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ABSTRACT

Recent success of large-scale Contrastive Language-Image Pre-training (CLIP) has
led to great promise in zero-shot semantic segmentation by transferring text-image
aligned knowledge to pixel-level classification. However, existing methods usually
require an additional image encoder or retraining/tuning the CLIP module. Here, we
propose a novel Zero-shot segmentation with Optimal Transport (ZegOT) method
that matches multiple text prompts with frozen image embeddings through optimal
transport. In particular, we introduce a novel Multiple Prompt Optimal Transport
Solver (MPOT), which is designed to learn an optimal mapping between multiple
text prompts and pixel embeddings of the frozen image encoder layers. This
unique mapping method facilitates each of the multiple text prompts to effectively
focus on distinct visual semantic attributes and diversify the learned knowledge to
robustly cope with previously unseen categories. Through extensive experiments
on benchmark datasets, we substantiate the effectiveness of our methods and
demonstrate its superior performance in Zero-shot Semantic Segmentation (ZS3)
settings.

1 INTRODUCTION

Zero-shot Semantic Segmentation (ZS3) is one of label-efficient approaches for dense prediction
task, which reduces efforts for expensive pixel-level annotations of unseen object categories (Bucher
et al., 2019). Vision language models (VLM) such as CLIP (Radford et al., 2021) have brought great
advance in ZS3 task by transferring pre-trained text-image aligned knowledge to text-pixel level
category matching problems (Ding et al., 2022; Xu et al., 2021; Zhou et al., 2022a; Rao et al., 2022;
Zhou et al., 2022d). The key idea here is to use the VLM knowledge gained through contrastive
learning on large-scale text-image pairs through a special knowledge transfer process tailored to ZS3.

Table 1: Systemic analysis of ZegOT compared to CLIP-
based segmentation models.

Model Proposal CLIP module Multiple text prompts
generator retrain/fine-tune & pixel matching

ZegFormer Ding et al. (2022) ✓ ✗ ✗
zsseg Xu et al. (2021) ✓ ✗ ✗
MaskCLIP+ Zhou et al. (2022a) ✗ ✗ ✗
DenseCLIP Rao et al. (2022) ✗ ✓ ✗
ZegCLIP Zhou et al. (2022d) ✗ ✓ ✗
Freeseg Qin et al. (2023) ✗ ✓ Cross-attention
MVP-SEG+ Guo et al. (2023) ✗ ✗ OCL loss

ZegOT (Ours) ✗ ✗ Optimal Transport
Note: OCL; Orthogonal Constrained Loss

Suppose that our goal is to learn a
functional map that transfers the pre-
trained image-level domain X knowl-
edge to the novel pixel-level domain
Y . To achieve this goal, various ap-
proaches have been explored by train-
ing additional models or leveraging a
novel domain knowledge, as indicated
in Table 1. In general, existing ZS3 ap-
proaches based on pre-trained VLM
can be categorized into two groups:
frozen image encoder with learnable proposal generator-based approaches (FE) (Ding et al., 2022; Xu
et al., 2021), and trainable image encoder-based approaches (TE) (Rao et al., 2022). FE approaches
utilize the proposal generator to gain domain Y knowledge from the image-level classification capa-
bility. A major drawback of FE approaches is that performance is highly dependent on the frozen
VLM. On the other hand, TE approaches explicitly address the VLM dependency issue by retraining
or fine-tuning the image encoder part. However, since the image encoder is optimized for a specific
domain, network parameters can be overfitted to seen distribution, resulting sub-optimal segmentation
performance for unseen distribution.
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Figure 1: Visualization of text-pixel alignment. (a) Without proposed MPOT, all the learned multiple
prompts P i are cohered and their related score maps resemble each others, which leads to a mismatch
with the true score map. (b) On the other hand, with our MPOT, each P i is diversely projected
and their related score map focuses on different semantic attributes, which results in robustness for
handling the unseen categories. As a result, the final score map with MPOT effectively focuses on
the ground truth regions compared to that of without MPOT.

One naive solution to mitigate the overfiting issue is to keep the entire VLM module frozen, and
to introduce small amount of learnable parameters such as text prompts, which can be borrowed
from the recent success of prompt learning for fine-tuning language models (Petroni et al., 2019;
Shin et al., 2020; Jiang et al., 2020; Liu et al., 2021). These light-weight text prompts learn the
desired downstream task knowledge and transfer it to unseen distribution, while mitigating the issue
of catastrophic forgetting of pre-trained VLM knowledge. However, this solution is still problematic
because the introduced text prompts and pixel embeddings from the frozen VLM are passively
aligned, which leads the learned prompts to be converged to represent similar semantic features as
shown in Figure 1(a). Additionally, this solution lacks diversity in learned prompts to robustly handle
the unseen categories, thus fails to match the true score map of the text and pixel embeddings.

To further boost the effectiveness of learning the multiple text prompts, here we introduce optimal
transport (OT)-based multi-prompt tuning method, by expanding the concept addressed in (Chen
et al., 2022). Our motivation for utilizing OT is originated from its luminous property of distribution
matching without the need for additional trainable parameters, which enables the multiple text prompt
distribution to be optimally matched with the desired pixel distribution. As provided in Figure 1(b),
we observe that our proposed multi-prompt optimal transport (MPOT) module, incorporating the
concept of OT, effectively addresses the aforementioned problem by diversifying the learned prompt
distribution without additional learnable parameters. With our MPOT, each text prompt-related score
map selectively focuses on specific semantic features. Consequently, the refined text prompts provide
diversity that robustly cope with the unseen categories, which leads to facilitate the optimal alignment
of the text and pixel embeddings. These individual maps are then combined to yield the final score
map, which efficiently attends to the ground truth regions. Due to the lack of the additional trainable
parameters, our method is less prone to overfiting issue, resulting in the state-of-the-art (SOTA)
performance on ZS3 tasks. Our contributions can be summarized as:

• We propose a novel framework, called ZegOT, which introduces a multi-prompt optimal
transport module that effectively aligns the distribution between text and pixel embeddings
from the frozen VLM encoders.

• We explore the role of the optimally aligned text-pixel score maps as contributing inter-
mediate features for zero-shot semantic segmentation task, avoiding overfitting on seen
classes.

