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ABSTRACT

Large language models (LLMs) have demonstrated limitations in handling com-
binatorial optimization problems involving long-range reasoning, partially due to
causal hallucinations and huge search space. As for causal hallucinations, i.e.,
the inconsistency between reasoning and corresponding state transition, this paper
introduces the Causal Relationship Enhancement (CRE) mechanism combining
cause-effect interventions and the Individual Treatment Effect (ITE) to guaran-
tee the solid causal rightness between each step of reasoning and state transition.
As for the long causal range and huge search space limiting the performances of
existing models featuring single-direction search, a Dual-End Searching (DES)
approach is proposed to seek solutions by simultaneously starting from both the
initial and goal states on the causal probability tree. By integrating CRE and
DES (CreDes), our model has realized simultaneous multi-step reasoning, cir-
cumventing the inefficiencies from cascading multiple one-step reasoning like
the Chain-of-Thought (CoT). Experiments demonstrate that CreDes significantly
outperforms existing State-Of-The-Art (SOTA) solutions in long-range reasoning
tasks in terms of both accuracy and time efficiency.

1 INTRODUCTION

Reasoning aims to realize the causal transfer from the initial state to the goal state through several
intermediate steps, which widely exists in the domains of Societal Simulation (Gandhi et al., 2024;
Xu et al., 2024; Hua et al., 2023), Economic Simulation (Li et al., 2023a; Zhao et al., 2023; Xia
et al., 2024), Game Theory (Xu et al., 2023b; Mao et al., 2023; Zhang et al., 2024) and Gaming
(Mukobi et al., 2023; Huang et al., 2024; Shao et al., 2024), etc. LLMs like GPT-3 have shown com-
petitive performances in many reasoning tasks (Brown et al., 2020; Chowdhery et al., 2023; Betker
et al., 2023). However, their performances and efficiency are limited when dealing with complex
combinatorial optimization problems that require multi-step long-range reasoning (Kaddour et al.,
2023).

The first challenge is causal hallucinations, i.e., causality between one-step reasoning (OSR) and
state transition in LLMs is not always guaranteed. Similar to pre-trained LLMs that are prone to
produce hallucinations when processing certain factual information, causal hallucinations reflect
the fact that LLMs lack rigor due to inherent randomness in accomplishing complex mathematical
(Cobbe et al., 2021b; Imani et al., 2023; Lewkowycz et al., 2022), logical (Liu et al., 2023; Xu
et al., 2023a), or common-sense reasoning (Zhao et al., 2024a; Sharan et al., 2023; Xenos et al.,
2024), which is somehow entrenched in statistical inevitability and independent of the Transformer
architecture or data quality (Kalai & Vempala, 2023). For example, CoT-based finite-step reason-
ing methods (Wei et al., 2022b; Zheng et al., 2023) suffer from causal hallucinations, which cannot
effectively ensure the causality between OSR and state transition in LLMs, resulting in unreliable
reasoning and relatively low success rates (especially for long-range reasoning problems with sig-
nificant error accumulation effects). The reasonableness between OSR and state transition can be
summarized as follows: There is a causal relationship between reasonable OSR and state transition.
However, for unreasonable OSR, there is only a correlation or no relationship with state transition.
This suggests that training solely with cross-entropy loss, as commonly used in most methods, does
not address the model’s causal rigor well enough. Inspired by this, we designed the CRE mecha-
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nism to make each step of reasoning correct and causally sound by embedding the causality measure
between OSR and state transition into the training loss, thus more closely modeling the rigor, adapt-
ability, and comprehensiveness of human reasoning (Bao et al., 2024).

The second challenge is that long-range reasoning problems have a huge search space. Although
complex architectures such as CoT, Tree of Thought (ToT) (Yao et al., 2024), and Program of
Thought (PoT) (Chen et al., 2022) can effectively improve the reasoning accuracy of LLMs through
external guidance, they are limited when handling long-range reasoning processes and task decom-
position. A crucial reason is that long-range reasoning has a huge state space, i.e., each branch in the
state transition process expands the search space approximately exponentially. Most of the existing
LLM-based methods, e.g., Monte Carlo search (Zhao et al., 2024b), are based on unidirectional rea-
soning, making them time-inefficient and easy to fall into local optima when dealing with reasoning
problems with large search spaces. In this paper, a bi-directional Dual-End Searching method is de-
veloped, which first decomposes a long-range reasoning problem into a combination of short-range
reasoning problems and then searches for the intersection of two causal probability trees starting
from the initial and goal states, respectively.

A structured and general reasoning framework, CreDes, is developed for long-range reasoning with
LLMs in this paper, and the contributions can be summarized as follows:

First, the CRE mechanism is introduced to improve the rigor of LLM-based long-range rea-
soning methods: Structural Causal Modeling (SCM) is exploited to enhance the causality between
OSR and state transitions, involving performing causal interventions and optimizing ITE during
training, which has effectively alleviated causal hallucinations in long-range reasoning of LLMs.

Second, the DES method is developed to improve the search efficiency for long-range reason-
ing: After constructing causal probability trees starting from the initial states and ending at the goal
states, long-range reasoning (e.g., 12 steps) is divided into more manageable combinations of smaller
segments (e.g., 2 or 4 steps) by bi-directional approaching. The final reasoning paths are selected by
constructing a new metric guaranteeing both low reasoning hallucination and high reasoning quality.
By avoiding long-range sequential search from scratch, the DES method has dramatically lowered
the complexity when solving long-range reasoning problems.

Third, simultaneous multi-step reasoning is realized to improve the time-efficiency of long-
range reasoning: By integrating CRE and DES, CreDes can perform simultaneous multi-step rea-
soning within the model, i.e., avoiding the inefficiency of cascading single-step reasoning in frame-
works such as CoT. While ensuring the accuracy of the reasoning process, CreDes can significantly
reduce the time required for multi-step reasoning in LLMs.

Fourth, adequate and rigorous testing of CreDes: CreDes has been extensively tested in the
Blocksworld, GSM8K, and Hanoi Tower scenarios, respectively, and the experimental results show
that CreDes outperforms existing SOTA regarding reasoning accuracy and time efficiency.

