance game where the human’s actions only exist to provide information
about the reward to the agent. Empowerment methods are a special case of assistive games, where
empowerment objective as a proxy for the human’s reward function (Myers et al., 2024). Our work
builds on this foundation to study how empowerment methods might be scaled to align LLMs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

We cast the problem of an LLM agent assisting a human as a Markov decision process (MDP). The
state is the program text at the given timestep. At each state, the LLM agent action suggests a piece
of text to append to the conversation. The human agent first chooses to ACCEPT or REJECT the
suggestion, or FINISH writing the program. Then, unless they choose to FINISH, they will append
some number of tokens.

Notation. In this assistance MDP, the human policy πH selects an action aH ∈ AH, and the LLM
agent’s policy πR selects an action aR ∈ AR to complete the code snippet. LetL be the set of possible
tokens. The human’s actions are AH = {{ACCEPT} × L≤KH , {REJECT} × L≤KH ,FINISH},
where ACCEPT appends the LLM agent’s suggestion to the conversation followed by the human’s
own text, REJECT does not append the suggestion and only appends the human’s text, and FINISH
ends the episode. Here, KH is the maximum number of tokens typed per step by the human. The
LLM agent’s actions are AR = L≤KR , where the agent suggests a maximum of KR tokens to
append to the conversation.

The dynamics are then defined by the following transitions:

st+1 =


(st, a

R
t , ℓ) for aHt = (ACCEPT, ℓ)

(st, ℓ) for aHt = (REJECT, ℓ)
⊥ for aHt = FINISH.

We will define random variables st and aHt to denote the state and human action at time step t.

Empowerment. We will define empowerment using the mutual information I(·; ·) between two
random variables. In a single-agent MDP, empowerment is defined by Klyubin et al. (2005) as the
channel capacity between a sequence of n actions and the resulting state n steps into the future:

C
(
p(st+n | ant , st)

)
≜ max

p(an
t |st)

I(ant ; st+n | st). (1)

Informally, this objective states that empowerment is the maximal degree to which the next n actions
ant selected in the MDP can impact the resulting state st+n. This objective is intuitively appealing
because it provides a mathematical way of quantifying whether an assistive agent’s actions are useful,
without knowing the humans reward function. However, it is challenging to use this objective in
practice because (i) it involves optimizing over a sequence of actions, and (ii) mutual information is
still non-trivial to compute in high-dimensional environments or over long horizons.

4 MAXIMIZING EMPOWERMENT OVER LANGUAGE

In this section we discuss how to train empowering assistants in the language domain. Empowerment
is a useful objective for assistance because it helps people quickly reach states where they have many
choices, so it takes broadly useful actions that are helpful for the most people. This leads to a more
natural type of assistance that doesn’t make assumptions about, or even try to infer, the human’s goal.

Section 4.1 introduces the notation we use. Section 4.2 describes Empower, our practical method
for choosing completions to train the assistant. We take the longest completion where the cumulative
likelihood of the completion, as judged by an LLM, is above a certain threshold. Section 4.3
shows that, under certain assumptions, our method is computing an approximate upper bound on
the empowerment of a completion. We train the LLM assistant to complete text that has a low
empowerment — text that is predictable — so that the human doesn’t have to write it. Instead, the
human can focus on important design decisions, rather than boilerplate code.

4.1 NOTATION

To train our assistant, we assume access to a dataset of text written by the human, ℓ1:T ∼ πH.
Here, T is the total number of tokens in a particular document, and ℓi:j indexes the tokens from
i to j inclusive. For each piece of text in the dataset, we first sample a state ℓ1:t, by uniformly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Logit Threshold Empowerment (Empower)

Input: A text document ℓ1:T with sampled state ℓ1:t
Output: Empowering suggestion ℓt+1:t+i∗ for state ℓ1:t

1: for i ∈ {1 . . . T} do ▷ Loop through the possible completion lengths
2: Ĥ ← − log π(ℓt+1:t+i | ℓ1:t) ▷ Compute the one-sample entropy
3: if Ĥ > η then ▷ Check if estimated entropy exceeds threshold
4: return ℓt+1:t+i−1 ▷ Return the last index that was below threshold
5: return ℓt+1:T ▷ Entropy is always within bounds, so return rest of program

sampling t ∈ [1, T]. Define i to be the length of the completion after the state that we train on. That
is, we train the assistant to output ℓt+1:t+i when it is given ℓ1:t as the state. The difficulty lies in
choosing the appropriate length of completion to train on. Similarly, let ℓHt+1 represent the random
variable of the next token that the human writes, and let ℓ+ be a random variable over possible future
text. Additionally, π̂(ℓt+1:t+i | ℓ1:t) denotes a conditional probability distribution over possible
completions. We will choose this to be a pre-trained LLM.

4.2 OUR ALGORITHM: EMPOWER

When the human writes boilerplate code, they have a low empowerment because their actions are
easily predicted, so they carry little information about the future. To empower the human, an assistant
should be trained to complete this predictable text so that the human doesn’t have to. Our insight
is that we can use an LLM, π̂, to estimate how likely a completion is. We therefore propose the
following algorithm to choose completions to train our assistant on:

i∗ = argmax
i

{
i : − log π̂(ℓt+1:t+i | ℓ1:t) < η

}
. (2)

This optimization chooses the largest completion length, i, such that the negative log likelihood
of that completion as judged by an LLM is below a threshold η which we choose. This can
equivalently be viewed as choosing the longest completion length, i, where the cumulative likelihood
of the completion is greater than 2−η. We write the optimization with a negative log likelihood to
highlight that it is a one-sample estimate of the entropy. This mathematically connects our method to
empowerment, which we will explain further in Section 4.3.