• Through extensive experiments on three benchmark datasets, we demonstrate that our ZegOT
achieves the superior performance for zero-shot semantic segmentation tasks compared to
the previous approaches.
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2 RELATED WORK

2.1 PROMPT LEARNING

Prompt learning has been initially introduced in the field of Natural Language Processing (NLP),
which efficiently adapts large-scale model knowledge to various downstream tasks. Rather than
using traditional fine-tune methods to transfer the large-scale model knowledge to downstream
tasks, the prompt learning formulates the downstream adjustment problem by training light-weight
optimal textual prompts (Petroni et al., 2019; Shin et al., 2020; Jiang et al., 2020; Liu et al., 2021).
Compared to the fine-tuning method, text prompts-driven downstream adaptation is efficient, but still
alleviates the domain shift problem that occurs between the pre-trained domain and the downstream
domain. Recently, introducing a set of learnable text prompts into the frozen VLM achieved superior
performance in various computer vision (CV) tasks (Zhou et al., 2022c;b; Gao et al., 2021; Rao
et al., 2022). Visual Prompt Tuning (VPT) is also a novel solution that introduces trainable image
prompts to each layer of a transformer encoder (Jia et al., 2022), which can be transferred to various
downstream tasks (Zang et al., 2022; Sohn et al., 2022; Liu et al., 2022). Our method utilizes multiple
text prompts to adapt VLM to the segmentation task, while keeping the entire encoder part frozen.

2.2 ZERO-SHOT & OPEN-VOCABULARY SEMANTIC SEGMENTATION

Semantic segmentation is a core computer vision task to densely analyze visual context. Recent
success of CLIP (Radford et al., 2021) accelerates the advancement of language-driven semantic
segmentation by utilizing pre-trained knowledge of VLM (Li et al., 2022; Xu et al., 2022; Liang et al.,
2022). However, since this dense prediction task requires a labor-intensive pixel-level annotation,
there arise a label-imbalance issue, i.e., not all the categories are annotated in the training dataset.
Zero-shot semantic segmentation (ZS3) solves this label-imbalance problem by generalizing labeled
(seen) class knowledge to predict new (unseen) class information (Bucher et al., 2019), which can be
further expanded to open-vocabulary segmentation, which aims to segment totally unseen categories
during the training procedure. MaskCLIP+ (Zhou et al., 2022d) introduces a ZS3 method by simply
extracting the text-driven visual features from the CLIP image encoder. ZegCLIP (Zhou et al.,
2022d) successfully bridges the performance gap between the seen and unseen classes by adapting
a visual prompt tuning technique instead of fine-tuning the frozen CLIP image encoder. Recently,
FreeSeg (Qin et al., 2023) and MVP-SEG+ (Guo et al., 2023) introduce text prompt-driven method
for realizing open-vocabulary segmentation. In specific, MVP-SEG+ employs Orthogonal Constraint
Loss (OCL) to each prompt to exploit CLIP features on different object parts. On the other hand, our
proposed ZegOT tries to utilize CLIP knowledge by introducing a novel Multiple Prompt Optimal
Transport Solver (MPOT), which matches distribution between text prompts and pixels.

ZS3 can be performed by either inductive or transductive settings. Compared to inductive ZS3 where
class names and pixel-level annotations of unseen classes are both unavailable during training (Ding
et al., 2022), a newly introduced transductive setting boosts the ZS3 performance by utilizing unseen
class names and self-generated pseudo labels guided by the model itself during training (Gu et al.,
2020; Xu et al., 2021; Pastore et al., 2021; Zhou et al., 2022a;d). We adapt the transductive setting,
which can achieve comparable performance to that of the supervised learning method.

2.3 OPTIMAL TRANSPORT

Optimal transport (OT) is a general mathematical framework to evaluate correspondences between
two distributions. Thanks to the luminous property of distribution matching, the optimal transport
has received great attention and proven its generalization capability in various computer vision
tasks, such as domain adaptation (Flamary et al., 2016), semantic correspondence problem (Liu
et al., 2020), graph matching (Xu et al., 2019a;b), and cross-domain alignment (Chen et al., 2020),
etc. Among various methods, Sinkhorn algorithm can efficiently solve the OT problem through
entropy-regularization (Cuturi, 2013), and it can be directly applied to deep learning frameworks
thanks to the extension of Envelop Theorem (Peyré et al., 2019). Prompt Learning with Optimal
Transport (PLOT) (Chen et al., 2022) is mostly related to ours, which optimizes the optimal transport
distance to align visual features and text features by the Sinkhorn algorithm given trainable multiple
text prompts. However, PLOT exclusively focuses on few-shot image-level prediction tasks, while
we apply the optimal transport theory to zero-shot dense prediction problems, which facilitates ZS3.
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3 PRELIMINARY

Optimal Transport Problem Optimal transport aims to minimize the transport distance between
two probability distributions. In this paper, we only consider discrete distribution which is closely
related to our framework. We assume discrete empirical distributions µ and ν that are defined on
probability space F ,G ∈ Ω, respectively, as follows:

µ =

M∑
i=1

piδfi , ν =

N∑
j=1

qjδgi , (1)

where δf and δg denote Dirac functions centered on f and g, respectively, M and N denote the
dimension of the empirical distribution. The weight vectors p = {pi}Mi=1 and q = {qi}Nj=1 belong
to the M and N -dimensional simplex, respectively, i.e.,

∑M
i=1 pi = 1,

∑N
j=1 qj = 1. The discrete

optimal transport problem can be then formulated as:

T ∗ = argmin
T∈RMXN

M∑
i=1

N∑
j=1

TijCij

s.t. T1N = µ, T⊤1M = ν. (2)

Here, T ∗ is called the optimal transport plan, which is learned to minimize the total distance between
the two probability vectors. C is the cost matrix which represents the distance between fi and gj ,

e.g., the cosine distance Cij = 1 -
fig

⊤
j

∥fi∥2∥gj∥2
, and 1M refers to the M -dimensional vector with ones.

However, solving the problem (2) costs O(n3 log n)-complexity (n proportional to M and N ), which
is time-consuming. This issue can be efficiently solved by entropy-regularizing the objective, called
the Sinkhorn-Knopp (or simply Sinkhorn) algorithm (Cuturi, 2013). In Sinkhorn algorithm, the
optimization problem is reformulated as:

T ∗ = argmin
T∈RMXN

M∑
i=1

N∑
j=1

TijCij − λH(T )

s.t. T1N = µ, T⊤1M = ν. (3)

where H(T ) =
∑

ij Tij logTij and λ > 0 is the regularization parameter. For the problem (3), we
have an optimization solution with fewer iterations as follows:

T ∗ = diag(at) exp(−C/λ)diag(bt) (4)

where t is the iteration and at = µ/ exp(−C/λ)bt−1 and bt = ν/ exp(−C/λ)at, with the initial-
ization on b0 = 1.