2 RELATED WORK

Decision-Making Capabilities in LLMs: The core of intelligence partially lies in planning, which
encompasses generating a sequence of actions aimed at accomplishing a predefined objective (Mc-
Carthy et al., 1963; Bylander, 1994). Classical planning methods have found extensive application in
robotics and embodied environments, where they are commonly employed to guide decision-making
processes externally (Camacho & Bordons, 1999; Jiang et al., 2019). Recent advancements, such
as the Chain-of-Thought model (Wei et al., 2022b; Kojima et al., 2022; Chu et al., 2023), have sig-
nificantly bolstered the LLMs’ capability to perform detailed reasoning (Huang et al., 2022; Singh
et al., 2023; Ding et al., 2023). This model breaks down intricate queries into a series of manageable
steps, thereby enhancing the LLMs’ decision-making ability. Subsequent initiatives like ReACT
(Yao et al., 2022) have modified this approach to improve reasoning ability in decision contexts
using a CoT-based framework. Additionally, Reflexion (Shinn et al., 2024) provides a corrective
mechanism that enables LLMs to recognize their errors during the decision-making process, reflect
on these mistakes, and make accurate decisions in subsequent attempts. Further developments have
led to the creation of tree-based decision-making frameworks that tailor LLM capabilities to specific
scenarios. The Tree-of-Thought (Yao et al., 2024) utilizes Breadth First Search (BFS) and Depth
First Search (DFS) algorithms to facilitate decision-making in activities such as the Game of 24, Cre-
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Causal Relationship Enhancement
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Figure 1: Integrating Causal Relationship Enhancement (CRE) and Dual-End Searching (DES).

ative Writing, and Mini Crosswords. Meanwhile, Reasoning via Planning (RAP) (Hao et al., 2023)
employs the Monte Carlo Tree Search technique to optimize solutions across tasks like Blocksworld
(Valmeekam et al., 2024), Math Reasoning (Zhu et al., 2022). DFSDT (Qin et al., 2023) proposed
an efficient version of DFS for LLMs to make decisions, but it lacks the judgment ability to evaluate
different decisions. JUDEC (Ye et al., 2023) utilizes an Elo rating system to enable LLMs to develop
self-assessment capabilities, thereby enabling them to generate optimal solutions for a wide range of
real-world tasks, independent of any task-specific expertise. Lastly, Graph-of-Thought (Yao et al.,
2023) represents the thoughts as nodes in a graph, combining thoughts non-sequentially. All of the
above work shows that LLM has excellent potential for handling long-range reasoning tasks and
shows some advantages in areas such as inference tasks.

Integrating Causal Analysis in LLMs for Multi-step Decision-Making: Causal analysis aims to
discern and elucidate the causal relationships between actions, circumstances, or decisions. This
method entails investigating the origins or causes leading to an event and the potential consequences
that follow (Heise, 1975; Imbens & Rubin, 2015; Feder et al., 2022). Although various causal
models may produce identical observational distributions, they can yield distinct distributions when
interventions are applied (Peters et al., 2017; Wang et al., 2024). Therefore, using interventions
allows for the distinction of possible causal models that align with the observed data (Hagmayer
et al., 2007; Pearl, 2009). This enhances the causal consistency and significance of the model train-
ing process. Previous work suggests that, while CoT has been lauded for its potential to improve
task performance, its application does not always lead to enhanced outcomes (Kojima et al., 2022;
Nichols et al., 2020). Also, research has shown that the statistical pretraining of LLMs encourages
models to achieve high empirical performance but not necessarily to reason (Zhang et al., 2022;
Turpin et al., 2024; Zečević et al., 2023; Lanham et al., 2023). Motivated by this, we designed the
CRE mechanism combining causal analysis and LLMs to control the causal hallucinations when
solving long-range reasoning problems.

Solving Multi-step Problems with LLMs: Recent studies have shown that with substantial de-
sign, LLMs are capable of performing not only basic arithmetic tasks but also complex multi-step
reasoning (Power et al., 2022; Wei et al., 2022a). For instance, increasing computational resources
significantly enhances the accuracy of datasets like GSM8K (Cobbe et al., 2021a). Concurrently,
Research (Yang et al., 2023b) demonstrated that a 2B parameter LLM could achieve 89.9% ac-
curacy in 5x5 multiplication tasks using curriculum learning with 50 million training instances.
This evidence suggests that adequately scaled LLMs can process multiple reasoning steps effec-
tively internally. While trees are frequently used to represent games (especially extensive-form
games (Leonard, 2006; Leyton-Brown & Shoham, 2008)) and sequential reasoning problems (Rus-
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sell & Norvig, 1995), it was Shafer’s groundbreaking work (Shafer, 1996) that initially established
a framework for understanding causality through the use of probability trees. However, it can also
be inferred from Shafer’s work that LLMs struggle with long-range reasoning problems involving
multiple steps but excel in short-range reasoning tasks. This insight led to the development of DES,
which breaks down the Long Range Reasoning Question into smaller parts and then searches for
connection points from both the head and tail nodes by integrating causal probability trees.

3 METHOD

The pipeline of CreDes is illustrated in Fig. 1. It comprises two main components: CRE and DES.
In CRE, the inputs of LLMs for training are the initial state, goal state, and pathway (containing
a series of OSRs), while for testing, the inputs are the initial and goal states only. The DES starts
from the initial and goal states of the probability tree, expands them into two intermediate states, and
uses the CRE-trained model to infer the pathway between them, ultimately producing the complete
pathway.

3.1 PROBLEM DEFINITION

To further improve the capability of LLMs in solving combinatorial optimization problems that
involve a finite number of discrete intermediate steps, we conducted experiments using the
Blocksworld and Hanoi Tower datasets with 7B parameter models. The Blocksworld dataset in-
cludes 602 test cases categorized by the minimum number of required actions, ranging from 2 to 12
steps. For Hanoi Tower, cases are grouped based on the complexity related to the number of disks
and poles, which directly influences the solution steps.

