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ABSTRACT

Natural data observed in Rn is often constrained to an m-dimensional manifold
M, where m < n. Current probabilistic models learn this manifold by mapping
an m-dimensional latent variable through a neural network fθ : Rm → Rn. Such
procedures, which we call pushforward models, incur a straightforward limitation:
manifolds cannot in general be represented with a single parameterization, meaning
that attempts to do so will incur either computational instability or the inability
to learn probability densities within the manifold. To remedy this problem, we
propose to modelM as a neural implicit manifold: the set of zeros of a neural
network. To learn the data distribution withinM, we introduce constrained energy-
based models, which use a constrained variant of Langevin dynamics to train
and sample within a learned manifold. The resulting model can be manipulated
with an arithmetic of manifolds which allows practitioners to take unions and
intersections of model manifolds. In experiments on synthetic and natural data,
we show that constrained EBMs can learn manifold-supported distributions with
complex topologies more accurately than pushforward models.

1 INTRODUCTION

Here we focus on the common statistical task of estimating an unknown probability distribution
P ∗ using a set of datapoints {xi} ⊂ Rn sampled from P ∗. Commonly, the distribution of interest
lies on an m-dimensional Riemannian submanifoldM embedded in the ambient space Rn, with
m < n. For example, data from engineering or the natural sciences can be manifold-supported due to
smooth physical constraints (Mardia et al., 2007; Boomsma et al., 2008; Brehmer & Cranmer, 2020).
In general, the underlying submanifoldM may be unknown a priori, which calls for us to design
models which learnM in the process of learning P ∗.

The typical paradigm for modelling distributions on learned manifolds is a pushforward model: a
neural parameterization fθ : Rm → Rn trained to transform an m-dimensional prior into a flexible
distribution on the data manifold embedded in Rn (e.g. Arjovsky et al. (2017); Tolstikhin et al. (2018);
Arbel et al. (2021)). These techniques can generate high-resolution images, but are insufficiently
flexible for learning distributions in settings where the true manifold structure is of interest.

Modelling a manifold as the image of a single mapping fθ is topologically restrictive. For example,
many approaches encourage an encoder gϕ and decoder fθ to mutually invert each other at each
datapoint (e.g. Donahue et al. (2017); Dumoulin et al. (2017); Xiao et al. (2019)), an objective we
can precisely reinterpret as training fθ to become a diffeomorphism betweenM and a subset of the
latent space Rm. This specification conflicts with the fact that, in general,M may have a complex
topology which is not diffeomorphic to any such subset, exposing fθ to a frontier of tradeoffs between
expressivity and numerical stability (Cornish et al., 2020; Behrmann et al., 2021; Salmona et al.,
2022). Even when fθ is not a diffeomorphism, its continuity dictates many topological properties of
the model manifold, such as connectivity and the number of holes (Munkres, 2000).

In this paper we learn data manifolds with a much broader class of topologies using a novel approach
outlined in Figure 1. We first learn a manifold implicitly as the zero set of a neural network Fθ,
controlling the manifold dimension by regularizing the rank of its Jacobian. We then model the
density within the manifold using a constrained energy-based model Eψ, which uses constrained
Langevin dynamics to sample points on the learned manifold. We show that constrained energy-based
models on manifolds can be composed with each other akin to standard energy-based models (Hinton,

1



Under review as a conference paper at ICLR 2023

Figure 1: In the top row, our method is depicted on simulated circular data from a von Mises
distribution. From left to right: ground truth sample of von Mises data, a manifold-defining function
Fθ learned from the data, and an ambient energy Eψ trained with constrained Langevin dynamics
on the learned manifold. In the bottom row, manifold learning and density estimation results from
the resulting model are juxtaposed with a pushforward baseline. From left to right: the ground truth,
a pushforward energy-based model, and a constrained energy-based model (ours). By defining the
manifold with a constraint Fθ(x) = 0, our method can model data with non-trivial topologies.

2002): manifold-defining functions Fθ along with their energies Eψ can be combined to take unions
and intersections of data manifolds in what we call manifold arithmetic. We demonstrate theoretically
and empirically that the proposed model can learn manifold-supported distributions more accurately
than the pushforward paradigm prevalent in the current literature.

2 BACKGROUND AND RELATED WORK

2.1 MODELLING MANIFOLD-SUPPORTED DATA

Manifold structure As above, suppose {xi} is a set of samples drawn from probability measure
P ∗ supported onM, an m-dimensional Riemannian submanifold of Rn. We focus on the case where
m < n, so thatM is “infinitely thin” in Rn, meaning P ∗ does not admit a probability density with
respect to the standard Lebesgue measure. However, we may assume it has a density p∗(x) with
respect to the Riemannian measure ofM. We elaborate on this setup in Appendix A.

Models for manifold-supported data have long been of interest in statistics, machine learning, and
various applications (Diaconis et al., 2013; McInnes et al., 2018). In particular, a number of past
works have explored Monte Carlo methods on manifolds (Brubaker et al., 2012; Byrne & Girolami,
2013; Zappa et al., 2018), which we put to use here. However, the problem of simultaneously learning
a submanifold and an underlying density has only become of interest in tandem with recent advances
in deep generative modelling (Brehmer & Cranmer, 2020). To our knowledge, all such models fall
under the umbrella of pushforward models.