During training, we first sample a program from an offline dataset, then sample a prefix to that
program which becomes the state ℓ1:t. Any suffix is a possible completion. We train on the suffix
ℓt+1:t+i∗ chosen by Equation (2). Intuitively, we are training the assistant on obvious completions —
those that the LLM thinks are likely — thereby leaving the human to write more impactful text in the
future. We summarize our method in Algorithm 1, and show an illustration in Figure 1.

4.3 MATHEMATICAL CONNECTIONS WITH EFFECTIVE EMPOWERMENT

Under some assumptions, our algorithm can be viewed as training the assistant to suggest text
that would have a low empowerment for the human to write. We use the effective empowerment
objective (Myers et al., 2024), which provides a computationally-tractable alternative to the canonical
empowerment objective (Klyubin et al., 2005) (see Equation (1)). Effective empowerment is defined
with respect to a specific policy, πH, and a future state ℓ+. We define the effective empowerment at a
state ℓ1:t as:

E(πH, ℓ1:t) ≜ I(ℓHt+1; ℓ
+ | ℓ1:t). (3)

This is the same objective introduced in (Myers et al., 2024), but with γ = 0. This objective
measures the impact that the human’s action has on their future state. We can upper-bound the mutual
information with an entropy:

I(ℓHt+1; ℓ
+ | ℓ1:t) = H(ℓHt+1 | ℓ1:t)−H(ℓHt+1 | ℓ+, ℓ1:t)

≤ H(ℓHt+1 | ℓ1:t).

If we can estimate H(ℓHt+1 | ℓ1:t), we can estimate an upper bound for single-action empowerment.
Computing this entropy exactly requires knowing the true human policy, πH(ℓHt+1 | ℓ1:t), which we
don’t have access to. Instead, let’s assume access to another likelihood estimator, π̂(ℓHt+1 | ℓ1:t),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Llama-3.1-8B-Instruct Assistant

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

0.2

Pa
ss

@
1

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.2

0.4

0.6

A
cc

ep
tR

at
io

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

D
is

co
un

te
d

Pa
ss

R
at

e

Qwen3-8B Assistant

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

0.2

Pa
ss

@
1

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.2

0.4

0.6

A
cc

ep
tR

at
io

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

D
is

co
un

te
d

Pa
ss

R
at

e

Qwen3-14B Assistant

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

0.2

Pa
ss

@
1

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.2

0.4

0.6

A
cc

ep
tR

at
io

Empow
er

SFT-20

SFT-10

Base
-10 Base

0

0.05

0.1

0.15

D
is

co
un

te
d

Pa
ss

R
at

e

Figure 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower to outperform all baselines in terms of pass@1 and DPR.
Error bars show standard errors.

which can approximate the human’s marginal likelihood of any action at a given state. Then we can
approximate the human’s marginal entropy H(ℓHt+1 | ℓ1:t) by sampling an action from the human
and using a one-sample monte carlo estimate:

Ĥ(ℓHt+1 | ℓ1:t) ≈ − log π̂(ℓHt+1 | ℓ1:t).

In practice, we choose our human entropy estimator π̂ to be a pre-trained LLM. Our estimated upper
bound on the empowerment becomes:

E(πH, ℓ1:t) ⪅ − log π̂(ℓHt+1 | ℓ1:t).

While this is a rough approximation of the entropy, it works well in practice for the purpose of
choosing empowering completions, and is simple to implement. Under these assumptions, the
algorithm described by Equation (2) can be seen as training an assistant to complete text which is
predictable, and therefore would not be empowering for the human to write.

5 EXPERIMENTS: CODE GENERATION

Our experiments apply the empowerment framework discussed in Section 4 to the task of code
generation. In Section 5.1, we describe our experiment setup. We then evaluate our method in a novel
simulated setup using LiveCodeBench (Section 5.2), after which we validate our findings in the real
world by running an 18-person double-blinded human study (Section 5.3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 EXPERIMENT SETUP

Datasets. We train all models and methods using a dataset of 4,138 unique questions from Code-
forces2, each of which is paired with one attempted solution by Gemma-3-27B-it (Team et al., 2025).
We do not filter the dataset for success on the testcases.

Models. We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Qwen3-8B (Yang et al., 2025),
and Qwen3-14B (Yang et al., 2025) as assistant models. For the simulated setting, we use Gemma-3-
27B-it (Team et al., 2025) as the human model. The prompts we use are provided in Appendix D. We
use all models with their default sampling parameters.

Baselines. We compare against both trained and untrained baselines. (1) SFT-N finetunes the
assistant on the next N tokens that the human wrote in a particular state, followed by a stop token.
This should teach the model to output correct suggestions which are not too long, so that they don’t
make too many assumptions about what the human is trying to do. We evaluate SFT-10 and SFT-20.
(2) SFT-RAND trains on random human completions between 1 and 30 tokens long to avoid biasing
too much towards a specific completion length. (3) Base is simply the base assistant model without
any training or restrictions on top. (4) Base-N is the same as Base, but we cap the suggestion length
at N tokens. We include this baseline since we hypothesize that shorter completion lengths are more
likely to be accepted. We evaluate Base-10 and Base-20.

Our Method. Our method, Empower, trains on completions returned from Algorithm 1, which
we run on all completions in the training dataset before the start of training. We use the untrained
base assistant model as our likelihood estimator, π̂. Crucially, we do not provide the likelihood model
access to the relevant Codeforces problem, only the text in the state (i.e. the completion tokens
written so far).

5.2 EVALUATING THE VALUE OF EMPOWERMENT IN A SIMULATED SETUP

To evaluate the empowerment assistant with a simulated human, we adopt the MDP structure
described in Section 3 where the assistant proposes suggested code completions which the human
may accept or reject, and then append their own code. We limit the human action size to KH = 10
tokens and the number of rounds of human and assistant actions per problem to 50. We evaluate
on LiveCodeBench (Jain et al., 2024), a benchmark of competitive programming problems that is
regularly updated. We restrict the benchmark to problems from release #6 to avoid contamination.