4 METHODS

In this section, we present a method for performing zero-shot segmentation tasks using our proposed
ZegOT framework as illustrated in Figure 2. A primary goal of ZegOT is to segment objects belong
to both seen classes CS and unseen classes CU , i.e., C = CS ∪ CU , where CS ∩ CU = ∅. Note
that class names of CU are further provided during training under the transductive ZS3 setting.
To clarify, we define several notations within our ZegOT framework: a pair of frozen CLIP text
encoder Etxt and image encoder Eimg, trainable multiple text prompts P , the global text alignment
(GA) module, and trainable decoder Dθ. Furthermore, we propose three fundamental components
of ZegOT: (a) deep pixel alignment (DFA), (b) multi-prompt optimal transport (MPOT), and (c)
inference with ensemble. In Sec. 4.1, we introduce the concept of learnable prompts-guided text
embeddings and pixel embeddings from the frozen CLIP encoder and explain how they operate within
our framework. In Sec. 4.2, we provide a detailed account of our ZegOT, including aforementioned
three key components. Lastly, in Sec. 4.3, we describe the training procedure for our method and
introduce the associated loss functions.
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Figure 2: Overview of our proposed ZegOT for zero-shot semantic segmentation. (a) DFA: we deeply
align all the intermediate pixel embeddings from the frozen image encoder with the prompted text
embedding. (b) MPOT: given the text-pixel score maps from DFA, we adapt optimal transport plans
for each score map and merge them using the geometric mean to obtain the final score map. (c)
Inference with ensemble: ZegOT ensembles both the predictions from MPOT and the decoder with a
balancing factor λ.

4.1 LEARNABLE PROMPTS-GUIDED TEXT-PIXEL EMBEDDING

To transfer CLIP’s pre-trained knowledge, we create a set of N text prompts denoted as P =
{P i|Ni=1} to effectively fine-tune the frozen CLIP encoder. Each text prompt P i can be defined
as P i = [P i

1, P
i
2, · · · , P i

l ], where l represents the length of the context tokens. These randomly
initialized text prompts are then consistently added in front of K tokenized class names, forming
a set denoted as T = {{P, ck}|Kk=1}. Note that the same text prompts P is shared across all class
names. Here, {ck|Kk=1} represents the word embeddings of each class name, drawn from a larger
set C. Then, the set T is inputted to the frozen CLIP text encoder, resulting in the text embeddings
g ∈ RKN×D, where D represents the embedding dimension.

Now, when we input an image, it goes through the frozen CLIP image encoder, resulting in the
global image embedding f̄L ∈ R1×D and the i-th intermediate pixel embedding fi ∈ RHLWL×D

for i = 1, · · · , L. Here, HL and WL correspond to height and width of the pixel embeddings from
the L-th layer. To merge these CLIP’s text and pixel embeddings, we utilize the global text alignment
(GA) module following an approach introduced in (Zhou et al., 2022d) to prepare gGA to transfer the
pretrained CLIP knowledge as follows:

gGA = Q(cat
[
f̄L ⊙ g, g

]
) ∈ RKN×D

where Q denotes a linear layer for matching the concatenated embedding dimension to the original
dimension D, and cat is the concatenation operator, ⊙ is the Hadamard product.

4.2 ZERO-SHOT SEGMENTATION THROUGH OPTIMAL TRANSPORT (ZEGOT)

(a) Deep Feature Alignment (DFA) Using gGA, we leverages intermediate i-th pixel embeddings
from image encoder layers to yield the desirable text-pixel aligned score map Si as follows:

Si = fig
⊤
GA, (5)

where the superscript ⊤ refers to the transpose operation, and fi and gGA are L2 normalized along
the embedding dimension. The score map Si ∈ RHLWL×KN can serve as an input for the decoder
or undergoes further refinement via the optimal transport plan, as depicted in Figure 2(b). Instead
of relying on a single score map from the last layer, we utilize all the intermediate score maps to
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fully leverage the frozen CLIP’s knowledge. We refer to this multi-layer alignment as Deep Feature
Alignment (DFA), which is defined as:

S̄ = {M(Si)|Li=1}. (6)

where S̄ is a list of score maps through DFA, M: RHLWL×KN → RHLWL×K is the operation
which first reshapes RHLWL×KN → RHLWL×K×N and performs summation of all the score maps
along the N dimension. Details of DFA is further explained in Supplementary Material G.

(b) Multi Prompt Optimal Transport Solver (MPOT) To transport the distribution of the multiple
text prompts to pixel distribution, we first define the total cost matrix C in (3) using the text-pixel
aligned score map Si in (5). Specifically, for the i-th layer, we set C := Ci = 1 − Si, where
Ci ∈ RHLWL×KN denotes the i-th cost matrix. Given the cost matrix Ci, the goal of MPOT is
to obtain the corresponding optimal transport plan T ∗

i ∈ {T ∗
i }Li=1 as given in (4). The role of the

optimal transport plan is then to assign each of the M = HLWL pixels to the N prompts, allowing
for multiple prompts to be associated with each pixel. This optimal transport plan represents a
mapping matrix that maximizes the cosine similarity between the frozen pixel embedding and the text
embeddings derived from learnable multiple prompts, as outlined in Algorithm 1 in Supplementary
material A. Therefore, we reformulate the refined intermediate score map as:

S∗
i = T ∗

i ⊙ Si (7)

where S∗
i is the refined score map from i-th pixel embedding by adapting the transport plan T ∗

i . Sim-
ilar to DFA, instead of optimizing the transport plan just for a single layer, we leverages intermediate
pixel-text score maps to yield multi-layer transport plans {T ∗

i }Li=n, where T ∗
i ∈ RHLWL×KN and n

denotes the starting layer that comprises these multi-layer transport plans. When combining these
refined score maps, we apply a geometric mean, as follows:

S∗ =

L∏
i=n

σ{S∗
i }

1
d , (8)

where d = L − n + 1 denotes the depth of incorporating image encoder layers, σ is the sigmoid
function if n ≤ i < L, and the identity function otherwise. It’s worth noting that we apply the
sigmoid function to all the refined intermediate score maps except for the last layer because the
intensity range of all the score maps is (-1,1). Note that the transport plan T ∗ in (4) only contains
matrix multiplication and exponential operation, thus MPOT solver is fully differentiable and the
gradients can be back-propagated throughout the entire neural network. Further analysis of efficiency
and normalization of MPOT will be discussed in Supplementary material J and K.