Density estimation with pushforward models When manifold-supported, P ∗ is most commonly
modelled as the pushforward of some latent distribution:

z ∼ pψ(z), x = fθ(z), (1)
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where fθ : Rm → Rn is a smooth mapping given by a neural network and z ∼ pψ(z) is a (possibly
trainable) prior on m-dimensional latent space. The resulting model distribution Pθ,ψ is supported on
the model manifold1 Mθ := fθ(Rm). This framework encompasses generative adversarial networks
(GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017), injective flows (Brehmer & Cranmer, 2020;
Caterini et al., 2021), and various regularized autoencoders (Makhzani et al., 2016; Tolstikhin et al.,
2018; Ghosh et al., 2020; Kumar et al., 2020). Since we take the support to be an m-dimensional
submanifold, we rule out bijective normalizing flows (Rezende & Mohamed, 2015; Dinh et al., 2017)
and variational autoencoders (VAEs) (Kingma & Welling, 2014), unless pθ(x|z) is a point mass.

In recent work, Loaiza-Ganem et al. (2022) outline a general procedure for manifold learning and
density estimation with pushforward models, which separates modelling into two components: a
generalized autoencoder, which embeds the data manifold into m-dimensional latent space, and
a density estimator, which learns the density within the manifold. The generalized autoencoding
step treats fθ as a decoder, pairing it with a smooth encoder gϕ : Rn → Rm, and trains them to
learnM by mutually inverting each other on the data,2 such as by minimizing a reconstruction loss
Ex∼P∗ ||x− fθ(gϕ(x))||2. The density estimator pψ(z) is then fitted to the encoded data {gϕ(xi)}
via maximum-likelihood. Given a datapoint x ∈M, two-step models estimate p∗(x) as follows:

pθ,ψ(x) = pψ(z)
∣∣det J⊤

fθ
(z)Jfθ (z)

∣∣−1/2
, (2)

where z := gϕ(x) is the encoding of x and Jfθ is the Jacobian of fθ with respect to its inputs z. The
fidelity of this estimate depends on the condition fθ(gϕ(x)) = x for all x ∈M; in other words, gϕ
must be a right-inverse of fθ onM. Injective flow models (Brehmer & Cranmer, 2020; Caterini et al.,
2021; Kothari et al., 2021; Ross & Cresswell, 2021) enforce invertibility onMθ with architectural
constraints; other two-step models (Xiao et al., 2019; Ghosh et al., 2020; Rombach et al., 2022), like
Loaiza-Ganem et al. (2022), achieve this condition at their non-parametric optimum.

Topological challenges Despite the broad applicability of this density estimation procedure, the
requisite right-invertibility condition is effectively impossible to satisfy for general manifoldsM. If
fθ(gϕ(x)) = x for all x ∈M, then by definition, gϕ smoothly embedsM into Rm. This condition
presents an immediate topological challenge:M is an m-dimensional manifold, which in general
cannot be embedded in m-dimensional Euclidean space. In line with the strong Whitney embedding
theorem (Lee, 2013, pg.135), M might not be embeddable in Euclidean space of less than 2m
dimensions.3 It is thus impossible in the general case for the support of the prior pψ(z) to matchM
topologically; see the bottom-middle panel of Figure 1 for an example.

In the presence of this topological mismatch, one might hope thatMθ can sufficiently approximate
M with enough capacity and training. However, Cornish et al. (2020) show that when this is possible,
the bi-Lipschitz constant of fθ will diverge to infinity, rendering fθ either analytically non-injective or
numerically unstable, and making density estimates unreliable (Behrmann et al., 2021). Accordingly,
the topological woes of pushforward models cannot be “brute-forced” into submission.

Awareness of the data manifold’s topology may be necessary for downstream applications such as
defending against adversarial examples (Jang et al., 2020) or out-of-distribution detection (Caterini
& Loaiza-Ganem, 2022). In the injective normalizing flows literature in particular, there has been
interest in learning manifolds with multiple charts (Kalatzis et al., 2021; Sidheekh et al., 2022), which
are certainly more expressive than using a single chart. Thus far, such approaches require ancillary
models for inference, which can complicate density estimation, and must set the number of charts as
a hyperparameter. Multiple charts also may not overlap perfectly, misspecifying the manifold.

2.2 IMPLICITLY DEFINED MANIFOLDS

The aforementioned limitations of pushforward models stem from the inability of smooth embeddings
of Rm to characterize anything but the simplest of manifolds. A richer class of manifolds can be
defined implicitly, as given by the following fact from differential geometry (Lee, 2013, pg.105):

1Mθ may not formally be a manifold if fθ is not an embedding because the resulting image can “self-
intersect,” but this distinction can be ignored in practice for density estimation models, as we will soon justify.

2In particular, fθ becomes a left inverse of gϕ, and equivalently, gϕ becomes a right inverse of fθ .
3A naive solution would be to increase the model’s latent space dimensionality to 2m; however, this would

make the encoded data {gϕ(xi)} singular in R2m, invalidating density estimates.
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The full-rank zero set theorem Let U ⊆ Rn be an open subset of Rn, and let F :
U → Rn−m be a smooth map. If the Jacobian matrix JF of F has full rank on its zero set
F−1({0}) := {x ∈ U : F (x) = 0}, then F−1({0}) is a properly embedded submanifold of
dimension m in Rn.

In this paper, we exploit this theorem by constructing a neural network Fθ and defining a new model
manifoldMθ := F−1

θ ({0}). We call Fθ the manifold-defining function (MDF) ofMθ. We refer
to such manifolds as implicitly defined or implicit. These are not to be confused with the unrelated
term implicit generative model, which has been used to describe both energy-based models (Du &
Mordatch, 2019) and some types of pushforward models (Mohamed & Lakshminarayanan, 2016).

