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Abstract—Navigating a partially observable environment while
satisfying temporal and spatial constraints is an essential safety
feature of many robotic applications. For example, an au-
tonomous drone needs to understand the command “Find the
supermarket while avoiding the park” to avoid possible collisions
with trees. Previous approaches chose to sacrifice generality
for computational efficiency in large state spaces by designing
action heuristics that do not apply across different tasks or used
a value-iteration-based planner that does not scale well. Our
approach automatically extracts structured rewards from linear
temporal logic (LTL) task specifications to guide a sampling-
based POMDP planner, named LTL-POMCP. We augment a
partially observable Markov decision process (POMDP) with
an LTL task specification then use LTL-POMCP to solve the
resultant composite POMDP. Quantitative results from a classic
POMDP domain show that LTL-POMCP can generalize to
various LTL task specifications and scale to large state spaces. We
then demonstrate the first end-to-end system from temporally-
constrained natural language to robot policies in partially ob-
servable maps in simulation.

I. INTRODUCTION

Navigating partially observable environments by following
natural language commands that specify goals and path con-
straints is an essential safety feature of robots interacting with
humans. For example, in a search and rescue mission, first
responders can command an autonomous drone by saying
“Search for survivors while avoiding the explosion at location
A.” We can model this temporally constrained navigation
problem as a partially observable Markov decision process
(POMDP), whose reward is specified by a linear temporal
logic (LTL) expression [13].

Previous work [2] solved this problem with a value-
iteration-based planning algorithm and demonstrated its per-
formance in small environments. It could not scale because
full-width Bellman backups are intractable in large state and
action spaces due to the curse of dimensionality and the curse
of history. To overcome these challenges, Silver and Veness
[15] proposed POMCP, a sampling-based planner. Instead
of estimating the value function via iterative applications of
the Bellman equation using an exact model, sampling-based
methods use Monte-Carlo simulations to estimate action values
from interactions with a generative model of the environment.
However for different task specifications, POMCP requires
different hand-specified action priors to bias the exploration.
These heuristics use observations cached during simulations
to decide the best action to take next. Our approach does not
need domain experts to design heuristics to solve a task.

This work uses an LTL to specify a safety-critical navigation

Fig. 1: An illustration of object search in the OpenStreetMap
simulator. The natural language command is “Stay off the
2nd Street while looking for a bank.” Its corresponding LTL
formula is “G(!street2) & F(bank).” The agent has partial
observability of the target bank, demonstrated by the fog-of-
war effect, and perfect observation of the 2nd Street.

task and translates the LTL to a deterministic finite automaton
(DFA) [14] that encodes terminal and subgoal rewards. The
DFA and the environment POMDP are combined to construct
an LTL-POMDP problem. To solve it in large domains,
we propose LTL-POMCP, a sampling-based planner with an
additional term added to its action value estimates to bias the
sampling of actions that likely lead to subgoals specified by
the DFA. During Monte-Carlo simulations, besides keeping
track of action value estimates, visitation counts of states
and actions, LTL-POMCP caches all DFA transitions occurred
after taking an action in the current history state. It then uses
the augmented action value estimates to select the next action.

Results from a classic POMDP domain show that LTL-
POMCP is more generalizable across task specifications than
POMCP with hard-coded heuristics [15] and faster than a
planner based on value iteration [2] in solving LTL-POMDPs
with large state spaces. We then demonstrate the first end-to-
end system from temporally-constrained natural language to
robot behavior in partially observed maps [11].

The main contributions of this work are as follows.
• A POMDP formulation, LTL-POMDP, that automatically

extracts structured rewards from LTL task specifications.
• A sampling-based POMDP planner, LTL-POMCP, that

leverages the structured rewards, generalizes across tasks
and scales well.

• An end-to-end system from temporally-constrained nat-
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Fig. 2: End-to-End System for PO-OSM. Natural language is translated to an LTL then a DFA. The DFA and the environment
POMDP are composed to construct an LTL-POMDP, which is solved by the LTL-POMCP online to produce a policy.

ural language to robot behavior in partially observed
OpenStreetMap (PO-OSM) domain.