(c) Inference with ensemble The refined score map S∗ in (8) can be either directly utilized as
a stand-alone logit or appended to decoder as an intermediate feature. Firstly, S∗ is reshaped and
upsampled to be a stand-alone logit, as follows:

Y = U(M(S∗)). (9)

where Y ∈ RHW×K is the prediction of the refined score map, and U : RHLWL×K → RHW×K is
the upsampling operator (HLWL < HW ), where H and W are height and width of the input image,
respectively.

Rather than soley reling on the prediction (9), we further utilize the learnable decoder to boost the
segmentation performance. The score maps obtained through DFA in (6) can be incorporated as input
for the decoder along with the refined score map S∗ as follows:

Ỹ = Dθ(cat[S̄,M(S∗)]). (10)

where Ỹ ∈ RHW×K is the output of decoder. In order to synergistically exploit the collective
knowledge derived from both the refined score map Y and more generalized information encapsulated
in Ỹ and, we formulate the final segmentation output Y∗ as follows:

Y∗ = λ ·Y + (1− λ) · Ỹ (11)

where λ ∈ [0, 1] denotes the hyper-parameter for controlling balance between the score map Y

and image decoder outputs Ỹ. The balance factor λ is set to 0.8 through component analysis in
Supplementary Material H.

6



Under review as a conference paper at ICLR 2024

4.3 TRAINING PROCEDURE

In the training procedure, we follow the previous SOTA methods (Zhou et al., 2022d;a), where the
entire training schedule is divided into two phases: seen classes-guided learning, and self-training.
The details of the training phases are deferred in Supplementary material B.

Loss Function In this work, we combine three different losses which is similar to previous methods
as follows:

Lseg = λceLce + λfcLfc + λdcLdc, Ltotal(Θ, θ) = Lseg(Y,Ygt; Θ) + Lseg(Ỹ,Ygt; Θ, θ) (12)

where Θ = [P,Q] which contains learnable multiple text prompts P and the linear layer Q, Lseg
denotes the segmentation loss combining different three losses. Lce, Lfc and Ldc are the cross entropy
loss, the focal loss, and the dice loss, with λce, λfc, and λdc as corresponding hyper-parameters,
respectively. Y ∈ RHW×K and Ỹ ∈ RHW×K are the predictions of our model which is defined by
(9) and (10), respectively. Ygt ∈ RHW×K is the ground-truth label. The details of the loss function
are described in Supplementary material C.

5 EXPERIMENTS

5.1 DATASET AND EVALUATION METRIC

Dataset To evaluate the effectiveness of our proposed method, we carry out extensive experiments
on three challenging datasets: PASCAL VOC 2012 (PAS20) (Everingham & Winn, 2012), PASCAL
Context (PC-59) (Mottaghi et al., 2014) , and COCO-Stuff164K (COCO-170) (Caesar et al., 2018).
For fair comparison with previous methods (Bucher et al., 2019; Xu et al., 2021; Ding et al., 2022;
Zhou et al., 2022a;d), we follow the identical protocol of dividing seen and unseen classes for each
dataset. The dataset details are described in Supplementary material D.

Evaluation Metric We measure the mean of class-wise intersection over union (mIoU) on both
seen and unseen classes, indicated as mIoU(S) and mIoU(U), respectively. We adopt the harmonic
mean IoU (hIoU) of seen and unseen classes as a primary metric. More details are deferred to
Supplementary material E.

5.2 IMPLEMENTATION DETAILS

We implement the proposed method on the open-source toolbox MMSegmentation (Contributors,
2020) 1. We conduct our algorithm on at most 8 NVIDIA A100 GPUs with batch size of 16. We
adopt the pre-trained CLIP ViT-B/16 model2 as the frozen encoder module for all the experiments.
We set the number of multiple text prompts as N = 4, context length to 8, and MPOT layers L = 4.
For the image decoder, we adopt FPN which is equipped with atrous spatial pyramid pooling (ASPP)
(Chen et al., 2017) module. Further details of implementation, the image decoder, and the component
analyses of related hyper-parameter are deferred to Supplementary material F, G, and H, respectively.

5.3 EXPERIMENTAL RESULTS

Zero-shot Semantic Segmentation Quantitative zero-shot segmentation results are presented
in Table 2. Our ZegOT achieves the SOTA performance for PAS20 and PC-59, and showed the
second-best performance for COCO-170. Figure 3 shows the qualitative zero-shot segmentation
performance of our ZegOT and other previous approaches. Our method provides segmentation maps
for unseen class objects most accurately compared to the previous SOTA methods (see the red arrows).
More visual results are provided in Supplementary material N. To further evaluate the generalization
capabilities of ZegOT, we performed a cross-domain experiment between COCO-170 and PC-59,
as shown in Table 3. Our method demonstrates the great capability of generalization performance
compared to the previous SOTA method in both experimental setting.

1https://github.com/open-mmlab/mmsegmentation
2https://github.com/openai/CLIP
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Table 2: Quantitative comparison of zero-shot semantic segmentation performance of ZegOT with
baseline methods on PAS20, PC-59, and COCO-Stuff 164K datasets. The bold indicates the best
performance and the underline indicates the second best performance, respectively.

Methods PASCAL VOC 2012 (PAS20) PASCAL Context (PC-59) COCO-Stuff164K (COCO-170)

mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU

CaGNet (Gu et al., 2020) 30.3 78.6 43.7 16.3 36.4 33.5 13.4 35.6 19.5
SPNet (Xian et al., 2019) 25.8 77.8 38.8 - - - 26.9 34.6 30.3
STRICT (Pastore et al., 2021) 35.6 82.7 49.8 - - - 30.3 35.3 32.6
zsseg (Xu et al., 2021) 78.1 79.2 79.3 - - - 43.6 38.1 41.5
MaskCLIP+ (Zhou et al., 2022a) 88.1 86.1 87.4 66.7 48.1 53.3 54.7 39.6 45.0
ZegCLIP (Zhou et al., 2022d) 89.9 92.3 91.1 68.5 46.8 55.6 59.9 40.7 48.5
FreeSeg(Qin et al., 2023) 82.6 91.8 86.9 - - - 49.1 42.2 45.3
MVP-SEG+(Guo et al., 2023) 87.4 89.0 88.0 67.5 48.7 54.0 55.8 39.9 45.5

ZegOT (Ours) 90.9 91.9 91.4 72.5 50.5 59.5 57.5 38.7 46.2

Figure 3: Qualitative segmentation performance comparison with the previous SOTA models. The
green tag indicates unseen classes, while the yellow tag indicates seen classes.