Evaluation Metrics. To evaluate the performance of Empower compared to the baselines, we
propose the following three different evaluation metrics. (1) Pass@1 measures the success rate of the
generated code snippets by evaluating them on the problem testcases, counting a success only if all of
the testcases pass. The results are averaged across all problems in the dataset. (2) Acceptance rate
provides a measure of the human’s preference for one assistant’s suggestions over another’s.

(3) Discounted Pass Rate (DPR). A higher acceptance rate is not always beneficial if the suggested
completions are not more helpful. Occasionally an assistant will propose a completion which looks
good, but actually introduces a bug or confuses the human, leading to a lower pass@1. Similarly, a
lower acceptance rate can lead to a higher pass@1, making an assistant appear better even though
the real gain in performance is from the human solving the problem on their own. Therefore, we
introduce a new metric which we call the Discounted Pass Rate (DPR), which is a better measure
of good assistance because it accounts for both the pass rate and the amount of text the human had
to read and write to get to a successful program. An assistant that makes long suggestions will
occasionally be correct, however, more often than not the human will waste effort checking if an
incorrect suggestion is correct. The DPR for a particular solution is defined as:

DPR = 1Correct Solution · γα·Tokens Read+β·Tokens Written (4)

The constant α specifies how “difficult” it is for the human to verify text that the assistant has
suggested. Similarly, β specifies how “difficult” it is for the human to write text on their own. Under

2https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submiss
ions

7

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Human Study Results

Empow
er

Base
-20

0

0.2

0.4

0.6

0.8

1
Pr

op
.S

el
ec

te
d

Most Enjoy (↑)

Empow
er

Base
-20

0

0.2

0.4

0.6

0.8

1

Pr
op

.S
el

ec
te

d

Most Relevant (↑)

Empow
er

Base
-20

0

0.02

0.04

0.06

0.08

0.1

A
cc

ep
tR

at
io

Accept Ratio (↑)

Empow
er

Base
-20

0

5

10

15

C
ha

ra
ct

er
sD

el
et

ed

Characters Deleted (↓)

Figure 3: Human study results with the Llama-3.1-8B-Instruct assistant. Exact 95% confidence
intervals are shown for Most Enjoy and Most Relevant as they represent Bernoulli data. Standard
error bars are shown for Accept Ratio and Characters Deleted. In all cases, participants preferred
using our Empower assistant.

this metric, the best assistant will help the human have the highest pass rate, while only suggesting
completions which are most likely to be accepted and bring the program closest to its conclusion. This
measures how useful the assistant is at generating correct solutions, not just how often it convinces
the user to accept their flawed suggestion. To get the total DPR, we take the mean across all problems
in the benchmark. In this work, we use γ = 0.999, α = 0.1, and β = 0.5 to represent that it is often
more difficult to generate than to verify, as well as to prevent the DPR of a long but correct solution
from approaching 0.

Optimizing the DPR directly requires training with real human interaction data, or using an accurate
human model, both of which are challenging. Our results show that empowerment is able to increase
DPR and other metrics with an entirely offline dataset.

Quantitative Results. Comparisons between the baselines and our method with η = 0.32 are
shown in Figure 2, using Gemma-3-27B-it as the simulated human model. Empower outperforms all
baselines on pass@1, accept ratio, and DPR. It is worth noting that the accept ratios of Empower and
Base-10 are close for Llama-3.1-8B-Instruct and Qwen3-8B . We hypothesize that shorter suggestions
are more likely to be accepted, which is why Base-10 has a higher acceptance rate. However, in that
case, acceptance ratio does not correspond to a higher Pass@1, and therefore the DPR is lower. Just
because a suggestion is short does not mean that it is correct. Empower tends to output suggestions
which are more likely to be accepted and at the same time are also more likely to create correct
programs.

We also perform the same set of experiments with Llama-3.3-70B-Instruct as the human model, for
which we show results in Table 1 of Appendix B. Empower similarly beats the baseline on pass@1
and DPR. See Appendix B for the full numeric results.

5.3 HUMAN STUDY: EVALUATING EMPOWERMENT FOR REAL-WORLD CODE ASSISTANCE

To evaluate empowerment at scale, we conducted an 18-person double-blinded user study in a
code-generation setting with an assistant, similar to GitHub Copilot. Participants were randomly
assigned to complete one of two python coding problems with corresponding testcases. The editor
was configured to log whenever they accepted a suggestion or typed a character. They first spent
25 minutes attempting the problem with no assistant. Then, they spent 15 minutes attempting the
problem with Assistant 1, took notes on what they liked and didn’t like about it, and then repeated
this step for Assistant 2. Finally, they were asked to rank the assistants on several metrics including
how relevant they found the suggestions and which assistant they would most enjoy using in practice.
The order of the assistants was randomized and hidden from the researcher’s view.

To choose which two assistants to compare, we ran a pilot study with Llama-3.1-8B-Instruct as the
assistant. Participants in the pilot tended to prefer Empower with η = 4, and the Base-20 baseline,
so we chose these to focus on for the full study.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Survey Results. We show the results of the study in Figure 3. Participants ranked the Empower as-
sistant as the one they would more enjoy using in practice 78% of the time, preferring Empower with
a p-value of 0.015. Additionally, they ranked our assistant as providing more relevant suggestions
61% of the time, although the result was not statistically significant with a p-value of 0.240. Although
both assistants tended to provide relevant suggestions, the Empower assistant was more judicious,
providing fewer suggestions overall. Participants preferred this approach to assistance, which we
attribute to the empowerment objective teaching the model to only complete as long as it is confident
about what the user will type next.