For each category, our model is trained on 80 samples without common instructions. In the reasoning
process, the following elements are included: initial state, OSR, state transition, next state, and goal
state, as shown in Fig. 2. During testing, the model was tested on new, categorically similar samples
from different datasets, assessing its ability to transform the initial state to the goal state successfully.

Initial State: The orange block is on the table, 

the blue block is on the table, and the red block...

Goal State: The orange block is on the blue block, 

and the yellow block is on the orange block.

Pickup Orange Pickup Blue

𝓛𝑪𝑹𝑬 ↑𝓛𝑪𝑹𝑬↓

Pickup Yellow

Goal State

Andy receives a monthly salary of $800 but he has to 

pay a tax of 7%.  How much is his net salary?

Start Reasoning

Q: 800 * 7% = ? Q: 800 \ 7% = ?

A1: 56

A2: 11429

A1: 11429

A2: 56

Q: 800 -56 = ?

A1: 744 A2: 856

A: 744

Initial State: { Rod A: 1, Rod B: 2, Rod C: 3 }

Goal State:  { Rod A:  , Rod B: , Rod C: 123 }

Move 2 from B to C Move 1 from B to C

Move 1 from A to C

Blocksworld GSM8K Hanoi Tower

One-step Reasoning (OSR)

Initial State
Initial State

Goal State Goal State

Initial State

State Transition

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬↓

𝓛𝑪𝑹𝑬 ↑
𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬 ↑

𝓛𝑪𝑹𝑬↓

Figure 2: Schematic illustration of Causal Relationship Enhancement(CRE).

3.2 CAUSAL SIGNIFICANCE AND CONSISTENCY

In causal inference, ITE measures the difference in outcomes for an individual with and without a
specific treatment. A larger ITE typically indicates a stronger causal relationship between random
variables. Its definition is as follows:
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ITEi = Yi(W = 1)− Yi(W = 0) (1)

where Yi(W = 1) and Yi(W = 0) are the potential treated/control outcomes of sample i. W rep-
resents the treatment assignment. ITE is generally encouraged to be as large as possible, and prior
work (Pearl, 2018) has used ITE as a discriminator of causality strength. The larger the ITE, the
more significant the causality. However, we found that only enhancing the significance of causal-
ity through improving E(ITE) is not enough; improving the stability of causality by constraining
Var(ITE) is indeed more critical.

As is shown in Fig.3, we conducted a statistical analysis of the distribution of the model’s output
results, which demonstrates that these outputs include various possibilities, such as true positives,
false positives, and false negatives, as shown in the experimental results. Previous work has shown
that large language models possess basic logical reasoning abilities, so we aim to enhance this
capability rather than rebuild it. The model’s responses follow a approximate normal distribution
ITEi ∼ N(µ, σ2) for repeated experiments on a single sample (Hartung & Knapp, 2001; Van der
Elst et al., 2021; Lei & Candès, 2021). In this context, the mean of the normal distribution aligns with
the causal significance for individual-level ITEi, while the variance reflects the causal consistancy of
individual effects. Based on this, we propose the following logical extension, as is shown in Fig.3.
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Figure 3: Exact Frequency and Cumulative Histogram for Scenarios A, B, and C. For the conve-
nience of image drawing, the coordinate axes of this image have been scaled to a certain degree and
do not represent the actual values.

In Scenario A, the model relies solely on Cross-Entropy, where causal relationships are determined
without considering the significance or consistency of individual effects. Scenario B introduces
Var(ITE) to enhance causal consistency, but variability among individual responses may still ob-
scure the strength of the causal effect. Scenario C, the ideal outcome, is achieved by jointly optimiz-
ing both E(ITE) and Var(ITE) , resulting in more significant and more reliable causal relationships.

In conclusion, we believe that both causal significance E(ITE) and causal consistency Var(ITE)
contributes to the transition from Scenario A and B to Scenario C, a scenario that we expect to
achieve, while leveraging Cross-Entropy to assure the model’s correctness capabilities. By jointly
controlling these three factors, we achieve improved model performance.

3.3 CAUSAL RELATIONSHIP ENHANCEMENT (CRE)

Firstly, all the samples are classified into two categories: Correct and Incorrect. Within the Incorrect
category, three scenarios exist, i.e., a correct OSR leading to an incorrect state transition, an incor-
rect OSR leading to an incorrect state transition, and an incorrect OSR resulting in a correct state
transition. Given this, it is evident that we need to strengthen the causal connection between the
OSR and the transition, and reduce the occurrence of samples where the OSR and the transition are
non-causal. In CRE, we first use the ITE to estimate the causality between OSR and state transi-
tion quantitatively, and then embed the |E(ITE)| and Var(ITE) into the loss function in the training
process (the remaining is cross-entropy), enhancing the causality of state transitions. As is shown
in Fig. 2 and the upper part of Fig. 1, we leave the reasoning path selection to be controlled by the
cross-entropy loss, while the suppression of hallucinations is handled by the ITE loss. Perplexity
(PPL) is a metric used to evaluate the performance of a LLM, indicating how well the model predicts
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the next word in a sequence, and lower values signify better predictive accuracy. The estimation of
ITE is detailed as the follows:

Given binary variables X and Y indicating the correctness of OSR and next state (state transition),
respectively, i.e., X,Y ∼ B(0, 1), and X = 1 (or Y = 1) means correctness. First, we calculate
the cause-effect interventions between X and Y , then subsequently modify the distribution of Y by
intervening in X . From a statistical correlation perspective, if X and Y are correlated, Y can be
predicted using X . However, if there is no causal relationship between X and Y , intervening in
X will not alter the distribution of Y . Hence, if X and Y are correlated but not causally linked,
then manipulating or intervening in X would not lead to any changes in the distribution of Y . This
distinction is crucial in statistical analysis and experimental design because it addresses the potential
fallacy that correlation inherently means causation.

