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Abstract001

As Large Language Models (LLMs) become002
increasingly prevalent, their generated outputs003
are proliferating across the web, risking a fu-004
ture where machine-generated content dilutes005
human-authored text. Since online data is the006
primary resource for LLM pre-training, sub-007
sequent models could be trained on an un-008
known portion of synthetic samples. This will009
lead to model collapse, a degenerative process010
whereby LLMs reinforce their own errors, con-011
verge to a low variance output distribution, and012
ultimately yield a declining performance. In013
this study, we investigate the impact of decod-014
ing strategy on model collapse, analysing the015
text characteristics at each model generation,016
the similarity to human references, and the017
resulting model performance. Using the de-018
coding strategies that lead to the most signifi-019
cant degradation, we evaluate model collapse020
in more realistic scenarios where the origin of021
the data (human or synthetic) is unknown. We022
train a machine-generated text detector and pro-023
pose an importance sampling approach to alle-024
viate model collapse. Our method is validated025
on two LLM variants (GPT-2 and SmolLM2),026
across a range of model sizes (124M to 1.7B),027
on the open-ended text generation task. We028
demonstrate that it can not only prevent model029
collapse but also improve performance when030
sufficient human-authored samples are present.031

1 Introduction032

Large Language Models (LLMs) can generate high-033

quality, fluent language across a wide range of ap-034

plications. A key factor that drives their capabili-035

ties is the vast amount of data used to train them,036

which is predominantly based on text published037

on the web (Wenzek et al., 2020a). The extensive038

adoption of LLMs will inevitably result in an ever-039

increasing amount of synthetic data that will co-040

exist alongside or even dominate human-generated041

text (Dohmatob et al., 2024), especially within on-042

line ecosystems such as social media, news web- 043

sites, and digital encyclopedias. Hence, there are 044

legitimate concerns as to the effect this might have 045

on future generations of language models trained 046

on a mixed set of human and synthetic corpora. 047

While synthetic data has proven beneficial 048

in controlled scenarios, such as instruction tun- 049

ing (Wang et al., 2023) and distillation (Hsieh et al., 050

2023), these settings typically involve careful cu- 051

ration and limited reuse. In contrast, our focus is 052

on the long-term effects of uncontrolled accumu- 053

lation of synthetic content. Several works have 054

attempted to simulate this scenario by recursively 055

training language models on LLM-generated out- 056

put (Shumailov et al., 2023; Briesch et al., 2023; 057

Alemohammad et al., 2024a). The outcome of 058

this recursive training is referred to as “model col- 059

lapse” (Shumailov et al., 2023), a degenerative pro- 060

cess caused by training on synthetic data from pre- 061

vious generations, leading to compounded errors 062

and the convergence to a low variance output distri- 063

bution. This has been shown to cause performance 064

degradation (Alemohammad et al., 2024a) and a 065

drastic loss in diversity (Briesch et al., 2023; Guo 066

et al., 2024; Alemohammad et al., 2024a). How- 067

ever, an unexplored factor in this recursive training 068

process is the decoding strategy used to generate 069

the synthetic data. Decoding strategies alter the 070

distribution of model outputs, which could impact 071

how errors accumulate during recursive training. 072

This work investigates the impact of decoding 073

strategies on model collapse and the characteristics 074

of the data that could be causing this. Subsequently, 075

we explore the scenario where the training data is 076

mixed (human and synthetic) in an unknown pro- 077

portion, akin to training on web-crawled data. We 078

propose a method for preventing model collapse 079

by a guided resampling of the training data using 080

a machine-generated text detector. Our method is 081

motivated by prior work (Bertrand et al., 2024; Ale- 082

mohammad et al., 2024a), which highlighted that 083
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when the proportion of human data in the training084

