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Abstract

As Large Language Models (LLMs) become
increasingly prevalent, their generated outputs
are proliferating across the web, risking a fu-
ture where machine-generated content dilutes
human-authored text. Since online data is the
primary resource for LLM pre-training, sub-
sequent models could be trained on an un-
known portion of synthetic samples. This will
lead to model collapse, a degenerative process
whereby LLMs reinforce their own errors, con-
verge to a low variance output distribution, and
ultimately yield a declining performance. In
this study, we investigate the impact of decod-
ing strategy on model collapse, analysing the
text characteristics at each model generation,
the similarity to human references, and the
resulting model performance. Using the de-
coding strategies that lead to the most signifi-
cant degradation, we evaluate model collapse
in more realistic scenarios where the origin of
the data (human or synthetic) is unknown. We
train a machine-generated text detector and pro-
pose an importance sampling approach to alle-
viate model collapse. Our method is validated
on two LLM variants (GPT-2 and SmollLM2),
across a range of model sizes (124M to 1.7B),
on the open-ended text generation task. We
demonstrate that it can not only prevent model
collapse but also improve performance when
sufficient human-authored samples are present.

1 Introduction

Large Language Models (LLMs) can generate high-
quality, fluent language across a wide range of ap-
plications. A key factor that drives their capabili-
ties is the vast amount of data used to train them,
which is predominantly based on text published
on the web (Wenzek et al., 2020a). The extensive
adoption of LLMs will inevitably result in an ever-
increasing amount of synthetic data that will co-
exist alongside or even dominate human-generated
text (Dohmatob et al., 2024), especially within on-

line ecosystems such as social media, news web-
sites, and digital encyclopedias. Hence, there are
legitimate concerns as to the effect this might have
on future generations of language models trained
on a mixed set of human and synthetic corpora.
While synthetic data has proven beneficial
in controlled scenarios, such as instruction tun-
ing (Wang et al., 2023) and distillation (Hsieh et al.,
2023), these settings typically involve careful cu-
ration and limited reuse. In contrast, our focus is
on the long-term effects of uncontrolled accumu-
lation of synthetic content. Several works have
attempted to simulate this scenario by recursively
training language models on LL.M-generated out-
put (Shumailov et al., 2023; Briesch et al., 2023;
Alemohammad et al., 2024a). The outcome of
this recursive training is referred to as “model col-
lapse” (Shumailov et al., 2023), a degenerative pro-
cess caused by training on synthetic data from pre-
vious generations, leading to compounded errors
and the convergence to a low variance output distri-
bution. This has been shown to cause performance
degradation (Alemohammad et al., 2024a) and a
drastic loss in diversity (Briesch et al., 2023; Guo
et al., 2024; Alemohammad et al., 2024a). How-
ever, an unexplored factor in this recursive training
process is the decoding strategy used to generate
the synthetic data. Decoding strategies alter the
distribution of model outputs, which could impact
how errors accumulate during recursive training.
This work investigates the impact of decoding
strategies on model collapse and the characteristics
of the data that could be causing this. Subsequently,
we explore the scenario where the training data is
mixed (human and synthetic) in an unknown pro-
portion, akin to training on web-crawled data. We
propose a method for preventing model collapse
by a guided resampling of the training data using
a machine-generated text detector. Our method is
motivated by prior work (Bertrand et al., 2024; Ale-
mohammad et al., 2024a), which highlighted that



when the proportion of human data in the training
set is sufficient, model collapse can be prevented.
Our contributions can be summarised as follows:

(a) we evaluate model collapse from three per-
spectives: task performance, model generation
quality, and semantic similarity to human text,

(b) we show that model collapse is significantly
affected by the choice of decoding strategy,
demonstrating large discrepancies in perfor-
mance and data quality,

(c) we train a machine-generated text detector to
provide calibrated confidence estimates for the
origin of the training samples,

(d) we propose a method that uses the detector’s
outputs to prevent model collapse, and

(e) we present experiments on two LLM variants
across a range of decoding strategies and pa-
rameter sizes.

2 Prior work on model collapse

Model collapse is a degenerative process in which
models recursively trained on generational data ex-
hibit a drop in performance compared to a model
trained on the original human distribution (Shu-
mailov et al., 2023). In the early stages of model
collapse, information is lost at the tails of the distri-
bution and eventually, the output distribution con-
verges to a point estimate with very little variance,
resulting in a model that cannot be restored back
to the original generation trained on human data.
This effect can also be viewed as a change to neu-
ral scaling laws, in which there reaches a point
where training on additional synthetic samples
does not improve model performance and learn-
ing plateaus (Dohmatob et al., 2024).

It has been argued that the two causes for this
behaviour are finite sampling error leading to infor-
mation being lost at the tails of the distribution, and
functional approximation error introducing non-
zero likelihoods outside of the support of the orig-
inal distribution (Shumailov et al., 2023). Addi-
tionally, Dohmatob et al. (2024) theorised that the
choice of generation algorithm is another contribut-
ing factor to model collapse. However, this has not
been empirically evaluated in the case of LLMs,
where decoding strategies that modify the output
distribution could have a significant impact. Cur-
rently, model collapse in LLMs has been studied
with a fixed decoding strategy and model degra-
dation has been mostly assessed using task per-
formance metrics such as perplexity (Shumailov

et al., 2024) and test loss (Gerstgrasser et al., 2024).
Interestingly, Guo et al. (2024) also evaluate the
diversity of the generated text. In our study, we
have chosen to study model collapse across three
perspectives: the quality of the generated text (in-
cluding diversity and readability), its similarity to
human text, and the model task performance.
Recent studies have explored methods for mit-
igating model collapse, such as using synthetic
samples as negative guidance in the image do-
main (Alemohammad et al., 2024b), pruning sam-
ples based on high perplexity (Feng et al., 2024),
token-level editing (Zhu et al., 2024) or filtering
low-quality samples (Zhang et al., 2024). Bertrand
et al. (2024) and Alemohammad et al. (2024a) show
that when a high enough proportion of human data
is added at each iteration, model collapse in dif-
fusion models can be avoided. In the computa-
tional linguistics domain, Gerstgrasser et al. (2024)
showed that by accumulating all cross-generational
data and combining it with the original human data,
model collapse can be mitigated. However, in these
works, the models are trained on either entirely
synthetic data or the true labels of the samples are
known a priori. In our work, we investigate how
to avoid model collapse in a more realistic setting
where the training data is mixed and the origin
(human or synthetic) of the samples is unknown.