Under the intervention, the proportion of positive and negative cases (hallucinations) in the model
output samples remains roughly unchanged; the more significant the causal relationship between
different OSRs and corresponding positive and negative cases, the lower the −|E(ITE)|. The reason
is that cross-entropy basically ensures the majority of positive cases. At the same time, lowing
Var(ITE) reduces the occurrence of negative cases, making the distribution of positive and negative
cases more stable, α and β are dynamic coefficients fitted with the training process. Consequently,
we incorporate the ITE into the loss function, as is shown in (2) and (3), p1|X and p0|X denote the
conditional probabilities of Y being 1 and 0, respectively, given the state of X .

LCrossEntropyLoss = −
[
Y log(p1|X) + (1− Y ) log(p0|X)

]
(2)

LCRE = LCrossEntropy − α|E(ITE)|+ βVar(ITE) = ln(PPL) (3)

3.4 CAUSAL PROBABILITY TREES WITH DUAL END SEARCHING (DES)

In this section, we improve the success rate of LLMs in solving long-range reasoning problems,
such as the 12-step Blocksworld scenario, by leveraging their higher success rates in simpler 2-step
and 4-step tasks. The main implementation process of DES is as follows:

Step1: We build two causal probability trees from the initial and goal states, with nodes representing
reasoning states and arrows denoting causal relationships. These trees outline possible reasoning
paths within a limited number of steps.

Step2: By matching their leaves, we identify end-to-end permutation schemes to form a continu-
ous, and feasible path (as shown in Fig. 1 and Fig. 4). The DES framework ensures optimal path
selection by expanding two trees from the head and tail ends (Thead and Ttail). Probabilities are cal-
culated based on the likelihood of reaching each state, with expansion directions chosen to reduce
the distance to the target. This method balances exploration and exploitation, avoiding premature
convergence to suboptimal solutions.

Step3: After several layers of expansion, the leaf nodes of the head and tail trees are matched, and
a distance matrix M is constructed. This matrix quantifies the spatial relationships between the end
leaf nodes in Thead and Ttail. The distance matrix is computed as the Euclidean distance between
the coordinates of each leaf node in the two trees, as follows:

Mij =
√

(xi − xj)2 + (yi − yj)2 (4)

where (xi, yi) represents the coordinates of node i. As illustrated in Fig. 4, the distance matrix pro-
vides a quantitative representation of the separation between the nodes, helping guide the selection
of the next expansion and pruning steps.

As the trees expand, the reasoning path is updated with the latest expansion results every four steps.
This mechanism ensures that the bidirectional tree expansion from both the head and tail proceeds
systematically, converging towards an optimal path. Moreover, this process retains flexibility, allow-
ing changes in the expansion direction when needed to avoid being trapped in local minima.

Step4: To select the optimal expansion path, DES employs the LDES metric, which balances be-
tween the length of the path and the correctness of the causal reasoning. Specifically, LDES incor-
porates the Average Treatment Effect (ATE) to assess the causal relationship between tree expansion

6
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and the resulting reduction in distance. The ATE is calculated as follows:
ATE(A) = E[ITE(A,B)] = E[E(A|do(B = 1))− E(A|do(B = 0))] (5)

where A represents the reduction in distance δD between two successive nodes Ni and Ni−1, and
B is the number of layers in which the current leaf node is located. The distance reduction δD is
estimated by calculating the Euclidean distance between the current node and the target node. The
metric used to optimize path selection is expressed as:

LDES = −|ATE(δDNi−Ni−1

Thead
)| − |ATE(δDNi−Ni−1

Ttail
)|+D (6)

This function combines the ATE for both the head and tail trees, penalizing paths that deviate from
the optimal causal direction while minimizing the total distance. The whole calculation process and
execution details of DES can be found in Algorithm 1 and Fig. 4, which illustrate the complete work-
flow from tree generation, distance matrix construction, and path expansion to the final selection of
the optimal path.

Algorithm 1: DES (Taking the 12-step
Blocksworld as an example)

1: Input: Stateinit and Stategoal, denot-
ing the initial and goal states

2: Output: Complete 12-step solution
3: Construct Thead and Ttail from Stateinit

and Stategoal
4: Match leaves of Thead and Ttail to form

paths
• From Thead, infer 4 steps toward
Ttail based on reducing distance D.

• Similarly, infer 4 steps from Ttail

toward Thead.
• Calculate the Euclidean distances

between the resulting end nodes of
both trees to form a distance matrix
M .

• Select the three shortest distances
and pass the corresponding node
pairs to the model for further solv-
ing attempts.

5: for every four steps do
6: Determine intermediate steps and fill

in details
7: end for
8: for expanding Thead and Ttail do
9: Calculate distance D

10: Minimize LDES

11: if local optimum detected then
12: Assess alternative routes
13: end if
14: end for

Figure 4: Sketch of the DES (in 9-steps)
Table 1: Accuracy under GSM8K

Model RAP RoT CoT CRE
Llama-2-7B 0.51 0.54 0.47 0.92
Llama-2-13B 0.50 0.57 0.49 0.93
Phi-2-7B 0.45 0.48 0.48 0.89
Mistral-7B 0.39 0.32 0.31 0.85
Mixtral-8x7B 0.48 0.50 0.49 0.90

During the expansion process of the probability trees at both ends, we intervene by minimally the
change in the LDES , directing the expansion toward our desired outcome. Minimizing LDES realizes
the pruning and unfolding direction judgment, prioritizing the direction with the lowest LDES as the
unfolding direction. The whole process of DES is in Algorithm 1.

4 EXPERIMENT

In this section, we validated the effectiveness of CreDes compared to baseline approaches.
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4.1 SETUP

Blocksworld: There are n blocks initially placed randomly on a table (Valmeekam et al., 2024).
The LLM’s goal is to stack these blocks in a specified order. The LLM can perform four actions:
pick up a block from the table, put down a block it is holding onto the table, unstack a block from
another to hold it, and stack the block in its hand onto another block. The LLM can only manipulate
one block at a time, and blocks with others on top are immovable.

GSM8K: The GSM8K dataset (Cobbe et al., 2021a) includes 1,319 diverse grade school math word
problems curated by human problem writers. These tasks typically begin with a description and
culminate in a final question requiring multi-step mathematical calculations contextual to the prob-
lem. To effectively tackle the final question, our approach involves decomposing it into a sequential
series of smaller sub-questions, allowing for a structured solution process.

