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ABSTRACT

Coordination in multi-agent systems is critical for optimizing collective outcomes
and is applicable in diverse fields such as drone swarms, emergency response, and
more. Despite extensive research, the distributed coordination strategy alignment
problem—where all agents follow the same strategy and execute the prescribed ac-
tions without a global coordinator—remains largely unexplored, posing challenges
in scalability and privacy preservation. We introduce a new research problem
termed “federated coordination", which seeks to achieve decentralized strategy
alignment across distributed agents while maintaining the privacy of strategy
choices. To address this problem, we propose a framework that employs an energy-
based model. It facilitates decentralized strategy alignment by associating agent
states with coordination strategies through local minimum energy values. We
address privacy concerns through a simple yet effective communication protocol
that protects strategy selections from eavesdropping and information leakage. Our
extensive experimental results validate these contributions, demonstrating scal-
ability and reduced computational demands. This enhances the practicality of
coordination systems in multi-agent settings.

1 INTRODUCTION

Multi-agent coordination has been an active research area for years (Busoniu et al., 2008; Cao et al.,
2012; Yan et al., 2013; Torreno et al., 2017; Rizk et al., 2019; Gronauer & Diepold, 2022). By
coordinating, agents can interact in a structured manner, optimizing the collective outcomes of their
efforts. This coordination is applied across various fields, including drone swarms, computer networks,
and emergency response. Effective coordination results in more robust and adaptable systems,
capable of handling complex scenarios more effectively. The current study of coordination presents a
variety of challenging research problems including multi-agent reinforcement learning (Lowe et al.,
2017; Zhang et al., 2020; 2021), communication efficiency (Jiang & Lu, 2018; Zhang et al., 2019),
uncertainty handling (Oliehoek et al., 2016; Foerster et al., 2017), task allocation (Matarić et al.,
2003; Skaltsis et al., 2021), the scalability of coordination (Arslan & Yüksel, 2016; Qu et al., 2020),
cooperative games (Rahwan et al., 2015; Chalkiadakis et al., 2022), etc. These challenges drive
innovations to push the boundaries of what multi-agent systems can achieve.

While the existing research has produced fruitful results, the problem of coordination strategy align-
ment is almost unexplored. Specifically, in many real scenarios (e.g., security management for ad
hoc networks, military operations, etc.), there can be multiple strategies to be selected. Coordination
strategy alignment means all cooperative agents follow the same strategy and execute the prescribed
actions. Typically, the literature implicitly assumes the presence of a global coordinator who synchro-
nizes the strategy selection across all agents (Celli & Gatti, 2018; Farina et al., 2018; Cacciamani et al.,
2021). This centralized approach, while simplifying strategy alignment, poses a high requirement on
the communication infrastructure, i.e., the global coordinator needs to communicate with every agent
for every alignment. This centralized communication often impedes scalability and is infeasible in
environments without a global communication infrastructure.

Another overlooked aspect is the preservation of privacy concerning the chosen coordination strategy.
The privacy of current strategy selection is important in competitive environments. Revealing the
current strategic choice can significantly degrade coordination performance as it allows opponents to
tailor their responses more effectively. To ensure privacy, communication channels can be secured
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with encryption techniques, though this increases computational and communication resource usage.
Additionally, considering potential information leakage from agents within the cooperative team
introduces a complex requirement: each agent should know only its specific role as dictated by the
coordination strategy, without awareness of the overall strategy.

In this paper, we propose federated coordination, a new research problem aiming to achieve de-
centralized strategy alignment while maintaining the privacy of the current strategy selection. As a
first attempt to address this problem, we introduce a novel framework that employs an energy-based
model to establish correlations among agents. Specifically, given a set of energy states (each held
by one agent), the energy-based model returns a specific energy value. Some sets of energy states
result in local minimum energy and are termed local minima. Our key idea is to associate each local
minimum with a specific coordination strategy. That is, we set each agent’s energy state of a local
minimum as a key in the agent’s dictionary, with the agent’s actions prescribed by the associated
strategy as the value. For each coordination alignment, every agent randomly initializes its energy
state and participates in an energy minimization process. This process keeps updating the energy
states until they converge to a certain local minimum. Then, each agent uses its energy state within
the attained local minimum as a key, and executes the actions designated under that key. Collectively,
the actions performed by all agents constitute the coordination strategy corresponding to the achieved
local minimum, thereby ensuring the alignment of the coordination strategy of agents.

Crucially, our algorithm only requires local communication. During energy minimization, each
agent only needs to know the energy state of its immediate neighbors to compute the gradient of its
own energy state, facilitating a decentralized coordination process. This reduces the dependence on
centralized communication infrastructure and facilitates the deployment in wild areas. Moreover,
each agent knows only its own actions, yet the collective strategy is aligned across all agents.

Regarding privacy, we consider three levels of opponent abilities: 1) predict the coordination strategy
distribution based on historical selections, 2) eavesdrop on communicated information, and 3) access
to confidential information stored by some agents. We show that our distributed strategy alignment
process enables the strategy distribution to be non-stationary (§ 4.3), which prevents the opponent
from making accurate predictions. Moreover, we develop an encryption-free yet privacy-preserving
communication protocol, ensuring that the current strategy choice remains confidential even if an
opponent intercepts all communication. Furthermore, our protocol guarantees that even if some
agents disclose their own information, the confidentiality of the data pertaining to agents not directly
connected to any compromised agents remains protected.

To summarize, this paper makes three key contributions. 1) We introduce federated coordination, a
new problem that focuses on achieving distributed strategy alignment while preserving the privacy of
strategy selections. 2) We propose a novel framework to address the proposed federated coordination
problem. It provably synchronizes agents’ strategies without centralized control, exhibits scalability
and robustness, and protects the privacy of strategy selections against eavesdropping and information
leakage. 3) We conduct comprehensive experiments to validate the effectiveness of our framework
and explore its various attributes, e.g., scalability, robustness, and reduced computational demands.