MPOT-driven Text Prompt-Image Alignment In Figure 1, we validate the effectiveness of MPOT
by visualizing each text prompt-related score map. We analyze the contribution of MPOT to produce
better segmentation results for both seen and unseen categories, as further displayed in Figure 6. To
further explore the origin of superior zero-shot segmentation performance of our ZegOT, we further
visualize the distribution of the learned text embeddings using t-SNE projection (Hinton & Roweis,
2002) in Figure 4. We plot the average of prompted text embeddings for each class from the PAS20,
which are represented by different colors. With MPOT, we observe that prompted text embeddings for
every class are diversely dispersed, whereas the baseline method shows a significantly concentrated
distribution. The result suggests that MPOT is helpful in distinguishing each class’s attributes for both
seen and unseen categories, leading to performance improvements in prompted class name-guided
semantic segmentation.

5.4 ABLATION STUDIES

Learnable Module To demonstrate the effectiveness of our ZegOT framework, we conduct exper-
iments by varing learnable modules within our framework as in Table 4(a). We firstly replace the
learnable text prompt P with hand-crafted text prompts. Compared to our model, using hand-crafted
prompts achieves inferior performance with large margins for both the unseen and seen classes.
We further alter each of frozen CLIP encoder parts to be learnable and find that fully fine-tuning
the model encoder parts resulted in a drastic segmentation performance drop on unseen classes,

8



Under review as a conference paper at ICLR 2024

Figure 4: Comparison of t-SNE projections of learned text
embedding with or without MPOT.

Method Source Target

PC-59

ZegFormer COCO-170
(Seen)

36.1
ZegCLIP 41.2

Ours 41.3
Method Source COCO-170

ZegCLIP PC-59
(Seen)

16.7
Ours 17.8

Table 3: Generalization perfor-
mance on cross-domain datasets.

Table 4: Ablation studies for the main proposed component.

Learnable module Matching method PASCAL VOC 2012 (PAS20) PASCAL Context (PC-59)

mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU

Ours Dθ, P MPOT 90.9 91.9 91.4 72.5 50.5 59.5

(a)
Dθ, (Hand-crafted P)

MPOT
78.1 83.7 80.8 54.9 33.5 41.6

Dθ, P , Eimg 23.1 93.8 37.1 66.0 56.9 61.1
Dθ, P , Eimg, Etxt 17.7 92.8 29.7 65.4 56.7 60.7

(b) Dθ, P
✗ 85.4 91.9 88.5 65.0 51.0 57.1

Self-attention 84.4 91.4 87.7 59.3 50.6 54.6
Bipartite 82.3 89.0 85.7 57.6 46.7 51.6

Note: Dθ; Image decoder, P; Text prompts, Eimg; CLIP image encoder, Etxt; CLIP text encoder

while it produced superior performance for seen classes. This could be attributed to the potential
overfitting issue during fine-tuning. The experimental results support the idea that our superior
zero-shot segmentation performance originates from the incorporation of the frozen CLIP encoders
with only a few learnable modules, thereby avoiding overfitting on seen classes. Further ablation
studies on learnable parameters are provided in Supplementray material I.

Matching Method In Table 4(b), we further ablate our proposed text-pixel matching method. Our
model without MPOT shows inferior performance on unseen classes with margins of above 5%
mIoU, which supports that MPOT efficiently helps the learnable prompts P to learn meaningful
features from seen classes and to transfer the knowledge to segment unseen class objects. Then, we
alter our MPOT with two comparative matching methods: Bipartite (Kuhn, 1955) and Self-attention
algorithm (Vaswani et al., 2017). We find that both methods show inferior performance for unseen
classes by margins of above 6% mIoU. The Self-attention method inherently contains learnable
projection layers, which yields the model to be overfitted on seen class knowledge. Whereas, MPOT
needs no additional trainable parameters, thus our framework can avoid overfitting issues. The
bipartite matching performs a one-to-one assignment, where each pixel can be activated for only one
prompt, thus it may overlook significant semantic features that can be shared among multiple text
prompts. In contrast, MPOT adapts a one-to-many assignment, where each pixel can be partially
assigned to multiple prompts, thus it maximizes prompt tuning efficiency by preserving overlapping
features among multiple text prompts. The ablation study results demonstrate that our ZegOT
achieves the best unseen classes performance by optimally transporting multiple text prompts for
dense prediction in the zero-shot segmentation setting.

6 CONCLUSION

In this work, we proposed ZegOT, a novel framework for zero-shot semantic segmentation, which
thoroughly leverages the aligned vision-language knowledge of a frozen visual-language model
by optimizing the multiple text prompts. We also incorporated optimal transport theory into our
framework to train multiple text prompts for representing different semantic properties of visual
inputs. We demonstrated that our ZegOT outperformed zero-shot segmentation approaches on various
benchmark datasets. Our in-depth analyses also confirmed that our ZegOT effectively delivered
performance gains on both seen and unseen classes.
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Ethics Statement We appreciate the valuable research contributions that have supported our study.
In our paper, we have taken measures to address potential privacy concerns related to visual results
involving individuals. To safeguard privacy, we have anonymized all individuals in our figures by
covering their faces.

Reproducibility We will release our source code in the final version for reproduction. Additionally,
comprehensive details regarding hyperparameters and algorithms for our proposed method can be
found in both the main paper and supplementary material.