Hanoi Tower: The Hanoi Tower problem (Gerety & Cull, 1986), a classic puzzle involving three
pegs and a set of discs of varying sizes, serves as a key component of our experimental setup. The
challenge requires moving the entire stack of discs from one peg to another, obeying the rules that
only one disc can be moved at a time, and no disc may be placed on top of a smaller one. This
task, structured around sequential and strategic disc placement, tests the model’s ability to plan and
execute a series of actions based on simple yet strict rules.

4.2 DATASET AND BASEMODEL

Dataset: The datasets we used are the open source datasets Blocksworld (Valmeekam et al., 2024),
GSM8K (Cobbe et al., 2021a), AQUA (Ling et al., 2017), QASC (Khot et al., 2020), and our own
production of Hanoi Tower. where the experiments for AQUA and QASC are in the Table 4.

Basemodel: The pre-trained models used in our study include: LLAMA-2-7B (Touvron et al.,
2023), Phi-2-7B (Li et al., 2023b), Mistral-7B (Jiang et al., 2023) and Mixtral-8x7B (Jiang et al.,
2024), Qwen1.5-7B (Bai et al., 2023), TAIDE-LX-7B1, Mpt-7B (Team et al., 2023), Baichuan2-7B
(Yang et al., 2023a),The model test results not mentioned in the main text will be supplemented in
the Table 4 and 5.

4.3 BENCHMARK

Train Parameter: In this paper, we primarily utilize the 7B models for training on a single NVIDIA
A100 GPU and models are loaded in 4-bit.

RAP: A technique that employs Monte Carlo Tree Search (MCTS) for exploration (Hao et al.,
2023). RAP transforms LLMs into both reasoning agents and world models, utilizing MCTS for
strategic exploration and decision-making. This approach significantly enhances the LLM’s ability
to generate action plans and solve mathematical and logical problems, outperforming traditional
methods and establishing new benchmarks in LLM’s capabilities.

CoT: A technique having enhanced the reasoning capabilities (Wei et al., 2022b) of LLMs. By pro-
viding models with intermediate reasoning steps as examples, CoT demonstrates notable improve-
ments across various complex reasoning tasks, including arithmetic, commonsense, and symbolic
reasoning. CoT requires the model to generate a reasoning chain to improve the reasoning ability.
We used all basemodels to carry out CoT in the experiment.

RoT: A framework (Hui et al., 2024) to enhance the performance of tree-search-based prompting
methods used in LLMs. This innovative approach leverages guidelines derived from past tree search
experiences, allowing LLMs to avoid repeating errors and significantly improving their reasoning
and planning capabilities across various tasks. We not only used the same basemodel as the original
RoT, but also introduced other 7B models as a comparison.

4.4 RESULTS

Blocksworld: We conducted ablation experiments on the Blocksworld dataset. Our methodology,
detailed in Section 3, particularly focuses on scenarios with more than 6 steps. As is shown in

1http://taide.tw

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2 and Table 5, for tasks up to 6 steps, results with our 7B models closely matched those with
the benchmark’s 70B models, suggesting robust inference capabilities even with reduced model
size. For more complex tasks of 8 steps or more, DES improved its success rates by breaking
down tasks into simpler segments, though it slightly lagged behind in performance compared to
shorter tasks. This approach underlines the potential of our modified strategies in handling varying
task complexities. By comparison, our CRE method not only outperforms benchmarks in terms of
success rates on the 7B scale, but also achieves a higher success rate than the 70B+RAP method
using the 7B model. For the arithmetic cases that use the full CreDes architecture, CreDes helps to
improve the performance of the LLMs for long-range reasoning tasks.

GSM8K: We further independently verified the capabilities of CRE based on the GSM8K dataset
without introducing DES, to confirm that it helps to enhance the inference capabilities of large
models. We found that our CRE is superior to the baseline methods RAP, RoT, and CoT, further
demonstrating that completing multi-step reasoning in one go has more advantages than completing
multiple single-step reasoning. See Table 1. This example shows that CRE can not only help LLM
solve highly structured problems, such as Blocksworld, but also has the ability to assist in solving
some abstract mathematical problems.

Hanoi Tower: Unlike the Blocksworld case, the longest reasoning steps for the Hanoi Tower have
a fixed quantitative relationship with the number of rods and disks. Therefore, when training the
model, we used combinations within 7 steps, i.e., 3 rods and 3 disks. For evaluation, we used
problems within 15 steps, i.e., combinations of 3 rods and 4 disks, to test the reasoning ability. From
this perspective, our reasoning process is based on a zero-shot setting. Due to the time complexity
of the search-based method for long-range reasoning, we did not conduct experiments for too many
reasoning steps, and its success rate can be recorded as ’-.’ As Table 3 shows, CreDes performed
best among all the models. By comparing the Hanoi Tower scenario with the Blocksworld scenario,
we find that the success rate under Hanoi Tower is lower than that of Blocksworld, and that the
reasoning ability of the 7B+CRE group is slightly lower than that of the 70B+RAP group. We
believe that this phenomenon occurs because Hanoi Tower has a stricter stacking order qualification
relative to Blocksworld, and some of the intermediate steps may not hold at all, see Fig. 2. From the
results, the complexity of the Hanoi Tower problem is higher than that of Blocksworld.

Time Efficiency: Using the CRE and DES architecture has significantly shortened the time to com-
plete long-range reasoning tasks compared to benchmarks, as is shown in Fig.5. This is because
CreDes can perform simultaneous multi-step reasoning, which is more efficient than other meth-
ods that generate answers multiple times and then cascade them together, which is more evident in
longer-range reasoning.

There is not much difference between the experimental results under 13B and 7B, and the difference
can be regarded as a random error generated by different training. From the performance comparison
between the 70B model and the 7B model under the RAP method and the 70B model, the perfor-
mance of the 70B model will be relatively improved. However, considering inference speed, the 70B
model is much slower than the 7B, and it needs to be loaded with a certain amount of quantization,
and the performance loss is equally present.
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Figure 5: Improvement in reasoning speed for long-range tasks (based on a single A100 GPU).