2 RELATED WORK

Multi-agent reinforcement learning (MARL) aims to learn coordination strategies (Sunehag et al.,
2017; Rashid et al., 2018; Son et al., 2019) rather than strategy alignment. It often adopts the
centralized training with decentralized execution (CTDE) paradigm(Hernandez-Leal et al., 2019),
where agents are trained centrally but execute strategies independently. While MARL can achieve
distributed coordination, the learned strategies are typically stationary, being vulnerable to adversarial
training attacks (Gleave et al., 2020). Cacciamani et al. (2021) propose to switch strategies by a
global signal. This reliance on a global signal poses challenges in scenarios without a centralized
coordinator and can compromise the scalability and privacy of the system.
Consensus algorithms are widely used to achieve distributed agreement on a common value among
agents (Proskurnikov et al., 2016; Li & Tan, 2019; Amirkhani & Barshooi, 2022). However, all
agents agreeing on the same value means one compromised agent can leak critical information about
the whole system. In comparison, in our method, agents converge to different energy states, with
these states collectively corresponding to a joint action. Our method can be viewed as a more general
form of consensus, aiming to achieve a coordinated outcome instead of agreeing on a single value.
Game theory provides a mathematical framework for analyzing strategic interactions among agents.
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Concepts such as multiple equilibria and adversarial team games are particularly relevant (von Stengel
& Koller, 1997; Kalogiannis et al., 2022; Anagnostides et al., 2023). We build on these concepts
by addressing the strategy alignment problem in a distributed manner, ensuring that agents can
collectively reach a favorable equilibrium without revealing their strategy choices to opponents.
Differential privacy is a framework designed to ensure that the removal or addition of a single data
point does not significantly affect the overall outcome, thus protecting individual data entries from
being inferred (Dwork, 2008; Gong et al., 2020). Hence, it protects the algorithm inputs, whereas our
approach focuses on maintaining the privacy of strategy selections, i.e., the algorithm outputs.

In summary, while studies in MARL, consensus algorithms, and game theory are all related to
coordination, they often neglect how to align agents’ strategies in a distributed manner. Differential
privacy mainly focuses on protecting the privacy of data inputs rather than coordinated outcomes.
Our proposed framework for federated coordination addresses these gaps by enabling decentralized
strategy alignment and leveraging an energy-based model for flexible and secure coordination.

3 PRELIMINARY

Motivating application: Consider a scenario where drone swarms are deployed in remote areas
without access to centralized servers. These drones are equipped with various strategies, e.g., different
attack formations. To optimize their performance, the drones must randomly switch between these
strategies for each operation, ensuring unpredictability in their tactics Paruchuri et al. (2009); Yang
et al. (2024). However, before each attack, all drones in the swarm must agree on the same randomly
selected strategy. Given the lack of centralized coordination, the drones rely on local communication
channels, which are vulnerable to eavesdropping by adversaries. This presents a significant challenge
in ensuring secure and effective strategy coordination among the drones in the swarm.

3.1 FEDERATED COORDINATION PROBLEM

We use adversarial team games to model scenarios where cooperative agents face an opponent. A
static, normal-form adversarial team game (von Stengel & Koller, 1997; Anagnostides et al., 2023)
is defined by a tuple Γ(N , O,A,B, U). Γ consists of a team of N cooperative agents N facing an
opponent O1. Each agent from N has a set of available actions Ai, so that A :=

∏N
i=1Ai denotes

the joint action space of N . Also, the opponent O has a finite and nonempty set of actions B. We
denote by a = (a1, . . . , aN ) ∈ A a joint action of N , and b ∈ B an action of the opponent O.
U : A× B → R is a utility function. The cooperative agents share the same utility represented by
U(a, b) and the team game is assumed to be zero-sum, i.e., the opponent’s utility is −U(a, b). To
maximize the utility, the team N normally has multiple coordination strategies2, each maximizing
utility against specific opponent actions. Let S := {am} with cardinality as S denote the set of
strategies (the formal definition of S is in § A.4). Note that in normal-form games, a strategy is a
joint action. In Markov games (Kalogiannis et al., 2022), a strategy is a joint policy (π1, . . . , πN )
where πi is the policy of agent i mapping a given state to a distribution over Ai. Since this paper
focuses on ensuring that agents follow the same strategy, whether it is a joint policy or a joint action
is irrelevant. Henceforth, we will use a joint action am = (am1 , . . . , amN ) to represent a strategy.

Existing works assume that a global coordinator synchronizes strategies among agents so that their
joint action locates within S. However, there are numerous scenarios where such a coordinator
does not exist, e.g., ad hoc networks, autonomous drone swarms, etc. In these scenarios, strategy
alignment must be conducted in a distributed manner. Furthermore, due to the existence of an
opponent, cooperative agents must preserve the privacy of their current strategy selection. Otherwise,
the opponent can choose the best response bm to the disclosed strategy am such that U(am, bm) ≤
U(am, b) ∀b ∈ B. This introduces a new research problem, federated coordination, with the
following objectives: 1) the agents inN coordinate their actions in a distributed manner to ensure the
resulting joint action a belongs to S; 2) the opponent has no information about a.

3.2 ENERGY-BASED MODEL

We represent the system of cooperative agents using an undirected graph. As shown in the graph
representation of Figure 1(b), each node i in the graph represents an agent i. An edge connects

1The opponent O could be a set of opposing agents. For simplicity, we regard them as one agent.
2Depending on applications, these strategies can be rule-based or learning-based.
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(a) Storage of coordination strategies (b) Distributed strategy alignment

Figure 1: The proposed framework includes the storage of coordination strategies (pre-deployment)
and distributed strategy alignment (post-deployment). The arrows with cyan, violet, and green color
show different executions of the strategy alignment process. The local minima these executions
converge to are v2, v7, and v1 respectively. Note that the 2-D contour map of E(u) is only for
illustrative purposes. The real contour map is high-dimensional for multiple agents.

neighboring agents that can communicate with each other. Given this graph representation, we adopt
an energy-based model first studied in (Bengio & Fischer, 2015). The energy function is as follows:

E(u) :=
1

2

∑
i
uT
i ui −

1

2

∑
i̸=j

ρ(ui)
TWijρ(uj)−

∑
i
bT
i ρ(ui) (1)

where ui ∈ RM is the energy state of agent i, bi ∈ RM is the energy state bias of agent i, T
means transpose operation, ρ is an element-wise activation function which is tanh in this work, and
Wij ∈ RM×M is the weight matrix of the edge connecting agent i and agent j, and Wij = WT

ji.
The topology of the agent network is comprehensively characterized by the adjacency matrix A,
where an entry Aij = 1 indicates that agent i is capable of communicating with agent j, while
an entry of 0 signifies the absence of such communication, and Aii = 0, ∀i. In this paper, we
use fixed W := {Wij |Aij = 1, i, j = 1, . . . , N} and b := {bi|i = 1, . . . , N} to parameterize
E(u) while u are variables. Some values of u will achieve a local minimum value of E(u). We let
{vl|l = 1, . . . , L} denote the collection of these values of u, i.e., local minima. Given W and b, the
size of local minimum collection L and the value of each vl are uniquely determined.