Quantitative Results. We also collected quantitative data about the user-assistant interaction. The
Empower assistant had an acceptance rate of 8.08% compared to the 6.18% of the Base-20 assistant.
Participants accepted suggestions from our assistant more with p = 0.0002. Participants also tended
to delete more accepted text from the Base-20 assistant than from ours. The average number of
deleted characters per accepted suggestion was 12.91 for Base-20 and 9.56 for ours with p = 0.0118.
On average, Empower suggested ∼208 suggestions per user, whereas Base-20 suggested ∼333.
The baseline also tended to give longer suggestions, at 82.2 characters per suggestion compared to
43.6 for Empower. These differences highlight the type of assistance that empowerment enables.
Rather than making decisions for the human, our empowerment objective trains an assistant that
completes the obvious and no more. This leads to a more natural interaction, and reduces the feeling
of frustration that comes from an assistant completing too much.

6 DISCUSSION

In this paper, we showed how assistive (LLM) agents can provide their own feedback signal for
learning by estimating how empowered a human coder is. Our logit threshold method tractably
computes empowering suggestions, which maximize the impact that the human will have.

While we demonstrated success in coding assistance, we expect that LLM assistants trained with
empowerment can be useful in many other domains, such as writing assistance or navigating an
application. These also include more agentic applications where the assistant can infer when the
human would predictably take an action, and instead take the action automatically. Our work enables
the training of these agents at scale by simply configuring the likelihood estimator for a given domain.

While there has been much discussion of LLM post-training methods in recent years, there has been
relatively less discussion of how these post-training methods are connected with the training objectives
of the underlying LLMs. LLMs are trained primarily on next-token prediction, a self-supervised
objective. Our work suggests that, in addition to training the base LLM with a self-supervised
objective, the post-training (i.e., alignment) might also be done with a self-supervised objective.

Limitations. All experiments were conducted on competitive programming problems. Real-world
code will often differ significantly in style and difficulty, which may require a more robust marginal
likelihood estimator. The application of empowerment to more general coding tasks is left for future
work.

REPRODUCIBILITY

To ensure that our results are reproducible, we provide a link to our code in Appendix A. The
algorithm we used is described in Section 4.2, and the exact prompts we used for the assistants are
detailed in Appendix D. The study instructions we provided to users, as well as the two problems
they attempted, are given in Appendix E.

ETHICS STATEMENT

The human study was conducted with Institutional Review Board (IRB) approval.

Empowerment methods may be used to create better assistive agents, improving the experience of
people who collaborate with LLMs. There is a risk of an assistant being trained to self-empower,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

which would create a general power-seeking agent. However, our methods are focused on human-AI
collaboration, which does not pose this risk.

REFERENCES

Carroll, M., Foote, D., Siththaranjan, A., Russell, S., and Dragan, A. AI Alignment With Changing
and Influenceable Reward Functions. International Conference on Machine Learning, 2024.

Carroll, M., Shah, R., Ho, M.K., Griffiths, T.L., Seshia, S.A., Abbeel, P., and Dragan, A. On the
Utility of Learning About Humans for Human-AI Coordination. Neural Information Processing
Systems, 2019.

Casper, S., Davies, X., Shi, C., Gilbert, T.K., Scheurer, J., Rando, J., Freedman, R., Korbak, T., et al.
Open Problems and Fundamental Limitations of Reinforcement Learning From Human Feedback.
arXiv:2307.15217, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., et al. Evaluating Large Language Models Trained on Code. arXiv:2107.03374,
2021.

Choi, J., Sharma, A., Lee, H., Levine, S., and Gu, S.S. Variational Empowerment as Representation
Learning for Goal-Conditioned Reinforcement Learning. International Conference on Machine
Learning, pp. 1953–1963, 2021.

Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., and Amodei, D. Deep Reinforcement
Learning From Human Preferences. Neural Information Processing Systems, 2017.

de Abril, I.M. and Kanai, R. A Unified Strategy for Implementing Curiosity and Empowerment
Driven Reinforcement Learning. arXiv:1806.06505, 2018.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., et al. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948,
2025.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., Shum, K.,
and Zhang, T. RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment.
arXiv:2304.06767, 2023.

Du, Y., Tiomkin, S., Kiciman, E., Polani, D., Abbeel, P., and Dragan, A.D. AvE: Assistance via
Empowerment. arXiv:2006.14796, 2020.

Gopnik, A. Empowerment as Causal Learning, Causal Learning as Empowerment: A Bridge Between
Bayesian Causal Hypothesis Testing and Reinforcement Learning. 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A.,
et al. The Llama 3 Herd of Models. arXiv:2407.21783, 2024.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., and Dragan, A. Inverse Reward Design.
Neural Information Processing Systems, 30, 2017.

Hadfield-Menell, D., Russell, S.J., Abbeel, P., and Dragan, A. Cooperative Inverse Reinforcement
Learning. Neural Information Processing Systems, 29, 2016.

Hejna, J. and Sadigh, D. Inverse Preference Learning: Preference-Based RL Without a Reward
Function. Neural Information Processing Systems, 2023.

Jain, N., Han, K., Gu, A., Li, W.D., Yan, F., Zhang, T., Wang, S., Solar-Lezama, A., Sen, K., and
Stoica, I. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models
for Code. arXiv:2403.07974, 2024.

Klyubin, A.S., Polani, D., and Nehaniv, C.L. Empowerment: A Universal Agent-Centric Measure of
Control. IEEE Congress on Evolutionary Computation, volume 1, pp. 128–135, 2005.

Klyubin, A.S., Polani, D., and Nehaniv, C.L. Keep Your Options Open: An Information-Based
Driving Principle for Sensorimotor Systems. PLOS One, 3(12):e4018, 2008.

Laidlaw, C., Bronstein, E., Guo, T., Feng, D., Berglund, L., Svegliato, J., Russell, S., and Dragan, A.
Scalably Solving Assistance Games. ICML 2024 Workshop on Models of Human Feedback for AI
Alignment, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N.,
Prabhumoye, S., Yang, Y., et al. Self-Refine: Iterative Refinement With Self-Feedback. Neural
Information Processing Systems, 36, 2024.