set is sufficient, model collapse can be prevented.085

Our contributions can be summarised as follows:086

(a) we evaluate model collapse from three per-087

spectives: task performance, model generation088

quality, and semantic similarity to human text,089

(b) we show that model collapse is significantly090

affected by the choice of decoding strategy,091

demonstrating large discrepancies in perfor-092

mance and data quality,093

(c) we train a machine-generated text detector to094

provide calibrated confidence estimates for the095

origin of the training samples,096

(d) we propose a method that uses the detector’s097

outputs to prevent model collapse, and098

(e) we present experiments on two LLM variants099

across a range of decoding strategies and pa-100

rameter sizes.101

2 Prior work on model collapse102

Model collapse is a degenerative process in which103

models recursively trained on generational data ex-104

hibit a drop in performance compared to a model105

trained on the original human distribution (Shu-106

mailov et al., 2023). In the early stages of model107

collapse, information is lost at the tails of the distri-108

bution and eventually, the output distribution con-109

verges to a point estimate with very little variance,110

resulting in a model that cannot be restored back111

to the original generation trained on human data.112

This effect can also be viewed as a change to neu-113

ral scaling laws, in which there reaches a point114

where training on additional synthetic samples115

does not improve model performance and learn-116

ing plateaus (Dohmatob et al., 2024).117

It has been argued that the two causes for this118

behaviour are finite sampling error leading to infor-119

mation being lost at the tails of the distribution, and120

functional approximation error introducing non-121

zero likelihoods outside of the support of the orig-122

inal distribution (Shumailov et al., 2023). Addi-123

tionally, Dohmatob et al. (2024) theorised that the124

choice of generation algorithm is another contribut-125

ing factor to model collapse. However, this has not126

been empirically evaluated in the case of LLMs,127

where decoding strategies that modify the output128

distribution could have a significant impact. Cur-129

rently, model collapse in LLMs has been studied130

with a fixed decoding strategy and model degra-131

dation has been mostly assessed using task per-132

formance metrics such as perplexity (Shumailov133

et al., 2024) and test loss (Gerstgrasser et al., 2024). 134

Interestingly, Guo et al. (2024) also evaluate the 135

diversity of the generated text. In our study, we 136

have chosen to study model collapse across three 137

perspectives: the quality of the generated text (in- 138

cluding diversity and readability), its similarity to 139

human text, and the model task performance. 140

Recent studies have explored methods for mit- 141

igating model collapse, such as using synthetic 142

samples as negative guidance in the image do- 143

main (Alemohammad et al., 2024b), pruning sam- 144

ples based on high perplexity (Feng et al., 2024), 145

token-level editing (Zhu et al., 2024) or filtering 146

low-quality samples (Zhang et al., 2024). Bertrand 147

et al. (2024) and Alemohammad et al. (2024a) show 148

that when a high enough proportion of human data 149

is added at each iteration, model collapse in dif- 150

fusion models can be avoided. In the computa- 151

tional linguistics domain, Gerstgrasser et al. (2024) 152

showed that by accumulating all cross-generational 153

data and combining it with the original human data, 154

model collapse can be mitigated. However, in these 155

works, the models are trained on either entirely 156

synthetic data or the true labels of the samples are 157

known a priori. In our work, we investigate how 158

to avoid model collapse in a more realistic setting 159

where the training data is mixed and the origin 160

(human or synthetic) of the samples is unknown. 161

3 Background 162

In this work, we study open-ended text generation, 163

in which a token sequence, x= {x1, . . . , xm}, is 164

provided as context to a language model and the 165

task is to generate a continuation, x̂={x̂1, . . . , x̂c}, 166

from the model’s probability distribution, pθ(x̂), 167

where θ denotes the model’s parameters: 168

pθ(x̂) =
c∏

i=1

pθ(x̂i | {x, x̂<i}) . (1) 169

Tokens are selected from the probability distribu- 170

tion at each step by following a decoding strategy, 171

resulting in a text sample {x, x̂}. There are two 172

main categories of decoding strategies, determin- 173

istic and stochastic. The former is designed to 174

maximise the joint probability of the generated se- 175

quence, e.g. by selecting the most probable token 176

at each step (greedy decoding) or keeping track 177

of multiple candidate text sequences and select- 178

ing the most probable (beam search). Stochastic 179

methods, on the other hand, produce less repetitive 180

and more human-like text (Holtzman et al., 2020). 181
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The simplest stochastic method, pure sampling,182

samples directly from the distribution pθ. Top-k183

decoding (Fan et al., 2018), samples from the k184

most probable tokens to avoid text generation from185

the tail of pθ. A more nuanced approach, nucleus186

sampling (Holtzman et al., 2020), dynamically trun-187

cates the vocabulary to the highest probability to-188

kens by thresholding the cumulative probability189

mass with a parameter η ∈ [0, 1]. Alternatively,190

the probability mass can be skewed towards high-191

probability outcomes by deploying temperature,192

controlled by τ ∈ [0, 1] (Ackley et al., 1985).193

4 Methods194

In this section, we provide an overview of the meth-195

ods and metrics used in our experiments, including196

the details of the machine-generated text detector.197

4.1 Recursive LLM training198

Similarly to Shumailov et al. (2024) and Dohma-199

tob et al. (2024), we simulate model collapse by200

fine-tuning a language model recursively on its201

own generated output (entirely or partially, depend-202

ing on our underlying hypothesis) for a fixed num-203

ber of generations. This process is described in204

Algorithm 1. Recursive training commences by205

fine-tuning a pre-trained language model, pθ, using206

a dataset consisting of n human-generated sam-207

ples, DH = {xs}ns=1. This results in a model p0,208

where ‘0’ denotes the stage of the entire process209

(generation).1 We then use a set of n context se-210

quences, X = {x1, . . . ,xn} (one for each sample211

in DH), to generate a set of continuation sequences,212

X̂ = {x̂1, . . . , x̂n}, where x̂s ∼ p0 (see also sec-213

tion 3). The human-generated context together214

with the LLM-generated continuation sequences215

form a new synthetic dataset, D1
S (here ‘1’ is used216

to denote that this dataset will be used to fine-tune217

a language model in the next generation).218

Subsequently, successive rounds of recursive219

training are carried out. In each generation i, the220

original language model pθ is fine-tuned using syn-221

thetic dataset Di
S to obtain pi. Thereafter, pi is222

prompted with context sequences X to generate223

a new synthetic dataset Di+1
S that will be used to224

fine-tune pθ in generation i+1.225

1For enhanced notational clarity, we choose to drop pa-
rameter θ for the recursively produced LLMs. However, we
clarify that θ is updated in each generation.

Algorithm 1 Recursive LLM training

1: Input: Human text samples DH = {xs}ns=1,
pre-trained language model pθ

2: Obtain p0 by fine-tuning pθ using DH
3: for i=1, . . . , G do
4: Di

S={xs, x̂s}ns=1, where x̂s ∼ pi−1

5: Obtain pi by fine-tuning pθ using Di
S

6: end for
7: Outputs: pi (i≥0), Di

S (i≥1)

4.2 LLM performance 226

We evaluate model collapse by fine-tuning and test- 227

ing models on the open-ended text generation task, 228

emulating the setup proposed by Shumailov et al. 229

(2024) and Dohmatob et al. (2024). We assess lan- 230

guage model performance in terms of perplexity 231

and evaluation accuracy. Perplexity measures how 232

well the model predicts unseen text, with lower 233

values indicating better performance. Accuracy, 234

in this context, reflects the proportion of correctly 235

predicted tokens, providing a direct measure of the 236

model’s effectiveness in generating accurate lan- 237

guage outputs. 238

4.3 Metrics for LLM text generation quality 239

We complement performance metrics with more 240

qualitative ones drawn on the generated text out- 241

puts and their similarity to human references, to 242

obtain a holistic understanding of LLM collapse. 243

Diversity (D) takes into account the sequence-level 244

repetition at different n-gram levels of a document. 245

Higher scores are reflective of more lexically di- 246

verse text. We use the following formulation: 247

D(x̂) =
4∏

n=2

(
1− |unique n-grams(x̂)|

|total n-grams(x̂)|

)
. (2) 248

Self-BLEU (Zhu et al., 2018) evaluates the BLEU 249

score (Papineni et al., 2002) of each document com- 250

pared to all other documents in the generation set, 251

providing a metric for how repetitive the model is 252

for different outputs. We use a random sample of 253

1,000 documents and evaluate Self-BLEU up to an 254

n-gram size of 4. A lower score indicates higher 255

text diversity. 256

MAUVE (Pillutla et al., 2021) measures the distri- 257

bution similarity between the original human text 258

and the generated text. It is computed using the 259

Kullback–Leibler (KL) divergence between the two 260

text distributions in the embedding space of an 261
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Figure 1: Perplexity and accuracy over generations 0 to 9 of fully synthetic recursive training.