We choose this form of energy because it fits well with our task. In this form, the weight matrix W
representing the connections among agents influences the energy value. Hence, a local minimum
energy value establishes a correlation among agents through their connections. Moreover, the
activation function ensures that the energy values are bounded and that local minima exist, which is
critical for our framework. The energy state bias b helps adjust the value range of local minima.

4 PROPOSED METHOD

The proposed framework (Figure 1) consists of two components that rely on our energy-based model,
i.e., the storage of coordination strategies and the distributed strategy alignment process. The storage
of strategies happens before the deployment of coordination systems while the alignment process is
executed every time the cooperative agents need to align their strategies after deployment.

Storage of strategies Given W and b, the resulting energy-based model has multiple local minima,
denoted as {vl = (vl

1, . . . ,v
l
N )|l = 1, . . . , L}. To store the set of coordination strategies {am =

(am1 , . . . , amN )|m = 1, . . . , S}, we associate each of them with a certain local minimum. As depicted
in Figure 1(a), we initialize one dictionary for each agent. To associate am with vl, we set vl

i as a
key and ami as the value in the agent i’s dictionary. Thereby, all strategies are stored distributively in
each agent i of the form {(vl

i : a
m
i )|l = 1, . . . , L} where “:” in the bracket represents the key-value

relationship. Note that we need L ≥ S so that all strategies can be stored.

Distributed alignment process Given the storage of strategies, the distributed strategy alignment
process can synchronize the agents’ strategies by energy minimization. Specifically, in each execution
of the alignment process, the agents first randomly initialize their energy states. Then, each agent
communicates with its neighboring agents, computes the gradient of its energy state based on the
received information, and updates its energy state using the gradient. Agents repeat these procedures
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until the gradient is 0. At this point, the energy states will be one of the local minima vl. Each agent
i simply uses its energy state vl

i to retrieve the action ami it needs to perform. Note that since the
initial energy states are randomly generated, they will be different for different executions of the
alignment process. This often results in different local minima when the alignment process converges.
We demonstrate this in Figure 1(b) by putting different initial energy states u0 (marked with different
colors) in the contour map of E(u) and showing that they converge to different local minima.

4.1 STORAGE OF COORDINATION STRATEGIES

To associate local minima {vl} with coordination strategies {am}, a naive approach is to randomly
generate W and b, find all local minima of the resulting energy-based model, and link each local
minimum to a coordination strategy. However, with random W and b, determining all local minima
of the corresponding energy-based model is very difficult, if not impossible. The best we can do
is to repeat the following procedures: randomly initialize the energy states of all agents, conduct
the energy minimization process, and identify one local minimum when the minimization process
converges. Repeating these procedures is computationally expensive, and we can never be sure if
we have identified all local minima. If the energy states of agents converge to an unknown local
minimum during distributed strategy alignment, these states cannot be used to retrieve agents’ actions
since the unknown local minimum is not associated with any strategy. In addition, it is possible
that the number of local minima L determined by the random W and b is smaller than the number
of strategies. This means some strategies will never be selected through the distributed strategy
alignment, which could be undesired.

To address the above issues, we propose an algorithm that computes W and b based on preset local
minima. This algorithm ensures that all local minima are known and that their number is greater
than the number of strategies. Specifically, the algorithm leverages the fact that the gradient of each
energy state vi within a local minimum v is 0, i.e.,

∂E(v)

∂vi
= vi − ρ′(vi)⊙

[∑
j ̸=i

Wijρ(vj) + bi

]
= 0, (2)

where ⊙ represents element-wise multiplication. Based on Equation 2, given a preset collection of
local minima, we can establish a set of constrained equations where the local minima are known
while W and b are the unknowns to be solved. In particular, let {vl|l = 1, . . . , L} denote the preset
local minima. The set of constrained equations is expressed as follows:

vl
i

ρ′(vl
i)

=
∑

j ̸=i
Wijρ(v

l
j) + bi, l = 1, . . . , L, i = 1, . . . , N. (3)

To determine W and b from these linear equations, the number of constraints, LNM , must be
sufficiently large to match or exceed the degrees of freedom in W and b, which is given by
M2

2

∑
i,j Aij +NM . This ensures that W and b are uniquely determined by the constraints.

To address Equation 3, we synthesize N individual agent-based equations into one linear equation:

Yl = W ·Xl + b, (4)

where the block matrix W and vectors are defined as follows:

Xl =

ρ(vl
1)

...
ρ(vl

N )

 , Yl =


vl
1

ρ′(vl
1)

...
vl
N

ρ′(vl
N

)

 , W =

 A11W11 · · · A1NW1N

...
. . .

...
AN1WN1 · · · ANNWNN

 , b =

b1

...
bN

 .

(5)
Subsequently, we minimize the objective function using the method of ordinary least squares:

J(W,b) =
∑L

l=1

∥∥W ·Xl + b−Yl
∥∥2. (6)

Since J(W,b) is convex, we can solve for W,b as the global minimum of J by optimization.

Value setting of vl. Note that Equation 2 also holds for a local maximum. Therefore, to ensure that
vl represents a local minimum rather than a maximum, the Hessian matrix at vl:

∂2E(v)

∂vl
i∂v

l
j

= I · δij −Wij ⊙ [ρ′(vi)⊗ ρ′(vj)] (7)
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should be positive definite, where δij denotes the Kronecker delta and ⊗ represents the outer product.
To this end, we observe that for sufficiently small gradients of ρ(vl), characterized by |ρ′(vl)| ≪ 1,
the second term in Equation 7 serves only as a minimal perturbation to the identity matrix and its
eigenvalues, which guarantee the positive definiteness of the Hessian matrix. Hence, the value of
vl should be set within the saturation region, i.e., the region where the gradient of function value is
sufficiently small, of ρ. In our experiments, we set entries of vl as ±3 since ρ is tanh.

