
ProteinPNet: Prototypical Part Networks for Concept
Learning in Spatial Proteomics

Louis McConnell
Lausanne University Hospital

Lausanne, CH
louie.mc@berkeley.edu

Jieran Sun
Lausanne University Hospital

Lausanne, CH
jieran.sun@chuv.ch

Theo Maffei
Lausanne University Hospital

Lausanne, CH
theo.maffei@chuv.ch

Raphael Gottardo
Lausanne University Hospital

Lausanne, CH
raphael.gottardo@chuv.ch

Marianna Rapsomaniki
Lausanne University Hospital

Lausanne, CH
marianna.rapsomaniki@chuv.ch

Abstract

Understanding the spatial architecture of the tumor microenvironment (TME) is
critical to advance precision oncology. We present ProteinPNet, a novel frame-
work based on prototypical part networks that discovers TME motifs from spatial
proteomics data. Unlike traditional post-hoc explanability models, ProteinPNet
directly learns discriminative, interpretable, faithful spatial prototypes through su-
pervised training. We validate our approach on synthetic datasets with ground truth
motifs, and further test it on a real-world lung cancer spatial proteomics dataset.
ProteinPNet consistently identifies biologically meaningful prototypes aligned
with different tumor subtypes. Through graphical and morphological analyses, we
show that these prototypes capture interpretable features pointing to differences
in immune infiltration and tissue modularity. Our results highlight the potential
of prototype-based learning to reveal interpretable spatial biomarkers within the
TME, with implications for mechanistic discovery in spatial omics1.

1 Introduction

Tumors are complex ecosystems where diverse cell populations interact to form heterogeneous
tumor microenvironments (TMEs) [1]. The spatial heterogeneity of the TME has been the focus
of intensive research, enabled by a range of tumor profiling technologies. From hematoxylin
and eosin (H&E) staining, routinely used to assess morphological tissue alterations, to single-cell
technologies that capture full molecular profiles, emerging data are starting to uncover prognostic
patterns within the TME [2], associated with different spatial patterns of immune cells [3, 4] or
cancer-associated fibroblasts (CAFs) [5, 6]. Spatial heterogeneity is also associated with differences
in tumor architecture, as different morphological structures can lead to diverse cancer invasion
patterns [7]. Recent developments in single cell and spatial omics technologies now enable the deep
molecular profiling of each individual cell within the TME [8], offering an unprecedented opportunity
to address an outstanding question in cancer biology: how can we discover recurrent spatial patterns
within the TME that drive disease outcomes? Identifying and targeting these spatial biomarkers could
spearhead the development of more precise and personalized therapies.

Despite growing data availability, extracting biologically meaningful spatial patterns from spatial
omics data remains a challenge. In histopathology, where traditional deep learning models trained

1Code available at https://github.com/AI4SCR/ProteinPNet.
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on H&E images have demonstrated high predictive power on a number of clinical tasks [9, 10],
attention-based multiple-instance learning (MIL) pipelines [11] and post-hoc explainers (e.g., Grad-
CAM [12], layer-wise relevance propagation [13], saliency maps [14]), allow visualization of TME
regions that influence the models’ decisions. In the nascent field of spatial omics, current work on
identifying spatial biomarkers is heavily based on well-known tumor properties [15], for example,
hand-crafted spatial features of immune cells to predict immunotherapy response [16–18]. Early
attempts to devise methods that automatically discover spatial patterns are emerging [19–21]. While
useful, both histopathology and spatial omics methods for mechanistic discovery are based on diffuse,
hard-to-interpret post-hoc explanations that do not necessarily reflect the true mechanistic basis of
the models’ predictions and generally have problems with faithfulness [22, 23].