LLM. To perform this, we use a random sample of262

1,000 documents of human and machine-generated263

text. A higher score indicates that the model gener-264

ates more human-like text.265

Readability is evaluated using the Flesch-Kincaid266

Reading-Ease score (Flesch, 1948), which esti-267

mates how difficult it is to understand a passage268

based on the number of words, sentences, and sylla-269

bles. We implement the metric using the textstat270

package.2 Lower scores indicate more complex271

text, typically characterised by longer sentences272

and higher lexical density.273

4.4 Machine-generated text detection274

Machine-generated text detection methods can275

be divided into neural-based (Hu et al., 2023;276

Bhattacharjee et al., 2023) and metric-based ap-277

proaches (Mitchell et al., 2023; Hans et al., 2024).278

The former use statistical features, often extracted279

from surrogate LLMs, to detect machine-generated280

text, whereas the latter are based on machine learn-281

ing, such as fine-tuning a small pre-trained lan-282

guage model with a binary classification head.283

Here we deploy a neural classifier due to re-284

ported state-of-the-art (SOTA) performance on285

relevant machine-generated text detection bench-286

marks (Wang et al., 2024a; Li et al., 2024).287

Our detector is based on an encoder-only trans-288

former model with a sequence classification head289

that maps the CLS token representation to logits,290

zi, which are converted to pseudo-probabilities us-291

ing a sigmoid function, σ. As LLM training is292

considerably resource-intensive, any data filtering293

or sampling methods must be able to efficiently294

process large quantities of data with minimal com-295

putational overhead (Wenzek et al., 2020b). With296

this in consideration, we evaluated the base vari-297

ants of 3 pre-trained language models with under298

200 million parameters: RoBERTa (Goyal et al.,299

2textstat Python package, textstat.org.

2020) and DeBERTav3 (He et al., 2023) due to their 300

SOTA performance in machine-generated text de- 301

tection (Li et al., 2024; Wang et al., 2024b) and 302

ModernBERT (Warner et al., 2024) as a more recent 303

variant that has achieved superior performance on 304

a range of benchmarks. The added advantages of 305

ModernBERT is the large context window (8,192 to- 306

kens), superior computational speed, and memory 307

efficiency (Warner et al., 2024). See Appendix B 308

for more details. Despite their strong performance, 309

as with all modern neural networks, the confidence 310

estimates are poorly calibrated (Guo et al., 2017), 311

i.e. they are not representative of the true likeli- 312

hood. To mitigate overconfidence in the predic- 313

tions, we applied label smoothing. Additionally, 314

we used temperature scaling to further calibrate the 315

model’s predictions. Given the logit vector zi, the 316

new confidence prediction is σ(zi/T ) where T is 317

a learnable temperature parameter. 318

5 The impact of decoding strategies on 319

model collapse 320

We carry out recursive training as described in sec- 321

tion 4.1 on the open-ended text generation task 322

by fine-tuning LLMs on the WikiText-2 dataset 323

(Merity et al., 2016) with GPT-2 124M (Radford 324

et al., 2019) and SmolLM2 360M (Allal et al., 2025). 325

The Wikipedia articles are segmented into non- 326

overlapping chunks of 512 tokens, where the first 327

256 are used as the context (x), and the remain- 328

ing 256 as the continuation (x̂). We conduct full 329

fine-tuning for 1 epoch and, to avoid information 330

leakage between generation and training, define 331

cross-entropy loss only on the generated sequence 332

of each sample (Dohmatob et al., 2024). Addi- 333

tional details can be found in Appendix A.3. We 334

evaluate a range of decoding strategies to assess the 335

effect on model collapse: greedy decoding (τ = 0), 336

5-way beam search, pure sampling (τ = 1), temper- 337

ature (τ = 0.9), top-k (with k = 50), and nucleus 338
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Model Decoding Perplexity ↓ Accuracy ↑ Diversity ↑ Self-BLEU ↓ MAUVE ↑ Readability ↑
Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9

GPT-2

greedy 29.29 82.74 38.72 34.93 0.96 0.70 61.02 67.13 0.99 1.00 60.47 8.25
beam search 29.25 78.06 38.75 35.21 16.78 10.86 61.54 67.60 0.91 1.29 60.97 17.57
pure sampling 29.29 58.64 38.74 32.49 94.88 99.82 24.12 6.76 90.16 7.18 40.62 −10.14
temperature 29.23 44.55 38.77 34.47 87.76 25.10 33.45 54.56 94.15 22.69 46.80 36.79
top-k 29.31 48.36 38.73 33.12 84.57 70.20 38.81 42.14 95.21 70.01 51.19 34.32
nucleus 29.28 48.96 38.74 32.73 92.26 86.73 28.24 26.86 90.96 57.41 43.96 21.31

SmolLM2

greedy 13.96 85.69 47.58 43.76 6.68 2.22 57.54 50.12 3.23 0.99 62.98 47.04
beam search 13.96 84.75 47.59 43.77 6.64 2.16 57.30 50.38 3.06 0.89 62.69 45.87
pure sampling 13.96 15.39 47.58 46.59 90.74 90.72 47.23 45.66 86.00 82.80 47.55 47.59
temperature 13.96 24.88 47.55 46.05 82.92 24.81 51.15 57.55 89.94 17.60 52.83 64.09
top-k 13.96 19.86 47.59 46.02 82.72 56.77 52.62 57.91 85.97 59.84 55.52 63.18
nucleus 13.96 22.81 47.58 46.23 87.33 44.27 49.62 58.39 92.39 53.00 51.20 64.17

Human — — 88.79 42.89 100 50.34

Table 1: Impact of decoding strategies on the model performance and text generation quality(comparison between
generations 0 and 9) in the fully synthetic recursive training setting. Bold font indicates the closest score to the
human reference for generation 9 (↑ / ↓: higher / lower is better).