10

https://openreview.net/forum?id=itYGbe0Cs1
https://openreview.net/forum?id=itYGbe0Cs1
http://arxiv.org/abs/1910.05789
http://arxiv.org/abs/1910.05789
https://arxiv.org/abs/2307.15217
https://proceedings.mlr.press/v139/choi21b.html
https://proceedings.mlr.press/v139/choi21b.html
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1806.06505
http://arxiv.org/abs/1806.06505
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2006.14796
https://arxiv.org/abs/2006.14796
https://philsci-archive.pitt.edu/23268/
https://philsci-archive.pitt.edu/23268/
https://arxiv.org/abs/2407.21783
https://proceedings.neurips.cc/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607028/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607028/
https://openreview.net/forum?id=xVS7dFKoMR

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Myers, V., Ellis, E., Levine, S., Eysenbach, B., and Dragan, A. Learning to Assist Humans Without
Inferring Rewards. Neural Information Processing Systems, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang, C., Agarwal, S.,
et al. Training Language Models to Follow Instructions With Human Feedback. arXiv:2203.02155,
2022.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C.D., and Finn, C. Direct Preference
Optimization: Your Language Model Is Secretly a Reward Model. arXiv:2305.18290, 2024.

Salge, C., Glackin, C., and Polani, D. Empowerment–an Introduction. Guided Self-Organization:
Inception, (arXiv:1310.1863):67–114, 2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy Optimization
Algorithms. arXiv:1707.06347, 2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and Yao, S. Reflexion: Language Agents With
Verbal Reinforcement Learning. Neural Information Processing Systems, 36, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D.M., Lowe, R., Voss, C., Radford, A., Amodei, D., and
Christiano, P.F. Learning to Summarize From Human Feedback. arXiv:2009.01325, 2020.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction. MIT press, 2018.
Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T.,

et al. Gemma 3 Technical Report. arXiv:2503.19786, 2025.
Trivedi, H., Khot, T., Hartmann, M., Manku, R., Dong, V., Li, E., Gupta, S., Sabharwal, A., and

Balasubramanian, N. AppWorld: A Controllable World of Apps and People for Benchmarking
Interactive Coding Agents. Annual Meeting of the Association for Computational Linguistics, pp.
16022–16076, 2024.

Williams, M., Carroll, M., Narang, A., Weisser, C., Murphy, B., and Dragan, A. On Targeted
Manipulation and Deception When Optimizing LLMs for User Feedback. arXiv:2411.02306,
2024.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., et al. Qwen3 Technical
Report. arXiv:2505.09388, 2025.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. Tree of Thoughts:
Deliberate Problem Solving With Large Language Models. Neural Information Processing Systems,
36, 2024.

11

https://openreview.net/forum?id=WCnJmb7cv1
https://openreview.net/forum?id=WCnJmb7cv1
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
http://arxiv.org/abs/1310.1863
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2411.02306
https://arxiv.org/abs/2411.02306
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Base Model Name Pass@1 (↑) Accept Ratio (↑) Discounted Pass Rate (↑)

Qwen3-8B Empower 0.218(±0.019) 0.488(±0.024) 0.176(±0.016)

Qwen3-8B SFT-20 0.167(±0.018) 0.192(±0.018) 0.116(±0.013)

Qwen3-8B SFT-10 0.152(±0.017) 0.299(±0.021) 0.114(±0.013)

Qwen3-8B SFT-RAND-1-30 0.156(±0.017) 0.201(±0.019) 0.109(±0.012)

Qwen3-8B Base-10 0.198(±0.019) 0.592(±0.023) 0.162(±0.015)

Qwen3-8B Base 0.183(±0.018) 0.351(±0.022) 0.143(±0.014)

Llama3.1-8B Instruct Empower 0.282(±0.021) 0.317(±0.022) 0.208(±0.016)

Llama3.1-8B Instruct SFT-20 0.097(±0.014) 0.165(±0.017) 0.066(±0.010)

Llama3.1-8B Instruct SFT-10 0.104(±0.014) 0.257(±0.021) 0.074(±0.010)

Llama3.1-8B Instruct SFT-RAND-1-30 0.112(±0.015) 0.184(±0.018) 0.075(±0.010)

Llama3.1-8B Instruct Base-10 0.156(±0.017) 0.537(±0.023) 0.127(±0.014)

Llama3.1-8B Instruct Base 0.170(±0.018) 0.297(±0.021) 0.134(±0.014)

Qwen3-14B Empower 0.249(±0.020) 0.459(±0.023) 0.201(±0.016)

Qwen3-14B SFT-20 0.145(±0.017) 0.188(±0.018) 0.102(±0.012)

Qwen3-14B SFT-10 0.165(±0.017) 0.292(±0.021) 0.126(±0.013)

Qwen3-14B SFT-RAND-1-30 0.145(±0.017) 0.226(±0.020) 0.106(±0.012)

Qwen3-14B Base-10 0.174(±0.018) 0.597(±0.023) 0.143(±0.015)

Qwen3-14B Base 0.161(±0.017) 0.299(±0.021) 0.127(±0.014)

Table 1: Assistant results with Llama-3.3-70B-Instruct as the human model. We evaluate on
554 LiveCodeBench problems, and find that Empower outperforms all baselines in terms of Pass@1
and DPR. Standard errors are shown in parentheses.