4.5 DISCUSSION

This study introduced the CreDes framework, which combines CRE and DES to improve LLMs’
ability to handle long-range reasoning tasks. CRE enhances robust causal relationships between
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Table 2: Succcess Rate under Blocksworld

Model 2-step 4-step 6-step 8-step 10-step 12-step

Llama-2-70B + RAP 0.67 0.76 0.74 0.48 0.17 0.09

Llama-2-7B + RAP 0.39 0.41 0.37 0.11 0.00 0.00
Llama-2-7B + CoT 0.50 0.63 0.40 0.27 0.07 0.00
Llama-2-7B + RoT 0.52 0.67 0.27 0.06 0.00 0.00
Llama-2-7B + CRE 0.95 0.80 0.76 0.22 0.09 0.00
Llama-2-7B + CreDes - - - 0.68 0.51 0.34
Llama-2-13B + RAP 0.44 0.42 0.38 0.11 0.00 0.00
Llama-2-13B + CoT 0.51 0.63 0.39 0.29 0.07 0.00
Llama-2-13B + RoT 0.49 0.70 0.30 0.07 0.00 0.00
Llama-2-13B + CRE 0.95 0.82 0.74 0.25 0.07 0.00
Llama-2-13B + CreDes - - - 0.65 0.49 0.37
Phi-2-7B + RAP 0.40 0.44 0.33 0.00 0.00 0.00
Phi-2-7B + CoT 0.43 0.05 0.01 0.00 0.00 -
Phi-2-7B + RoT 0.54 0.16 0.01 0.01 0.00 -
Phi-2-7B + CRE 0.91 0.86 0.79 0.19 0.05 0.00
Phi-2-7B + CreDes - - - 0.46 0.31 0.19
Mistral-7B + RAP 0.49 0.41 0.35 0.07 0.00 0.00
Mistral-7B + CoT 0.84 0.41 0.24 0.05 0.08 -
Mistral-7B + RoT 0.81 0.49 0.21 0.10 0.12 -
Mistral-7B + CRE 0.97 0.94 0.82 0.24 0.12 0.03
Mistral-7B + CreDes - - - 0.54 0.37 0.21
Mixtral-8x7B + RAP 0.49 0.44 0.35 0.15 0.04 0.00
Mixtral-8x7B + CoT 0.81 0.63 0.55 0.18 0.20 -
Mixtral-8x7B + RoT 0.87 0.71 0.55 0.29 0.27 -
Mixtral-8x7B + CRE 0.99 0.97 0.93 0.34 0.22 0.13
Mixtral-8x7B + CreDes - - - 0.75 0.57 0.40

reasoning steps, and DES can lower the complexity of long-range reasoning by using a bidirectional
search approach. Our experiments, particularly in the Blocksworld and Hanoi Tower scenarios,
demonstrated significant improvements in accuracy and efficiency over existing methods, implying
that CreDes can effectively address the problem of causal hallucinations and huge search spaces.

4.6 LIMITATION

In scenarios with strict order of precedence, such as the Hanoi Tower, the accuracy is significantly
lower compared to tasks like Blocksworld. The DES approach, while effective for moderate-length
tasks, struggles with very long reasoning steps, leading to a decline in performance. Additionally,
maintaining causal logic through CRE and DES introduces computational overhead, which may
limit the framework’s scalability and applicability in real-world scenarios with limited resources.
Finally, our approach pays insufficient attention to the sequential ordering of steps, and the ATE
can only determine whether the causal logic makes sense, rather than recognizing, for example, the
assumption encountered in the Hanoi Tower problem that the larger disk must be placed under the
smaller disk.

5 CONCLUSION

By integrating CRE and DES, the CreDes framework has significantly advanced LLMs’ capabilities
in long-range reasoning tasks. This combined approach enhances the accuracy and efficiency of
multi-step reasoning and maintains the problem-solving and reasoning abilities of pre-trained mod-
els across different tasks. Future work will focus on refining the framework to improve scalability
and efficiency in various complex problem-solving scenarios.
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A APPENDIX

A.1 SUCCCESS RATE UNDER HANOI TOWER

Due to space constraints in the main text, we present the data from the Hanoi Tower experimental
group here.

Table 3: Succcess Rate under Hanoi Tower

Model 3-step 5-step 7-step 9-step 11-step 13-step

Llama-2-70B + RAP 0.57 0.42 0.22 0.07 - -

Llama-2-7B + RAP 0.29 0.21 0.11 0.00 - -
Llama-2-7B + CoT 0.34 0.23 0.10 0.02 0.00 0.00
Llama-2-7B + RoT 0.41 0.27 0.13 0.04 - -
Llama-2-7B + CRE 0.45 0.39 0.24 0.12 0.01 0.00
Llama-2-7B + CreDes - - - 0.27 0.14 0.07
Llama-2-13B + RAP 0.30 0.20 0.12 0.00 - -
Llama-2-13B + CoT 0.33 0.24 0.09 0.03 0.00 0.00
Llama-2-13B + RoT 0.44 0.30 0.12 0.03 - -
Llama-2-13B + CRE 0.42 0.38 0.27 0.10 0.01 0.00
Llama-2-13B + CreDes - - - 0.34 0.15 0.07
Phi-2-7B + RAP 0.27 0.21 0.14 0.01 - -
Phi-2-7B + CoT 0.33 0.22 0.10 0.02 0.00 0.00
Phi-2-7B + RoT 0.24 0.12 0.02 0.00 - -
Phi-2-7B + CRE 0.40 0.25 0.17 0.03 0.00 0.00
Phi-2-7B + CreDes - - - 0.33 0.20 0.09
Mistral-7B + RAP 0.34 0.25 0.14 0.04 - -
Mistral-7B + CoT 0.40 0.32 0.21 0.09 0.00 0.00
Mistral-7B + RoT 0.35 0.22 0.17 0.02 - -
Mistral-7B + CRE 0.49 0.37 0.26 0.15 0.03 0.00
Mistral-7B + CreDes - - - 0.37 0.19 0.11
Mixtral-8x7B + RAP 0.40 0.24 0.15 0.06 - -
Mixtral-8x7B + CoT 0.45 0.27 0.14 0.02 0.00 0.00
Mixtral-8x7B + RoT 0.37 0.22 0.10 0.00 - -
Mixtral-8x7B + CRE 0.50 0.35 0.22 0.11 0.01 0.00
Mixtral-8x7B + CreDes - - - 0.42 0.25 0.12