3 Background

In this work, we study open-ended text generation,
in which a token sequence, x = {z1,...,Zm}, is
provided as context to a language model and the
task is to generate a continuation, X = {21, ..., 2.},
from the model’s probability distribution, py(X),
where 6 denotes the model’s parameters:

po(X) = [ [ po(@: | {x,%}). (1
i1

Tokens are selected from the probability distribu-
tion at each step by following a decoding strategy,
resulting in a text sample {x,%x}. There are two
main categories of decoding strategies, determin-
istic and stochastic. The former is designed to
maximise the joint probability of the generated se-
quence, e.g. by selecting the most probable token
at each step (greedy decoding) or keeping track
of multiple candidate text sequences and select-
ing the most probable (beam search). Stochastic
methods, on the other hand, produce less repetitive
and more human-like text (Holtzman et al., 2020).



The simplest stochastic method, pure sampling,
samples directly from the distribution pg. Top-k
decoding (Fan et al., 2018), samples from the k
most probable tokens to avoid text generation from
the tail of pg. A more nuanced approach, nucleus
sampling (Holtzman et al., 2020), dynamically trun-
cates the vocabulary to the highest probability to-
kens by thresholding the cumulative probability
mass with a parameter 7 € [0,1]. Alternatively,
the probability mass can be skewed towards high-
probability outcomes by deploying temperature,
controlled by 7 €0, 1] (Ackley et al., 1985).

4 Methods

In this section, we provide an overview of the meth-
ods and metrics used in our experiments, including
the details of the machine-generated text detector.

4.1 Recursive LLM training

Similarly to Shumailov et al. (2024) and Dohma-
tob et al. (2024), we simulate model collapse by
fine-tuning a language model recursively on its
own generated output (entirely or partially, depend-
ing on our underlying hypothesis) for a fixed num-
ber of generations. This process is described in
Algorithm 1. Recursive training commences by
fine-tuning a pre-trained language model, pg, using
a dataset consisting of n human-generated sam-
ples, Dy = {xs}"_,. This results in a model p°,
where ‘0’ denotes the stage of the entire process
(generation).l We then use a set of n context se-
quences, X ={x1,...,Xy} (one for each sample
in Dy), to generate a set of continuation sequences,
X ={%1,...,%,}, where x, ~ p° (see also sec-
tion 3). The human-generated context together
with the LLM-generated continuation sequences
form a new synthetic dataset, Dé (here ‘1’ is used
to denote that this dataset will be used to fine-tune
a language model in the next generation).

Subsequently, successive rounds of recursive
training are carried out. In each generation i, the
original language model py is fine-tuned using syn-
thetic dataset D to obtain p’. Thereafter, p’ is
prompted with context sequences X to generate
a new synthetic dataset Dgﬂ that will be used to
fine-tune py in generation ¢+ 1.

"For enhanced notational clarity, we choose to drop pa-
rameter 6 for the recursively produced LLMs. However, we
clarify that 6 is updated in each generation.

Algorithm 1 Recursive LLM training

1: Input: Human text samples Dy = {x5}"_;,
pre-trained language model pyg
Obtain p° by fine-tuning py using Dy
fori=1,...,Gdo
Di={xs,Xs}"_,, where Xs ~ p'~
Obtain p’ by fine-tuning py using Dg
end for
Outputs: p (i>0), D (i>1)

1

A A Sl

4.2 LLM performance

We evaluate model collapse by fine-tuning and test-
ing models on the open-ended text generation task,
emulating the setup proposed by Shumailov et al.
(2024) and Dohmatob et al. (2024). We assess lan-
guage model performance in terms of perplexity
and evaluation accuracy. Perplexity measures how
well the model predicts unseen text, with lower
values indicating better performance. Accuracy,
in this context, reflects the proportion of correctly
predicted tokens, providing a direct measure of the
model’s effectiveness in generating accurate lan-
guage outputs.

4.3 Metrics for LLM text generation quality

We complement performance metrics with more
qualitative ones drawn on the generated text out-
puts and their similarity to human references, to
obtain a holistic understanding of LLM collapse.
Diversity (D) takes into account the sequence-level
repetition at different n-gram levels of a document.
Higher scores are reflective of more lexically di-
verse text. We use the following formulation:

D(%) = ﬁ (1

n=2

|unique n-grams(x)| )
|total n-grams(x)| )

Self-BLEU (Zhu et al., 2018) evaluates the BLEU
score (Papineni et al., 2002) of each document com-
pared to all other documents in the generation set,
providing a metric for how repetitive the model is
for different outputs. We use a random sample of
1,000 documents and evaluate Self-BLEU up to an
n-gram size of 4. A lower score indicates higher
text diversity.

MAUVE (Pillutla et al., 2021) measures the distri-
bution similarity between the original human text
and the generated text. It is computed using the
Kullback-Leibler (KL) divergence between the two
text distributions in the embedding space of an
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Figure 1: Perplexity and accuracy over generations 0 to 9 of fully synthetic recursive training.

LLM. To perform this, we use a random sample of
1,000 documents of human and machine-generated
text. A higher score indicates that the model gener-
ates more human-like text.