An attractive alternative to post-hoc explainers is to build inherently interpretable models [24]. Proto-
typical part networks [25] are one type of interpretable model that learn prototype representations,
where each prototype corresponds to a representative part training example, and predictions are made
by comparing input images to prototypes. Because the prediction is a function of the computed
similarity between prototypes and the input image, they are able to circumvent many of the faith-
fulness problems of post-hoc explanations. Although prototypical part networks have been used
in the medical domain for interpretable, case-based deep learning in clinical applications [26–28],
their potential for mechanistic discovery in the realm of spatial omics is underexplored. These
networks are particularly fitting to the problem of identifying spatial biomarkers from spatial omics,
as they resemble how oncologists or pathologists reason and use resemblance to learned spatial
motifs in the data as a bottleneck layer in prediction. In this paper, we propose ProteinPNet, a
novel prototypical part-based model tailored to spatial proteomics data. We show that ProteinPNet
learns prototypes that align with distinct tumor subtypes and reflect biologically relevant patterns, as
assessed via graphical and morphological analysis. Although preliminary, our findings suggest that
prototype-based learning holds considerable promise in identifying spatial biomarkers in the TME
and guiding future discoveries in oncology.

2 Methods

We developed ProteinPNet, a framework for prototypical part learning tailored to spatial proteomics
data that enables the discovery of interpretable, morphologically-aware spatial biomarkers. The
ProteinPNet framework consists of two principal stages, namely prototype discovery and prototype
interpretation (Figure 1). During prototype discovery, a prototypical part network inspired by Chen
et al. [25]2 is trained to directly learn prototypical concepts, hereafter referred to as prototypes, from
spatial proteomics data. To account for the high dimensionality and variable channel structure of
spatial proteomics compared to standard RGB images, we treat each protein measurement as an
image channel and design a custom encoder architecture. While several options for analyzing data
with a large number of input channels are available, we encountered a high amount of overfitting
when taking in all protein channels (over 97% train accuracy and roughly random train performance),
even when using small networks (Resnet18 [29]) and low numbers of prototypes (1 per class). Instead,
we reduced the data to three principal components (PCs) and used a pretrained ResNet152 backbone.
Similar to Chen et al. [25], ProteinPNet performs prediction by regressing on a set of instance-specific
scores that measure the degree to which a prototype is a part of the instance. For a given spatial
proteomics sample x and a convolutional head z = f(x) with convolutional output representations
of dimension H ×W ×D, ProteinPNet learns m prototypes P = {pj}mj=1 of shape Hp ×Wp ×D,
where Hp ≤ H,Wp ≤ W . From the prototypes and a sample z, we compute the prototype scores
gpj

(z) := minz̃∈patches(z) d(z̃, pj) for some distance metric d. Following [30], we use cosine distance
as our distance metric to get our prototype scores gpj

(z). The scores are linearly combined to map
to the output distribution used for prediction. To maintain interpretability, at every k epochs, each
prototype pj is assigned to the filter representation of the closest patch z. This ensures that each
prototype has a concrete visual reference directly aligned with the prototype vector used to compute
its scores (see [25] for details).

During prototype interpretation, these prototypical concepts are analyzed in terms of their morpholog-
ical, topological, and protein-expression-level characteristics to reveal differences in the underlying
biology and link to different TME topologies, pathways, or niches. Once learned, the prototypes can
be further interrogated using custom downstream analyses to assess if they are driven by differences in

2We follow the notation from this paper as well. For more details, please see [25].
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tumor morphology, cellular composition, or both. Prototype activation maps allow prototype isolation
by selecting the top N -percentile most activated regions in the top-k most activated samples. Those
regions can then be subjected to domain-specific analyses (e.g., using graph-based or morphological
scores, or differential expression analysis), revealing key biological processes. This stage of analysis
can be customized to the biological hypothesis and the dataset at hand.

Figure 1: The ProteinPNet workflow. During prototype discovery, the prototype vectors are
randomly initialized and projected onto the closest patch representation. The prototype representations
are then convolved over the representation of the spatial proteomics image with a cosine similarity
kernel to generate an activation heatmap, which generates a set of prototype scores that are linearly
combined to make the final prediction. During prototype interpretation, prototypes that generated the
highest accuracy are analyzed in terms of their morphological and compositional characteristics.