The zero sets of neural networks have been employed with great success for a special type of manifold:
3D shapes (Niemeyer & Geiger, 2021). An active subcommunity has formed around learning implicit
3D shapes with varying types of supervision, such as a priori shape information (Chen & Zhang,
2019; Mescheder et al., 2019; Park et al., 2019) or 2D images of the object (Niemeyer et al., 2020).
For our context, Gropp et al. (2020) propose the most relevant method, which learns a coherent shape
from a point cloud without supervision by regularizing gradients. We can reinterpret this as manifold
learning, but it does not readily generalize to submanifolds where n > m+ 1. Here we propose a
way to fit Fθ to data manifolds of any dimension m embedded in any dimension n ≥ m.

2.3 ENERGY-BASED MODELS

Energy-based models (EBMs) have a long history in machine learning (LeCun et al., 2006) and
physics (Gibbs, 1902), but Du & Mordatch (2019) introduced the first deep EBM for generative
modelling. Notably, they use Langevin dynamics (Welling & Teh, 2011), a continuous MCMC
algorithm, to generate samples. Training strategies and applications for EBMs have since become
popular in the literature (Grathwohl et al., 2019; 2020). In particular, Xiao et al. (2021) model an
EBM in the latent space of a VAE, but its training procedure maximizes full-dimensional likelihoods,
making it unsuitable for density estimation on manifolds. Che et al. (2020) and Arbel et al. (2021)
construct pushforward EBMs by using GAN discriminators to refine the generator’s distribution;
these models produce distributions on manifolds, but do not admit density estimates.

3 METHOD

3.1 NEURAL IMPLICIT MANIFOLDS

Figure 2: Manifold defining functions Fθ trained with-
out regularizing JFθ . On the left, a regular neural net-
work, has become completely flat; F−1({0}) is the
entire space. On the right is the left-inverse of an injec-
tive flow, whose Jacobian has full rank analytically, but
becomes numerically non-injective. These should be
contrasted to the second pane of Figure 1.

Let Fθ : Rn → Rn−m be a smooth neural
network with parameters θ; our goal is to
optimize it to become a manifold-defining
function forM, the data manifold. Fθ thus
needs to meet two conditions:

1. Fθ(x) = 0 for all x ∈M.

2. JFθ (x) has full rank for all
x ∈M.

Since M is the support of P ∗, condition
1 is encouraged by optimizing toward the
constraint Ex∼P∗ ||Fθ(x)|| = 0, which we
achieve by minimizing Ex∼P∗ ||Fθ(x)||2.

We can interpret the 3D shape objective of Gropp et al. (2020) as optimizing for condition 2 by
bounding the L2 norm of the gradient JFθ away from zero. However, this does not generalize to
generic numbers of dimensions. Null singular values can still be present when, for example, the
Frobenius norm or the operator norm of JFθ is bounded away from zero. To maintain full rank,
we need to bound all singular values away from zero, for which we take inspiration from Kumar
et al. (2020). Given their decoder fθ, they seek to make the Jacobian Jfθ (z) injective by bounding
||Jfθ (z)u|| away from zero for all unit-norm vectors u ∈ Rm. We can do the same, except by
bounding ||vTJFθ (x)|| away from zero for all unit-norm v ∈ Rn−m, since we seek to make JFθ (x)
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surjective.4 Combining these techniques, we propose the following loss:

L(θ) = Ex∼P∗, v∼Unif(S)

[
||Fθ(x)||2 + α

(
η − ||vTJFθ (x)||

)2
+

]
, (3)

where Unif(S) is the uniform distribution on the unit sphere S := {x ∈ Rn−m : ||x|| = 1},
( · )+ is the ReLU function, and α and η are hyperparameters determining the weight of the rank-
regularization term and the minimum singular value of JFθ , respectively. Empirically speaking,
the Jacobian regularization term obviates degeneracy in the MDF. Without regularization, Fθ will
converge towards degeneracy, even if we enforce analytical surjectivity in the Jacobian by structuring
Fθ as the left-inverse of an injective flow (Kothari et al., 2021) (Figure 2, right). The unregularized
flow sends Ex∼P∗ ||Fθ(x)||2 → 0 by bringing its singular values arbitrarily close to zero without
learning the manifold. It effectively becomes numerically non-injective, akin to observed instabilities
in bijective flows (Cornish et al., 2020; Behrmann et al., 2021).

Expressivity Making the simplifying assumption that neural networks can embody any smooth
function (Hornik et al., 1989; Csáji et al., 2001), we may compare the expressivity of neural implicit
manifolds with pushforward manifolds. Pushforward models can model densities on precisely those
manifolds which are diffeomorphic to a subset of Rm.

On the other hand, a broader class of manifolds can be modelled implicitly.M can be represented
implicitly if and only if it satisfies the technical condition that its normal bundle is “trivial” (Lee,
2013, pg.271). Non-trivial normal bundles are not commonly seen in low-dimensional examples
except in non-orientable manifolds such as the Möbius strip or Klein bottle. Though it is unclear
whether the manifolds of most natural datasets have trivial normal bundles (eg. Carlsson et al. (2008)
find a dataset of image patches to have the topology of a Klein bottle), it is certainly a much broader
class than pushforward models can capture.