Readability is evaluated using the Flesch-Kincaid
Reading-Ease score (Flesch, 1948), which esti-
mates how difficult it is to understand a passage
based on the number of words, sentences, and sylla-
bles. We implement the metric using the textstat
package.”? Lower scores indicate more complex
text, typically characterised by longer sentences
and higher lexical density.

4.4 Machine-generated text detection

Machine-generated text detection methods can
be divided into neural-based (Hu et al., 2023;
Bhattacharjee et al., 2023) and metric-based ap-
proaches (Mitchell et al., 2023; Hans et al., 2024).
The former use statistical features, often extracted
from surrogate LL.Ms, to detect machine-generated
text, whereas the latter are based on machine learn-
ing, such as fine-tuning a small pre-trained lan-
guage model with a binary classification head.
Here we deploy a neural classifier due to re-
ported state-of-the-art (SOTA) performance on
relevant machine-generated text detection bench-
marks (Wang et al., 2024a; Li et al., 2024).

Our detector is based on an encoder-only trans-
former model with a sequence classification head
that maps the CLS token representation to logits,
z;, which are converted to pseudo-probabilities us-
ing a sigmoid function, o. As LLM training is
considerably resource-intensive, any data filtering
or sampling methods must be able to efficiently
process large quantities of data with minimal com-
putational overhead (Wenzek et al., 2020b). With
this in consideration, we evaluated the base vari-
ants of 3 pre-trained language models with under
200 million parameters: RoBERTa (Goyal et al.,

Ztextstat Python package, textstat.org.

2020) and DeBERTav3 (He et al., 2023) due to their
SOTA performance in machine-generated text de-
tection (Li et al., 2024; Wang et al., 2024b) and
ModernBERT (Warner et al., 2024) as a more recent
variant that has achieved superior performance on
arange of benchmarks. The added advantages of
ModernBERT is the large context window (8,192 to-
kens), superior computational speed, and memory
efficiency (Warner et al., 2024). See Appendix B
for more details. Despite their strong performance,
as with all modern neural networks, the confidence
estimates are poorly calibrated (Guo et al., 2017),
i.e. they are not representative of the true likeli-
hood. To mitigate overconfidence in the predic-
tions, we applied label smoothing. Additionally,
we used temperature scaling to further calibrate the
model’s predictions. Given the logit vector z;, the
new confidence prediction is o(z;/T") where T is
a learnable temperature parameter.

5 The impact of decoding strategies on
model collapse

We carry out recursive training as described in sec-
tion 4.1 on the open-ended text generation task
by fine-tuning LLMs on the WikiText-2 dataset
(Merity et al., 2016) with GPT-2 124M (Radford
etal., 2019) and SmolLM2 360M (Allal et al., 2025).
The Wikipedia articles are segmented into non-
overlapping chunks of 512 tokens, where the first
256 are used as the context (x), and the remain-
ing 256 as the continuation (x). We conduct full
fine-tuning for 1 epoch and, to avoid information
leakage between generation and training, define
cross-entropy loss only on the generated sequence
of each sample (Dohmatob et al., 2024). Addi-
tional details can be found in Appendix A.3. We
evaluate a range of decoding strategies to assess the
effect on model collapse: greedy decoding (7 = 0),
5-way beam search, pure sampling (7 = 1), temper-
ature (7 = 0.9), top-k (with k£ = 50), and nucleus
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. Perplexity | Accuracy T Diversity I Self-BLEU| MAUVE 1 Readability 1
Model  Decoding Gen 0 Gen9 Gen 0 Gen9 Gen0 Gen9 Gen0 Gen9 Gen0O Gen9 Gen(O Gen9
greedy 29.29 82.74 38.72 34.93 0.96 0.70 61.02 67.13 0.99 1.00 60.47 8.25
beam search  29.25 78.06 38.75 35.21 16.78 10.86 61.54 67.60 0.91 1.29 60.97 17.57
GpT-  bure sampling 29.29 58.64 38.74 32.49 94.88 99.82 24.12 6.76 90.16 7.18 40.62 —10.14
temperature  29.23 44.55 38.77 34.47 87.76 25.10 33.45 54.56 94.15 22.69 46.80 36.79
top-k 29.31 48.36 38.73 33.12 84.57 70.20 38.81 42.14 95.21 70.01 51.19 34.32
nucleus 29.28 48.96 38.74 32.73 92.26 86.73 28.24 26.86 90.96 57.41 43.96 21.31
greedy 13.96 85.69 47.58 43.76 6.68 2.22 57.54 50.12 3.23 0.99 62.98 47.04
beam search 13.96 84.75 47.59 43.77 6.64 2.16 57.30 50.38 3.06 0.89 62.69 45.87
SmolLM2 Pure sampling 13.96 15.39 47.58 46.59 90.74 90.72 47.23 45.66 86.00 82.80 47.55 47.59
temperature  13.96 24.88 47.55 46.05 82.92 24.81 51.15 57.55 89.94 17.60 52.83 64.09
top-k 13.96 19.86 47.59 46.02 82.72 56.77 52.62 57.91 85.97 59.84 55.52 63.18
nucleus 13.96 22.81 47.58 46.23 87.33 44.27 49.62 58.39 92.39 53.00 51.20 64.17
Human — — 88.79 42.89 100 50.34

Table 1: Impact of decoding strategies on the model performance and text generation quality(comparison between
generations 0 and 9) in the fully synthetic recursive training setting. Bold font indicates the closest score to the
human reference for generation 9 (1 / |: higher / lower is better).

sampling (n = 0.95). The hyperparameter settings
for these decoding strategies were based on rec-
ommendations from prior work (Holtzman et al.,
2020; Shumailov et al., 2024; Arias et al., 2025).