Limitation Our model relying on a small number of learnable parameters has limited room for
performance improvement for large-scale datasets. We expect this may be solved in a future study, by
introducing an advanced MPOT, which balances the trainable parameters and performance.
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A ALGORITHM OF ZEGOT

Algorithm 1: Multiple Prompt Optimal Transport Solver with Sinkhorn algorithm

Given: The feature map size M = HLWL, the number of prompts N , µ = 1M/M ,
ν = 1N/N , the score map S ;

Input :The cost matrix C = 1− S, hyper-paramter ϵ, the max iteration tmax;
Initialization: K = exp(−C/ϵ), t← 1, b0 = 1;

1 while t ≤ tmax and not converge do
2 at = µ / (Kbt−1);
3 bt = ν / (K⊤at);

Output :Optimal transport plan T ∗ = diag(a)tKdiag(b)t ;

B ZERO-SHOT SEGMENTATION TRAINING PROCESS.

By following the general transductive zero-shot semantic segmentation (ZS3) setting (Zhou et al.,
2022a;d), we divide the entire training procedure into two phases, as described in Algorithm 2.

Algorithm 2: ZegOT Pseudo-code
1 Input: ZegOT model Zt at iteration t, The subset of seen classes CS and unseen classes CU , e.g,
CS ∩ CU = ∅. The training dataset D = {(x,Ygt)|x ∈ X ,Ygt

hw ∈ CS}, the training iterations for
seen class-guided learning Tg , and self-training Ts;

2 Phase 1: Seen class-guided learning
3 for t = 1, 2, · · · , Tg do
4 Y, Ỹ ← model prediction from Zt(x);
5 L ← Lseg(Y,Ygt) + Lseg(Ỹ,Ygt);
6 Zt+1 ← AdamW model parameter update;
7 Phase 2: Self-training
8 for t = Tg + 1, Tg + 2, · · · , Tg + Ts do
9 Y, Ỹ ← model prediction from Zt−1(x);

10 if Ygt
hw ̸∈ CS then

11 Ygt
hw = argmax

c∈CU

((λY + (1− λ)Ỹ)hw = c|x);

12 Y, Ỹ ← model prediction from Zt(x);
13 L ← Lseg(Y,Ygt) + Lseg(Ỹ,Ygt);
14 Zt+1 ← AdamW model parameter update;

Phase 1. Seen Class-guided Learning The model is trained utilizing the ground truth label Ygt,
which only contains pixel-wise labels Ygt

hw for seen classes CS , and the rest labels are ignored for
calculating losses. Tg is fixed as 20% of total training iterations.

Phase 2. Self-training For the rest of the training iterations, the model self-generates each pixel
values of the ground truth label Ygt

hw which not belongs to CS , at every training iteration. For large-
scale datasets with complex classes, e.g., PASCAL Context and COCO-Stuff164K, we firstly fix t of
Zt−1 as Tg to ensure stability in the label generation process, and utilize ZTg−1 until t reaches 50% of
total training iterations. For the rest of the self-training period, t of Zt−1 is updated simultaneously.
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C DETAILS OF LOSS FUNCTION

As discussed in Section 4.3, we combine three different losses, including the focal loss based on
Cross Entropy (CE) loss, and the dice loss, which are given by:

Lce = −
1

HW

HW∑
i=1

Ygt
i log(ϕ(Yi))

+(1−Ygt
i ) log(1− ϕ(Yi)),

(13)

Lfocal = −
1

HW

HW∑
i=1

Ygt
i (1− σ(Yi))

γ log(σ(Yi))

+(1−Ygt
i )σ(Yi)

γ log(1− σ(Yi)),

(14)

Ldice = 1−
2
∑HW

i=1 Ygt
i Yi∑HW

i=1 Ygt
i

2
+
∑HW

i=1 Yi
2
, (15)

(16)

where Y is the model decoder outputs, Ygt is the ground truth label, σ(·) is Sigmoid operations,
γ is a hyper-parameter to balance hard and easy samples, which is set to 2. Throughout the entire
experiments, λce, λfocal and λdice are set to 1, 20, and 1, respectively.

D DETAILS OF DATASET

We utilize a total of three datasets, i.e., PASCAL VOC 2012 (Everingham & Winn, 2012), PASCAL
Context (Mottaghi et al., 2014), and COCO-Stuff164K (Caesar et al., 2018). We divide seen and
unseen classes for each dataset, following the settings of previous methods (Bucher et al., 2019; Xu
et al., 2021; Ding et al., 2022; Zhou et al., 2022a;d). PASCAL VOC 2012 consists of 10,582 / 1,449
images with 20 categories, for training / validation. The dataset is divided into 15 seen and 5 unseen
classes. PASCAL Context is an extensive dataset of PASCAL VOC 2010 that contains 4,996 / 5,104
images for training / test with 60 categories. The dataset is categorized into 50 seen and 10 unseen
classes. COCO-Stuff 164K is a large-scale dataset that consists of 118,287 / 5,000 images for training
/ validation with 171 classes. The dataset is categorized into 156 seen and 15 unseen classes.

E DEFINITION OF HARMONIC MEAN IOU

Following the previous works (Xu et al., 2021; Zhou et al., 2022a;d), we define harmonic mean IoU
(hIoU) among the seen (S) and unseen (U) classes as:

hIoU =
2 ∗mIoU (S) * mIoU (U)

mIoU (S) + mIoU (U)
(17)

F IMPLEMENTATION DETAIL

We further declare the implementation detail for our work. Input image resolution is set as 480×480
for PASCAL Context, and 512×512 for the rest of the datasets. The context length is set to 8 and the
weight λ for the score map (11) is set to 0.2. We choose the lightest training schedule, which is 20K /
40K / 80K for PASCAL VOC 2012 / PASCAL Context / COCO-Stuff-164K.

G NETWORK COMPONENT

Image Decoder Our model output combines the refined score map and the decoder output as in (11).
While the score map itself can be the final output, incorporating only the limited number of trainable
parameters results in suboptimal performance. To overcome this limitation we introduce the learnable
image decoder, which is designed to predict Y in (11). The image decoder is composed of total three
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operators, e.g., Feature Pyramid Network (FPN) (Lin et al., 2017), atrous spatial pyramid pooling
(ASPP) (Chen et al., 2017) and upsampling operator U , where role of each component is described in
Table 5. We further conduct ablation studies on decoder outputs as network logit in Table 6.

Table 5: The detail of image decoder.

Decoder components Role

FPN Merges intermediate score maps to improve the quality of features.
ASPP Conducts parallel convolutions with different atrous rate to cover a larger receptive field.
Upsampling operator Matches spatial resolution of the output features with that of the label.

Table 6: Ablation studies of combinations of the network outputs.