Base Model Name Pass@1 (↑) Accept Ratio (↑) Discounted Pass Rate (↑)

Qwen3-8B Empower 0.178(±0.018) 0.630(±0.023) 0.156(±0.016)

Qwen3-8B SFT-20 0.086(±0.013) 0.299(±0.021) 0.072(±0.011)

Qwen3-8B SFT-10 0.101(±0.014) 0.367(±0.023) 0.086(±0.012)

Qwen3-8B Base-10 0.090(±0.013) 0.582(±0.023) 0.080(±0.012)

Qwen3-8B Base 0.092(±0.014) 0.400(±0.023) 0.083(±0.012)

Llama3.1-8B Instruct Empower 0.176(±0.018) 0.670(±0.022) 0.150(±0.015)

Llama3.1-8B Instruct SFT-20 0.070(±0.012) 0.231(±0.020) 0.057(±0.010)

Llama3.1-8B Instruct SFT-10 0.062(±0.011) 0.268(±0.021) 0.053(±0.010)

Llama3.1-8B Instruct Base-10 0.064(±0.011) 0.649(±0.022) 0.057(±0.010)

Llama3.1-8B Instruct Base 0.064(±0.011) 0.383(±0.023) 0.055(±0.010)

Qwen3-14B Empower 0.170(±0.018) 0.659(±0.022) 0.148(±0.015)

Qwen3-14B SFT-20 0.088(±0.013) 0.381(±0.023) 0.077(±0.012)

Qwen3-14B SFT-10 0.101(±0.014) 0.461(±0.023) 0.088(±0.012)

Qwen3-14B Base-10 0.062(±0.011) 0.530(±0.023) 0.055(±0.010)

Qwen3-14B Base 0.086(±0.013) 0.312(±0.022) 0.077(±0.012)

Table 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower outperforms all baselines in terms of Pass@1 and DPR.
Standard errors are shown in parentheses.

A WEBSITE AND CODE

The code and configs to reproduce our experiments can be found at https://anonymous.4ope
n.science/r/codegen-384F/.

B MORE RESULTS

Full experimental results are presented in Tables 1 and 2. We ablated the choice of human model, also
training models on a Llama-3.3-70B-Instruct generated dataset and using it as the simulated human.

12

https://anonymous.4open.science/r/codegen-384F/
https://anonymous.4open.science/r/codegen-384F/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C TRAINING DETAILS

Experiments were performed on a NVIDIA H100 node with 8 GPUs, each with 80GB of VRAM.
Pre-trained weights were taken from the LLaMA-3.1-8B, LLaMA-3.3-70B (Grattafiori et al., 2024),
Qwen3-8B , Qwen3-14B (Yang et al., 2025), and Gemma-3-27B-it (Team et al., 2025) models, as
described in Section 5. We finetuned the assistant for one epoch on a dataset of 4,138 examples with
a test split size of 0.2.

The LlaMA models were used under the Llama 3.1 Community License Agreement. The Qwen
models were used under the Apache 2.0 license. Gemma was used under the Gemma Terms
of Use. Our training dataset was initialized from MatrixStudio/Codeforces-Python-Submissions,
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Sub
missions. We de-duplicated the problems and re-generated the solutions using the corresponding
human model that was being assisted.

D PROMPTS

We provide prompts used for the LLMs in our experiments.

D.1 ASSISTANT PROMPT

The assistant system prompt is:

1 You are assisting a human in a python code generation task. Your role
is to provide suggested completions given

2 what they have already typed. Please try to infer what the human wants
the next piece of code to be given the

3 code they have already written. If they have not written any code,
please provide a good start to their program, such as with import
statements or function definitions.

4

5 The way you will compose your suggestion is by providing the next
version of the code which would replace the current code.

6 Please re-type the current code and then add in your suggested
completion.

7 DO NOT output any other text, including no quotation marks.
8

9 ## Remember to always re-type the code written so far and then add in
your suggested completion.

10 If you don't re-type the code written so far *exactly as it is written*
(with all of the functions, comments, import statements, etc)

11 an error will be raised.

The assistant user prompt is:

1 Now it's your turn! Please provide a completion for the following code:
2 ```python
3 {{ code_to_complete }}
4 ```

D.2 FEW SHOT EXAMPLES FOR ASSISTANT

1 # > user
2 # > Now it's your turn! Please provide a completion for the following

code:↪→
3 # ```python
4 def twoSum(self, nums: List[int], target: int) -> List[int]:
5 numMap = {}
6 n = len(nums)
7
8 # Build the hash table
9 for i in range(n):

13

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10 numMap[nums[i]] = i
11
12 # Find the complement
13 for i in range(n):
14
15 # ```
16 # > assistant
17 # > Here is my suggested completion:
18 # ```python
19 def twoSum(self, nums: List[int], target: int) -> List[int]:
20 numMap = {}
21 n = len(nums)
22
23 # Build the hash table
24 for i in range(n):
25 numMap[nums[i]] = i
26
27 # Find the complement
28 for i in range(n):
29 complement = target - nums[i]
30 # ```
31 # > user
32 # > Now it's your turn! Please provide a completion for the following

code:↪→
33 # ```python
34 def whoami(name:
35 # ```
36 # > assistant
37 # > Here is my suggested completion:
38 # ```python
39 def whoami(name: str, age: int) -> str:
40 # ```

D.3 HUMAN MODEL PROMPTS

Human Appender Prompt. The prompts given to the human when they are deciding what to
write next. They are provided both a system prompt and a user prompt. The system prompt is the
following:

1 You are an expert Python programmer. You will be given a question (
problem specification) and will generate a correct Python program
that matches the specification and passes all tests.

2 *Please do not provide any sample outputs or testcases in your response
. Additionally, you are only allowed to solve the problem *ONCE*.

3 Do not attempt to retry your solution if you are unhappy with it.
4 For example, if your solution is in a function called `solve`, you

should only define one function called `solve`. DO NOT try to retry
it if you think it has a bug.

5 For example, you should not write `solve2` if you think `solve` has a
bug. Only the first solution will be counted, so simply stop
writing once the first solution is finished--even if it is not
correct.