Manifold arithmetic Some datasets might satisfy multiple constraints, which one might want to
learn separately before combining into a mixture or product of models. Since implicit manifold
learning can be interpreted as learning a set of constraints, neural implicit manifolds exhibit compos-
ability similar to energy-based models (Hinton, 2002; Mnih & Hinton, 2005). If F1 and F2 are MDFs
forM1 andM2 respectively, then the unionM1 ∪M2 is the zero set of the product of functions
x 7→ F1(x)F2(x). Concatenating outputs into the function x 7→ (F1(x), F2(x)) instead produces the
intersectionM1 ∩M2. We note thatM1 ∪M2 andM1 ∩M2 need not be manifolds anymore,
meaning we can combine MDFs to form complex structures that cannot be described with a single
manifold. Taking intersections and unions could, for example, be used to model conjunctions or
disjunctions of data labelled with multiple overlapping attributes (Du et al., 2020).

3.2 CONSTRAINED ENERGY-BASED MODELLING

In this section we introduce the constrained energy-based model for density estimation on implicit
manifoldsMθ. Let Eψ : Rn → R be an energy function represented by a neural network and define
the corresponding density as follows:

pθ,ψ(x) =
e−Eψ(x)∫

Mθ
e−Eψ(y)dy

, x ∈Mθ, (4)

where dy can be equivalently thought of as the Riemannian volume form or Riemannian measure
ofMθ (see Appendix A for details). Let Pθ,ψ be the resulting probability measure (we can think
of Pθ,ψ as a probability distribution characterized by both the manifoldMθ and the density pθ,ψ).
Since the energy Eψ is defined on the full ambient space Rn but the corresponding model is defined
only from its values onMθ, we refer to Pθ,ψ as a constrained energy-based model.

Having defined pθ,ψ and fixed the manifoldMθ, we seek to maximize log-likelihood on the data
via gradient-based optimization of Eψ. Since the denominator

∫
Mθ

e−Eψ(y)dy is in general an
intractable integral, we resort to contrastive divergence (Hinton, 2002):

∇ψ log pθ,ψ(xi) = −∇ψEψ(xi) + Ex∼Pθ,ψ [∇ψEψ(x)] . (5)

4Note we are here referring to a matrix as injective (resp. surjective) if it has full column (resp. row) rank.
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Importantly, the right-most term in Equation 5 is an expectation taken over Pθ,ψ , so samples from the
model are required for optimization.

Constrained Langevin Monte Carlo How can one sample from Pθ,ψ? Du & Mordatch (2019)
use Langevin dynamics, a continuous MCMC method, to sample from deep EBMs. For constrained
EBMs, standard Langevin dynamics is insufficient, as it will produce off-manifold samples from the
energy. We need a manifold-aware MCMC method.

One such method is constrained Hamiltonian Monte Carlo (CHMC), a family of Markov chain
Monte Carlo models for implicitly defined manifolds proposed by Brubaker et al. (2012). Our main
contribution in this section, aside from defining constrained EBMs, is to show that CHMC – which is
typically applied to analytically known manifolds – can be adapted to manifolds implicitly defined by
neural networks. In particular, we show how to avoid the unstable and sometimes memory-prohibitive
operation of explicitly constructing the Jacobian of Fθ, which features prominently in CHMC.

We focus on the special case of constrained Langevin Monte Carlo. Fixing a step size ε and omitting
parameter subscripts for brevity, one iteration from position x(t) to x(t+1) requires two steps:

1. Sample a momentum r ∼ N(0, In) conditioned on membership of the tangent space of
M at x(t). This can be done by sampling r′ ∼ N(0, In) and projecting onto the null
space of JF (x(t)) (written as JF for clarity):

r := r′ − JTF (JFJ
T
F )

−1JF r
′. (6)

2. Solve for the new position x(t+1) using a constrained Leapfrog step, which entails solving
the following system of equations for x(t+1) and the Lagrange multiplier λ ∈ Rn−m:

x(t+1) = x(t) + εr − ε2

2
∇xE(x(t))− ε2

2
JF (x

(t))Tλ (7)

F (x(t+1)) = 0. (8)

Now we describe how Equations 6 and 7 can be computed without constructing JFθ . With access to
efficient Jacobian-vector product and vector-Jacobian product routines, such as those available in
functorch (He & Zou, 2021), any expression in the form of JFw for w ∈ Rn or JTF v = (vTJF )

T for
v ∈ Rn−m is tractable. Furthermore, the inverse term on the right-hand side of Equation 6 can be
computed with inspiration from work in injective flows by Caterini et al. (2021) who overcome a
similar expression using the conjugate gradients (CG) routine (Nocedal & Wright, 2006; Gardner
et al., 2018; Potapczynski et al., 2021) and their forward-backward auto-differentiation trick. CG
allows us to compute expressions of the form A−1b, where A is an (n − m) × (n − m) matrix.
In particular, CG requires access only to the operation v 7→ Av, not the matrix A itself. In our
case, b = JF r

′, a Jacobian-vector product, and the operation is v 7→ JFJ
T
F v, which is again

computable as a vector-Jacobian product followed by a Jacobian-vector product. Due to the shape of
JF , this operation is most efficiently performed using backward-mode followed by forward-mode
auto-differentiation, so our method can be termed the backward-forward variant.

Equations 7 and 8 can be combined into a single minimization problem which can be easily optimized
by second-order methods such as L-BFGS (Byrd et al., 1995):

λ∗ = argmin
λ

∣∣∣∣∣∣∣∣Fθ (x(t) + εr − ε2

2
∇xEψ(x(t))− ε2

2
JFθ (x

(t))Tλ

)∣∣∣∣∣∣∣∣ , (9)

where, in computationally challenging contexts, we can settle for suboptimal solutions at the cost of
introducing bias. We note that L-BFGS outperformed first-order methods like stochastic gradient
descent (Robbins & Monro, 1951) or Adam (Kingma & Ba, 2014) for this task. Once obtained, λ∗

can be plugged back into Equation 7 to directly calculate x(t+1).