A.2 VALIDATION RESULTS OF MODEL’S INHERENT CAPABILITIES

To verify the success rate of our CRE method on other baseline tasks, we designed a control ex-
periment to ensure that our approach does not impair the model’s inherent problem-solving and
reasoning abilities. Since DES is specifically designed for Blocksworld, a task with longer rea-
soning steps, the control experiments listed do not involve such lengthy reasoning steps; therefore,
DES’s performance is not tested in this section. The experimental results indicate that the CRE
method can, to some extent, enhance the model’s problem-solving capabilities on other baseline
tasks without causing any reduction in performance. See Table 4.

A.3 A NOTE ON THE HANOI TOWER DATASET

We generated and produced the Hanoi Tower dataset in the paper. The production method is to
randomly generate several states conforming to the placement rules of the Hanoi Tower based on a
given number of rods and disks, e.g., three rods and three disks, and randomly select one of these
states as the starting and target states for a single sample. For a single sample, the classical partition
algorithm is used to derive the pathway, and according to the length of the pathway, the sample is
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Table 4: Results of model’s inherent capabilities

Model AQUA QASC

Llama-2-7B 0.25 0.17
Llama-2-7B + CRE 0.74 0.62
Baichuan-7B 0.31 0.07
Baichuan-7B + CRE 0.85 0.31
Mpt-7B 0.11 0.05
Mpt-7B + CRE 0.65 0.27
TAIDE-LX-7B 0.27 0.21
TAIDE-LX-7B + CRE 0.89 0.72
Qwen1.5-7B 0.57 0.09
Qwen1.5-7B + CRE 0.75 0.37

categorized into different number of steps groups, e.g., 3-steps, 5-steps, 7-steps, and so on. An odd
number is chosen for the allocation because the most complex solving step of Hanoi Tower in the
case of three rods and n disks is 2n − 1 steps. We generated the dataset Hanoi Tower using exactly
the same storage format and Prompt structure as Blocksworld and GSM8K.

A.4 PROMPT TEMPLATES USED DURING TRAINING AND TESTING OF CRE

Prompt 1 Prompt Templates Used During Training
1: Input: Initial State || Goal State #### Pathway
2: Output: #### Pathway
3: Pathway: <Step1><Step2><Step3><step4>

Prompt 2 Prompt Templates Used During Testing
1: Input: Initial State || Goal State
2: Output: #### Pathway
3: Pathway: <Step1><Step2><Step3><step4>

A.5 FULL EXPERIMENTAL RESULTS UNDER THE BLOCKSWORLD DATASET

A.6 EXAMPLE: ERROR ANALYSIS

Initial State:

The b l u e b l o c k i s c l e a r , t h e o r an ge b l o c k i s c l e a r , t h e hand i s empty ,
t h e b l u e b l o c k i s on t o p of t h e y e l l ow block , t h e o r an ge b l o c k i s on
t o p of t h e r e d block , t h e r e d b l o c k i s on t h e t a b l e and t h e y e l l o w b l o c k
i s on t h e t a b l e .

Goal State:

The o r an ge b l o c k i s on t o p o f t h e y e l l o w b l o c k .

Expected Output:

< u n s t a c k t h e b l u e b l o c k from on t o p of t h e ye l l ow block >
< p u t down t h e b l u e block >
< p i c k up t h e o r an g e block >
< s t a c k t h e o r an g e b l o c k on t o p of t h e ye l l ow block >
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Table 5: Succcess Rate under Blocksworld (Cont’d Table)

Model 2-step 4-step 6-step 8-step 10-step 12-step

Baichuan-7B + RAP 0.61 0.72 0.70 0.43 0.09 0.01
Baichuan-7B + CRE 0.93 0.74 0.71 0.25 0.05 0.00
Baichuan-7B + CreDes - - - 0.63 0.47 0.29
Mpt-7B + RAP 0.25 0.06 0.00 0.00 0.00 0.00
Mpt-7B + CRE 0.32 0.11 0.04 0.00 0.00 0.00
Mpt-7B + CreDes - - - 0.05 0.00 0.00

TAIDE-LX-7B + RAP 0.62 0.67 0.65 0.52 0.07 0.00
TAIDE-LX-7B + CRE 0.99 0.89 0.81 0.34 0.04 0.00
TAIDE-LX-7B + CreDes - - - 0.70 0.54 0.35
Qwen1.5-7B + RAP 0.57 0.64 0.61 0.28 0.02 0.00
Qwen1.5-7B + CRE 0.92 0.77 0.73 0.34 0.08 0.02
Qwen1.5-7B + CreDes - - - 0.61 0.46 0.36

Actual Output:

RAP:

A s t r u c t u r e t h a t u n f o l d s i n a t r e e shape :

F i r s t Layer :
< u n s t a c k t h e b l u e b l o c k from on t o p of t h e ye l l ow block >

Second Layer :
< p u t down t h e b l u e block >
or < p u t down t h e y e l l ow block > ( h a l l u c i n a t i o n )

T h i r d Layer :
< u n s t a c k t h e o r an g e b l o c k from on t o p of t h e r e d block > ( h a l l u c i n a t i o n )
o r < u n s t a c k t h e o r an ge b l o c k from on t o p of t h e y e l l o w block > ( h a l l u c i n a t i o n )
o r < u n s t a c k t h e o r an ge b l o c k from on t o p of t h e b l u e block > ( h a l l u c i n a t i o n )

F o u r t h Layer :
< s t a c k t h e o r an g e b l o c k on t o p of t h e ye l l ow block >
or < s t a c k t h e o ra n ge b l o c k on t o p o f t h e b l u e block > ( pruned )

CoT:

The l o g i c o f CoT r e a s o n i n g o u t p u t i s t o s o l v e complex prob lems by
s t e p −by− s t e p r e a s o n i n g and r e f i n i n g i n t e r m e d i a t e s t e p s , e n s u r i n g
t h e a c c u r a c y and r e l i a b i l i t y o f t h e f i n a l answer .