Method Score
map

Decoder
output

PASCAL VOC 2012 PASCAL Context COCO-Stuff164K

mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU

Ours ✓ ✓ 90.9 91.9 91.4 72.5 50.5 59.5 53.9 37.0 43.8
(a) ✓ ✗ 88.3 89.9 89.1 67.3 45.7 54.4 46.7 30.4 36.8
(b) ✗ ✓ 89.8 91.7 90.8 69.2 47.2 56.1 51.5 34.8 41.5

Global Text Alignment (GA) The pixel embeddings fL inherently contain the text-image aligned
knowledge of CLIP. However, when pre-training, the global image embedding f̄L and the text
embeddings g comprise the cosine similarity score which is maximized through contrastive learning
so that f̄L contains richer text-pixel aligned information than fL. Thus, we further exploit f̄L in the
GA module to compute the score map S ∈ RHLWL×KN by employing an idea of relation descriptor
method (Zhou et al., 2022d) in (5).

Deep Feature Alignment (DFA) Since ZegOT adopts FPN, we fully align the extracted interme-
diate pixel embeddings from the frozen image encoder with the refiend text embedding gGA. In
other words, we extend the idea of GA to all the intermediate pixel embeddings, i.e., {Si}Li=1, where
Si ∈ RHLWL×KN is the i-th score map. Through the simple arithmetic calculation, the entire hidden
image embeddings extracted from the frozen CLIP encoder can be deeply aligned with both the
global image and text embeddings without any further learnable parameters.

Figure 5: Bar plots of the average text-pixel
alignment versus the image encoder layer in-
dex given a specific class name with or with-
out DFA.

To demonstrate the effectiveness of the proposed
DFA, we conduct in-depth analysis comparing the
strength of feature alignment with or without DFA
on PASCAL VOC 2012 dataset. Figure 5 shows the
bar plot of average text-pixel alignment given a spe-
cific class name over the image encoder layer index.
To calculate the strength of feature alignment, we
extract the score maps {Si|Li=1} for a certain class
name (e.g., dog) from the trained model and calcu-
late the average Si along entire pixels for each image
encoder layer. We find that the strength of feature
alignment with DFA is much higher compared to that
computed through the model without DFA in almost
layers. In particular, the average value of text-pixel
alignment significantly increases at the earlier layers
and the final layer. The result confirms that our model
with DFA effectively boosts the text-pixel alignment
given intermediate pixel embeddings from the frozen
CLIP encoder.

H COMPONENT ANALYSIS

To study the effects of hyper-parameters of network components on the zero-shot segmentation
performance, we conduct the component analysis in Table 7 with varying hyper-parameters including:
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MPOT layers (L), number of text prompts (N ), context length (C), and balance factor (λ). Firstly, we
investigate the effect of incorporating layers L for the MPOT solver, i.e., layers of the frozen image
encoder that inserted to MPOT. Although inserting multiple layers to MPOT boosts performance,
it also causes performance trade-off between seen and unseen classes segmentation. We find that
introducing the MPOT with 8 to 12-th layers of the image encoder achieves the best performance,
which becomes the default setting of ZegOT for the entire experiments. We further explore the
effect of the depth of MPOT solver, i.e., ranges of the frozen image encoder layers that inserted to
MPOT. Further, we observe the segmentation performance by varying the total number N of the
multiple text prompts. We empirically find that ZegOT performs the best when N ≥ 4, but the
hIoU performance drops when N is increased over certain threshold, which implies that fewer text
prompts are insufficient to learn comprehensive semantic features, whereas too many text prompts
complicate the optimal transport matching process. Moreover, we empirically find that the large
context length (C) is limited to take significant effect on segmentation performance, e.g, when
C = 16 the performance on seen classes is the best, but the performance on unseen classes drops.
Since we consider the hIoU as a major metric, we adopt C = 8 as the default setting. Lastly, we
empirically search the balance factor λ for (11) to control weight between the image decoder outputs
and the score maps. we observe that our method is robust for various parameter values, and we
observed that setting lambda to 0.8 yields the best performance for our method.

Table 7: Component analysis of hyper-parameters. # denotes the hyper-parameters of configurations.
Checkmark ✓ indicates the default configuration of ZegOT.

Components # PASCAL VOC 2012 Components # PASCAL VOC 2012

mIoU (U) mIoU (S) hIoU Ours mIoU (U) mIoU (S) hIoU Ours

MPOT
layers

(L)

12 91.8 87.3 89.5
Balance
factor

(λ)

1 - - 88.9
10-12 91.4 87.3 89.3 0.9 - - 91.3
8-12 90.9 91.9 91.4 ✓ 0.8 - - 91.4 ✓
4-12 91.6 90.2 90.9 0.7 - - 91.3
1-12 92.1 86.5 89.3 0.6 - - 91.1

Text
prompts

(N)

2 82.9 91.6 87.0 Context
lengths

(C)

8 90.9 91.9 91.4 ✓
4 90.9 91.9 91.4 ✓ 16 89.6 92.2 90.9
6 89.6 91.8 90.7 32 90.3 91.9 91.1

I ABLATION STUDIES ON PIXEL-TEXT PROMPTS ALIGNMENT.

We conduct ablation experiments to evaluate the alignment of pixel-text prompts as shown in
Table 8. (a) To investigate the proposed framework’s synergistic effect, we replace the learnable text
prompt with hand-crafted prompts. Our model, equipped with all proposed components, achieves
superior performance with margins of 10.6 % hIoU and 7.9 % hIoU for PASCAL VOC 2012 and
PASCAL Context dataset, respectively. (b) We further ablate the MPOT module and the results
show no significant difference to those of (a), which implies that our MPOT module can boost the
segmentation performance when incorporated with learnable text prompts as shown in Table 8-Ours.
(c) Lastly, as discussed in the Section G, we examine the impact of the global text-alignment (GA)
layer. Interestingly, when using hand-crafted prompts, removing the GA layer leads to a significant
decrease in performance with margins of 50.3 % hIoU, and 31.4 % hIoU for each PASCAL VOC
2012, and PASCAL Context dataset, respectively. These findings validate the effectiveness of the
proposed framework, which incorporates learnable text prompts with the GA layer and the MPOT
solver, by optimally aligning text-pixel embeddings to achieve the best performance in the zero-shot
segmentation task.