sampling (η = 0.95). The hyperparameter settings339

for these decoding strategies were based on rec-340

ommendations from prior work (Holtzman et al.,341

2020; Shumailov et al., 2024; Arias et al., 2025).342

Figure 1 depicts the perplexity and evaluation343

accuracy on the WikiText-2 test set for every model344

generation. Additionally, we obtain scores for the345

qualitative metrics using the outputs generated by346

the model (i.e. {x̂}ns=1 of Di
S in Algorithm 1), and347

enumerate them in Table 1 for generations 0 and348

9. We observe that deterministic decoding leads to349

the most severe model collapse. While stochastic350

sampling methods exhibit linear degradation across351

generations, collapse accelerates under greedy de-352

coding and beam search before plateauing in later353

generations. At generation 0, deterministic strate-354

gies yield significantly less fluent and more repeti-355

tive text, with MAUVE scores below 5% and diver-356

sity scores less than 20%. The disparity in genera-357

tion quality between deterministic and stochastic358

strategies in the open-ended text generation task359

has been explored in related literature (Holtzman360

et al., 2020; Pillutla et al., 2021). Here, we demon-361

strate that this disparity compounds across recur-362

sive training, resulting in significantly higher per-363

plexity at generation 9. While deterministic meth-364

ods are rarely used in open-ended generation, we in-365

cluded them for completeness and due to the choice366

of beam-search in the experiments of Shumailov367

et al. (2024), but exclude them in subsequent ex-368

periments due to their unrealistic collapse.369

Pure sampling impacted the models differently.370

For GPT-2, sampling directly from the probability371

distribution produces diverse and fluent text at gen-372

eration 0, but training recursively on these outputs 373

results in the worst test perplexity among stochas- 374

tic methods (58.64) and generated text that has 375

low similarity to human text (MAUVE 7.18). In 376

contrast, with SmolLM2, pure sampling yields the 377

smallest decline in task performance and maintains 378

the closest overall similarity to human references 379

across all evaluated metrics. 380

Temperature sampling led to the most repetitive 381

outputs after recursive training, with diversity de- 382

creasing by ∼70% in both models. For SmolLM2, 383

it also resulted in the greatest semantic divergence 384

from human-generated text, indicating pronounced 385

model collapse. Performance with top-k sampling 386

was consistent across models, with the smallest de- 387

cline in diversity and Self-BLEU, the closest text 388

to the human reference, and a smaller drop in test 389

performance compared to nucleus sampling. 390

In our subsequent experiments on preventing 391

model collapse, we seek to validate that our method 392

can work in the most extreme scenario. For this 393

reason, we evaluate the models using the worst- 394

performing stochastic decoding method (pure sam- 395

pling for GPT-2 and temperature sampling for 396

SmolLM2). In addition, to facilitate direct compar- 397

isons, we also evaluate with top-k decoding due to 398

the consistent performance across models. 399

6 Preventing model collapse 400

So far, we have carried out recursive training in a 401

setting where models are trained exclusively on the 402

outputs of the previous generation without implic- 403

itly including any human-generated samples. We 404

now turn our focus to the partially synthetic setting, 405
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a more realistic scenario where human data make406

up a portion of the training dataset and the syn-407

thetic data is a mix of the samples produced across408

generations. The training dataset for generation i,409

Di, consists of the aggregation of 3 samples:410

Di ∼ samplei≥1 DH, α

samplei≥1 Di
S, β

samplei≥2

{
Di−1

S , . . . ,D1
S
}
,

γ

(i− 1)
,

(3)411

where α, β, and γ ∈ [0, 1] are mixing coefficients412

that affect the distribution of human and machine-413

generated data as well as the proportion of cross-414

generational data in the training set.415

We explore the following settings: (i) fully416

synthetic (α=0, β=1, γ=0), where training417

data consists entirely of synthetic samples from418

the previous generation, (ii) partially synthetic419

(α>0, β=1, γ=0), where the same proportion420

of human data is added to the training data at ev-421

ery generation, and (iii) partially synthetic with422

synthetic data accumulated across generations423

(α=0.5, β=0.5, γ=0.5) as proposed in (Gerst-424

grasser et al., 2024). We evaluate our method in425

the partially synthetic setting and vary the mixing426

coefficients α, β, and γ, however, our method does427

not assume access to the values of the mixing coef-428

ficients and hence the data distribution. To prevent429

model collapse when the origin of each training430

sample is unknown, we train a machine-generated431

detector that estimates the likelihood of text ori-432

gin (section 6.1). We then use this information433

to conduct importance sampling (section 6.2) that434

ultimately mitigates model collapse.435

6.1 Machine-generated text detection436

performance437

We trained and evaluated RoBERTa, DeBERTav3438

and ModernBERT on the MAGE dataset (Li et al.,439

2024), a machine-generated text detection bench-440

mark based on documents from 10 domains which441

have been used to generate text from 27 LLMs. We442

adopt the preset training / validation / test splits443

(80%/10%/10%). We also test on the more de-444

manding out-of-distribution test set that contains445

human-curated text from 4 unseen domains and446

machine-generated samples by an unseen LLM447

(GPT-4). Each model was fine-tuned for 5 epochs448

using a binary cross-entropy loss. More details on449

the model training can be found in Appendix B. Per-450

formance is enumerated in Table 2. ModernBERT451

Model in-distribution out-of-distribution
AUC Acc. F1 AUC Acc. F1

RoBERTa .982 .940 .940 .846 .806 .804
DeBERTav3 .971 .954 .954 .817 .812 .810
ModernBERT .986 .948 .948 .943 .861 .860

Table 2: Machine-generated text detection performance.
Accuracy (Acc.) and F1-score are macro-averages.

yielded the best classification performance on both 452

aforementioned test sets with an AUC of .986 and 453

.943, respectively. This is comparable to the top- 454

performing model evaluated by Li et al. (2024), 455

Longformer, which achieved an in-distribution and 456

out-of-distribution AUC of .99 and .94, respec- 457

tively. 458

6.2 Informed sampling of training data 459

Given a dataset at generation i, Di ∼ g(x), com- 460

posed of an unknown mixture of human and syn- 461

thetic samples, our goal is to sample a training 462

dataset from a target human data distribution DH ∼ 463

h(x) to prevent model collapse. We consider that 464

a language model has collapsed if the inclusion 465

of synthetic samples in the training data results in 466

degraded performance compared to training exclu- 467

sively on human samples. 468

We use Sampling Importance Resampling (SIR) 469

(Rubin, 1988), a method for approximately sam- 470

pling from a target distribution h(x) based on sam- 471

pling with importance weights from a proposal dis- 472

tribution g(x) using the normalised likelihood ratio 473

h(x)/g(x). As this ratio is intractable in our case, 474

we instead employ a machine-generated text detec- 475

tor to assign each sample xi, ∀i, a predicted proba- 476

bility q(xi) of being machine-generated, which we 477

treat as an approximation for the likelihood ratio. 478

As the detector has been trained on an un- 479

balanced dataset (29% human samples), the pre- 480

dictions are biased towards attributing text as 481

machine-generated, reflected in the optimal classi- 482

fication threshold of 0.8674 (0/1: human/machine- 483

generated). To ameliorate this, we apply a bias 484

term b≥ 1 (see Appendix C) to the probabilities, 485

followed by normalising the weights using 486

wi =
(1− q(xi))