Figure 1 depicts the perplexity and evaluation
accuracy on the WikiText-2 test set for every model
generation. Additionally, we obtain scores for the
qualitative metrics using the outputs generated by
the model (i.e. {X}7_; of D in Algorithm 1), and
enumerate them in Table 1 for generations 0 and
9. We observe that deterministic decoding leads to
the most severe model collapse. While stochastic
sampling methods exhibit linear degradation across
generations, collapse accelerates under greedy de-
coding and beam search before plateauing in later
generations. At generation 0, deterministic strate-
gies yield significantly less fluent and more repeti-
tive text, with MAUVE scores below 5% and diver-
sity scores less than 20%. The disparity in genera-
tion quality between deterministic and stochastic
strategies in the open-ended text generation task
has been explored in related literature (Holtzman
et al., 2020; Pillutla et al., 2021). Here, we demon-
strate that this disparity compounds across recur-
sive training, resulting in significantly higher per-
plexity at generation 9. While deterministic meth-
ods are rarely used in open-ended generation, we in-
cluded them for completeness and due to the choice
of beam-search in the experiments of Shumailov
et al. (2024), but exclude them in subsequent ex-
periments due to their unrealistic collapse.

Pure sampling impacted the models differently.
For GPT-2, sampling directly from the probability
distribution produces diverse and fluent text at gen-

eration 0, but training recursively on these outputs
results in the worst test perplexity among stochas-
tic methods (58.64) and generated text that has
low similarity to human text (MAUVE 7.18). In
contrast, with SmolLM2, pure sampling yields the
smallest decline in task performance and maintains
the closest overall similarity to human references
across all evaluated metrics.

Temperature sampling led to the most repetitive
outputs after recursive training, with diversity de-
creasing by ~70% in both models. For SmolLM2,
it also resulted in the greatest semantic divergence
from human-generated text, indicating pronounced
model collapse. Performance with top-k sampling
was consistent across models, with the smallest de-
cline in diversity and Self-BLEU, the closest text
to the human reference, and a smaller drop in test
performance compared to nucleus sampling.

In our subsequent experiments on preventing
model collapse, we seek to validate that our method
can work in the most extreme scenario. For this
reason, we evaluate the models using the worst-
performing stochastic decoding method (pure sam-
pling for GPT-2 and temperature sampling for
SmolLM2). In addition, to facilitate direct compar-
isons, we also evaluate with top-k decoding due to
the consistent performance across models.

6 Preventing model collapse

So far, we have carried out recursive training in a
setting where models are trained exclusively on the
outputs of the previous generation without implic-
itly including any human-generated samples. We
now turn our focus to the partially synthetic setting,



a more realistic scenario where human data make
up a portion of the training dataset and the syn-
thetic data is a mix of the samples produced across
generations. The training dataset for generation ¢,
Di, consists of the aggregation of 3 samples:

D! ~ sample; > 1 Dy, «
sample;> Dy, 5 3)
i—1 1
sample; > {Dls Y ,DS} G

where a, 3, and 7y € [0, 1] are mixing coefficients
that affect the distribution of human and machine-
generated data as well as the proportion of cross-
generational data in the training set.

We explore the following settings: (i) fully
synthetic (a=0,8=1,7y=0), where training
data consists entirely of synthetic samples from
the previous generation, (ii) partially synthetic
(a>0,8=1,v=0), where the same proportion
of human data is added to the training data at ev-
ery generation, and (iii) partially synthetic with
synthetic data accumulated across generations
(a=0.5,8=0.5,7v=0.5) as proposed in (Gerst-
grasser et al., 2024). We evaluate our method in
the partially synthetic setting and vary the mixing
coefficients «, /3, and y, however, our method does
not assume access to the values of the mixing coef-
ficients and hence the data distribution. To prevent
model collapse when the origin of each training
sample is unknown, we train a machine-generated
detector that estimates the likelihood of text ori-
gin (section 6.1). We then use this information
to conduct importance sampling (section 6.2) that
ultimately mitigates model collapse.

6.1 Machine-generated text detection
performance

We trained and evaluated RoBERTa, DeBERTav3
and ModernBERT on the MAGE dataset (Li et al.,
2024), a machine-generated text detection bench-
mark based on documents from 10 domains which
have been used to generate text from 27 LLMs. We
adopt the preset training / validation / test splits
(80%/10%/10%). We also test on the more de-
manding out-of-distribution test set that contains
human-curated text from 4 unseen domains and
machine-generated samples by an unseen LLM
(GPT-4). Each model was fine-tuned for 5 epochs
using a binary cross-entropy loss. More details on
the model training can be found in Appendix B. Per-
formance is enumerated in Table 2. ModernBERT

in-distribution out-of-distribution
AUC Acc. F1 AUC Acc. Fl

RoBERTa 982 940 .940 .846 .806 .804
DeBERTav3d  .971 .954 .954 817 .812 .810
ModernBERT .986 .948 .948 .943 .861 .860

Model

Table 2: Machine-generated text detection performance.
Accuracy (Acc.) and F1-score are macro-averages.

yielded the best classification performance on both
aforementioned test sets with an AUC of .986 and
.943, respectively. This is comparable to the top-
performing model evaluated by Li et al. (2024),
Longformer, which achieved an in-distribution and
out-of-distribution AUC of .99 and .94, respec-
tively.

6.2 Informed sampling of training data

Given a dataset at generation i, D; ~ g(x), com-
posed of an unknown mixture of human and syn-
thetic samples, our goal is to sample a training
dataset from a target human data distribution Dy ~
h(z) to prevent model collapse. We consider that
a language model has collapsed if the inclusion
of synthetic samples in the training data results in
degraded performance compared to training exclu-
sively on human samples.