The two steps described above constitute a single iteration of constrained Langevin dynamics.
In practice, many iterations are required to obtain a good approximation to sampling from Pθ,ψ
(Algorithm 1). Following Du & Mordatch (2019), we use a sample buffer for 95% of generated
samples to assist convergence during training. To obtain completely new samples, we sample random
noise in ambient space and project them toMθ by computing argminx ||Fθ(x)||2 with L-BFGS.
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Algorithm 1 Constrained Langevin Monte Carlo
Require: manifold-defining function Fθ, energy Eψ , step size ε, step count k, initial point x0

x← x0

for t = 1, . . . , k do
r′ ∼ N(0, In)
r ← r′ − JTFθ (JFθJ

T
Fθ
)−1JFθr

′

λ∗ ← argminλ

∣∣∣∣∣∣Fθ (x+ εr − ε2

2 ∇xEψ(x)−
ε2

2 JFθ (x)
Tλ

)∣∣∣∣∣∣
x← x+ εr − ε2

2 ∇xEψ(x)−
ε2

2 JFθ (x)
Tλ∗

end for
return x

4 EXPERIMENTS

The current literature on density estimation for non-trivial topologies assumes the manifold is known
beforehand (Gemici et al., 2016; Mathieu & Nickel, 2020; Rezende et al., 2020; De Bortoli et al.,
2022). Here we show that constrained EBMs are the best choice for such distributions in the absence
of a priori knowledge of the manifold. We reiterate that all manifolds learned in these experiments
are determined only based on samples, without additional knowledge. Quantitative comparisons of
density estimates are challenging when manifolds are unknown: likelihood values are incomparable
for different learned manifolds. Fortunately, we can compare the following manifolds visually.

As discussed in Section 2, the class of pushforward density estimation models is large, and any can
serve as a basis of comparison. We focus on the most comparable baseline: a simple pushforward
EBM consisting of an autoencoder with an EBM in the latent space. We experimented with regulariz-
ing the autoencoder by training with a Gaussian VAE objective, but it did not learn the manifold as
well as a regular autoencoder (Appendix B, Figure 8). Likewise, one could replace the latent EBM
with any density estimator (such as a normalizing flow (Brehmer & Cranmer, 2020) or VAE (Dai &
Wipf, 2019)), but this would not affect the learned manifold.

Our code is written in PyTorch (Paszke et al., 2019). We use GPyTorch (Gardner et al., 2018)
for conjugate gradients and the marching cubes algorithm of Yatagawa (2021) to plot 2D implicit
manifolds in 3D. We generate synthetic data with Pyro (Bingham et al., 2019). Hyperparameter
settings and other details can be found in Appendix B.

4.1 SYNTHETIC DATA

Density estimation In our first experiment, we evaluate density estimation ability on 1000 points
sampled from a mixture of two von Mises distributions on circles embedded in 2D. Results for an
ordinary EBM, a pushforward EBM, and a constrained EBM are visible in Figure 3. Of note is the
topology of the density learned by the pushforward EBM; it is necessarily connected and appears to
be diffeomorphic to the real line except at two points of self-intersection. The constrained EBM, in
contrast, captures the manifold even in regions of sparsity. The ordinary EBM is not subject to the
topological limitations of the pushforward EBM, but it still lacks the inductive bias to learn the low
intrinsic dimension of the data.

Manifold arithmetic In this experiment, we highlight the ability of constrained EBMs to perform
manifold arithmetic. Practical applications of this capability are left to future research. Figure 4
depicts two modes of composition for constrained EBMs. The constrained EBM depicted on the left
is learned from 1000 points sampled from a balanced mixture of two projected normal distributions.
After this, with no additional training, we manipulate it to create new probability models. First, two
copies of the learned model are translated by 0.5 units in opposite directions.

• A new model given by the union of these two copies is depicted in the middle pane
of Figure 4: it consists of the product of their MDFs and a balanced mixture of their
corresponding energies. Note that the new surface self-intersects, and is no longer formally
an embedded submanifold.
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Figure 3: Manifold learning and density estimation results on a balanced, disjoint mixture of two von
Mises distributions. Four models are depicted: the ground truth, an ambient EBM, a pushforward
EBM, and a constrained EBM (ours).

Figure 4: Manifold arithmetic with an implicitly learned sphere. From left to right: a spherical
distribution learned by a constrained EBM; the union of two copies of the same model translated in
different directions; and the intersection of the same two copies.

• Another new model given by the intersection of these two copies is visible in the final
pane. By concatenating the output of the MDFs and summing the corresponding energies,
we arrive at a circle embedded in three dimensions.

4.2 NATURAL DATA

Geospatial data Following Mathieu & Nickel (2020), we model a dataset of global flood events
from the Dartmouth Flood Observatory (Brakenridge, 2010), embedded on a sphere representing
the Earth. Despite the relative sparsity of floods compared to previous datasets (they only occur on
land), the constrained EBM still perfectly learns the spherical shape of the Earth (Figure 5). The
pushforward EBM represents the densities fairly well, but struggles to learn the sphere and places
some density off of the true manifold. Note that the constrained and pushforward EBMs are plotted
using a triangular mesh and mesh grid, respectively, due to the difference in how they are defined.