J ANALYSIS ON THE EFFICIENCY OF MPOT

To analyze the efficiency of MPOT, we measured the total memory latency and training complexity
(GFLOPS) with and without MPOT. As described in Table 9, our method with MPOT yields
outperforming results by sacrificing only a small amount of computational cost. Additionally, we
measured the actual runtime for inference on an NVIDIA GeForce RTX 3090 using the PASCAL
VOC dataset. Despite the slight increase in runtime latency, our method yields superior performance
compared to the method without MPOT, as shown in Table 9.
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Table 8: Ablation studies of the network components

Method MPOT GA Text prompt PASCAL VOC 2012 PASCAL Context

mIoU (U) mIoU (S) hIoU mIoU (U) mIoU (S) hIoU

Ours ✓ ✓ Learnable 90.9 91.9 91.4 72.5 50.5 59.5
(a) ✓ ✓ Hand-crafted 78.1 83.7 80.8 54.9 33.5 41.6
(b) ✗ ✓ Hand-crafted 77.8 83.7 85.4 54.7 33.4 41.4
(c) ✗ ✗ Hand-crafted 33.9 36.3 35.1 15.2 7.5 10.0

Furthermore, we compared the previous approaches in terms of actual runtime for inference. Despite
the slight increase in runtime latency compared to ZegCLIP, our method is superior compared to the
method including Zsseg, and ZegFormer as indicated in Table 10.

Table 9: Comparison of memory cost and inference time.

Method
Training memory

latency (M)
Training Complexity

(GFLOPS)
Actual runtime for inference

(images per second)

Without MPOT 13028 147.1 9.6
With MPOT 13914 148.9 8.9
(+computational cost) (+6.8%) (+1.2%) -

Table 10: Comparison of inference time to previous approaches.

Method Actual runtime for inference
(images per second)

Zsseg 4.24
ZegFormer 6.86
ZegCLIP 10.8
Ours 8.9

K ANALYSIS ON NORMALIZATION METHOD OF MPOT

The purpose of utilizing Sigmoid normalization is to ensure stable calculations in conjunction with
the geometric mean. To further support our claim, we provide additional comparative results with the
following cases: 1) Inferencing the pre-trained model performance using Min-max normalization
to scale the values within the range [0,1], and 2) Training the model using Min-max normalization.
The results in Table 11 validate the robustness and effectiveness of the Sigmoid normalization used
within our framework.

Table 11: Comparison of Normalization method of MPOT

Normalization method Pascal VOC 2012

mIoU (U) mIoU (S) hIoU

Sigmoid (Ours) 90.9 91.9 91.4
1) Min-max (inference-only) 90.1 91.9 91.0
2) Min-max (train & inference) 37.4 91.7 53.1
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L FURTHER EXPERIMENTS ON INDUCTIVE SETTING

In general, zero-shot semantic segmentation performance in the inductive setting is quite limited
to beat the supervised methods. In this paper, we focus on improving zero-shot segmentation per-
formance which can be comparable to that of the supervised learning methods, thus we conduct
experiments under the transductive setting. Nevertheless, we have implemented the proposed frame-
work in the inductive setting and proved the comparable results to SOTA methods as in the Table 12.

Table 12: Performance comparison for the inductive setting.

Method Pascal VOC 2012

mIoU (U) mIoU (S) hIoU

ZegFormer 63.6 86.4 73.3
Zsseg 72.5 83.5 77.6
ZegCLIP 77.8 91.9 84.3
Ours 71.6 86.5 78.4

M EXPERIMENT FOR INCORPORATING MPOP AS A PLUG-IN MODULE

We conducted additional experiments to analyze the effectiveness of MPOT as a plug-in module by
integrating it into ZegCLIP. Due to the intrinsic nature of the framework, which includes the network
architecture, we incorporated MPOT as an additional pipeline for computing loss. Adhering to the
original scheme of ZegCLIP, we used multiple hand-crafted prompts, maintaining the same number
of prompts as 4. The comparison results are presented in Table 13, demonstrating that our proposed
MPOT serves as a plug-in module, further providing an extra gain for the SOTA model.

Table 13: Performance of MPOT as a plug-in module for ZegCLIP. † indicates the reproduced result
for ZegCLIP.

Method
Multiple

Text Prompts MPOT PASCAL VOC 2012

mIoU (U) mIoU (S) hIoU

ZegCLIP ✗ ✗ 89.9 92.3 91.1

ZegCLIP† ✗ ✗ 89.7 92.2 90.9
(a) ✓ ✗ 92.3 93.5 92.9
(b) ✓ ✓ 93.0 92.8 92.9

N ADDITIONAL VISUAL RESULTS

We provide additional visual results. Figure 6 shows further visual results of MPOT module con-
tribution to segmentation. Figure 7 show qualitative zero-shot segmentation performance of our
ZegOT for PASCAL Context. For PASCAL Context dataset, we reproduce the segmentation results
using a publically available model weight (Zhou et al., 2022a). Our ZegOT demonstrates superior
performance in precisely sectioning boundaries of unseen objects, unlike previous SOTA method
which fail to classify the category (see the red arrows). Figure 8 show further qualitative zero-shot
segmentation performance for COCO-Stuff164K dataset. We reproduce the segmentation results
using publically available weights (Zhou et al., 2022a;d).
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Figure 6: Further visual results of text-pixel alignment of MPOT module for both unseen and seen
classes. The green tag indicates unseen classes, while the yellow tag indicates seen classes.
Without proposed MPOT, all the learned multiple prompts P i are cohered and their related score
maps resemble each others. On the other hand, with our MPOT, each P i is diversely projected and
their related score map focuses on different semantic attributes. As results, the final score map with
MPOT effectively focuses on the ground truth regions compared to that of without MPOT.

Figure 7: Qualitative zero-shot segmentation results of PASCAL Context dataset. The green tag
indicates unseen classes. Red arrows indicate superior segmentation results of our ZegOT by precisely
sectioning boundaries of unseen objects compared to the previous SOTA method.
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Figure 8: Qualitative zero-shot segmentation results of COCO-Stuff164K dataset. The yellow tag
indicates seen classes, while the green tag indicates unseen classes. Our ZegOT precisely sections
boundaries of unseen objects compared to the previous SOTA method (see red arrows in 1st row).
Moreover, our ZegOT effectively segments tiny cat category that does not even belong to the ground
truth (see red arrows in 4th row), and properly segment the person category within the small-sized
portraits (see red arrows in 5th row).
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