The user prompt is the following:

1 ### Question:
2 {{problem.question_content}}
3

4 ### Format:
5 {% if problem.has_starter_code %}
6 You will use the following starter code to write the solution to the

problem and enclose your code within delimiters.
7 ```python
8 {{ problem.starter_code }}
9 ```

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

10 {% else %}
11 Read the inputs from stdin solve the problem and write the answer to

stdout (do not directly test on the sample inputs). Enclose your
code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes
output to STDOUT.

12 ```python
13 # YOUR CODE HERE
14 ```
15 {% endif %}

Human Acceptor Prompt. When the human is choosing whether or not to accept or reject a
suggestion, it has a different prompt. There is a system prompt, a user prompt that encourages it
to reason about the suggestion, and finally a user prompt that asks it for its final decision to accept,
reject, or finish. The system prompt is the following:

1 You are an expert Python programming agent. You will be given a
question (problem specification) and will generate a correct Python
program that matches the specification and passes all tests.

2

3 The way you will compose your program is by interacting with the file
editing interface through tools.

4 In addition, you will be assisted by an automated assistant that will
sometimes propose suggested completions to whatever you are typing.

5 At every step you will first write your thoughts on the suggestion and
whether it correctly continues your solution, or instead introduces
bugs.

6 Please *only consider the assistant suggestion* in your decision to
accept the suggestion, reject the suggestion, or finish and submit
your code for testing.

7 Previous code that you have written is not able to be changed, so you
should only look at the changes the assistant is proposing.

8 At the very end of your thought process, you will write one word to
specify which action you are taking.

9 Unless you take the "finish" action, you will be prompted afterwards to
write what you would like to append to your program.

10 Therefore, please accept suggestions as long as they do not introduce
bugs, and either help you solve the problem or improve the quality
of your code.

11 It's ok if the the suggested completion is incomplete, because you can
always append to it later.

12

13 You will first be prompted to write your thoughts on the suggestion.
14 Afterwords, you will be prompted to write which action you would like

to take.
15

16 Here are the actions you have access to:
17 ### "accept"
18 description: Accepts a suggested completion given by an intelligent

assistant. The suggested completion will then be incorporated into
the code you have written.

19 ### "reject"
20 description: Rejects a suggested completion given by an intelligent

assistant. The suggested completion will not be incorporated into
the code you have written.

21 ### "finish"
22 description: Tells the editor that you have finished writing the

program and to run the testcases. Only call this tool if you are
confident that your program is finished. You will not be prompted
to write any more code after calling this tool.

23

24 Remember, you will be able to continue writing your program regardless
of whether you accept the suggested completion or not.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

25 As long as the suggested completion does not introduce bugs, and either
helps you solve the problem or improves the quality of your code,

you should accept it.
26 DO NOT reject a suggestion because it is "minor" or "short". Only

reject the suggestion if it is wrong, introduces a bug, or
otherwise sets you back.

The user reasoning prompt is the following:

1 ## You have written the following code:
2 ```python
3 {code}
4 ```
5

6 ## Suggested Completion
7 Here is what your code would look like with a suggested completion:
8 ```python
9 {suggestion}

10 ```
11

12 ## Suggested Completion diff
13 For clarity, here is the diff between your current code and the

suggested completion code:
14 {git_diff_string(code, suggestion)}
15

16 ## Instructions:
17 What do you think of the suggested completion? Do you think it is

solving the question correctly, or does it introduce a bug or error
?

18 Please write down your thoughts. You are not allowed to write any new
code in your response, only your thoughts on whether the suggested
completion helps you on your way to solving the problem, or
otherwise improves the quality of your code.

19 It is ok if the the suggested completion is incomplete, because you
will be prompted to append to it later.

20 You are also not able to take any actions at this stage.

After it has provided reasoning for whether or not it believes the suggestion is a good one, we prompt
it to make its final decision with the following user prompt:

1 Now, please write which action you would like to take.
2 Remember, the actions available are "accept" to accept the suggested

completion, "reject" to reject the suggested completion, and "
finish" to finish writing your code and run the tests.

3 Please only call "finish" if you are confident that your code is
correct and you are ready to run the tests.

E HUMAN STUDY

E.1 STUDY INSTRUCTIONS

SETUP

1. Sign research consent form.

2. Run locally: git clone redacted

3. If on Mac:

3.1. Navigate to the cloned repository and run: ./install.sh

4. If on Windows:

4.1. Install node: https://nodejs.org/en/download
4.2. Run npm install

16

https://nodejs.org/en/download

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4.3. Run npm start

5. If on Linux:
5.1. Run sudo apt install nodejs npm

6. Enter your name in the box.
7. Switch the assistant to Assistant 1. Open up the scratchpad, type a few things, and make

sure that a suggestion appears (suggestions will not always appear).
8. You can accept suggestions using the Tab key.
9. You can explicitly reject a suggestion using the Esc key.

10. Click Back to Launch at the top of the window.
11. Switch the assistant to No Assistant.
12. Move on to the Study section.

STUDY

1. You are only allowed to use the Python docs: https://docs.python.org/3/. You
may not use anything else on the internet.

2. To run the test cases:
2.1. Save your file (CMD + S).
2.2. At the top of the editor, click Run Testcases. This will copy a command to your

clipboard which you can then paste and run in your terminal.
3. Set a timer for 25 minutes.
4. Switch the assistant to No Assistant.
5. Begin the problem.
6. Whenever you or the timer finish, switch to Assistant 1.
7. Open up the same problem.
8. Set a timer for 15 minutes and solve the problem with Assistant 1. Pay attention to what

you like and dislike about this assistant.
9. Fill out your notes in this form: redacted.

10. Save the file you are working on (CMD + S).
11. Repeat steps 6–10 for Assistant 2.
12. Complete the rest of the form and rank the assistants.
13. Make sure to zip and upload your problems directory to the form.

E.2 PROBLEM 1: LAVA TRAP

Simulate a single player walking on a square grid with lava squares. After each command, print if
they fell into the lava, or, if they survived, print the player’s current row, column, and facing.