We use Sampling Importance Resampling (SIR)
(Rubin, 1988), a method for approximately sam-
pling from a target distribution h(x) based on sam-
pling with importance weights from a proposal dis-
tribution g(x) using the normalised likelihood ratio
h(z)/g(x). As this ratio is intractable in our case,
we instead employ a machine-generated text detec-
tor to assign each sample x;, Vi, a predicted proba-
bility ¢(x;) of being machine-generated, which we
treat as an approximation for the likelihood ratio.

As the detector has been trained on an un-
balanced dataset (29% human samples), the pre-
dictions are biased towards attributing text as
machine-generated, reflected in the optimal classi-
fication threshold of 0.8674 (0/1: human/machine-
generated). To ameliorate this, we apply a bias
term b > 1 (see Appendix C) to the probabilities,
followed by normalising the weights using

(1 - q(xi)"
w; = : “)
S (1= a(xy)”

where w; € [0, 1] denotes the weight for sample x;,
Vi. From the n weighted training samples, we draw

k xn samples with replacement, with £ = 1.5 to
allow for a 50% upsampling of the training data.
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Figure 2: Model collapse mitigation with GPT-2 or SmolLM2 under partially synthetic recursive training
(e=1,8=1,7=0) for generations 0 to 9. The baseline is equivalent to training on all the data in the pool
and the Oracle performance represents a perfect machine-generated text detector that filters all synthetic samples.

In this way, we obtain a revised set of samples that
we use in our recursive training regime.

6.3 Results on collapse prevention

As explained in section 5, we assess our approach
by adopting the decoding strategy that caused the
most significant model collapse, i.e. pure sampling
for GPT-2 and temperature sampling for SmolLM2,
and for a more direct comparison, we also conduct
experiments using top-k decoding. At each genera-
tion ¢, we compare against the baseline of training
on all samples in the pool of data D’ (Eq. 3). We
also provide an “Oracle” performance, which rep-
resents a perfect machine-generated text detector
that filters all synthetic samples.

We evaluate recursive training in the partially
synthetic setting under 3 mixing settings (o =1,
B=1,v=0), (a«=0.5,=1,v=0), (¢ =0.5,
B = 0.5, v = 0.5). The task performance, data
quality, and detector accuracy metrics over 10 gen-
erations of partially synthetic training are depicted
in Figure 2 for the scenario where human and
synthetic samples have equal proportion (Appen-
dices S4 and S6 contain results for the other 2 sce-
narios). Weighted sampling (section 6.2) prevents
model collapse and preserves the readability and
diversity of the synthetic outputs, while the base-
line degrades in task performance and data quality.
The baseline generations become increasingly de-
tectable, indicating divergence from human text.
Notably, our method improves performance com-
pared to training exclusively on human data (Ora-
cle) across models and decoding strategies. These
outcomes demonstrate both the value of using syn-

thetic data in LLM training, but also the importance
of selecting the right synthetic samples.

Table 3 enumerates the percentage difference
for the final models under the baseline strategy vs.
using our approach. We also enumerate the exact
scores in Table S2. Our method improves the data
quality and model performance across all metrics,
except for pure sampling with GPT-2, where the
baseline shows higher diversity and Self-BLEU but
at the cost of lower MAUVE, readability, and task
performance, indicating degraded quality. Notably,
we observe that mixing cross-generational data has
a minimal effect on the extent of model collapse
compared to training solely on the previous genera-
tion, contrasting with the findings of Gerstgrasser
et al. (2024). However, we note that Gerstgrasser
et al. (2024) did not constrain the sample size. Our
experiments adopt a more realistic and less extreme
setting by sampling a fixed dataset under different
mixing scenarios.

Additionally, we evaluate the effectiveness of
our method at different model scales of SmolLM2
(135M, 360M, 1.7B) for a fixed decoding strategy
and data mixing setting. The results are enumerated
at the bottom of Table 3 and the performance across
generations is depicted in Figure S5. Our method
prevents model collapse across all SmolLM variants.
Notably, we find that smaller models exhibit greater
relative improvements using our method compared
to both the Oracle and the baseline.

In line with previous research (Shumailov et al.,
2024), we also study the perplexity distribution of
the synthetic data at each generation using model
p° that was trained on human data. Figure 3 de-



Model Decoding a, B, Perplexity] Accuracyl Diversity! Self-BLEU| MAUVE{! Readabilityt
5, 1,0 —7.28% +2.37% +4.54% -1.77% +0.46% +9.03%
top-k 5,.5,.5  —5.94% +1.72% +2.43% —4.28% +3.99% +10.16%
GPT-2 1,1,0 —4.45% +1.49% +3.59% —3.58% +1.36% +6.76%
5, 1,0 —7.41% +1.50% —1.30% +36.71%  4+74.06%  +50.23%
pure sampling .5,.5,.5  —6.54% +1.50% —-1.07% +21.39%  +16.38%  +25.45%
1,1,0 —25.65% +0.96% —0.71% +20.70%  4+16.42%  +20.99%
5,1,0 -4.60% +0.68% +7.06% -1.17% +15.28% -0.73%
top-k .5,.5,.5 -4.37% +0.62% +4.25% -0.42% +2.05% -0.74%
SmolLM2 360M 1,1,0 -3.05% +0.54% +6.20% -1.74% +10.62% -0.61%
5, 1,0 -3.91% +0.55% +14.62% -1.46% +20.92% -1.86%
temperature .5,.5,.5 -3.24% +0.48% +7.44% -1.98% -0.33% -1.35%
1,1,0 -2.23% +0.39% +8.55% -1.80% +13.98% -0.34%
SmolLM2 135M top-k 1,1,0 -4.19% +0.75% +9.96% -2.15% +13.08% -0.76%
SmolLM2 1.7B  top-k 1,1,0 -0.85% +0.06% +3.44% -1.11% +8.46% -0.65%

Table 3: Percentage of change in data quality when using our proposed mitigation strategy versus the baseline.
Results are shown for top-k decoding and pure sampling/temperature for different values of «, 8, and y (blue / red:

positive / negative results, 1/ |: higher / lower is better).