Amino acid modelling The structure of amino acids can be characterized by a pair of dihedral an-
gles and thus possesses toroidal geometry. Designing flexible probabilistic models for torus-supported
data is consequently of interest in the bioinformatics literature on protein structure prediction (Singh
et al., 2002; Mardia et al., 2007; Ameijeiras-Alonso & Ley, 2022), and so amino acid angle data is a
practical candidate for evaluating the density estimation ability of constrained EBMs. In Figure 6, we
compare a constrained EBM against a pushforward EBM using an open-source amino acid dataset
available from the NumPyro software package (Phan et al., 2019). Remarkably, our manifold-defining
function learns the torus well in the presence of sparse data. We postulate this is because the torus is
the simplest manifold matching the data’s curvature. On the other hand, the pushforward EBM was
unable to reliably model the manifolds.
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Figure 5: Manifold learning and density estimation results on flood location data. From left to right
with two different viewpoints (top and bottom): the ground truth data; a pushforward EBM; and a
constrained EBM (ours).

Figure 6: Manifold learning and density estimation results on the glycine angle data. From left to
right: the ground truth data; a pushforward EBM; and a constrained EBM (ours).

5 CONCLUSION

In this paper we observed that all existing techniques to jointly learn data manifolds and densities can
be described as pushforward models. These models must become near-diffeomorphisms, an overly
strong topological limitation, in order to provide reliable density estimates. To avoid this limitation,
we proposed to learn the data manifold implicitly with a neural network Fθ. We then proposed the
constrained EBM, a new type of EBM for modelling data on neural implicit manifolds. In both cases,
we showed how the computation of the Jacobian of Fθ can be “tamed” using stochastic estimates and
automatic differentiation tricks inspired by the injective flows literature (Kumar et al., 2020; Caterini
et al., 2021) which frequently grapples with non-square Jacobians. Finally, we demonstrated the
qualitative efficacy of constrained EBMs on both synthetic and real-world tasks.

Although we have covered the limitations of pushforward models when used for density estimation,
we highlight here some of their advantages over our model. Primarily, pushforward models come with
latent representations of data, which have myriad uses such as explainability and artificial reasoning
(Higgins et al., 2016; Mathieu et al., 2019) and efficient density estimation in the latent space. A
promising direction for future work is to combine these benefits with those of constrained EBMs.

Our model inherits all the difficulties of training EBMs; for example, it relies on the assumption
that Langevin dynamics converges, which occurs only with infinite steps. Sampling remains slower
than normal EBMs due to the complexity of constrained Langevin dynamics. Constrained EBMs
might thus benefit from training methods that do not involve sampling, such as the Stein discrepancy
(Grathwohl et al., 2020) or score-matching (Song & Kingma, 2021; De Bortoli et al., 2022).
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A FORMAL SETTING

Here we expand on the formal setting in which we seek to perform density estimation.

Geometry Let M be an m-dimensional Riemannian submanifold of ambient space Rn where
m < n. Formally this refers to the pair (M,g), where M ⊆ Rn is a manifold and g is the
Riemannian metric inherited from ambient Euclidean space. In other words, g is the restriction of the
canonical Euclidean metric, which is characterized by the standard dot product between vectors, to
vectors which are tangent toM. The metric g, which is typically implied, captures the curvature
information we would like to associate withM.

A manifold’s Riemannian metric gives rise to a unique differential form known as the Riemannian
volume form dµ, which allows for the integration of continuous, compactly supported, real-valued
functions h over the Riemannian manifold (Lee, 2013):∫

M
h dµ. (10)

Probability Let {xi} be observed samples drawn from P ∗, a probability measure supported onM.
SinceM has a lower intrinsic dimension than Rn, it is “infinitely thin.” In other words, P ∗(M) = 1
while the (Lebesgue) volume ofM is 0, meaning no probability density integrated over the ambient
space can be used to represent P ∗. Formally stated, P ∗ is not absolutely continuous with respect to
the Lebesgue measure on Rn.

Instead, we require a new way to define the volumes of subsets ofM. We can then formally define a
probability density p∗ overM and integrate with respect to this volume to obtain probabilities. The
volume form dµ onM is the answer; the probability of a set S ⊆M can be computed as follows:

P ∗(S) =

∫
S

p∗ dµ. (11)

We note that the volume form dµ from differential geometry is not technically a measure in the sense
of measure theory. This obstacle is minor: dµ can be extended to a true measure by a common
measure-theoretic tool known as the Riesz-Markov-Kakutani representation theorem5 (Rudin, 1987).
Thus we may identify dµ with a measure µ onM which produces volumes of Borel sets inM and
which we call the Riemannian measure ofM (Pennec, 1999).

Formally, we require P ∗ to be absolutely continuous with respect to µ, and we thus write that p∗ is
the Radon-Nikodym derivative of P ∗ with respect to µ: p∗ = dP∗

dµ . This is the ground-truth density
function we seek to model in this work.

B EXPERIMENT DETAILS

For all experiments, we use feedforward networks with SiLU activations (Hendrycks & Gimpel,
2016; Ramachandran et al., 2017). All models are trained with the Adam optimizer with the default
PyTorch parameters, except for the learning rate which is set as described below (Kingma & Ba,
2014). All EBMs, constrained EBMs, and pushforward EBMs are trained with a buffer size of 1000,
from which we initialize each Langevin dynamics sample with 95% probability. We do not use
spectral normalization for EBMs: we found it harmed the quality of density estimates. Initial noise
for the constrained EBM is sampled uniformly from a box in ambient space containing the ground
truth manifold and then projected to the manifold by solving for argminxnoise

||Fθ(xnoise))||2 with
L-BFGS using strong Wolfe line search. Equation 9 is also optimized using a single step of L-BFGS
with strong Wolfe line search. All models were tuned by hand for visual performance. Training times
are reported below, but we caution that models were not tuned for runtime, so the raw times should
not be compared between models to evaluate efficiency.