The player will never move out of bounds of the grid. The top left of the grid is (1, 1) and the bottom
right is (N,N).

BOARD

• An N ×N grid of characters:
– . — empty cell
– L — lava

• Cells are 1-indexed: row 1..N , column 1..N .

PLAYER

• Starts at row r, column c, facing dir ∈ {U,D,L,R}.

17

https://docs.python.org/3/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

COMMANDS

You are given Q commands:

1. MOVE
Move forward one step in the current direction.

2. FACE X where X ∈ {U,D,L,R}
Set the facing direction.

TILE EFFECTS (AFTER THE MOVE)

• If the player moves into lava, the simulation ends, and Game Over is printed.

INPUT

The input will come from standard in:

1. N

2. N lines of grid (each of length N)

3. r c dir

4. Q

5. Q lines of commands

CONSTRAINTS

• 2 ≤ N ≤ 50

• 1 ≤ r, c ≤ N

• dir ∈ {U,D,L,R}
• Commands:

– MOVE

– FACE U|D|L|R

• 1 ≤ Q ≤ 2× 105

OUTPUT

After each command, print one line:

r c dir

(with the player’s 1-indexed row/col and facing as U|D|L|R).

EXAMPLE

Input

3
..L
...
...
2 2 R
3
MOVE
FACE U
MOVE

Output

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2 3 R
2 3 U
Game Over

STARTER CODE

1 import sys
2
3
4 def read_grid():
5 """Reads N and then N lines of the grid. Returns (N, grid)."""
6 n = int(sys.stdin.readline().strip())
7 grid = [list(sys.stdin.readline().strip()) for _ in range(n)]
8 return n, grid
9

10
11 def read_starting_position():
12 """Reads r, c, dir. Returns (r, c, dir)."""
13 parts = sys.stdin.readline().split()
14 r, c, d = int(parts[0]), int(parts[1]), parts[2]
15 return r, c, d
16
17 def read_q():
18 """Reads q from stdin."""
19 return int(sys.stdin.readline().strip())
20
21 def read_next_move():
22 """Reads and returns the next command as a string, or None if

EOF."""↪→
23 line = sys.stdin.readline()
24 if not line:
25 return None
26 return line.strip()
27
28
29 def main():

E.3 PROBLEM 2: SPECIAL KEYBOARD

Simulate a user typing on a special keyboard. They will type one character at a time. After they have
finished typing, print what they wrote.

INPUT

The input will come from standard in:

1. The number of characters that the user will type, q (1 ≤ q ≤ 2000).
2. One character that the user types per line.
3. Characters may include letters, digits, spaces, punctuation, and the markers below.

OUTPUT

• One line: the transformed string.

SPECIAL TOGGLES

Most keyboards have a Caps Lock key that toggles between lowercase and uppercase letters. This
special keyboard has that, in addition to several non-standard toggles. When the user types a special
toggle key, turn the toggle on, and apply its rule for all of the text that the user types until they type
the special toggle key again to turn it off.

• Toggle keys do not affect previously written text, only future text.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Do not append the toggle character to the user’s output.
• More than one toggle may be active at the same time.

TOGGLE RULES

• ˆ → Caps Lock: uppercase all letters while this toggle is active. (In Python: s.upper())
• ˜ →While active, consonants (letters that are not vowels) are duplicated, preserving case.

(“y” counts as a consonant.)
• # →While active, only digits and the first “.” encountered are appended to the output.

– Skip all other characters.
– If a second “.” appears (or any additional one), skip it.

(In Python: check if a character is a digit with s.isdigit().)

EXAMPLES

Input

5
^
a
b
^
c

Output

ABc

Input

9
^
a
~
b
c
~
d
^
e

Output

ABBCCDe

Input

18
^
d
~
b
#
I
6
7
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

9
.
1
Z
#
a
^
c
.

Output

DBB67.91Acc.

STARTER CODE

1 import sys
2 from typing import List, Tuple
3
4
5 def read_q() -> int:
6 """Read the number of typed characters (q) from the first

line."""↪→
7 line = sys.stdin.readline()
8 if not line:
9 raise EOFError("Expected an integer q on the first line.")

10 return int(line.strip())
11
12
13 def read_next_char() -> str:
14 """
15 Read the next 'character per line'.
16 """
17 line = sys.stdin.readline()
18 if line == "":
19 raise EOFError("Unexpected end of input while reading

characters.")↪→
20 # Take the first character on the line.
21 return line[0]
22
23
24 def main() -> None:

E.4 QUESTIONNAIRE

This questionnaire was given to participants through a Google Form.

1. What is your name?
2. Which question are you solving?
3. Assistant 1 Notes (Paragraph entry).
4. Assistant 2 Notes (Paragraph entry).
5. How relevant are the assistant’s suggestions? (Assign each label to only one assistant)

(a) Assistant 1. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]
(b) Assistant 2. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]

6. How often did you have to delete the assistant’s work? (Assign each label to only one
assistant)
(a) Assistant 1. [1 (Fewest deletes) or 2 (Most deletes)]
(b) Assistant 2. [1 (Fewest deletes) or 2 (Most deletes)]

7. Which would you most enjoy using in practice? (Assign each label to only one assistant)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Assistant 1. [1 (Most enjoy) or 2 (Least enjoy)]
(b) Assistant 2. [1 (Most enjoy) or 2 (Least enjoy)]

E.5 ADDITIONAL RESULTS

In the survey we asked participants to rank the assistants based on how often they had to delete
the assistant’s work. In total, 17 out of the 18 participants ranked our Empower method over the
baseline (p = 0.00007). As we also collected the participant’s keypresses, we instead included the
exact number of characters which were accepted and later deleted in the main text, which is a more
informative metric.

F LLM ACKNOWLEDGMENT

We did not use LLMs significantly in the writing or ideation of this paper. An LLM was used to
proof-read, and a few sentences were reworded accordingly.

22