II. RELATED WORK AND BACKGROUND

A large body of research has investigated the usage
of LTL task specifications in fully observable domains.
[7][9][10][1][12] studied navigation in fully observed envi-
ronments while enforcing temporal constraints. We consider
a more challenging partially observable setting, where an
agent must actively plan to gather information. [5] proposed
to learn LTL constraints from multi-step demonstrations to
facilitate robotic manipulation in fully observed domains.
[16] required domain experts to define reward machines that
specifies goals and temporal constraints. A reward machine is
a fully observable version of LTL-POMDP.

Bouton et al. [2] solved the same LTL-POMDP problem
with a value-iteration-based planner for small environments.
[3] requires perfect local perception to partition the environ-
ment into known and unknown areas and does not maintain a
probability distribution over states in the unknown area, thus
the planning is only done in a fully observable area to solve an
LTL task. Silver and Veness [15] solved large POMDPs with
a sampling-based planner and heuristics defined for specific
tasks. Our approach extracts subgoal rewards from LTLs
to guide the action selection of a sampling-based POMDP
planner. This work can be generalize to solve any LTL-
POMDP problem with a generative model of the environment
and noisy sensors.

Linear Temporal Logic (LTL): We use LTLs [13] to
specify tasks because they can represent both goals and
temporal constraints.

LTL has the following syntax:

φ := σ | ¬φ | φ ∧ ψ | φ ∨ ψ | Xφ | Fφ | Gφ | φUψ, (1)

where φ and ψ are LTL formulas; σ ∈ Σ is an atomic
proposition. ¬,∧,∨ are logic connectives negation, conjunc-
tion and disjunction. LTL extends propositional logic with
temporal operators, X (next), F (finally), G (globally or
always) and U (until), applying to future time steps. We
evaluate the satisfaction of an LTL formula on an infinite
sequence w = w0w1 . . . , where wi ∈ 2Σ. Xφ is satisfied by
w at step i if φ is satisfied at the next step i+ 1. Fφ is true at
step i if φ holds true at some future time j ≥ i. Gφ holds if φ
is true for the entire sequence. φUψ is satisfied if φ holds true
at least until ψ becomes true, which must happen at the current
or a future time. Table I shows examples of LTL formulas in

the PO-OSM domain. For example, to satisfy “G(street1) &
F(bank),” a robot needs to stay on the 1st Street while looking
for a bank.

Deterministic Finite Automaton (DFA): We use the Spot
library [6] to translate an LTL formula to an equivalent DFA
[4]. A DFA is a 5-tuple D = (Q,Σ, δ, q0, F ), where Q is a
finite set of states; Σ is a finite set of atomic propositions;
δ : Q × 2Σ → Q is a deterministic transition function; q0 ∈
Q is the initial state; F = Fsuccess + Ffail ⊆ Q is a set of
success and failure terminal states. A run on a finite sequence
w = w0w1 . . . wn with wi ∈ 2Σ produces a sequence of states
q0q1 . . . qn with qt ∈ Q, where q0 is the initial state, qn ∈ F
is a final state and qt+1 = δ(qt, wt). Table I shows some
examples of LTL formulas and their corresponding DFAs.

Environment POMDP: We model the environment as a
Partially Observable Markov Decision Process (POMDP). A
POMDP is defined by a 7-tuple (S,A,O, T,O,R, γ). The
dynamics T (s, a, s′) = P (s′|s, a) and R(s, a) = E[r|s, a]
determine the distribution of the next state s′ ∈ S and the
immediate reward after taking action a ∈ A in state s ∈ S. In
POMDP, states cannot be fully observed. Instead the agent
receives an observation o ∈ O based on an observation
model O(a, s′, o) = P (o|a, s′). A policy of a POMDP is
define by π(h) = a, where h is a history of actions and
observations. Any POMDP has at least one optimal policy

π∗ that maximizes V π(h) = Eπ[
∞∑
t
γt−1rt|h]. A belief state

is a probability distribution over possible states given the
history, B(s, h) = P (s|h), and it is Markovian. We define
our environment POMDP to be generative such that given a
transition (s, a, s′), we can sample from models T,R and O
to get the next state, an immediate reward and an observation.
A belief state is represented by a set of particles.