b∑n
j=1 (1− q(xj))

b
, (4) 487

where wi∈ [0, 1] denotes the weight for sample xi, 488

∀i. From the n weighted training samples, we draw 489

k×n samples with replacement, with k = 1.5 to 490

allow for a 50% upsampling of the training data. 491
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Figure 2: Model collapse mitigation with GPT-2 or SmolLM2 under partially synthetic recursive training
(α=1, β=1, γ=0) for generations 0 to 9. The baseline is equivalent to training on all the data in the pool
and the Oracle performance represents a perfect machine-generated text detector that filters all synthetic samples.

In this way, we obtain a revised set of samples that492

we use in our recursive training regime.493

6.3 Results on collapse prevention494

As explained in section 5, we assess our approach495

by adopting the decoding strategy that caused the496

most significant model collapse, i.e. pure sampling497

for GPT-2 and temperature sampling for SmolLM2,498

and for a more direct comparison, we also conduct499

experiments using top-k decoding. At each genera-500

tion i, we compare against the baseline of training501

on all samples in the pool of data Di (Eq. 3). We502

also provide an “Oracle” performance, which rep-503

resents a perfect machine-generated text detector504

that filters all synthetic samples.505

We evaluate recursive training in the partially506

synthetic setting under 3 mixing settings (α = 1,507

β = 1, γ = 0), (α= 0.5, β = 1, γ = 0), (α= 0.5,508

β = 0.5, γ = 0.5). The task performance, data509

quality, and detector accuracy metrics over 10 gen-510

erations of partially synthetic training are depicted511

in Figure 2 for the scenario where human and512

synthetic samples have equal proportion (Appen-513

dices S4 and S6 contain results for the other 2 sce-514

narios). Weighted sampling (section 6.2) prevents515

model collapse and preserves the readability and516

diversity of the synthetic outputs, while the base-517

line degrades in task performance and data quality.518

The baseline generations become increasingly de-519

tectable, indicating divergence from human text.520

Notably, our method improves performance com-521

pared to training exclusively on human data (Ora-522

cle) across models and decoding strategies. These523

outcomes demonstrate both the value of using syn-524

thetic data in LLM training, but also the importance 525

of selecting the right synthetic samples. 526

Table 3 enumerates the percentage difference 527

for the final models under the baseline strategy vs. 528

using our approach. We also enumerate the exact 529

scores in Table S2. Our method improves the data 530

quality and model performance across all metrics, 531

except for pure sampling with GPT-2, where the 532

baseline shows higher diversity and Self-BLEU but 533

at the cost of lower MAUVE, readability, and task 534

performance, indicating degraded quality. Notably, 535

we observe that mixing cross-generational data has 536

a minimal effect on the extent of model collapse 537

compared to training solely on the previous genera- 538

tion, contrasting with the findings of Gerstgrasser 539

et al. (2024). However, we note that Gerstgrasser 540

et al. (2024) did not constrain the sample size. Our 541

experiments adopt a more realistic and less extreme 542

setting by sampling a fixed dataset under different 543

mixing scenarios. 544

Additionally, we evaluate the effectiveness of 545

our method at different model scales of SmolLM2 546

(135M, 360M, 1.7B) for a fixed decoding strategy 547

and data mixing setting. The results are enumerated 548

at the bottom of Table 3 and the performance across 549

generations is depicted in Figure S5. Our method 550

prevents model collapse across all SmolLM variants. 551

Notably, we find that smaller models exhibit greater 552

relative improvements using our method compared 553

to both the Oracle and the baseline. 554

In line with previous research (Shumailov et al., 555

2024), we also study the perplexity distribution of 556

the synthetic data at each generation using model 557

p0 that was trained on human data. Figure 3 de- 558
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Model Decoding α, β, γ Perplexity↓ Accuracy↑ Diversity↑ Self-BLEU↓ MAUVE↑ Readability↑

GPT-2

top-k
.5, 1, 0 −7.28% +2.37% +4.54% −1.77% +0.46% +9.03%
.5, .5, .5 −5.94% +1.72% +2.43% −4.28% +3.99% +10.16%
1, 1, 0 −4.45% +1.49% +3.59% −3.58% +1.36% +6.76%

pure sampling
.5, 1, 0 −7.41% +1.50% −1.30% +36.71% +74.06% +50.23%
.5, .5, .5 −6.54% +1.50% −1.07% +21.39% +16.38% +25.45%
1, 1, 0 −25.65% +0.96% −0.71% +20.70% +16.42% +20.99%

SmolLM2 360M

top-k
.5, 1, 0 -4.60% +0.68% +7.06% -1.17% +15.28% -0.73%
.5, .5, .5 -4.37% +0.62% +4.25% -0.42% +2.05% -0.74%
1, 1, 0 -3.05% +0.54% +6.20% -1.74% +10.62% -0.61%

temperature
.5, 1, 0 -3.91% +0.55% +14.62% -1.46% +20.92% -1.86%
.5, .5, .5 -3.24% +0.48% +7.44% -1.98% -0.33% -1.35%
1, 1, 0 -2.23% +0.39% +8.55% -1.80% +13.98% -0.34%

SmolLM2 135M top-k 1, 1, 0 -4.19% +0.75% +9.96% -2.15% +13.08% -0.76%

SmolLM2 1.7B top-k 1, 1, 0 -0.85% +0.06% +3.44% -1.11% +8.46% -0.65%

Table 3: Percentage of change in data quality when using our proposed mitigation strategy versus the baseline.
Results are shown for top-k decoding and pure sampling/temperature for different values of α, β, and γ (blue / red:
positive / negative results, ↑ / ↓: higher / lower is better).