Setting of L and M . To solve W and b, we need LNM ≥ M2

2

∑
i,j Aij + NM . In practical

applications, we know the graph topology of agents, the number of agents N , and the number of
strategies S while L and M need to be set. However, L and M are inherently correlated as M is the
dimension of W and b which determines L. Arbitrarily setting L and M can result in an unsolvable
Equation 6 or an L smaller than S. To address this issue, we propose Algorithm 2 (§ A.5) which
takes the graph topology of agents, N , and S as inputs and computes L and M automatically.

Spurious local minima and the solvability of Equation 4. While the constructed energy function
contains the prescribed local minima, spurious minima, i.e., points that are local minima of the energy
function but do not belong to the set of prescribed minima, may exist. Moreover, given an arbitrary
communication topology, the solvability of Equation 4 could be challenged. Please refer to § A.6 and
§ A.7 for a discussion about how our practical implementation addresses these issues.

4.2 DISTRIBUTED STRATEGY ALIGNMENT

Given the storage of strategies, the distributed strategy alignment process can align the agents’
strategies by energy minimization. Given an initialized energy states u, to minimize the energy E(u),
each agent i needs to alter its own energy state ui based on the gradient:

∂E(u)

∂ui
= ui − ρ′(ui)⊙

[∑
j ̸=i

Wijρ(uj) + bi

]
. (8)

According to Equation 8, each agent i needs to know {ρ(uj)|j = 1, . . . , N, and Aij = 1} for
gradient computation. Therefore, each agent i should communicate with its neighboring agents to get
this information. However, a poorly designed communication protocol may allow the opponent to
obtain the knowledge of converged energy states and thus the current strategy selection.

Therefore, we propose a privacy-preserving communication protocol to address this issue. Specif-
ically, during the storage of coordination strategies, we let each agent i store {Wij |j =
1, . . . , N, and Aij = 1}, i.e., the agent i shares Wij with the neighboring agent j. Note that
we do not let the agent i store {Wjk|j, k = 1, . . . , N, and j, k ̸= i} to enhance privacy. Moreover,
we let all agents share the same random number generator G : R× N→ RM and a seed generation
function F : RM×M × N → R. Then, before the start of the p-th alignment process, each agent i
generates a new seed sedpij = F(Wij , p) for the communication with the agent j. During the t-th
energy minimization step of the p-th alignment process, the agent i sends the agent j the message
Wijρ(u

t
i) ⊕ σij where ⊕ is bitwise XOR operation and σij = G(sedpij , t) is a disruptive noise.

Because the agent j knows Wij , it can recover σij by G(F(Wij , p), t) and remove the noise in the
received message to obtain Wijρ(u

t
i). Let dicti denote the dictionary of the agent i that maps an

energy state to an action and opti : RM × RM → RM denote the optimizer used by the agent i to
update energy states based on gradients. We summarize the overall procedures as Algorithm 1.

Algorithm 1 The overall procedures for the distributed strategy alignment.
Input: {Wij}, {bi}, {dicti}, G, F , a small threshold ϵ, and the number of alignment process p.
Output: a = {ai|i = 1, . . . , N}.

1: Let t = 0 and randomly initialize {ut
i}.

2: for each agent i do
3: Generate {sedpij = F(Wij , p)|Aij = 1}.
4: end for
5: while {∂E(ut)

∂ut
i
} are not all less than ϵ do

6: for each agent i do
7: Send Wijρ(u

t
i) ⊕ G(sed

p
ij , t) to each

neighboring agent j.

8: Remove G(sedpij , t) in the message re-
ceived from agent j to get Wijρ(u

t
j).

9: Compute ∂E(ut)
∂ut

i
based on Equation 8.

10: Update ut+1
i ← opti(u

t
i,

∂E(ut)
∂ut

i
).

11: end for
12: t← t+ 1.
13: end while
14: Output {ai = dicti(u

t
i)|i = 1, . . . , N}.
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4.3 ANALYSIS OF PRIVACY-PRESERVING CAPABILITY

Before the analysis, we present the Threat Model outlining various levels of opponent ability:
L1: Prediction of coordination strategy distribution. The opponent predicts the distribution of the
coordination strategies by analyzing the historical selections of cooperative agents.
L2: Eavesdropping on communicated information. The opponent eavesdrops on the communica-
tion channels used by the cooperative agents.
L3: Access to Confidential Information. The opponent can gain access to confidential information
stored by some of the cooperative agents.
Moreover, all opponents know the procedures of the distributed strategy alignment process and have
G and F . In the following, we analyze the privacy-preserving capability of our framework when
facing opponents with different abilities.

For an opponent with L1 ability, our framework inherently can use a distributed method to make the
strategy distribution non-stationary, preventing the opponent from learning an accurate distribution.
Specifically, given W and b, the local minimum to which the energy states converge is determined
by the initial energy states and the optimizer used to update energy states. Consequently, the strategy
distribution depends on the distribution of initial energy states and the chosen optimizer. Thus, each
agent can independently and periodically alter its optimizer and method for initializing energy states,
ensuring a non-stationary strategy distribution.

When facing an opponent with L2 ability, our framework can guarantee the privacy of current strategy
selection through the proposed communication protocol. Specifically, the opponent can eavesdrop the
communicated messages {Wijρ(u

t
i) ⊕ G(sed

p
ij , t)|i, j = 1, . . . , N, and Aij = 1}. As it does not

know W, it has no way to compute G(sedpij , t) and cannot get Wijρ(u
t
i). Therefore, the opponent

has no information to infer the current strategy selection. In comparison, if the agent i directly sends
ρ(ut

i), the opponent can compute {ut
i} through {ρ−1(ρ(ut

i))}. Given a converged {ut
i}, the opponent

may infer the strategy selection if it has seen these converged energy states before. Alternatively, the
agent i may send Wijρ(u

t
i). In this case, the opponent cannot recover {ut

i} due to the lack of Wij .
However, when the energy states converge, the opponent will obtain {Wijρ(v

l
i)} corresponding to a

certain vl. If this vl has been converged to before, the opponent will find {Wijρ(v
l
i)} was received

before and thus can infer the current strategy as the strategy at that time. Our method prevents the
above issue by adding noise G(sedpij , t). It ensures that {Wijρ(v

l
i)⊕ G(sed

p
ij , t)} are different in

different alignment processes even for the same vl.