3 Results

Benchmarking on synthetic data We first evaluated the effectiveness of ProteinPNet in identifying
prototypical motifs on synthetic data with ground-truth prototypes. We generated a synthetic dataset
consisting of 3-channel images assigned to two different hypothetical classes, containing different
types of randomly distributed three-node subgraphs (Figure S1), and injected a unique subgraph
in each class (red circles). This proxy task is important, as it allows us to evaluate ProteinPNet on
ground-truth prototypes which do not exist in real-world spatial omics data. It is thus essential that
ProteinPNet can provably recover known class-discriminative synthetic prototypes while ignoring
the neutral ones. We assessed ProteinPNet’s performance both in terms of accuracy, as well as
by checking whether the injected class-specific pattern was detected in the extracted prototypes.
ProteinPNet consistently achieved a 100% classification accuracy (Table 1). In every run, prototype
activation maps recovered the exact area containing the injected prototype for at least one class (see
representative examples in Figure S2). Interestingly, in one seed, the model used white space to
indicate the absence of a key prototype, while in all others, it identified class-specific prototypes in
both classes (Figure S3). This demonstrates an interesting effect in which ProteinPNet is able to learn
prototypes identifying the "absence" of key prototypes.

Evaluation on real-world spatial proteomics data We then applied ProteinPNet on a publicly
available spatial proteomics dataset [31], from a large non-small cell lung cancer (NSCLC) cohort
containing both adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), profiled by imaging
mass cytometry. The dataset contains a total of 1021 samples, with each sample corresponding to the
simultaneous quantification of 43 different protein markers, resulting in a 43-channel image. We first
trained ProteinPNet to classify between different NSCLC subtypes, i.e., LUAD vs. LUSC. We note
that, across all 1021 samples, 618 belong to the LUAD and 403 to LUSC subtype, giving a naive
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Figure 2: (a) Characteristic examples of LUSC and LUAD prototypes, collected across many runs with
only one prototype per class, together with the source image and activation maps. (b) Performance of
three graph explainers for the same example samples.

accuracy of 60.5% when predicting only the majority class. We used the predictive accuracy of the
classifier as an initial validation of the predictive value of the learned prototypes: a low predictive loss
in this task suggests that the prototype scores - and consequently the prototypes - contain important
information needed to distinguish data between cancer classes. ProteinPNet reached an 80.7%
accuracy on LUAD vs. LUSC prediction (Table 1). To probe what information the model relies on,
we conducted two ablations. First, we evaluated whether learned prototypes outperform random
crops; in other words, are the prototype scores indicative of unique prototype selection, or will a
distance metric to any random patch have the same predictive power? To test this, we froze the
model backbone after training beyond 80% accuracy and reinitialized the prototype vectors, pushing
them onto random patches. This setup ensures that the backbone is capable of representing high
quality prototypes while testing the quality of the learned vs. random prototypes. Accuracy dropped
by 6.2% (Table 1), indicating that prototypes learned by the model encode meaningful information
about the underlying tissue structure. Second, we removed the cell type information by setting all
cell representations to a constant, leaving only morphological information. In this setting, we were
only able to reach an accuracy of 71.2%, suggesting that both morphological features and protein
expression are essential for prediction.

We then benchmarked ProteinPNet against graph-based explainers. We first applied different types of
Graph Neural Networks, namely Graph Convolutional Networks (GCN) [32], Graph Isomorphism
Networks (GIN) [33] and Graph Attention Networks (GAT)[34], for the same prediction task (LUAD
vs. LUSC). All GNN-based models exceeded an accuracy of 70%, with GIN reaching 74.5% (Table
1), close to the ProteinPNet ablation with random prototypes. Next, we evaluated different post-hoc
graph explainers, namely GNNExplainer [35], GNN-LRP [36] and GraphGrad-CAM [37] (Figure
2B using the trained GIN model. We observed that GNNExplainer and GNN-LRP highlighted cells
and nodes that are randomly distributed in the tissue (Figure 2). Conversely, GraphGrad-CAM,
resulted in spatially colocalized high/low importance regions, occasionally antithetical than those of
ProteinPNet. We then estimated how well these graph explainers agree with each other and with a
random explainer (Figure S6) and observed consistently low average scores, suggesting that pairwise

4



agreement between methods is on par with that of a random selection of cells. This result further
highlights the limitations of post-hoc explainers: although GNN baselines can predict the disease
subtype, the underlying high-importance cells are likely capturing spatially meaningful patterns.