To plot the constrained EBM densities, we estimate the normalizing constants using Monte Carlo.
Since the learned MDFs always provide very good approximations of the true manifolds, we estimate

5In the reference and sometimes in general, this theorem is called the Riesz representation theorem, which
can also refer to a different theorem about Hilbert spaces.
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each normalizing constant using uniform samples from the ground truth manifold for convenience.
To plot the pushforward EBM densities, we estimate the normalizing constants in latent space with
Monte Carlo estimates based on uniform sampling within the clamped bounds. We then compute
pushforward densities with Equation 2.

All experiments were performed on an Intel Xeon Silver 4114 CPU.

We provide quantitative results in Table 1. We estimate the distance of each training point to the
manifold using an optimization procedure, and report minimum, median, mean, and maximum
distances over the training set. Nearest-point estimates must be computed differently for constrained
EBMs and pushforward EBMs, and therefore estimates for each model are prone to different sources
of error, so these metrics should be used only with caution as a basis of comparison. For the
constrained EBM with MDF Fθ, we compute the nearest point on the manifold to datapoint xi as

x∗ = argmin
x

||x− xi||2 + 1010||Fθ(x)||2,

where x has been initialized to xi. For the pushforward EBM with encoder-decoder pair (fθ, gϕ), we
compute the nearest point as fθ(z∗), where

z∗ = argmin
z
||fθ(z)− xi||2,

where z has been initialized to gϕ(xi). On every dataset, the implicit manifold captures the training
set with substantially more accuracy.

Table 1: Statistics of estimated dataset distances to the manifold.

EXPERIMENT
CONSTRAINED EBM PUSHFORWARD EBM

MIN MEDIAN MEAN MAX MIN MEDIAN MEAN MAX

MOTIVATING EXAMPLE 0.000× 10−5 0.07× 10−2 0.08× 10−2 0.006 0.226× 10−5 0.13× 10−2 0.21× 10−2 0.184
DENSITY ESTIMATION 0.639× 10−5 0.34× 10−2 0.36× 10−2 0.013 1.741× 10−5 0.53× 10−2 0.65× 10−2 0.072
MANIFOLD ARITHMETIC 1.016× 10−5 0.19× 10−2 0.20× 10−2 0.006 - - - -
GEOSPATIAL DATA 0.156× 10−5 0.06× 10−2 0.08× 10−2 0.004 0.780× 10−5 0.13× 10−2 0.16× 10−2 0.014
AMINO ACID MODELLING 0.365× 10−5 0.66× 10−2 0.77× 10−2 0.045 4.295× 10−5 2.42× 10−2 3.00× 10−2 0.627

B.1 SYNTHETIC DATA

Motivating example (Figure 1) We sampled 1000 points from a von Mises distribution on a unit
circle centred at (0, 0) with the mode located at (1, 0) and a concentration of 2.

The MDF for the constrained EBM consisted of 3 hidden layers with 8 units per hidden layer. The
MDF was trained for 200 epochs with a batch size of 100, a learning rate of 0.01, η = 1, and α = 1.
Training took 6.56 seconds.

The energy function for the constrained EBM consisted of 2 hidden layers with 32 units per hidden
layer. It was trained for 40 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped
to a norm of 1, and energy magnitudes regularized with a coefficient of 0.1. Langevin dynamics at
each training step were run for 10 steps with ε = 0.3, a step size of 1, and energy gradients clamped
to maximum values of 0.1 at each step. Training took 4 minutes, 5 seconds. In Figure 7, we evaluate
the effect of the Langevin dynamics step count on training dynamics, where we vary the step size (and
remove the training buffer, as this effectively increases the average step count). Fewer steps leads to a
more peaked mode because the estimated model distribution is overly smooth when estimating the
right-hand side of Equation 5.

The pushforward EBM’s encoder and decoder each had 3 hidden layers with 32 units per hidden
layer. They were jointly trained for 300 epochs with a batch size of 100, a learning rate of 0.001, and
gradients clipped to a norm of 1. Training took 16.4 seconds.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was
trained for 200 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of
1, and energy magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training
step were run for 60 steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 5 minutes, 19 seconds.
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Figure 7: Constrained EBM manifold learning and density estimation results on a von Mises
distribution where Langevin dynamics during training has been run (with no replay buffer) with
different step counts. From left to right and top to bottom, step counts per training step: 1, 3, 5, 10,
20, 40. The setting of 20 langevin dynamics steps is sufficient for convergence.

Density estimation We sampled 1000 points from a balanced mixture of two von Mises distributions
with concentration 2 on circles of unit radius. Respectively, they are centred at (−2, 0) and (2, 0)
with modes at (−1, 0) and (1, 0) (or, at polar angles of 0 and π with respect to the centre of each
circle).

The MDF for the constrained EBM consisted of 3 hidden layers with 8 units per hidden layer. The
MDF was trained for 1000 epochs with a batch size of 100, a learning rate of 0.01, η = 1, and α = 1.
Training took 31.3 seconds.

The energy function for the constrained EBM consisted of 3 hidden layers with 32 units per hidden
layer. It was trained for 50 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped
to a norm of 1, and energy magnitudes regularized with a coefficient of 0.3. Langevin dynamics at
each training step were run for 10 steps with ε = 0.4, a step size of 1, and energy gradients clamped
to maximum values of 0.1 at each step. Training took 37.8 seconds.