Regarding an opponent with L3 ability, our framework can protect the information of the agents
not directly connecting with the compromised agents. Assuming the agent k in Figure 1(b) is
compromised, which means the opponent knows Wik. Based on the received Wikρ(u

t
k)⊕G(sed

p
ik, t)

and Wikρ(u
t
i)⊕G(sed

p
ik, t), the opponent can recover ut

k and ut
i because it can compute G(sedpik, t)

through Wik. However, ut
j is still safe as it is included in the message Wijρ(u

t
j)⊕ G(sed

p
ij , t) and

the opponent cannot recover it without the knowledge of Wij .

5 EXPERIMENTS

In the experiments, we set entries of vl as ±3 to ensure each vl is a local minimum (please check
§ 4.1 for detailed discussion). We use the optimizer Adam (Kingma & Ba, 2014) with learning rate
as 10−3 to both solve Equation 6 for getting W and b from preset {vl} and update energy states
during the energy minimization. We set ϵ as 10−4. Networks tested with loss connections in § 5.4 are
generated with initial connection probability of 0.5. For the experiments in § 5.2, § 5.3, and § 5.4, we
run with 5 random seeds and show standard deviations. We run all experiments in Ubuntu 22.04 LTS
system with 13th Gen Intel(R) Core(TM) i9-13900KF CPU and Nvidia 4090 GPU.

5.1 EFFECTIVENESS

In this experiment, we verify the effectiveness of the proposed framework by assessing whether the
distributed alignment process can make agents converge to a preset local minimum and whether
different executions of the alignment process will converge to different local minima. We run
experiments for different topologies with the number of agents being 10, 20, 40, and 80, respectively.

Moreover, for each preset local minimum vl, we let all its elements have the same value, i.e., given
an l, vl

i = vl
j for all i, j = 1, . . . , N . This setting simplifies checking whether agents converge to a

7
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Table 1: Topologies of random networks and corresponding equilibria. The three rows show the agent
number, the topological structure of agents, and the equilibria (i.e., converged energy states).

N = 10 N = 20 N = 40 N = 80

preset local minimum. That is, each entry of vl
i is either 3 or −3, allowing us to represent vl

i as a
vector with binary entries. Below, we plot each entry of an agent’s energy state with a black or white
grid based on whether its value is closer to 3 or −3. Then, when we plot each agent’s energy state,
the distribution of black and white grids will be identical among agents if they converge to a preset
local minimum because the preset minimum’s elements are the same. Otherwise, the distributions
will not match, which can be identified visually. Note that in practical application, we will randomly
permute the elements of vl to prevent the entries of {vl

i|i = 1, . . . , N} from being correlated.

Figure 2: Log-log plot of en-
ergy minimization steps with
varying connection probabil-
ities (0.2, 0.5, 0.8, 1.0). The
line slopes, denoted by ’exp’,
indicate sub-linear complexity
in the iteration steps.

We present our results in Table 1, 2, and 5. For each topology, we run
the strategy alignment process three times. From the third row, we
observe that the distributions of black and white grids are the same
across agents for each obtained equilibrium (i.e., the converged en-
ergy states), which means the equilibrium is a preset local minimum.
Moreover, different equilibria demonstrate different distributions
of black and white grids, indicating that different executions of the
alignment process converge to different local minima. These results
verify the effectiveness of the proposed framework.

5.2 SCALABILITY

In this section, we study the scalability of our framework, i.e., how
the number of steps required for energy minimization, denoted as
Z, grows as the number of agents N increases. In this experiment,
given N , we randomly generate the topology of agents by using
different connection probabilities (0.2, 0.5, 0.8, 1.0) to connect each
pair of agents. For each topology, we measure Z. We demonstrate
the results in a log-log plot as shown in Figure 2 which represents
the relationship between Z and N as logZ = α logN + C where
α is the line slope and C is a constant.

Figure 2 indicates that α ranges from 0.37 to 0.49, which means Z increases slower than
√
N

(when α = 0.5). For instance, when N increases by 100 times, Z increases less than 10 times.

8
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Table 2: Topologies of small world networks and corresponding equilibria. The three rows show the
agent number, the topological structure of agents, and the equilibria (i.e., converged energy states).

N = 10 N = 20 N = 40 N = 80

This sub-linear growth is significant as it shows that the algorithm remains efficient even as the
network size expands, thus suitable for large-scale systems. Notably, Z increases faster with higher
connection probabilities, suggesting that more interconnected networks require additional iterations
to achieve local minima. This finding highlights the trade-off between connectivity and speed of
convergence and underscores the importance of optimizing network topology to balance efficiency
and performance.

5.3 COMPUTATIONAL EFFICIENCY

The communication protocol in our proposed framework is encryption-free yet privacy-preserving.
One may wonder whether we can use encryption techniques to protect the privacy of {ρ(ui)} instead
of using the noise information produced by random number generators. In this part, we compare the
computational time of our method with that of the Advanced Encryption Standard (AES) which is
one of the most efficient symmetric block cipher (Mahajan & Sachdeva, 2013). We use a 128-bit key
size, which is widely adopted to balance security and efficiency.

Note that when using AES to protect ρ(ui), it first needs to encrypt ρ(ui) on the sender side and
then decrypt the message on the receiver side. In contrast, our method requires performing matrix
multiplication, i.e., Wijρ(ui), and a bit-wise XOR operation on the sender side, and only a bit-wise
XOR operation on the receiver side, as the receiver can directly use Wijρ(ui) to compute gradients.
Given that the computational time of the XOR operation is negligible, we only compare the times of
AES encryption (denoted as “AES Enc”), AES decryption (denoted as “AES Dec”), and the sending
operation of our method (denoted as EFC, i.e., energy-based federated coordination). Table 3 displays
the results for handling ρ(ui) of different dimensions (M = 20, 60, 100, 140, 180). It demonstrates
that the computational time of our method is an order of magnitude lower than that of AES, indicating
the computational efficiency of our method.

5.4 ROBUSTNESS AGAINST LOST CONNECTIONS

In real-world scenarios, the communication between agents might be unreliable or intermittent. Hence,
the robustness of our framework against lost communication links is crucial for its applicability. In this
experiment, the communication link between the agent i and the agent j is lost means Wij becomes 0.