picts these distributions for generations 0, 1, and 9
for the GPT-2 model with top-k and pure sampling,
compared to the baseline (Appendix S3 contains
the results for SmolLM2). For top-k decoding, sim-
ilarly to Shumailov et al. (2024), we observe that
for the baseline, perplexity shifts towards regions
of lower scores and the distribution becomes more
peaked, showing signs of early model collapse. For
pure sampling, on the other hand, we observe that
the baseline distribution shifts to higher perplex-
ity scores and displays increased variance. This
is an interesting finding that demonstrates that by
removing truncation from the decoding strategy,
the narrowing effect of model collapse is dimin-

= Generation 0 === Generation 1 === Generation 9

Baseline (top-k) Our method (top-k)

0.12 0.12
20.09 0.09
=
80.06 0.06
<]

a
0.03 0.03

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Our method (pure samplin

Baseline (pure sampling)

0.016 0.016
0.012 0.012
3
0.008 0.008
<
~ 0.004 0.004

0 100 200 300 400 500
Perplexity

0 100 200 300 400 500
Perplexity

Figure 3: Perplexity distribution for machine-generated
text of GPT-2 at generations 0, 1, and 9 in the partially
synthetic scenario («=0.5, 3=1,v=0). Perplexity is
evaluated using the model trained on human text (p°).

ished, and instead, model collapse is reflected by
long-tail incoherent text that is completely distinct
from the original human samples. By deploying
our mitigation strategy, however, we observe very
little change in the perplexity distribution for both
sampling strategies.

7 Conclusion

This work investigates model collapse across three
dimensions: model performance, data quality, and
resemblance to human samples. Through our anal-
ysis, we found that the extent of model collapse
and the effect on the data distribution is influenced
by the decoding strategy. Truncating can lead to
peaked distributions and repetitive models while
pure sampling can result in high perplexity and ver-
bose outputs with low resemblance to human data.
Using the decoding strategies that resulted in the
most extreme collapse, we evaluated the partially
synthetic scenario, where human data is mixed into
the training data. We designed a novel method
to mitigate model collapse based on resampling
the training distribution using the predictions of
a machine-generated text detector. We have vali-
dated our method on two popular model variants
(GPT-2 and SmolLM2) across a range of decoding
strategies and model sizes, showing that we can
prevent model collapse in all cases. When there
is an equal ratio of human to synthetic samples in
the training pool, our method results in improved
model performance compared to training only on
the human data.



Limitations

As in previous studies (Shumailov et al., 2023;
Dohmatob et al., 2024), we assess LLMs exclu-
sively in a fine-tuning setting rather than pre-
training from scratch. While pre-training exper-
iments could provide deeper insights, the computa-
tional cost and complexity of training large-scale
models from the ground up make such an approach
impractical in our case. Nevertheless, given that
model collapse has been primarily evaluated in
LLMs from a fine-tuning setting, the conclusions
made in this work still align with the current body
of research.

In addition, our study focuses primarily on open-
ended text generation tasks. While this is a crucial
area for understanding model collapse, our findings
may not fully generalise to other domains, such as
structured prediction or code generation, where the
impact of model collapse may manifest differently.
Future work could explore whether our resampling
method remains effective across these domains.

Finally, our method depends on the performance
of the machine-generated text detector used to esti-
mate the importance weights. Any inaccuracies or
biases in the detector’s predictions directly affect
the quality of the resampling process, potentially
leading to suboptimal mitigation of model collapse.
Since detector performance varies with domain,
LLM architecture, and decoding strategy, the gen-
eralisability of our approach is closely tied to the
detector’s robustness. The primary focus of this
work, however, is not on optimising the detector
itself, but on demonstrating that detector-based re-
sampling can effectively mitigate model collapse.
Future work could investigate improved methods
of detection, such as using adaptive or ensemble-
based detectors to improve reliability across data
regimes and LLMs.
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Appendix

A Recursive training

A.1 Dataset

All our model collapse experiments use the raw
variant of the WikiText-2 dataset (Merity et al.,
2016). We train models on the training set, consist-
ing of 36,718 documents, and evaluate on the test
set of 4,358 documents. The WikiText-2 dataset
was extracted from the ‘Good’ or ‘Featured’ article
criteria specified by editors on Wikipedia and only
covers the English language.

A2 LLMs

GPT-2 (Generative Pre-trained Transformer
2) (Radford et al.,, 2019) is a decoder-only
transformer-based language model. GPT-2
demonstrated that large-scale language models
could perform various language tasks without
task-specific training. We use the base variant,
which contains 124M parameters. SmolLM2 (Allal
et al., 2025) is a family of compact and efficient
language models developed by Hugging Face,
available in three sizes: 135M, 360M, and 1.7B
parameters. The majority of our experiments
use the 360M parameter variant unless specified
otherwise.

A.3 Hyperparameters

In our experiments, we conduct full fine-tuning us-
ing a learning rate of 5 x 10~°, batch size of 8 and
a dropout rate of 0.1. For the AdamW optimizer,
we set B1 = 0.9, B2 = 0.999, and € = 10~8. Each
model was trained for 1 epoch with the hyperpa-
rameters fixed for all experiments. We conducted
10 iterations of recursive training.

B Machine-generated text detection

B.1 Pre-trained models

Robustly Optimized BERT pre-training Approach
(RoBERTa) by Liu et al. (2019) improves on the
pre-training phase of BERT (Devlin et al., 2019),
an encoder-only transformer model that leverages
masked language models to enable pre-trained deep
bidirectional representations. The RoBERTa model
optimised the pre-training procedure for BERT by
training the model for longer and on more data,
changing the masking pattern, and removing the
next sentence prediction objective. We use the base
variant which has 125M parameters.
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Decoding-enhanced BERT with Disentangled At-
tention (DeBERTav3) by He et al. (2023), is a BERT-
based encoder only model enhanced with disen-
tangled attention. DeBERTav3 model improves on
DeBERTa by using Enhanced Mask Decoding and
an ELECTRA-style pre-training objective, Replaced
Token Detection, instead of Masked Language
Modelling. We use the base variant which con-
tains 86M backbone parameters with an embedding
layer of 98M parameters.