picts these distributions for generations 0, 1, and 9559

for the GPT-2 model with top-k and pure sampling,560

compared to the baseline (Appendix S3 contains561

the results for SmolLM2). For top-k decoding, sim-562

ilarly to Shumailov et al. (2024), we observe that563

for the baseline, perplexity shifts towards regions564

of lower scores and the distribution becomes more565

peaked, showing signs of early model collapse. For566

pure sampling, on the other hand, we observe that567

the baseline distribution shifts to higher perplex-568

ity scores and displays increased variance. This569

is an interesting finding that demonstrates that by570

removing truncation from the decoding strategy,571

the narrowing effect of model collapse is dimin-572
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Figure 3: Perplexity distribution for machine-generated
text of GPT-2 at generations 0, 1, and 9 in the partially
synthetic scenario (α=0.5, β=1, γ=0). Perplexity is
evaluated using the model trained on human text (p0).

ished, and instead, model collapse is reflected by 573

long-tail incoherent text that is completely distinct 574

from the original human samples. By deploying 575

our mitigation strategy, however, we observe very 576

little change in the perplexity distribution for both 577

sampling strategies. 578

7 Conclusion 579

This work investigates model collapse across three 580

dimensions: model performance, data quality, and 581

resemblance to human samples. Through our anal- 582

ysis, we found that the extent of model collapse 583

and the effect on the data distribution is influenced 584

by the decoding strategy. Truncating can lead to 585

peaked distributions and repetitive models while 586

pure sampling can result in high perplexity and ver- 587

bose outputs with low resemblance to human data. 588

Using the decoding strategies that resulted in the 589

most extreme collapse, we evaluated the partially 590

synthetic scenario, where human data is mixed into 591

the training data. We designed a novel method 592

to mitigate model collapse based on resampling 593

the training distribution using the predictions of 594

a machine-generated text detector. We have vali- 595

dated our method on two popular model variants 596

(GPT-2 and SmolLM2) across a range of decoding 597

strategies and model sizes, showing that we can 598

prevent model collapse in all cases. When there 599

is an equal ratio of human to synthetic samples in 600

the training pool, our method results in improved 601

model performance compared to training only on 602

the human data. 603
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Limitations604

As in previous studies (Shumailov et al., 2023;605

Dohmatob et al., 2024), we assess LLMs exclu-606

sively in a fine-tuning setting rather than pre-607

training from scratch. While pre-training exper-608

iments could provide deeper insights, the computa-609

tional cost and complexity of training large-scale610

models from the ground up make such an approach611

impractical in our case. Nevertheless, given that612

model collapse has been primarily evaluated in613

LLMs from a fine-tuning setting, the conclusions614

made in this work still align with the current body615

of research.616

In addition, our study focuses primarily on open-617

ended text generation tasks. While this is a crucial618

area for understanding model collapse, our findings619

may not fully generalise to other domains, such as620

structured prediction or code generation, where the621

impact of model collapse may manifest differently.622

Future work could explore whether our resampling623

method remains effective across these domains.624

Finally, our method depends on the performance625

of the machine-generated text detector used to esti-626

mate the importance weights. Any inaccuracies or627

biases in the detector’s predictions directly affect628

the quality of the resampling process, potentially629

leading to suboptimal mitigation of model collapse.630

Since detector performance varies with domain,631

LLM architecture, and decoding strategy, the gen-632

eralisability of our approach is closely tied to the633

detector’s robustness. The primary focus of this634

work, however, is not on optimising the detector635

itself, but on demonstrating that detector-based re-636

sampling can effectively mitigate model collapse.637

Future work could investigate improved methods638

of detection, such as using adaptive or ensemble-639

based detectors to improve reliability across data640

regimes and LLMs.641
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Appendix879