9
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Table 3: Computational efficiency comparison: Encryption Time (ns).

Method Data Size M

20 60 100 140 180

AES Enc 81.02± 0.32 82.12± 0.95 85.57± 1.45 86.21± 0.39 86.45± 0.67
AES Dec 71.41± 0.39 73.03± 0.82 75.78± 1.49 76.88± 0.16 77.28± 0.43
EFC 1.57± 0.06 1.81± 0.05 2.09± 0.04 2.91± 0.03 3.51± 0.03

Figure 3: Success rate of achieving pre-
set equilibria versus communication loss
rate for varying numbers of agents (N =
10, 20, 30, 40, 80). This shows robust-
ness in multi-agent networks.

We evaluate the robustness under different numbers of
agents and different loss rates of communication links.
That is, given N and a loss rate, we first randomly generate
a topology of agents and compute the corresponding W
and b. Next, we set each Wij to 0 with the probability
specified by the loss rate. Then, we measure the alignment
success rate based on the percentage of agents that achieve
a preset local minimum.

Results in Figure 3 show that the framework upholds a
high success rate up to a communication loss rate of 0.6,
signifying resilience to moderate disruptions. Beyond this
point, there is a sharp decline in the success rate, which pri-
marily arises due to the network fragmentation caused by
high communication loss. That is, when communication
links are lost at higher rates, agents become isolated into
separate groups, hindering their ability to reach alignment
and achieve a local minimum collectively. In addition,
networks with more agents show greater stability and re-
silience against increased loss rate before the loss rate exceeds 0.6.

6 DISCUSSION ON LIMITATIONS AND FUTURE WORK

As the first work addressing the challenging problem of federated coordination, our primary goal is
to establish a baseline framework and demonstrate its effectiveness. However, we recognize certain
limitations in our current approach and identify several promising directions for future research.

Pre-determined mapping between energy states and strategies To simplify the setup and provide
a clear proof of concept, our current implementation uses a pre-determined mapping between energy
states and strategies. While effective for validating the framework, this approach may limit flexibility
and adaptability in complex scenarios. Future research could explore dynamic and learned mappings,
enabling agents to autonomously adapt energy-strategy relationships to evolving environments
and coordination challenges. energy-based model could incorporate temporal dependencies to
handle dynamic environments, potentially leveraging time-evolving graph structures for inter-agent
interactions.

Pre-defined strategies Our approach differs intentionally from MARL by focusing on decentralized
alignment for pre-defined strategies. Integrating strategy learning mechanisms into our framework
represents an exciting avenue for future work.

7 CONCLUSIONS

In this paper, we introduce federated coordination, a new problem for decentralized strategy alignment
in multi-agent systems that preserves privacy. Using an energy-based model, our novel framework
synchronizes agents’ strategies without a central coordinator, reducing dependence on global com-
munication and maintaining privacy through an encryption-free protocol against eavesdropping and
information leakage. Extensive experiments show our framework’s efficiency, scalability, lower
computational demands compared to AES cipher, and robustness against communication link loss.
This makes it a promising solution for decentralized, privacy-preserving multi-agent coordination.
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A APPENDIX

A.1 NOTATION TABLE

Table 4: Notation Table

Symbol Definition
N Number of cooperative agents in the system.
A Joint action space of all agents.
B Set of actions available to the adversary.

U(a, b) Utility function, where a ∈ A and b ∈ B.
E(u) Energy function used to represent the system of agents.
ui Energy state of agent i.
vl Local minimum of the energy function.
ρ(x) Activation function (tanh in this work).
Wij Weight matrix for the edge connecting agent i and agent j.
bi Energy state bias of agent i.
ϵ Convergence threshold for energy minimization.
δij Kronecker delta, equal to 1 if i = j, otherwise 0.
G(s, t) Random noise generator function with seed s and step t.
F(W,p) Seed generation function based on weight W and alignment process p.

S Set of predefined coordination strategies.
L Number of local minima in the energy landscape.
M Dimensionality of the energy state vector ui.
⊗ Outer product operator.
⊕ Bitwise XOR operation.

∇E(u) Gradient of the energy function with respect to the energy states u.

A.2 MORE DISCUSSION ON RELATED WORK

The proposed federated coordination problem encompasses several essential ingredients, including
coordination, decentralized agreement, the existence of multiple strategies, and privacy. In this
section, we discuss the existing research areas that study each of these aspects.

Multi-agent reinforcement learning (MARL) aims to learn strategies for multiple agents to facilitate
their coordination(Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019). It often adopts the
centralized training with decentralized execution (CTDE) paradigm(Oliehoek et al., 2008; Hernandez-
Leal et al., 2019), where agents are trained centrally but execute strategies independently. While
MARL can achieve distributed coordination, the primary focus is on learning coordination strategies
rather than strategy alignment. Moreover, the learned strategies are typically stationary, making
them vulnerable to adversarial training attacks (Gleave et al., 2020). To enable agents to switch their
strategies dynamically, existing work often relies on a global signal to coordinate policy changes
(Cacciamani et al., 2021). This reliance on a global signal poses challenges in scenarios without a
centralized coordinator and can compromise the scalability and privacy of the system.

Consensus algorithms are widely used to achieve distributed agreement on a common value among
agents in a network (Proskurnikov et al., 2016; Li & Tan, 2019; Amirkhani & Barshooi, 2022). These
algorithms ensure that all agents eventually converge to the same value, facilitating coordinated
actions. However, all agents agreeing on the same value means one compromised agent can leak
critical information about the whole system. In comparison, in our proposed method, agents converge
to different energy states, with these states collectively corresponding to a joint action. This approach
can be viewed as a more general form of consensus, where the goal is not to agree on a single value
but to achieve a coordinated outcome through distributed strategy alignment.

Game theory provides a mathematical framework for analyzing strategic interactions among rational
agents. In the context of multi-agent systems, concepts such as multiple equilibria and adversarial
team games are particularly relevant (von Stengel & Koller, 1997; Kalogiannis et al., 2022; Anagnos-
tides et al., 2023). Our work builds on these concepts by addressing the strategy alignment problem
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Table 5: Topologies of rings and corresponding equilibria. The three rows show the agent number,
the topological structure of agents, and the equilibria (i.e., converged energy states).

N = 10 N = 20 N = 40 N = 80

in a distributed manner, ensuring that agents can collectively reach a favorable equilibrium without
revealing their strategy choices to opponents.