III. TECHNICAL APPROACH

This section provides technical details on how we augment
an environment POMDP with a DFA to construct an LTL-
POMDP. We will also describe LTL-POMCP, a sampling-
based planner that leverages structured rewards provided by
the DFA, generalizes across LTL tasks and scales well.

LTL-POMDP: We augment an environment POMDP with
a DFA, so states of the resultant LTL-POMDP are Markovian
and encoding progressions in the DFA. LTL-POMDP =
(S̃, L,A,O, T̃ , Õ, R̃, γ), where S̃ = S × Q is a Cartesian
product of environment POMDP and DFA state spaces; L :
S → 2Σ is a labeling function that maps environment POMDP



TABLE I: Examples of LTL formulas and their corresponding DFAs.

Language Find a bank while staying on the 1st Street. Avoid the 2nd Street while looking for a bank.
LTL G(street1) & F (bank) G(!street2) & F (bank)

DFA

states to atomic propositions.
The transition probability of entering LTL-POMDP state

s̃′ = (s′, q′) after taking action a from state s̃ = (s, q) is

T̃ (s̃, a, s̃′) =

{
T (s, a, s′), if q′ = δ(q, L(s′))

0, otherwise
. (2)

As shown in the Table I, an example LTL-POMDP transition
can be that an agent takes an action in the environment to reach
a bank while avoiding the 2nd Street, which induces the DFA
transition from q = 1 to the goal q = 0.

The observation model of LTL-POMDP is

Õ(s̃, a, s̃′) = O(s, a, s′). (3)

The structured reward function is specified by the LTL
progression

R̃(s̃, a, s̃′) =


rgoal, if q′ ∈ Fsuccess

rfail, if q′ ∈ Ffail

rsubgoal, if q′ ∈ Q− F ∧ q′ 6= q

r, otherwise

(4)

where rgoal � 0, rfail � 0, rsubgoal > 0 and r < 0.
LTL-POMCP: LTL-POMDPs model POMDP planning

problems with temporally constrained task specifications. We
introduce LTL-POMCP, a sampling-based planner that can
solve LTL-POMDP problems in large environments.

We adopt the POMCP algorithm [15] with two modifica-
tions. In addition to the estimated Q-values Q̂(ha), visitation
counts N(h) and N(ha), LTL-POMCP caches the frequencies
of the DFA transitions occurred after taking action a in the
current history state h during the Monte-Carlo simulation. We
then augment the Q-value estimates with an additional third
term as follows,

Q(ha) = Q̂(ha) + α

√
logN(h)

N(ha)
+ β

√
logN(ea)

N(ha)
, (5)

where ea represents a DFA transition towards a final goal
state in the future trajectory after taking the action a from
the current history state h; α and β are coefficients. The LTL-
POMCP algorithm leverages high-level subgoals encoded in
the DFA and automatically favors the transitions leading to
the DFA goal state without explicitly constructing preferred
action sets for rollout as in [15]. Equation 5 balances exploring
less taken actions and exploiting actions that have led to a
DFA transitions and high rewards. The third term in Equation

5 diminishes to 0 asymptotically because logarithm grows
slower than linear, and N(e) ≤ N(ha).

Translating Natural Language to LTL: The language
model first uses a pretrained name entity recognizer (NER)
by [8] to replace all landmark names from a natural language
command by place holders, then feeds the masked language
into a sequence to sequence (Seq2Seq) model with LSTM
cells, and finally substitute the landmark names in the output
LTL expression. With the help of NER, the Seq2Seq model
only needs to memorize LTL templates, not landmark names.
Because NER was pretrained on a very large dataset of
landmark names, this language model can recognize places
unseen in the training set. It takes 118 seconds, 443 data points
and 10 epochs to train the Seq2Seq model to achieve 100%
accuracy on the test set.

IV. EXPERIMENTS

The aim of our experiments is to test the hypothesis that the
LTL-POMCP planner is more general than POMCP used with
hard-coded action heuristics [15] and more scalable than value-
iteration-based planners [2] in the RockSample domain. We
also show an end-to-end system from temporally-constrained
language to navigation policy in partially observed maps.

RockSample: A RockSample problem RS(n, k) has k
rocks randomly placed in an n × n grid, k + 5 actions (i.e.
4 move, 1 pick up and k sensing actions), 2 observations of
rock types (i.e. good, bad) and deterministic transitions. The
initial belief is uniformly distributed over rock types. Sensing
accuracy decreases exponentially in the distance to a rock.