A Recursive training880

A.1 Dataset881

All our model collapse experiments use the raw882

variant of the WikiText-2 dataset (Merity et al.,883

2016). We train models on the training set, consist-884

ing of 36,718 documents, and evaluate on the test885

set of 4,358 documents. The WikiText-2 dataset886

was extracted from the ‘Good’ or ‘Featured’ article887

criteria specified by editors on Wikipedia and only888

covers the English language.889

A.2 LLMs890

GPT-2 (Generative Pre-trained Transformer891

2) (Radford et al., 2019) is a decoder-only892

transformer-based language model. GPT-2893

demonstrated that large-scale language models894

could perform various language tasks without895

task-specific training. We use the base variant,896

which contains 124M parameters. SmolLM2 (Allal897

et al., 2025) is a family of compact and efficient898

language models developed by Hugging Face,899

available in three sizes: 135M, 360M, and 1.7B900

parameters. The majority of our experiments901

use the 360M parameter variant unless specified902

otherwise.903

A.3 Hyperparameters904

In our experiments, we conduct full fine-tuning us-905

ing a learning rate of 5×10−5, batch size of 8 and906

a dropout rate of 0.1. For the AdamW optimizer,907

we set β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Each908

model was trained for 1 epoch with the hyperpa-909

rameters fixed for all experiments. We conducted910

10 iterations of recursive training.911

B Machine-generated text detection912

B.1 Pre-trained models913

Robustly Optimized BERT pre-training Approach914

(RoBERTa) by Liu et al. (2019) improves on the915

pre-training phase of BERT (Devlin et al., 2019),916

an encoder-only transformer model that leverages917

masked language models to enable pre-trained deep918

bidirectional representations. The RoBERTa model919

optimised the pre-training procedure for BERT by920

training the model for longer and on more data,921

changing the masking pattern, and removing the922

next sentence prediction objective. We use the base923

variant which has 125M parameters.924

Decoding-enhanced BERT with Disentangled At- 925

tention (DeBERTav3) by He et al. (2023), is a BERT- 926

based encoder only model enhanced with disen- 927

tangled attention. DeBERTav3 model improves on 928

DeBERTa by using Enhanced Mask Decoding and 929

an ELECTRA-style pre-training objective, Replaced 930

Token Detection, instead of Masked Language 931

Modelling. We use the base variant which con- 932

tains 86M backbone parameters with an embedding 933

layer of 98M parameters. 934

ModernBERT (Warner et al., 2024) is a recent 935

addition to the encoder-only transformer models 936

that has been designed to increase downstream per- 937

formance and efficiency on GPUs, particularly in 938

long-context scenarios due to its 8,192 native se- 939

quence length. The model was trained on 2 trillion 940

tokens and improves on the original BERT archi- 941

tecture with rotary positional embeddings (RoPE), 942

unpadding, GeGLU layers and alternating local- 943

global attention demonstrating SOTA performance 944

amongst encoder models across a range of classifi- 945

cation and retrieval tasks. We conduct experiments 946

with the base variant, which contains 150M param- 947

eters. 948

B.2 Hyperparameters 949

Each model was fine-tuned for 5 epochs. We select 950

the best model based on the highest AUC on the 951

validation set. Optimisation was performed using 952

AdamW by setting β1 = 0.9, β2 = 0.98, ϵ = 10−6, 953

and the weight decay to 10−2. These parameters 954

were chosen based on prior work (Warner et al., 955

2024). The label smoothing parameter α was set to 956

0.1, the seed was fixed at 42 and the training batch 957

size to 16. The learning rate was set based on a 958

hyperparameter sweep over [1, 1.5, 2, 3, 4]×10−5. 959

For ModernBERT the best-performing learning rate 960

was 10−5. We implemented temperature scaling by 961

learning the temperature parameter using L-BFGS 962

optimisation on the validation set. This was run for 963

50 iterations with a learning rate of 0.01. 964

B.3 Dataset 965

We trained and evaluated the machine-generated 966

text detectors on the MAGE dataset (Li et al., 967

2024), which is based on documents from 10 do- 968

mains: opinion statements (CMV & Yelp reviews 969

dataset), news articles (XSum & TLDR dataset), 970

question answering (ELI5), story generation (Red- 971

dit WritingPrompts & ROC), commonsense reason- 972

ing (HellaSwag), knowledge illustration (SQuAD) 973

and Scientific writing (SciGen). The authors sam- 974
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pled 1,000 texts from each domain (apart from975

opinion statements and news articles with 804 and976

777 samples respectively) and generated text using977

27 LLMs from 7 model families, which include978

OpenAI, LLaMA, GLM, FLAN-T5, OPT, Big-979

Science and EleutherAI. For each human-written980

sample in the dataset, they generate a machine-981

generated version by providing the first 30 tokens982

of human-written text as context to the LLM. In ad-983

dition, for the OpenAI models, they implemented984

two other prompt strategies for relevant domains:985

‘topical’ prompts such as an argument or news title986

and ‘specified’ prompts which contain information987

about the domain source. This results in 33,000988

(= 27,000 + 3× 2× 1,000) machine-generated989

samples per source before processing and filter-990

ing. The authors split the dataset into train, valida-991

tion and test splits in the ratio 80:10:10. To miti-992

gate data imbalance in the validation and test sets993

they sample additional human data from each data994

source. The resulting test set contains 28,741 hu-995

man and 28,078 machine-generated samples (49%996

machine-generated). The training set, however, is997

71% machine-generated. The total dataset consists998

of 154,078 human-written and 294,381 machine-999

generated texts. In addition to the previously de-1000

scribed test set, we also evaluate our detector on1001

their more challenging test set containing text from1002

four unseen domains (CNN/DailyMail, DialogSum,1003

PubMedQA, IMDB) and generated by an unseen1004

model (GPT-4). This out-of-distribution test set1005

contains 762 human and 800 machine-generated1006

samples.1007

When evaluating the ModernBERT model fine-1008

tuned on MAGE on the SmolLM2 models, we ob-1009

served a drop in performance compared to GPT-2,1010

with large variability across decoding strategies1011

and model size. For SmolLM2 360M the detector1012

achieved a classification accuracy of .601 for top-k1013

decoding and .399 for temperature sampling. To1014

ameliorate this, we finetuned a new ModernBERT1015

model on a larger corpus, containing the MAGE1016

dataset and a subset of the RAID dataset (Dugan1017

et al., 2024) for the SmolLM2 models. The RAID1018

dataset is the largest machine-generated text detec-1019

tion dataset, includes text samples generated by 111020

LLMs with 4 decoding strategies, and spans text1021

across 8 domains. Additionally, RAID includes 111022

types of adversarial attacks, such as homoglyph1023

substitutions, number insertions, article deletions,1024

and paraphrasing. We partitioned the dataset into1025

training, validation, and test splits in the ratio1026

Model rmax b

GPT-2 10 10
SmolLM 135M 10 10
SmolLM 360M 5 10
SmolLM 1.7B 3 1

Table S1: Optimal hyperparameters for Sampling Impor-
tance Resampling across different model scales using
top-k decoding.

80:10:10, ensuring no cross-contamination of text 1027

segments generated from the same source of text 1028

across splits. We balanced each split so that it 1029

contained an equal number of human and machine 1030

samples, stratified across model, decoding strategy, 1031

source domain, and adversarial attack (the whites- 1032

pace and paragraph attacks were included). This 1033

resulted in balanced train, validation, and test splits 1034

comprising 128,352, 16,044, and 16,056 samples, 1035

respectively. 1036

C Informed sampling of training data 1037

As we perform sampling with replacement, there 1038

is the risk of excessive duplication of high-weight 1039

samples. To account for this, we introduce a maxi- 1040

mum resample count parameter, rmax, which limits 1041

the number of times any individual sample can 1042

be selected. This constraint ensures diversity in 1043

the resampled dataset and prevents a small sub- 1044

set of high-weight samples from dominating the 1045

training distribution. To further correct for the clas- 1046

sifier’s bias toward labelling samples as machine- 1047

generated, we introduce a bias term b≥ 1 to adjust 1048

the weight distribution. This formulation increases 1049

the selection probability of samples likely to be 1050

human, counteracting the bias introduced by the 1051

classifier’s skewed confidence distribution. We se- 1052

lect values for rmax and b by evaluating each model 1053

on the Wikitext-2 validation set after 1 generation 1054

of recursive training. The optimal hyperparame- 1055

ters for each model configuration are reported in 1056

Table S1. 1057
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Figure S1: Perplexity and accuracy over generations 0 to 9 of fully synthetic recursive training for varying mixing
coefficients (α, β, γ) using top-k decoding.
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Figure S2: Classification score distribution of the machine-generated text detector on the dataset from generation 0.
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Figure S3: Perplexity distribution for machine-generated text of SmolLM2 at generations 0, 1, and 9 in the partially
synthetic scenario (α=0.5, β=1, γ=0). Perplexity is evaluated using the model trained on human text (p0).
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Figure S4: GPT-2 (top) and SmolLM2 (bottom) under partially synthetic recursive training (α=0.5, β=1, γ=0)
for 10 generations. The baseline is equivalent to training on all the data in the pool and the Oracle performance
represents a perfect AI text detector that filters all synthetic samples.
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Figure S5: SmolLM2 model size variants (1.7B, 360M, 135M) under partially synthetic recursive training
(α=1, β=1, γ=0) for 10 generations. The baseline is equivalent to training on all the data in the pool and
the Oracle performance represents a perfect AI text detector that filters all synthetic samples.