Differential privacy is a framework designed to provide privacy guarantees when analyzing and
sharing statistical data (Dwork, 2008; Gong et al., 2020). It ensures that the removal or addition of a
single data point does not significantly affect the overall outcome, thus protecting individual data
entries from being inferred. Both differential privacy and our proposed framework aim to protect
sensitive information from opponents. However, the objects under protection differ. Differential
privacy applies noise to obscure individual data, i.e., the algorithm inputs, whereas our approach
focuses on maintaining the privacy of strategy selections, i.e., the algorithm outputs.

In summary, while studies in MARL, consensus algorithms, and game theory are all related to
coordination, they often neglect how to align agents’ strategies in a distributed manner. Differential
privacy mainly focuses on protecting the privacy of data inputs instead of the coordinated outcomes.
Our proposed framework for federated coordination addresses these gaps by enabling decentralized
strategy alignment and leveraging an energy-based model for flexible and secure coordination, which
enhances the practicality of coordination systems.

These distinctions highlight that federated coordination is not merely an extension of decentralized
coordination or consensus but rather a novel framework designed specifically for adversarial multi-
agent environments. It introduces privacy as a critical dimension, alongside decentralized strategy
alignment, to address challenges that are not effectively handled by existing methods.

A.3 ADDITIONAL RESULTS OF EFFECTIVENESS EXPERIMENT

A.4 FORMAL DEFINITION OF COORDINATION STRATEGY SET

A static, normal-form adversarial team game (von Stengel & Koller, 1997; Anagnostides et al., 2023)
is defined by a tuple Γ(N , O,A,B, U). Γ consists of a team of N cooperative agents N facing an
opponent O. Each agent from N has a set of available actions Ai, so that A :=

∏N
i=1Ai denotes

the joint action space of N . Also, the opponent O has a finite and nonempty set of actions B. We
denote by a = (ai, . . . , aN ) ∈ A a joint action of N , and b ∈ B an action of the opponent O.
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U : A× B → R is a utility function. The cooperative agents share the same utility represented by
U(a, b) and the team game is assumed to be zero-sum, i.e., the opponent’s utility is −U(a, b).

Below, we formally define the set of coordination strategies from which cooperative agents choose.

Coordination strategy set Given two joint actions am and an of N , we say am is strictly better
than an if U(am, b) > U(an, b), ∀b ∈ B. A joint action am ∈ A is optimal with respect to
an opponent action b ∈ B if U(am, b) ≥ U(an, b), ∀an ∈ A. Let ≫ denote the strictly better
relationship and a

∗→ b denote the joint action a being optimal with respect to the opponent action
b. The set of coordination strategies S := {am ∈ A | ∃b ∈ B,am ∗→ b and ∀an ∈ A \ S,∃b ∈
B such that an ∗→ b =⇒ ∃am ∈ S such that am ≫ an}. This means that for every am ∈ S, it is
optimal with respect to a certain opponent action b ∈ B. Furthermore, for any joint action an /∈ S
that is optimal for a certain opponent action, there exists a joint action am in S that is strictly better
than an. It implies that for any joint action an /∈ S , it is either not optimal for any opponent actions
or there exists at least a joint action am ∈ S that is strictly better than it. We can construct S by first
grouping all joint actions that are optimal for certain opponent actions and then removing any joint
actions for which a strictly better alternative exists.

A.5 THE ALGORITHM FOR SETTING L AND M

Given an adjacency matrix A and the number of strategies S, our objective is to determine the number
of local minima L and the state size M . For parameterization, the degrees of freedom for W and b

are given by M2

2

∑
i,j Aij and NM , respectively. On the constraint side, the number of constraints

is LMN . The difference between the degrees of freedom and the constraints can be denoted as
R(M,L):

R(M,L) = NML− M2

2

∑
i,j

Aij −NM.

Two constraints are under consideration: (1) the number of constraints must be equal to or exceed the
degrees of freedom, i.e., R(M,L) ≥ 0, and (2) the number of minima must be equal to or exceed the
number of strategies, i.e., L ≥ S. Our goal is to find the minimum values of M and L such that these
constraints are satisfied.

In binary coding, the maximum number of minima is given by 2M , where each state dimension
corresponds to an independent local minimum dimension. However, in general, we can make ξ
(0 ≤ ξ ≤ M ) entries of the state invariant among the minima, resulting in the number of minima
Lξ(M) = 2M−ξ. By substituting L in R(M,L) with Lξ(M), we obtain:

Rξ(M) = NM · 2M−ξ − M2

2

∑
i,j

Aij −NM.

For M ∈ Z, we seek the smallest M that satisfies constraint (1), defined as M∗ = inf{M ∈ Z |
Rξ(M) ≥ 0}. To meet constraint (2), we may find an appropriate M∗ such that Lξ(M

∗) ≥ S by
adjusting ξ. The following proposition will be instrumental in this process.

Proposition 1. The number of minima Lξ(M
∗), evaluated at M∗ = inf{M ∈ Z | Rξ(M) ≥ 0},

increases monotonically with ξ for M∗ ≥ 2.

Proof. We start by examining the root of Rξ(M):

Rξ(M) = NM · 2M−ξ − M2

2

∑
i,j

Aij −NM = 0

Dividing by NM , we get:
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2M−ξ − M

2N

∑
i,j

Aij −N = 0.

Define F (M, ξ) = 2M−ξ − (aM + b) where a = 1
2N

∑
i,j Aij and b = N . We seek M such that

F (M, ξ) = 0. To understand how M changes with ξ, we differentiate F (M, ξ) = 0 implicitly with
respect to ξ:

dF

dξ
=

∂F

∂M

dM

dξ
+

∂F

∂ξ
= 0.

We compute the partial derivatives:

∂F

∂M
=

∂

∂M
(2M−ξ − aM − b) = 2M−ξ ln 2− a,

∂F

∂ξ
=

∂

∂ξ
(2M−ξ − aM − b) = −2M−ξ ln 2.

Substituting these into the implicit differentiation equation, we obtain:

(2M−ξ ln 2− a)
dM

dξ
− 2M−ξ ln 2 = 0.

Solving for dM
dξ , we get:

dM

dξ
=

2M−ξ ln 2

2M−ξ ln 2− a
.