Prototype interpretation We conducted an exploratory analysis as part of the workflow to identify
biological concepts encapsulated in the prototypes. For each prototype, we selected the m = 100
most prototypically activated samples and isolated regions above the 80th percentile of activation
as prototypical regions, with the remaining regions in the same samples serving as references, and
investigated differences among prototypes and between prototypes and references. Qualitatively,
the 100 LUAD and LUSC highest activation images differ in both tissue morphology and spatial
heterogeneity (Figure S4 and Figure S5. LUSC prototypes appear as clumps of densely connected,
small regions with minimal infiltration, whereas LUAD prototypes exhibit pronounced glandular
morphology. These prototypes align with the typical LUAD and LUSC core patterns (see Fig. 2A of
[31]). To quantify those differences, we estimated different heterogeneity metrics in prototypically
activated regions using ATHENA [38]. To test differences in cell density and topology, we compared
extent (the ratio of the tissue area to the area of its bounding box) and coreness (the maximal k-node
subgraph with nodes of degree ≥ k) between prototypes. Both extent (p < 10−3) and coreness
(p < 1.03 · 10−4) were higher in LUSC prototype regions, confirming our hypothesis on connectivity
(Figure S7, Figure S8). To assess tumor infiltration, we used the infiltration score in ATHENA,
defined as the ratio of tumor/non-tumor to tumor-tumor interaction. LUAD prototypes showed
significantly higher infiltration of non-tumor cells (fibroblasts and immune cells) into tumor regions (
Figure S9), consistent with existing literature [31]. Finally, when computing modularity [39] based
on tumor-nontumor partition, both LUAD and LUSC prototype regions show significantly lower
values than reference regions (p < 10−3), suggesting that prototypes preferentially capture spatially
heterogeneous tumor edges enriched with infiltration and tumor-non-tumor interaction (Figure S10).

Table 1: Results from all experiments. Averaged over 5 runs.

Architecture Experiment Accuracy (%)

ProteinPNet Synthetic Dataset 100± 0
GCN NSCLC 71.5± 0.7
GIN NSCLC 74.6± 1.4
GAT NSCLC 72.3± 1.3
ProteinPNet NSCLC (no cell type information) 71.2± 0.4
ProteinPNet NSCLC (randomized prototypes) 74.5± 1.5
ProteinPNet NSCLC 80.7± 0.4

4 Conclusions
In this work, we present ProteinPNet, a prototypical part-network-based framework for learning
and analyzing spatial motifs from spatial proteomics data. On synthetic data, ProteinPNet reliably
recovered ground-truth class-specific prototypes, while on the NSCLC dataset, it achieved high
predictive accuracy and identified prototypes consistent with known LUAD and LUSC patterns.
Ablations confirmed that both the prototype learning process and protein expression contribute
critically to performance. Downstream analyses further verified that prototypes capture biologically
meaningful patterns of tissue connectivity and tumor infiltration. Together, these results demonstrate
the potential of prototype-based learning to uncover recurrent organizational structures in TME and
to provide interpretable insights into cancer biology. A main limitation of the current implementation
of our model is the use of PCA to compress the 43-plex images to a pseudo-RGB representation.
Although training the model on the PCA-reduced images led to high prediction accuracy and was able
to capture high-level spatial motifs, it potentially caused some loss of information from the original
data. We are currently investigating architectural modifications and more powerful encoding strategies
that can better preserve the richness and complexity of multiplexed images. This is particularly
important in view of future extension of ProteinPNet to spatial transcriptomics data that contain
thousands of channels. In addition, we are exploring best practices for analyzing and interpreting
spatial motifs to yield more refined biological insights, as the optimal way to interpret and use these
prototypical spatial motifs is currently guided by visual inspections.

Disclosure of Funding This project has been made possible in part by grant numbers 202297, 215550
and 235972 from the Swiss National Science Foundation and grant number 2024-345909 from the
Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation.
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A Supplementary Figures

A.1 Synthetic Data Supplementary Figures

Figure S1: The two classes present in the synthetic dataset, with the red circle outlining the class-
defining prototypes. Class independent prototypes can be seen in both samples.

9

https://doi.org/10.1093/bioinformatics/btac303
https://doi.org/10.1093/bioinformatics/btac303
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.quality.modularity.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.quality.modularity.html


Figure S2: Synthetic data activations.