ModernBERT (Warner et al., 2024) is a recent
addition to the encoder-only transformer models
that has been designed to increase downstream per-
formance and efficiency on GPUs, particularly in
long-context scenarios due to its 8,192 native se-
quence length. The model was trained on 2 trillion
tokens and improves on the original BERT archi-
tecture with rotary positional embeddings (RoPE),
unpadding, GeGLU layers and alternating local-
global attention demonstrating SOTA performance
amongst encoder models across a range of classifi-
cation and retrieval tasks. We conduct experiments
with the base variant, which contains 150M param-
eters.

B.2 Hyperparameters

Each model was fine-tuned for 5 epochs. We select
the best model based on the highest AUC on the
validation set. Optimisation was performed using
AdamW by setting 31 = 0.9, 2 = 0.98, ¢ = 1079,
and the weight decay to 1072, These parameters
were chosen based on prior work (Warner et al.,
2024). The label smoothing parameter o was set to
0.1, the seed was fixed at 42 and the training batch
size to 16. The learning rate was set based on a
hyperparameter sweep over [1, 1.5, 2, 3, 4] x1075.
For ModernBERT the best-performing learning rate
was 10~°. We implemented temperature scaling by
learning the temperature parameter using L-BFGS
optimisation on the validation set. This was run for
50 iterations with a learning rate of 0.01.

B.3 Dataset

We trained and evaluated the machine-generated
text detectors on the MAGE dataset (Li et al.,
2024), which is based on documents from 10 do-
mains: opinion statements (CMV & Yelp reviews
dataset), news articles (XSum & TLDR dataset),
question answering (ELIS), story generation (Red-
dit WritingPrompts & ROC), commonsense reason-
ing (HellaSwag), knowledge illustration (SQuAD)
and Scientific writing (SciGen). The authors sam-



pled 1,000 texts from each domain (apart from
opinion statements and news articles with 804 and
777 samples respectively) and generated text using
27 LLMs from 7 model families, which include
OpenAl, LLaMA, GLM, FLAN-T5, OPT, Big-
Science and EleutherAl. For each human-written
sample in the dataset, they generate a machine-
generated version by providing the first 30 tokens
of human-written text as context to the LLM. In ad-
dition, for the OpenAl models, they implemented
two other prompt strategies for relevant domains:
‘topical’ prompts such as an argument or news title
and ‘specified’ prompts which contain information
about the domain source. This results in 33,000
(= 27,000 + 3 x 2 x 1,000) machine-generated
samples per source before processing and filter-
ing. The authors split the dataset into train, valida-
tion and test splits in the ratio 80:10:10. To miti-
gate data imbalance in the validation and test sets
they sample additional human data from each data
source. The resulting test set contains 28,741 hu-
man and 28,078 machine-generated samples (49%
machine-generated). The training set, however, is
71% machine-generated. The total dataset consists
of 154,078 human-written and 294,381 machine-
generated texts. In addition to the previously de-
scribed test set, we also evaluate our detector on
their more challenging test set containing text from
four unseen domains (CNN/DailyMail, DialogSum,
PubMedQA, IMDB) and generated by an unseen
model (GPT-4). This out-of-distribution test set
contains 762 human and 800 machine-generated
samples.

When evaluating the ModernBERT model fine-
tuned on MAGE on the SmolLM2 models, we ob-
served a drop in performance compared to GPT-2,
with large variability across decoding strategies
and model size. For SmolLM2 360M the detector
achieved a classification accuracy of .601 for top-k
decoding and .399 for temperature sampling. To
ameliorate this, we finetuned a new ModernBERT
model on a larger corpus, containing the MAGE
dataset and a subset of the RAID dataset (Dugan
et al., 2024) for the SmolLM2 models. The RAID
dataset is the largest machine-generated text detec-
tion dataset, includes text samples generated by 11
LLMs with 4 decoding strategies, and spans text
across 8 domains. Additionally, RAID includes 11
types of adversarial attacks, such as homoglyph
substitutions, number insertions, article deletions,
and paraphrasing. We partitioned the dataset into
training, validation, and test splits in the ratio
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Model T'max b
GPT-2 10 10
SmollLM 135M 10 10
SmollLM 360M 5 10
SmollLM 1.7B 3 1

Table S1: Optimal hyperparameters for Sampling Impor-
tance Resampling across different model scales using
top-k decoding.

80:10:10, ensuring no cross-contamination of text
segments generated from the same source of text
across splits. We balanced each split so that it
contained an equal number of human and machine
samples, stratified across model, decoding strategy,
source domain, and adversarial attack (the whites-
pace and paragraph attacks were included). This
resulted in balanced train, validation, and test splits
comprising 128,352, 16,044, and 16,056 samples,
respectively.