We now differentiate Lξ(M) = 2M−ξ with respect to ξ:

d

dξ
(2M−ξ) = 2M−ξ ln 2

(
dM

dξ
− 1

)
=

2M−ξ ln 2 · a
2M−ξ ln 2− a

.

For M as the root of Rξ(M), we can replace 2M−ξ with aM + b, thus:

d

dξ
(2M−ξ) =

2M−ξ ln 2 · a
(aM + b) ln 2− a

, (9)

which is positive for M > 1
ln 2 ≈ 1.44. For M∗ = inf{M ∈ Z | Rξ(M) ≥ 0}, it is given as

M∗ = ⌈M⌉, and the positiveness of Equation 9 is still maintained for M∗ ≥ 2, which means
Lξ(M

∗) increases monotonically with ξ for M∗ ≥ 2

Therefore, we may increment ξ and solve for M∗ until both constraints are satisfied. The process of
determining ξ and the required M and L is detailed below in Algorithm 2.

A.6 ADDRESSING THE POSSIBILITY OF SPURIOUS MINIMA

While our proposed approach ensures that the prescribed local minima correspond to those of the con-
structed energy function, it does not theoretically eliminate the possibility of spurious minima—points
that are local minima of the energy function but do not belong to the set of prescribed minima. This
subsection discusses the implications of spurious minima and the practical strategies employed in our
implementation to address this issue.
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Algorithm 2 The algorithm for setting L and M automatically

Input: A ∈ {0, 1}N×N .
Output: M,L ∈ Z.

1: ξ = 0.
2: def L(M, ξ) = 2M−ξ

3: def R(M, ξ) = NM · L(M, ξ)− M2

2

∑
i,j Aij −NM .

4: solve for M∗ = inf{M ∈ Z|R(M, ξ) ≥ 0}
5: while L(M∗, ξ) < S do
6: ξ += 1
7: solve for M∗ = inf{M ∈ Z|R(M, ξ) ≥ 0}
8: end while
9: Output M∗, L(M∗).

A.6.1 THEORETICAL CONSIDERATIONS

The energy function constructed in our framework is designed to ensure that the prescribed local
minima satisfy the optimization constraints in Equation 6. However, due to the complexity of the
energy landscape, it is theoretically possible for spurious minima to exist. These spurious minima may
not align with the prescribed strategy set, potentially affecting the robustness of strategy alignment.

A.6.2 MITIGATION THROUGH BINARY CODING

To address the potential presence of spurious minima, our implementation uses binary coding, as
described in § A.5, to construct the energy function and map spurious minima to prescribed ones:

• The number of prescribed local minima, L, is determined as 2M , where M is the dimension
of the energy states.

• Algorithm 2 identifies the minimum M and a parameter ξ to ensure:

1. 2M−ξNM ≥ M2

2

∑
i,j Aij +NM , where the left-hand side represents the number of

constraints, and the right-hand side represents the degrees of freedom in W and b.
2. 2M−ξ ≥ S, where S is the number of strategies.

After determining M and ξ, we construct 2M−ξ local minima with:

• The first M − ξ entries of each state set to either 3 or −3.

• The remaining ξ entries fixed at 3.

During strategy alignment, the final converged states are determined based on whether each entry is
closer to 3 or −3. This mapping effectively aligns any spurious minima with the prescribed ones,
ensuring that agents align on a certain coordination strategy.

We conducted extensive experiments to validate the robustness of our implementation against spurious
minima. These experiments include several detailed tests for various topologies (as outlined in Tables
1, 2, and 5) and thousands of additional trials. In all cases, the converged states aligned with the
predetermined minima, demonstrating the effectiveness of our implementation.

A.7 DISCUSSION ON SOLVABILITY OF EQUATION 4

The existence of solutions to Equation 4 is mathematically intricate due to implicit constraints
imposed by the topology A and the predetermined set of local minima {vl}.

The block matrix W defined in Equation 5 is subject to implicit constraints determined by the
topology A. To elucidate these constraints, consider a scenario where the inter-agent weights are
homogeneous, i.e., Wij = Wi′j′ for all indices i, j, i′, j′. In this case, the block matrix can be
represented as a Kronecker product, W = A ⊗W, implying that det(W) = det(A) det(W). If
the communication network is singular, indicated by det(A) = 0, then the block matrix is inherently
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singular, resulting in det(W) = 0. Consequently, Equation 4 becomes unsolvable. In more general
cases as outlined in Equation 5, the relationship involving W becomes more complex. There is no
straightforward method to address solvability in the most general form, thus an optimization-based
approach is employed, utilizing J(W,b) to assess the problem’s solvability.

In this approach, W is treated as a parameter within a linear system. The solution to Equation (4) can
fall into one of three categories: (1) infinitely many solutions, (2) a unique solution, or (3) no solution,
contingent on the relationship between the degrees of freedom (d.o.f) and the number of constraints.
In both cases (1) and (2), the optimal value of J∗(W,b) is 0, while in case (3), J∗(W,b) is greater
than 0.

Case (1): To eliminate this scenario, Algorithm 2 is employed to ensure that the number of constraints
is at least equal to the d.o.f. Subsequently, a small Gaussian noise (standard deviation< 0.0001) is
added to each preset binary-coded local minimum. This guarantees the linear independence of the
equations specified by Equation 3, thereby eliminating case (1).

Case (2): This is the desired outcome. Adding Gaussian noises to the preset local minima results in
W and b that cause the real local minima to deviate slightly from the preset values, e.g., a preset
minimum of 3 may result in real minima of 3.00005, 3.0001, etc. However, since the converged state
is mapped to binary encoding, this ensures alignment with the preset local minima.

Case (3): In this instance, an optimal solution, denoted as W∗ and b∗, can still be identified by
minimizing the least-squares error J(W,b). This solution does not exactly satisfy Equation (4),
and J(W∗,b∗) quantifies the deviation of {vl} from the true local minima determined by W∗ and
b∗. Given the convexity of J , the loss is distributed among {vl}. A small J(W∗,b∗) (average loss
per local minimum < 0.1) indicates proximity of true local minima to each preset vl. The binary
coding mapping ensures that the true minimum aligns with the preset minimum. Conversely, a large
J(W∗,b∗) suggests that the current communication topology is inadequate for achieving alignment,
prompting adjustments to the topology prior to system deployment.
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