To compare generality, we measure the success rate and total
reward of solving different tasks on the same RockSample
domains using LTL-POMCP and Silver POMCP [15]. The
first task requires the robot to pick up a good rock then go to
exit area while avoiding bad rocks. The second task requires
the robot to pick up a bad rock then exit while avoiding
good rocks. We use LTL expressions, “G(! bad) & F(good
& F(exit))” and “G(! good) & F(bad & F(exit))” representing
both tasks respectively. As shown in Figure 3, because the
action heuristics used by Silver POMCP are defined for the
first task, it achieves higher success rate and more rewards.
But for the second task, Silver POMCP performs even worse
than basic POMCP without heuristics because the same action
heuristics used to solve the first task direct the agent to pick
up unfavorable rocks. LTL-POMCP can sovle both LTL tasks
with comparable performance. This shows that LTL-POMCP
is generalizable across different LTL task specifications.



Fig. 3: The top row plots are the success rate and reward vs. the number of simulations for the LTL G(!bad) & F(good &
F(exit)). The bottom row plots are for G(!good) & F(bad & F(exit)). Each data point is average over 20 runs.

To compare scalability of LTL-POMCP and SARSOP
used in [2], we measure the planning time in large domain
RS(11, 11). An value-iteration-based-planner SARSOP pro-
vided with sparse LTL rewards [2] cannot produce a policy
within 96 hours. LTL-POMCP can solve the problems con-
stantly within 2 hours, and its speed can be further improved
by using a compiled language and parallelization.

Partially Observable OpenStreetMap (PO-OSM): In PO-
OSM, the locations of major landmarks, e.g. streets, are
known, and the locations of small landmarks, e.g. banks, are
unknown. It mimics the real world scenarios where some
landmarks, like a new construction site or disaster area, are not
stored in a map database, and an autonomous agent needs to
locate or avoid them by following natural language commands
from humans. We map landmarks from the OpenStreetMap
database to a 20×20 grid. The state contains the agent’s pose
and target landmark locations. The initial belief is uniformly
distributed over possible landmark locations. The agent can
rotate in 4 cardinal directions and move forward. Every step,
the agent receives a noisy observation of whether the target
landmark is within its fan-shaped sensing range. We use
a deterministic transition function and a non-deterministic
observation model for computational reasons. They are also
realistic assumptions of the drones because existing drones can
reliably move around the environment but have less reliable
sensors.

The end-to-end system from temporally-constrained natu-
ral language can consistently produce navigation policies to
complete different tasks as shown in Table II.

TABLE II: Examples of LTL tasks that LTL-POMCP can solve
and their corresponding natural language commands in PO-
OSM.

Language LTL
Find a bank. F (bank)
Find a store. F (store)
Find a cafe. F (cafe)
Stay on the 1st Street, and find a bank. G(st1)&F (bank)
Find a store while staying on the 2nd Street. G(st2)&F (store)
Stay on the 2nd Street while looking for a cafe. G(st2)&F (cafe)
Avoid the 2nd Street while looking for a bank. G(!st2)&F (bank)
Find a store and avoid the 1st Street. G(!st1)&F (store)
Look for a cafe while avoiding the 1st Street. G(!st1)&F (cafe)
Fly on the 1st Street until you find a bank. st1Ubank
Be on the 2nd Street until you find a store. st2Ustore
Stay on the 2nd Street until you find a cafe. st2Ucafe
Avoid the 2nd Street until you find a bank. (!st2)Ubank
Avoid the 1st Street until you find a store. (!st1)Ustore
Stay off the 1st Street until you find a cafe. (!st1)Ucafe

V. CONCLUSION

We introduced a generalizable planner that can solve LTL-
POMDP problems in large environments and demonstrated
an end-to-end system from temporally-constrained natural
language to robot behavior in the partially observed Open-
StreetMap domain.

The automatic extraction of structured rewards from LTLs
and the planner are generic, and they are are not limited to
solve only navigation tasks. One interesting future work is to
apply LTL-POMCP to mobile manipulation tasks specified by
LTL.
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