Figure S3: Example of prototypes extracted from the synthetic dataset as above. These are class
specific prototypes, indicating that each of the top two prototypes belong to the first class and the
bottom two belong to the second class. One can see that the second prototype contains an occlusion of
a neutral prototype over the classifying prototype. In order to demonstrate the lack of the classifying
prototype in the other class, the model focuses on the white space present in the model.
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A.2 Top-100 Prototypically Activated Images Supplementary Figures

Figure S4: 100 images with highest activation to LUSC prototype in model with highest accuracy.
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Figure S5: 100 images with highest activation to LUAD prototype in model with highest accuracy.
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Figure S6: Jaccard index between RandomExplainer, GNNExplainer, GraphLRP, GraphGrad-CAM
explainers computed for the top 100 most relevant cells. Jaccard index is defined as follows:
J(Ai, Aj) =

|Ai∩Aj |
|Ai∪Aj | , where Ai and Aj are set of the top 100 most relevant cells for explainer i and

j.

A.3 Graphical and Morphological Metrics: Full Results

Figure S7: Graphical metrics from ATHENA. We can see a statistically significant difference in
coreness higher in prototype 0, corresponding to LUSC.
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Figure S8: Extent by prototype. We can see a statistically significant difference in extent higher in
prototype 0, corresponding to LUSC, corresponding to a lower amount of empty space morphologi-
cally.
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Figure S9: Infiltration by prototype. Prototype 0 corresponds to LUSC and prototype 1 corresponds
to LUAD. We can see a clear increase in tumor infiltration in prototypes corresponding to LUAD as
observed qualitatively.
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Figure S10: Modularity by prototype. Prototype 0 corresponds to LUSC and prototype 1 corresponds
to LUAD. We can see that both protototypes express a lower modularity than the reference population,
suggesting that heterogeneous regions in the tumor microenvironment are particularly relevant for
NSCLC classification.
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B Training Details

All experiments were conducted using a ResNet152 backbone with a 60/20/20 train/test/val split
on PCA reduced data. Hyperparameters were borrowed directly from the ProtoPNet paper. In all
experiments 1 prototype was used per class (2 total). All models are trained with ADAM and a
StepLR scheduler. More details about training setups can be seen in the code.

C Dataset Preprocessing Details

We have followed the preprocessing of [31] for the NSCLC data. We first filter for only samples
corresponding to LUAD or LUSC. Of the 43 proteins measured, we first remove both Iridium
channels, leaving 41 remaining proteins.

For normalization, the samples are arcsinh transformed before being clipped at the 99th percentile
and 0-1 transformed using the global minimum and maximum per channel. Following this, the PCA
per pixel is taken over all samples in the train set. This PCA reduction is then applied to the entire
dataset, and the dataset is then 0-1 normalized again.

Figure S11: PCA Component 0 (Stromal Cells)
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Figure S12: PCA Component 1 (Epithelial Cells)

Figure S13: PCA Component 2 (Immune Cells)
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Figure S14: Violin plot of protein expression distributions over all cells in the NSCLC data.
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either be a way to access this model for reproducing the results or a way to reproduce
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All preprocessing information and reproducibility information can be found in
the methods section, appendix, or in the code.
Guidelines:

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All accuracy metrics have standard error, and box plots and p values are
provided for all graphical and morphological analyses.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The work uses publicly available datasets [31] and synthetic data, with no
personally identifiable information. All experiments comply with standard practices in
computational biology and machine learning, and there are no ethical concerns related to
data collection, usage, or reporting. The research was conducted in accordance with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our paper focuses on methodological contributions and empirical validation.
While in the abstract and conclusion we highlight potential benefits for precision oncology
and interpretable spatial biomarkers, there is no explicit consideration of risks (e.g., misuse,
bias, privacy) or mitigation strategies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no suck risks for responsible release of data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only code used is the ProtoPNet code, and credit is explicitly given (MIT
License). We also use the CORDS dataset for the lung cancer data, which is publicly
available deposited in zenodo under a Creative Commons Attribution 4.0 International
license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Documentation for synthetic data, preprocessing, etc. is all available in the
supplementary zip file in the code.
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• The answer NA means that the paper does not release new assets.
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Results
	Conclusions
	Supplementary Figures
	Synthetic Data Supplementary Figures
	Top-100 Prototypically Activated Images Supplementary Figures
	Graphical and Morphological Metrics: Full Results

	Training Details
	Dataset Preprocessing Details