F i r s t I n p u t : I n i t i a l S t a t e
F i r s t Outpu t :
< u n s t a c k t h e b l u e b l o c k from on t o p of t h e ye l l ow block >
< p u t down t h e b l u e block >

Second I n p u t : I n i t i a l S t a t e + F i r s t Outpu t :
Second Outpu t :
< p i c k up t h e b l u e block > ( h a l l u c i n a t i o n )
< s t a c k t h e o r an g e b l o c k on t o p of t h e b l u e block >

CRE (Ours):
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Model one − t ime o u t p u t o f t h e whole p r o c e s s :
< u n s t a c k t h e b l u e block >
< p u t down t h e b l u e block >
< p i c k up t h e o r an g e block >
< s t a c k t h e o r an g e block >

I t s h o u l d be c l a r i f i e d t h a t CRE’ s m i s t a k e l i e s i n t h e p o s s i b i l i t y
o f i n c o m p l e t e answer s a s ment ioned above .

A.7 ASSUMPTIONS

Assumption 1. The experimental observation outcomes for any sample do not vary with the treat-
ment assigned to other samples, and, for each sample, there are no different forms or versions of
each treatment level, which lead to different experimental observation outcomes.

Assumption 2. Given the background variable X , treatment assignment W is independent of the
potential outcomes, i.e., W ⊥⊥ Y (W = 0), Y (W = 1) | X .

Assumption 3. For any value of X , treatment assignment is not deterministic:

P (W = w | X = x) > 0, ∀w and x. (7)

With these assumptions, the relationship between the observed outcome and the potential outcome
can be rewritten as:

E[Y (W = w) | X = x] = E[Y (W = w) | W = w,X = x]

= E[Y F | W = w,X = x],
(8)

where Y F is the random variable of the observed outcome, and Y (W = w) is the random variable
of the potential outcome of treatment w.

A.8 TREATMENT EFFECT

With the above Assumptions, we can rewrite the Treatment Effect defined as follows:

ITEi = WiY
F
i −WiY

CF
i + (1−Wi)Y

CF
i − (1−Wi)Y

F
i (9)

ATE = EX

[
E[Y F | W = 1, X = x]− E[Y F | W = 0, X = x]

]
=

1

N

∑
i

(Yi(W = 1)− Yi(W = 0)) =
1

N

∑
i

ITEi

= E(Y |do(X))− E(Y ) = E[Y1 − Y0]

(10)

where Yi(W = 1) and Yi(W = 0) are the potential treated/control outcomes of sample i, N is
the total number of samples in the whole dataset. The second line in the ATE is the empirical
estimation. Empirically, the ATE can be estimated as the average of the ITE across the entire dataset.
In equation 10, do(·) refers to Do-calculus?, which denotes an external intervention on the value of
X without affecting the actual state of Y .

A.9 ADDITIONAL DETAILS

Dataset Validity and Construction: The Hanoi Tower dataset is more complex than Blocksworld,
involving a judgment on stacking order. Errors arise if the stacking order is violated, making the
task harder. The dataset’s size matches Blocksworld, with all steps being odd numbers based on the
minimum steps required.

Computational Efficiency and Scalability: The 7B models fit within a single A100 GPU which is
mentioned in paper. The 13B models have similar time requirements, as quantization isn’t needed.
However, 70B models experience significant speed drops, likely due to quantization and their size.
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Theoretical Background and Practical Considerations: We perform numerous output trials to
calibrate the model during the training process. From our experimental results, these output samples
demonstrate a variety of possibilities, such as:

Type 1: Certain samples are challenging to answer correctly, regardless of training, resulting in
near-random correct/incorrect states.

Type 2: There is a positive correlation between epoch count and correct answer frequency for some
samples, significantly when aided by standard training techniques like RAP and CoT.

Type 3: Some samples can be answered correctly with minimal training, showing no correlation
between epoch count and correct answer frequency.

As Blocksworld researchers, the current goal is to maximize the correct rate of Type 1 samples,
effectively converting more Type 1 samples into Type 2.

Experimental Comparison about Embodied Intelligence: Many real-world reasoning and long-
range sequence decomposition tasks fundamentally adhere to the same paradigm as the one em-
ployed in our research. We recognize that there may be lingering concerns regarding the practical
applicability of our approach in real-world scenarios. We offer the following clarifications to address
these concerns, supported by practical examples. Established algorithms are widely used within the
logistics industry in areas such as port container scheduling or the organization of goods in ware-
house facilities. Our research, however, aims to augment these processes by leveraging Large Lan-
guage Models (LLMs) to enhance reasoning capabilities within these contexts. The primary goal is
to bridge the communication gap between human operators and algorithm engineers, allowing LLMs
to facilitate more transparent and effective interactions. By understanding and interpreting human
instructions, we hypothesize that LLMs can dynamically adjust their outputs, thereby improving
collaboration between human operators and algorithmic systems.

Although our approach has yet to be validated with real-world data, we emphasize that the nature
of many real-world reasoning or long-range sorting tasks closely mirrors the experimental paradigm
used in our study.

To further clarify, consider the example of warehouse item arrangement. This process involves
organizing goods according to criteria such as size, weight, or frequency of access. While this is a
complex, unified task, it can be decomposed into smaller, interrelated sub-tasks. For instance, the
initial task may be categorizing items by size, arranging them within sections based on weight, and
finally, positioning them according to access frequency. Each sub-task depends on the previous one,
forming a continuous sequence of actions that ultimately leads to completing the overall task.

It is worth noting that several related studies do not explicitly connect their experiments to real-world
applications. However, the scope of our experiments is comparable to that of other works in the field.
In particular, other research has adopted similar test scenarios and datasets, further reinforcing our
confidence in the robustness of our experiments.
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