Baseline Mitigation top-k temperature pure sampling

GP
T-

2

29.0

29.7

30.5

31.2

32.0

Oracle

Perplexity

37.8

38.1
38.3

38.6

38.9

Oracle

Accuracy (%)

28.0

34.1

40.2

46.3

52.4 Readability

83.3

87.0

90.7

94.5

98.2 Diversity

59.6

68.1

76.7

85.2

93.8 Detector Accuracy (%)

Sm
ol

LM
2

0 1 2 3 4 5 6 7 8 913.92

14.11

14.30

14.48

14.67

Oracle

0 1 2 3 4 5 6 7 8 947.28

47.37

47.47

47.56

47.65

Oracle
0 1 2 3 4 5 6 7 8 952.54

53.97

55.41

56.85

58.29

0 1 2 3 4 5 6 7 8 971.44

74.66

77.88

81.11

84.33

0 1 2 3 4 5 6 7 8 942.48

51.91

61.34

70.76

80.19

Figure S6: GPT-2 (top) and SmolLM2 (bottom) under partially synthetic recursive training with cross-generational
data (α=0.5, β=0.5, γ=0.5) for 10 generations. The baseline is equivalent to training on all the data in the pool
and the Oracle performance represents a perfect AI text detector that filters all synthetic samples.
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Model Method Decoding α, β, γ
Perplexity↓ Accuracy↑ Diversity↑ Self-BLEU↓ MAUVE↑ Readability↑
Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0 Gen 9

GPT-2

baseline

top-k
.5, 1, 0 29.23 31.85 38.80 37.56 84.46 82.16 39.10 39.55 93.31 91.10 51.30 46.16
.5, .5, .5 29.22 31.33 38.83 37.84 85.66 84.35 38.94 40.64 94.07 92.00 51.06 45.38
1, 1, 0 29.25 29.92 38.78 38.34 84.66 82.68 39.19 40.20 93.24 92.69 50.99 48.09

sampling
.5, 1, 0 29.25 32.27 38.78 38.01 94.86 97.77 24.09 14.52 91.08 46.87 40.64 23.69
.5, .5, .5 29.26 31.82 38.77 38.03 94.95 97.50 24.15 17.02 90.07 76.01 41.02 29.08
1, 1, 0 29.25 38.79 38.79 38.63 94.88 96.86 24.04 18.12 91.18 75.64 40.71 31.49

ours

top-k
.5, 1, 0 29.25 29.53 38.78 38.45 84.43 85.89 39.43 38.85 94.59 91.52 50.79 50.33
.5, .5, .5 29.25 29.47 38.77 38.49 85.18 86.40 39.28 38.90 94.75 95.67 51.31 49.99
1, 1, 0 29.25 28.59 38.77 38.91 84.81 85.65 38.85 38.76 94.92 93.95 51.28 51.34

pure sampling
.5, 1, 0 29.25 29.88 38.79 38.58 94.87 96.50 24.30 19.85 92.92 81.58 40.68 35.59
.5, .5, .5 29.26 29.74 38.76 38.60 94.92 96.46 24.09 20.66 91.16 88.46 40.98 36.48
1, 1, 0 29.24 28.84 38.78 39.00 94.61 96.17 24.01 21.87 91.76 88.06 40.78 38.10

SmolLM2
350M

baseline

top-k
.5, 1, 0 13.96 14.69 47.58 47.30 82.59 73.95 52.68 54.53 91.58 78.42 55.31 58.10
.5, .5, .5 13.96 14.64 47.59 47.30 82.76 76.54 52.57 53.97 91.03 86.15 55.38 57.84
1, 1, 0 13.96 14.10 47.57 47.57 82.51 76.90 52.47 54.17 91.32 81.11 55.57 57.24

temperature
.5, 1, 0 13.96 14.69 47.59 47.37 83.16 66.16 51.21 54.46 83.67 70.15 52.59 57.81
.5, .5, .5 13.96 14.60 47.58 47.36 83.74 72.03 51.22 54.15 86.94 81.27 52.80 56.86
1, 1, 0 13.96 14.06 47.58 47.64 83.31 73.11 51.16 53.96 84.55 76.27 52.74 55.85

ours

top-k
.5, 1, 0 13.96 14.02 47.58 47.62 82.75 79.17 52.58 53.89 89.33 90.39 55.53 57.67
.5, .5, .5 13.96 14.00 47.59 47.59 82.52 79.79 52.64 53.74 88.69 87.92 55.39 57.41
1, 1, 0 13.96 13.67 47.60 47.83 82.93 81.67 52.74 53.23 85.09 89.72 55.53 56.90

temperature
.5, 1, 0 13.96 14.11 47.58 47.63 83.45 75.84 51.15 53.67 87.80 84.82 53.03 56.74
.5, .5, .5 13.96 14.13 47.58 47.58 82.99 77.39 51.12 53.08 86.20 81.00 52.98 56.09
1, 1, 0 13.96 13.75 47.57 47.83 83.43 79.36 51.21 52.99 88.16 86.94 52.94 55.66

SmolLM2
135M

baseline top-k 1, 1, 0 19.02 19.35 44.08 44.04 79.08 70.99 53.08 54.87 85.18 72.73 57.34 59.49
ours 19.02 18.54 44.10 44.37 79.15 78.06 52.90 53.69 82.92 82.24 57.35 59.04

SmolLM2
1.7B

baseline top-k 1, 1, 0 9.31 9.39 52.67 52.70 85.24 81.02 53.22 54.28 91.11 85.95 53.79 55.02
ours 9.31 9.31 52.66 52.73 85.13 83.81 53.16 53.68 88.22 93.23 54.01 54.66

Table S2: Test performance (perplexity and accuracy) and data quality at generation 0 and generation 9. Results are
shown for top-k decoding and pure sampling/temperature for different values of α, β, and γ (↑ / ↓: higher / lower is
better).
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