C Informed sampling of training data

As we perform sampling with replacement, there
is the risk of excessive duplication of high-weight
samples. To account for this, we introduce a maxi-
mum resample count parameter, max, Which limits
the number of times any individual sample can
be selected. This constraint ensures diversity in
the resampled dataset and prevents a small sub-
set of high-weight samples from dominating the
training distribution. To further correct for the clas-
sifier’s bias toward labelling samples as machine-
generated, we introduce a bias term b> 1 to adjust
the weight distribution. This formulation increases
the selection probability of samples likely to be
human, counteracting the bias introduced by the
classifier’s skewed confidence distribution. We se-
lect values for 7.« and b by evaluating each model
on the Wikitext-2 validation set after 1 generation
of recursive training. The optimal hyperparame-
ters for each model configuration are reported in
Table S1.
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Figure S1: Perplexity and accuracy over generations 0 to 9 of fully synthetic recursive training for varying mixing
coefficients (o, £, v) using top-k decoding.
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Figure S2: Classification score distribution of the machine-generated text detector on the dataset from generation 0.
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Figure S3: Perplexity distribution for machine-generated text of SmolLM2 at generations 0, 1, and 9 in the partially
synthetic scenario (a=0.5, 3=1,v=0). Perplexity is evaluated using the model trained on human text (p°).
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Figure S4: GPT-2 (top) and SmolLM2 (bottom) under partially synthetic recursive training (a=0.5,3=1,7=0)
for 10 generations. The baseline is equivalent to training on all the data in the pool and the Oracle performance
represents a perfect Al text detector that filters all synthetic samples.
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Figure S5: SmolLM2 model size variants (1.7B, 360M, 135M) under partially synthetic recursive training
(a=1,8=1,v=0) for 10 generations. The baseline is equivalent to training on all the data in the pool and
the Oracle performance represents a perfect Al text detector that filters all synthetic samples.
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Figure S6: GPT-2 (top) and SmolLM2 (bottom) under partially synthetic recursive training with cross-generational
data (a=0.5, 3=0.5,7=0.5) for 10 generations. The baseline is equivalent to training on all the data in the pool
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Model Method Decoding a, B,y

Perplexity| Accuracyl Diversity? Self-BLEU| MAUVE?!
Gen0 Gen9 Gen0 Gen9 Gen0 Gen9 Gen 0 Gen 9 Gen 0 Gen 9 Gen 0

Readability?

Gen 9

baseline

GPT-2

top-k 5,.5,.5

29.23 31.85
29.22 31.33
29.25 29.92

38.80
38.83
38.78

37.56
37.84
38.34

84.46
85.66
84.66

82.16
84.35
82.68

39.10
38.94
39.19

39.55
40.64
40.20

93.31
94.07
93.24

91.10
92.00
92.69

51.30
51.06
50.99

46.16
45.38
48.09

sampling 5,.5,.5

29.25 32.27
29.26 31.82
29.25 38.79

38.78
38.77
38.79

38.01
38.03
38.63

94.86
94.95
94.88

97.77
97.50
96.86

24.09
24.15
24.04

14.52
17.02
18.12

91.08
90.07
91.18

46.87
76.01
75.64

40.64
41.02
40.71

23.69
29.08
31.49

ours

top-k 5,.5,.5

29.25 29.53
29.25 29.47
29.25 28.59

38.78
38.77
38.77

38.45
38.49
38.91

84.43
85.18
84.81

85.89
86.40
85.65

39.43
39.28
38.85

38.85
38.90
38.76

94.59
94.75
94.92

91.52
95.67
93.95

50.79
51.31
51.28

50.33
49.99
51.34

pure sampling .5, .5, .5

29.25 29.88
29.26 29.74
29.24 28.84

38.79
38.76
38.78

38.58
38.60
39.00

94.87
94.92
94.61

96.50
96.46
96.17

24.30
24.09
24.01

19.85
20.66
21.87

92.92
91.16
91.76

81.58
88.46
88.06

40.68
40.98
40.78

35.59
36.48
38.10

baseline

SmolLM2
350M

top-k 5,.5,.5

13.96 14.69
13.96 14.64
13.96 14.10

47.58
47.59
47.57

47.30
47.30
47.57

82.59
82.76
82.51

73.95
76.54
76.90

52.68
52.57
52.47

54.53
53.97
54.17

91.58
91.03
91.32

78.42
86.15
81.11

55.31
55.38
55.57

58.10
57.84
57.24

temperature .5, .5, .5

13.96 14.69
13.96 14.60
13.96 14.06

47.59
47.58
47.58

47.37
47.36
47.64

83.16
83.74
83.31

66.16
72.03
73.11

51.21
51.22
51.16

54.46
54.15
53.96

83.67
86.94
84.55

70.15
81.27
76.27

52.59
52.80
52.74

57.81
56.86
55.85

ours

top-k 5,.5,.5

13.96 14.02
13.96 14.00
13.96 13.67

47.58
47.59
47.60

47.62
47.59
47.83

82.75
82.52
82.93

79.17
79.79
81.67

52.58
52.64
52.74

53.89
53.74
53.23

89.33
88.69
85.09

90.39
87.92
89.72

55.53
55.39
55.53

57.67
57.41
56.90

temperature .5, .5, .5

13.96 14.11
13.96 14.13
13.96 13.75

47.58
47.58
47.57

47.63
47.58
47.83

83.45
82.99
83.43

75.84
77.39
79.36

51.15
51.12
51.21

53.67
53.08
52.99

87.80
86.20
88.16

84.82
81.00
86.94

53.03
52.98
52.94

56.74
56.09
55.66

SmolLM2 baseline
135M  ours

top-k 1,1,0

19.02 19.35
19.02 18.54

44.08
44.10

44.04
44.37

79.08
79.15

70.99
78.06

53.08
52.90

54.87
53.69

85.18
82.92

72.73
82.24

57.34
57.35

59.49
59.04

SmollLM2 baseline
1.7B  ours

top-k 1,1,0

9.31 9.39
9.31 9.31

52.67
52.66

52.70
52.73

85.24
85.13

81.02
83.81

53.22
53.16

54.28
53.68

91.11
88.22

85.95
93.23

53.79
54.01

55.02
54.66

Table S2: Test performance (perplexity and accuracy) and data quality at generation O and generation 9. Results are
shown for top-k decoding and pure sampling/temperature for different values of «, 5, and v (1 / ]: higher / lower is

better).
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