The (ambient) EBM consisted of 2 hidden layers with 32 units per hidden layer (we found that using
only 2 hidden layers gave a smoother density). It was trained for 3 cycles of 200 epochs with a step
size of 10. We used a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of 1, and
energy magnitudes regularized with a coefficient of 0.5. Langevin dynamics at each training step
were run for 10 steps with ε = 0.1 and energy gradients clamped to maximum values of 0.03 at each
step. Training took 3 minutes, 2 seconds.

The pushforward EBM’s encoder and decoder each had 3 hidden layers with 32 units per hidden
layer. It was trained for 1000 epochs with a batch size of 100, a learning rate of 0.001, and gradients
clipped to a norm of 1. Training took 57.3 seconds. We also tried training the autoencoder using a
variational autoencoder loss, but found that to learn the manifold properly, the KL term had to be
heavily downweighted near the point of nonexistence. In Figure 8 we show how manifold learning
ability deteriorates as the KL-weighting is increased.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was
trained for 300 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of
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Figure 8: Manifold learning and density estimation performance for different weightings β on the
KL-divergence term of the VAE loss. From left to right, top to bottom: β = 0.01, β = 0.03, β =
0.05, β = 0.1, β = 0.2, β = 0.4.

1, and energy magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training
step were run for 60 steps with ε = 1.0, a step size of 10, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 7 minutes, 5 seconds.

Manifold arithmetic We sampled 1000 points from a balanced mixture of two projected normal
distributions on the unit sphere. Each component was a normal distribution with unit diagonal
covariance centred at (1, 0, 0) and (−1, 0, 0) respectively before being projected to the sphere.

The MDF for the constrained EBM consisted of 3 hidden layers with 8 units per hidden layer. The
MDF was trained for 1500 epochs with a batch size of 100, a learning rate of 0.01, η = 1, and α = 2.
Training took 46.9 seconds.

The energy function for the constrained EBM consisted of 2 hidden layers with 32 units per hidden
layer. It was trained for 5 rounds of 10 epochs each wherein Langevin dynamics was run for 5, 10, 20,
40, and 50 steps respectively. We used a batch size of 50, a learning rate of 0.01, gradients clipped to
a norm of 1, and energy magnitudes regularized with a coefficient of 1. Langevin dynamics at each
training step were run for 10 steps with ε = 0.1, a step size of ε2, and energy gradients clamped to
maximum values of 0.03 at each step. Training took 17 minutes, 51 seconds.

B.2 NATURAL DATA

Geospatial data We modelled floods from the Dartmouth Flood Observatory’s global active archive,
which is available without charge for research and education purposes.

The MDF for the constrained EBM consisted of 3 hidden layers with 8 units per hidden layer. The
MDF was trained for 500 epochs with a batch size of 100, a learning rate of 0.01, η = 1, and α = 2.
Training took 1 minute, 11 seconds.

The energy function for the constrained EBM consisted of 4 hidden layers with 32 units per hidden
layer. It was trained for 4 rounds of 10 epochs each wherein Langevin dynamics was run for 5, 10,
20, and 40 steps respectively. We used a batch size of 100, a learning rate of 0.01, gradients clipped
to a norm of 1, and energy magnitudes regularized with a coefficient of 1. Langevin dynamics at
each training step was run with ε = 0.1, a step size of ε2, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 27 minutes, 43 seconds.

The pushforward EBM’s encoder and decoder each had 4 hidden layers with 32 units per hidden
layer. They were jointly trained for 500 epochs with a batch size of 100, a learning rate of 0.001, and
gradients clipped to a norm of 1. Training took 2 minutes, 29 seconds.

The pushforward EBM’s energy function had 4 hidden layers and 32 units per hidden layer. It was
trained for 50 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of
1, and energy magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training
step were run for 60 steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 4 minutes, 42 seconds.
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Figure 9: Constrained EBM manifold learning and density estimation results on the glycine angle
data for different values of η, the hyperparameter setting the boundary under which singular values
will be penalized by the Jacobian regularization term. From left to right: η = 0.3, η = 1, η = 2,
η = 3, and η = 5.

Amino acid modelling The MDF for the constrained EBM consisted of 2 hidden layers with 8
units per hidden layer. The MDF was trained for 500 epochs with a batch size of 100, a learning rate
of 0.01, η = 0.3, and α = 1. We found that increasing η, the smallest singular value required of JFθ
by the regularization term, made the implicit manifold harder to optimize. This occasionally yielded
plateaus in the loss function and resulted in incorrect manifolds, depicted in Figure 9. Training took
13.6 seconds.

The energy function for the constrained EBM consisted of 2 hidden layers with 32 units per hidden
layer. It was trained for 2 rounds of 10 epochs each wherein Langevin dynamics was run for 5 and 10
steps respectively. We used a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of
1, and energy magnitudes regularized with a coefficient of 1. Langevin dynamics at each training
step was run for 10 steps with ε = 0.1, a step size of ε2, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 1 minute, 14 seconds.

The pushforward EBM’s encoder and decoder each had 4 hidden layers with 32 units per hidden
layer. They were jointly trained for 500 epochs with a batch size of 100, a learning rate of 0.001, and
gradients clipped to a norm of 1. Training took 33.5 seconds.

The pushforward EBM’s energy function had 3 hidden layers and 32 units per hidden layer. It was
trained for 50 epochs with a batch size of 100, a learning rate of 0.01, gradients clipped to a norm of
1, and energy magnitudes regularized with a coefficient of 0.1. Langevin dynamics at each training
step were run for 60 steps with ε = 0.5, a step size of 10, and energy gradients clamped to maximum
values of 0.03 at each step. Training took 54 seconds.
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